JP4715768B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4715768B2
JP4715768B2 JP2007042006A JP2007042006A JP4715768B2 JP 4715768 B2 JP4715768 B2 JP 4715768B2 JP 2007042006 A JP2007042006 A JP 2007042006A JP 2007042006 A JP2007042006 A JP 2007042006A JP 4715768 B2 JP4715768 B2 JP 4715768B2
Authority
JP
Japan
Prior art keywords
injection
fuel
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007042006A
Other languages
Japanese (ja)
Other versions
JP2008202559A (en
Inventor
恵理子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007042006A priority Critical patent/JP4715768B2/en
Publication of JP2008202559A publication Critical patent/JP2008202559A/en
Application granted granted Critical
Publication of JP4715768B2 publication Critical patent/JP4715768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は内燃機関の燃料噴射制御装置に関し、特に燃料の分割噴射を制御する内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device for an internal combustion engine that controls split fuel injection.

従来、内燃機関において燃料を分割噴射する技術が知られている。分割噴射を行うと、分割噴射された燃料間に吸気或いは薄い混合気を挟み込むことができ、この結果、燃料と吸気とがより混合され易くなることから、燃焼が行われるときまでの間に混合気の均質性を高めることができる。係る分割噴射にする技術は例えば特許文献1から8までで提案されている。   2. Description of the Related Art Conventionally, a technique for dividing fuel in an internal combustion engine is known. When split injection is performed, intake or a thin air-fuel mixture can be sandwiched between split injected fuels, and as a result, fuel and intake air are more easily mixed. Qi homogeneity can be increased. For example, Patent Documents 1 to 8 propose such techniques for split injection.

特開平10−212988号公報Japanese Patent Laid-Open No. 10-212988 特開2001−98971号公報JP 2001-98971 A 特許第2879993号公報Japanese Patent No. 2879993 特開第3617310号公報JP 3617310 A 特開2002−115593号公報JP 2002-115593 A 特開2001−349292号公報JP 2001-349292 A 特開平11−82029号公報JP-A-11-82029 特開2001−90592号公報JP 2001-90592 A

ところで燃料を噴射する燃料噴射弁には、燃料に残存した慣性力などによって閉弁した後に再び開弁しまうという現象(以下、ニードルバウンスと称す)が発生することが一般に知られている。図5は燃料を分割噴射したときの様子を燃料噴射率で示す図であり、図5(a)に示す波形データは燃料を2回に分けて分割噴射したときのものである。なお、図5(b)は図5(a)に示す波形データをさらに模式的に示したものである。   Incidentally, it is generally known that a fuel injection valve that injects fuel has a phenomenon (hereinafter referred to as needle bounce) in which the valve is closed again by an inertial force remaining in the fuel and then opened again. FIG. 5 is a diagram showing the fuel injection rate when the fuel is divided and injected, and the waveform data shown in FIG. 5A is obtained when the fuel is divided and injected twice. Note that FIG. 5B further schematically shows the waveform data shown in FIG.

図5から、まず1回目の燃料噴射が行われた後、2回目の燃料噴射が行われるときまでの間にも燃料が噴射されていることがわかる(以下、この燃料噴射を2次噴と称す)。これは上述したニードルバウンスに起因するものであるが、図5から、この2次噴はさらに2回目の燃料噴射後にも1回目の燃料噴射後と同様に発生していることがわかる。すなわち、図5から分割噴射を行った場合には2次噴が分割回数分発生することがわかる。このため分割噴射を行った場合には、分割噴射を行わなかった場合と比較して2次噴が空燃比に及ぼす影響が大きくなり、この結果、空燃比が大きくずれてしまうことになる。   From FIG. 5, it can be seen that the fuel is also injected after the first fuel injection is performed until the second fuel injection is performed (hereinafter, this fuel injection is referred to as a secondary injection). Called). Although this is due to the needle bounce described above, it can be seen from FIG. 5 that this secondary injection is generated after the second fuel injection as well as after the first fuel injection. That is, it can be seen from FIG. 5 that when divided injection is performed, secondary injection is generated for the number of divisions. For this reason, when the divided injection is performed, the influence of the secondary injection on the air-fuel ratio becomes larger than when the divided injection is not performed, and as a result, the air-fuel ratio is largely deviated.

そこで本発明は上記の課題に鑑みてなされたものであり、分割噴射時に2次噴の影響で空燃比がずれてしまうことを抑制できる内燃機関の燃料噴射制御装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fuel injection control device for an internal combustion engine that can prevent the air-fuel ratio from shifting due to the influence of secondary injection during split injection. .

上記課題を解決するために、本発明は内燃機関の燃料噴射を制御するための内燃機関の燃料噴射制御装置であって、燃料の分割噴射を行うにあたって、燃料を噴射した後、2次噴が発生するときまでの間に新たな燃料噴射を行う特定分割噴射制御手段を備えることを特徴とする。本発明によれば、燃料噴射間での2次噴の発生を防止できることから、分割噴射時に2次噴の影響で空燃比がずれてしまうことを抑制できる。換言すれば本発明によれば、空燃比が分割噴射を行わず、燃料を1回噴射したときと同等の空燃比になるようにすることができる。   In order to solve the above-described problems, the present invention is a fuel injection control device for an internal combustion engine for controlling fuel injection of the internal combustion engine. In performing split fuel injection, after the fuel is injected, the secondary injection is performed. It is characterized by comprising specific split injection control means for performing new fuel injection before the occurrence. According to the present invention, it is possible to prevent the occurrence of secondary injection between fuel injections, and therefore it is possible to suppress the deviation of the air-fuel ratio due to the effect of secondary injection during split injection. In other words, according to the present invention, the air-fuel ratio can be made equal to that obtained when fuel is injected once without split injection.

また本発明は前記特定分割噴射制御手段が、燃料を噴射した後、予め定められた噴射インターバルに基づき、新たな燃料噴射を行ってもよい。ここで、例えば燃料の噴射圧が同じであっても、2次噴の発生特性は燃料噴射弁によって異なってくる。このため、2回目以降の新たな燃料噴射を行うにあたっては、具体的には例えば本発明のように実験等により予め定められた噴射インターバルに基づくことが好適である。   In the present invention, the specific divided injection control means may perform new fuel injection based on a predetermined injection interval after injecting fuel. Here, for example, even if the fuel injection pressure is the same, the generation characteristic of the secondary injection differs depending on the fuel injection valve. For this reason, in performing the second and subsequent new fuel injections, specifically, for example, it is preferable to use an injection interval that is predetermined by experiment or the like as in the present invention.

また本発明は前記分割噴射が行われるときに、さらに1噴射あたりの燃料噴射期間が所定値以下である場合に前記特定燃料噴射手段が燃料噴射を行ってもよい。ここで、1噴射あたりの燃料噴射期間が所定値以下である場合とは、例えば内燃機関が高速で回転しているときや、分割噴射のうち、最初の燃料噴射が圧縮行程に設定されているときなど、燃焼が行われるときまでの間に燃料が気化する時間がより短く、不利になるような場合を意味している。この場合には例えば前述した特許文献8記載のように、燃料噴射期間が長い(例えば3ms以上)と分割噴射を行えなくなってしまう虞がある。   In the present invention, when the divided injection is performed, the specific fuel injection unit may perform the fuel injection when the fuel injection period per injection is equal to or less than a predetermined value. Here, when the fuel injection period per injection is equal to or less than a predetermined value, for example, when the internal combustion engine is rotating at a high speed, or among the divided injections, the first fuel injection is set to the compression stroke. This means a case where the time until the fuel is vaporized before the time when combustion is performed is shorter and disadvantageous. In this case, for example, as described in Patent Document 8 described above, if the fuel injection period is long (for example, 3 ms or more), there is a possibility that the divided injection cannot be performed.

またこれに限られず、内燃機関の運転状態が、分割噴射を行う運転領域のうち、さらに軽負荷(例えば負荷率20%以下)運転領域など所定の運転領域にあるときに、混合気の均質性を高めるべく、1噴射あたりの燃料噴射期間を所定値以下にして複数回に亘って分割噴射を行う、或いは行いたいといったこともある。これに対して2次噴の発生を防止すべく分割噴射を行うにあたっては、分割噴射が短い噴射インターバルで行われることから係る場合が好適である。   In addition, the present invention is not limited to this, and the homogeneity of the air-fuel mixture when the operation state of the internal combustion engine is in a predetermined operation region such as a light load (for example, a load factor of 20% or less) operation region among the operation regions in which split injection is performed. In order to increase the fuel injection period, the fuel injection period per injection may be equal to or less than a predetermined value, or divided injection may be performed multiple times or may be desired. On the other hand, when performing divided injection to prevent the occurrence of secondary injection, the case where the divided injection is performed in a short injection interval is preferable.

また本発明は前記分割噴射が行われるときにさらに空燃比が目標空燃比から所定値以上ずれていた場合に前記特定分割噴射制御手段が燃料噴射を行ってもよい。ここで、空燃比が目標空燃比から所定値以上ずれていた場合とは、燃料噴射量がデポジットの付着により適正にならなくなった場合などに発生するものであり、係る場合については、具体的には例えば空燃比の補正値が規定値(例えば3%)を超えた空燃比学習モードに入ったか否かで判断できる。この場合には既に空燃比がずれてしまっている上に、さらに2次噴の影響を受けてしまうと大幅に空燃比がずれてしまう虞が高い。このため、2次噴の発生を防止すべく分割噴射を行うにあたっては、係る場合も好適である。   In the present invention, when the split injection is performed, the specific split injection control means may perform the fuel injection when the air-fuel ratio further deviates from a target air-fuel ratio by a predetermined value or more. Here, the case where the air-fuel ratio deviates from the target air-fuel ratio by a predetermined value or more occurs when the fuel injection amount becomes no longer appropriate due to deposit adhesion. Can be determined, for example, based on whether or not the air-fuel ratio learning mode is entered in which the correction value of the air-fuel ratio exceeds a specified value (eg, 3%). In this case, the air-fuel ratio has already shifted, and if it is further affected by the secondary injection, there is a high possibility that the air-fuel ratio will be significantly shifted. For this reason, in performing divided injection to prevent the occurrence of secondary injection, such a case is also suitable.

また本発明は前記分割噴射が行われるときに、さらに1噴射あたりの燃料噴射量が最小である場合に、前記特定燃料噴射手段が、前記2次噴の発生タイミングに合わせて燃料噴射を行ってもよい。ここで1噴射あたりの燃料噴射量が最小である場合とは、燃料噴射量の低下によって燃料噴射を安定して行えなくなることに対して、燃料噴射量が燃料噴射を安定して行い得る最小の燃料噴射量になっている場合を意味するものである。そしてこの場合にはトータルの燃料噴射量が少なくなるとともに、トータルの燃料噴射量に占める2次噴の噴射量の割合が相対的に大きくなることから、2次噴が空燃比に対してより大きな影響を及ぼすことになる。またこの場合には燃料噴射弁のニードルの挙動が不安定になることから、これに起因して燃料噴射量のばらつきも発生し易くなる。   In the present invention, when the divided injection is performed, and the fuel injection amount per injection is further minimum, the specific fuel injection unit performs the fuel injection in accordance with the generation timing of the secondary injection. Also good. Here, the case where the fuel injection amount per injection is the minimum is that the fuel injection amount cannot be stably performed due to the decrease in the fuel injection amount, whereas the fuel injection amount is the minimum at which the fuel injection can be performed stably. This means that the fuel injection amount is reached. In this case, the total fuel injection amount decreases, and the ratio of the secondary injection amount to the total fuel injection amount relatively increases. Therefore, the secondary injection is larger than the air-fuel ratio. Will have an impact. Further, in this case, the behavior of the needle of the fuel injection valve becomes unstable, so that variations in the fuel injection amount easily occur due to this.

これに対して本発明によれば、分割噴射時に2次噴の影響で空燃比がずれてしまうことを抑制できるとともに、さらに2次噴の発生タイミングに合わせて燃料噴射を行うことでニードルの挙動を安定させることができることから、合わせて燃料噴射量が最小である場合の燃料噴射を安定させてばらつきを低減できるほか、最小燃料噴射量の限界も拡大できる。   On the other hand, according to the present invention, it is possible to prevent the air-fuel ratio from deviating due to the influence of the secondary injection during the divided injection, and further, the behavior of the needle is achieved by performing the fuel injection in accordance with the generation timing of the secondary injection. Therefore, in addition to stabilizing the fuel injection when the fuel injection amount is the minimum, the variation can be reduced, and the limit of the minimum fuel injection amount can be expanded.

本発明によれば、分割噴射時に2次噴の影響で空燃比がずれてしまうことを抑制できる内燃機関の燃料噴射制御装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel-injection control apparatus of the internal combustion engine which can suppress that an air fuel ratio shifts | deviates by the influence of secondary injection at the time of split injection can be provided.

以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、ECU(Electronic Control Unit:電子制御装置)1で実現されている本実施例に係る内燃機関の始動制御装置を、内燃機関システム100とともに模式的に示す図である。内燃機関システム100は、吸気系10と、排気系20と、燃料噴射系30と、内燃機関50とを有して構成されている。吸気系10は内燃機関50に空気を導入するための構成であり、吸気を濾過するためのエアクリーナ11や、吸気量を計測するエアフロメータ12や、吸気量を調節するスロットル弁13や、吸気を一時的に貯蔵するサージタンク14や、吸気を内燃機関50の各気筒に分配するインテークマニホールド15や、これらの間に適宜配設される吸気管などを有して構成されている。また吸気系10にはスロットル弁13の開度を検知するための図示しないスロットル開度センサが配設されており、このスロットル開度センサの出力に基づき、スロットル弁13の開度のほか、内燃機関50の負荷も検出することができる。   FIG. 1 is a diagram schematically showing an internal combustion engine start control device according to the present embodiment realized by an ECU (Electronic Control Unit) 1 together with an internal combustion engine system 100. The internal combustion engine system 100 includes an intake system 10, an exhaust system 20, a fuel injection system 30, and an internal combustion engine 50. The intake system 10 is configured to introduce air into the internal combustion engine 50, and includes an air cleaner 11 for filtering the intake air, an air flow meter 12 for measuring the intake air amount, a throttle valve 13 for adjusting the intake air amount, A surge tank 14 for temporary storage, an intake manifold 15 for distributing intake air to each cylinder of the internal combustion engine 50, and an intake pipe appropriately disposed between them are configured. The intake system 10 is provided with a throttle opening sensor (not shown) for detecting the opening of the throttle valve 13. Based on the output of the throttle opening sensor, in addition to the opening of the throttle valve 13, an internal combustion engine is also provided. The load on the engine 50 can also be detected.

排気系20は、エキゾーストマニホールド21と、三元触媒22と、図示しない消音器と、これらの構成の間に適宜配設される吸気管などを有して構成されている。エキゾーストマニホールド21は各気筒からの排気を合流させるための構成である。三元触媒22は排気を浄化するための構成であり、炭化水素HC及び一酸化炭素COの酸化と窒素酸化物NOxの還元を行う。排気系20には、排気中の酸素濃度に基づき空燃比をリニアに検出するためのA/Fセンサ23が三元触媒22の上流に、排気中の酸素濃度に基づき空燃比が理論空燃比よりもリッチかリーンかを検出するための酸素センサ24が三元触媒22の下流に夫々空燃比センサとして配設されている。   The exhaust system 20 includes an exhaust manifold 21, a three-way catalyst 22, a silencer (not shown), and an intake pipe appropriately disposed between these components. The exhaust manifold 21 is configured to merge exhaust from the cylinders. The three-way catalyst 22 is configured to purify exhaust gas, and performs oxidation of hydrocarbons HC and carbon monoxide CO and reduction of nitrogen oxides NOx. In the exhaust system 20, an A / F sensor 23 for linearly detecting the air-fuel ratio based on the oxygen concentration in the exhaust is upstream of the three-way catalyst 22, and the air-fuel ratio is based on the oxygen concentration in the exhaust from the stoichiometric air-fuel ratio. Also, oxygen sensors 24 for detecting whether the gas is rich or lean are arranged downstream of the three-way catalyst 22 as air-fuel ratio sensors.

燃料噴射系30は燃料を供給及び噴射するための構成であり、燃料噴射弁31や燃料噴射ポンプ32や燃料タンク33などを有して構成されている。燃料噴射弁31は燃料を噴射するための構成であり、ECU1の制御のもと、適宜の噴射時期に開弁されて燃料を噴射する。また燃料噴射量は、ECU1の制御のもと燃料噴射弁31が閉弁されるまでの間の燃料噴射期間の長さで調節される。燃料噴射ポンプ32は燃料を加圧して噴射圧を発生させるための構成であり、ECU1の制御のもと噴射圧を適宜の噴射圧に調節する。なお、燃料噴射弁31は特に限定されないが、分割噴射を行うにあたって、2次噴の発生を防止すべく新たな燃料噴射を行うという制御の性質上、燃料噴射弁31には制御応答性が高いピエゾ弁などが適用されていることが好ましい。   The fuel injection system 30 is configured to supply and inject fuel, and includes a fuel injection valve 31, a fuel injection pump 32, a fuel tank 33, and the like. The fuel injection valve 31 is configured to inject fuel, and is opened at an appropriate injection timing and injects fuel under the control of the ECU 1. The fuel injection amount is adjusted by the length of the fuel injection period until the fuel injection valve 31 is closed under the control of the ECU 1. The fuel injection pump 32 is configured to pressurize the fuel to generate an injection pressure, and adjusts the injection pressure to an appropriate injection pressure under the control of the ECU 1. Although the fuel injection valve 31 is not particularly limited, the fuel injection valve 31 has high control responsiveness due to the nature of the control of performing new fuel injection to prevent the occurrence of secondary injection when performing split injection. A piezo valve or the like is preferably applied.

内燃機関50は、シリンダブロック51と、シリンダヘッド52と、ピストン53と、点火プラグ54と、吸気弁55と、排気弁56とを有して構成されている。本実施例に示す内燃機関50は筒内直接燃料噴射式の直列4気筒からなるガソリンエンジンである。但し内燃機関50は本発明を実施可能な内燃機関であれば特に限定されず、また他の適宜の気筒配列構造及び気筒数を有していてもよい。また図1では内燃機関50に関し、各気筒の代表としてシリンダ51aについて要部を示しているが本実施例では他の気筒についても同様の構造となっている。シリンダブロック51には、略円筒状のシリンダ51aが形成されている。シリンダ51a内には、ピストン53が収容されている。シリンダブロック51の上面にはシリンダヘッド52が固定されている。燃焼室57はシリンダブロック51、シリンダヘッド52及びピストン53に囲まれた空間として形成されている。   The internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, a spark plug 54, an intake valve 55, and an exhaust valve 56. The internal combustion engine 50 shown in the present embodiment is a gasoline engine comprising in-cylinder direct fuel injection type in-line four cylinders. However, the internal combustion engine 50 is not particularly limited as long as it is an internal combustion engine capable of implementing the present invention, and may have other appropriate cylinder arrangement structure and number of cylinders. In FIG. 1, the main part of the internal combustion engine 50 is shown with respect to the cylinder 51a as a representative of each cylinder. However, in this embodiment, the other cylinders have the same structure. The cylinder block 51 is formed with a substantially cylindrical cylinder 51a. A piston 53 is accommodated in the cylinder 51a. A cylinder head 52 is fixed to the upper surface of the cylinder block 51. The combustion chamber 57 is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the piston 53.

シリンダヘッド52には燃焼室57に吸気を導くための吸気ポート52aのほか、燃焼したガスを燃焼室57から排気するための排気ポート52bが形成され、さらにこれら吸排気ポート52a及び52bを開閉するための吸排気弁55及び56が配設されている。点火プラグ54は、燃焼室57の上方略中央に電極を突出させた状態でシリンダヘッド52に配設されている。燃料噴射弁31は筒内に直接燃料を噴射できるように、燃焼室57内に直上から燃料噴射孔を突出させた状態でシリンダヘッド52に配設されている。但し、燃料噴射弁31の配置はこれに限定されず、その他の適宜の位置に配置されてもよい。そのほか内燃機関50には、回転数NEに比例した出力パルスを発生するクランク角センサ71や、内燃機関50の水温を検出するための水温センサ72などの各種のセンサが配設されている。   In addition to an intake port 52a for guiding intake air to the combustion chamber 57, the cylinder head 52 is formed with an exhaust port 52b for exhausting the combusted gas from the combustion chamber 57, and opens and closes the intake and exhaust ports 52a and 52b. For this purpose, intake and exhaust valves 55 and 56 are provided. The spark plug 54 is disposed in the cylinder head 52 with an electrode protruding substantially in the center above the combustion chamber 57. The fuel injection valve 31 is disposed in the cylinder head 52 with a fuel injection hole protruding from directly above into the combustion chamber 57 so that fuel can be directly injected into the cylinder. However, the arrangement of the fuel injection valve 31 is not limited to this and may be arranged at other appropriate positions. In addition, the internal combustion engine 50 is provided with various sensors such as a crank angle sensor 71 that generates an output pulse proportional to the rotational speed NE and a water temperature sensor 72 for detecting the water temperature of the internal combustion engine 50.

ECU1は、図示しないCPU(Central Processing Unit:中央演算処理装置)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを有して構成されるマイクロコンピュータ(以下、単にマイコンと称す)と、入出力回路などを有して構成されている。ECU1は主として内燃機関50を制御するための構成であり、本実施例では燃料噴射弁31や燃料噴射ポンプ32や点火プラグ54(より具体的には図示しないイグナイタ)などを制御している。ECU1にはこれら燃料噴射弁31等のほか、各種の制御対象が駆動回路(図示省略)を介して接続されている。また、ECU1にはエアフロメータ12や、スロットル開度センサや、クランク角センサ71や、水温センサ72などの各種のセンサが接続されている。   The ECU 1 is a microcomputer (hereinafter simply referred to as a microcomputer) that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) (not shown). And an input / output circuit and the like. The ECU 1 is mainly configured to control the internal combustion engine 50. In this embodiment, the ECU 1 controls the fuel injection valve 31, the fuel injection pump 32, the ignition plug 54 (more specifically, an igniter not shown), and the like. In addition to the fuel injection valve 31 and the like, various control objects are connected to the ECU 1 via a drive circuit (not shown). The ECU 1 is connected to various sensors such as an air flow meter 12, a throttle opening sensor, a crank angle sensor 71, and a water temperature sensor 72.

ROMはCPUが実行する種々の処理が記述されたプログラムやマップデータを格納するための構成であり、本実施例では内燃機関50制御用プログラムのほか、燃料噴射を制御するための燃料噴射制御用プログラムなどが格納されている。なお、燃料噴射制御用プログラムは内燃機関50制御用プログラムの一部として構成されていてもよい。燃料噴射制御用プログラムは燃料を分割噴射するための分割噴射制御用プログラムを有して構成されており、この分割噴射制御用プログラムは、内燃機関50の運転状態(例えば回転数NE及び負荷)に応じて分割噴射を行うために、内燃機関50の運転状態が、分割噴射を行う運転領域にあるか否かを判定するとともに、肯定判定であった場合に分割噴射を行うように作成されている。   The ROM is configured to store a program in which various processes executed by the CPU and map data are stored. In this embodiment, in addition to a program for controlling the internal combustion engine 50, a fuel injection control for controlling fuel injection. Stores programs. The fuel injection control program may be configured as a part of the internal combustion engine 50 control program. The fuel injection control program is configured to have a split injection control program for split injection of fuel, and this split injection control program is used for the operating state (for example, the rotational speed NE and the load) of the internal combustion engine 50. In order to perform divided injection accordingly, it is determined whether or not the operating state of the internal combustion engine 50 is in the operation region in which divided injection is performed, and when the determination is affirmative, the divided injection is performed. .

これに対してROMは、内燃機関50の運転状態に応じて分割噴射を行う運転領域が定義された噴射マップデータ(図示省略)も格納しており、上記の分割噴射制御用プログラムは、さらに具体的には内燃機関50の運転状態を検出してこの噴射マップデータを参照することで、分割噴射を行う運転領域にあるか否かを判定するように作成されている。なお、分割噴射で行われる最初の燃料噴射は適宜のタイミングで行われてよく、例えば吸気行程で行われるほか、吸気行程から圧縮行程にかけて、或いは圧縮行程で行われてもよい。この点、最初の燃料噴射は、混合気の均質性向上や燃料の気化にとっては、燃料を噴射したときから燃焼が行われるときまでの期間を長く確保できる吸気行程で行われたほうが一般に有利となる。   On the other hand, the ROM also stores injection map data (not shown) in which an operation region in which divided injection is performed according to the operating state of the internal combustion engine 50 is defined. The above-described divided injection control program is more specific. Specifically, the operation state of the internal combustion engine 50 is detected and the injection map data is referred to so as to determine whether or not the operation region is in the divided injection region. Note that the first fuel injection performed in the split injection may be performed at an appropriate timing. For example, the fuel injection may be performed in the intake stroke, from the intake stroke to the compression stroke, or in the compression stroke. In this regard, the first fuel injection is generally advantageous for the improvement of the homogeneity of the air-fuel mixture and the fuel vaporization in the intake stroke that can ensure a long period from when the fuel is injected until when the combustion is performed. Become.

さらに分割噴射制御用プログラムは、燃料の分割噴射を行うにあたって、燃料を噴射した後、2次噴が発生するときまでの間に新たな燃料噴射を行う特定分割噴射制御用プログラムを有して構成されている。特定分割噴射制御用プログラムは具体的には燃料を噴射した後、予め定められた噴射インターバルに基づき、新たな燃料噴射を行うように作成されている。この噴射インターバルとしては燃料噴射弁31の特性に応じて実験により予め定められた値がROMに格納されている。   Further, the split injection control program has a specific split injection control program for performing new fuel injection after the fuel is injected until the secondary injection occurs when performing split injection of fuel. Has been. Specifically, the specific division injection control program is created so as to perform new fuel injection based on a predetermined injection interval after fuel is injected. As this injection interval, a value determined in advance by experiment according to the characteristics of the fuel injection valve 31 is stored in the ROM.

また特定分割噴射制御用プログラムに基づく燃料噴射は、分割噴射が行われるときに、さらに1噴射あたりの燃料噴射期間が所定値(例えば1ms)以下である場合に行われるようになっている。これに対して前述の噴射マップデータには、さらに1噴射あたりの燃料噴射期間が所定値以下である場合に対応する運転領域も設定されている。この運転領域は具体的には分割噴射を行う運転領域のうち、さらに内燃機関50の回転数が高回転数のときや、最初の燃料噴射が圧縮行程に設定されているときや、内燃機関50の負荷が軽負荷のときに対応する所定の運転領域となっている。これに応じてさらに前述の分割噴射制御用プログラムは、内燃機関50の運転状態を検出してこの噴射マップデータを参照することで、内燃機関50の運転状態が所定の運転領域にあるか否かを判定するとともに、肯定判定であった場合には、特定分割噴射制御用プログラムに基づく燃料噴射を行うように作成されている。   The fuel injection based on the specific split injection control program is performed when the split injection is performed and the fuel injection period per injection is a predetermined value (for example, 1 ms) or less. On the other hand, in the above-described injection map data, an operation region corresponding to a case where the fuel injection period per injection is equal to or less than a predetermined value is also set. Specifically, this operating region is an operating region in which split injection is performed. Further, when the rotational speed of the internal combustion engine 50 is high, or when the first fuel injection is set to the compression stroke, or the internal combustion engine 50 This is a predetermined operation region corresponding to when the load is light. In response to this, the aforementioned program for divided injection control detects whether or not the operating state of the internal combustion engine 50 is within a predetermined operating region by detecting the operating state of the internal combustion engine 50 and referring to the injection map data. If the determination is affirmative, the fuel injection based on the specific split injection control program is performed.

また特定分割噴射制御用プログラムに基づく燃料噴射は、分割噴射が行われるときに、さらに空燃比が目標空燃比から所定値以上ずれていた場合にも行われるようになっている。これに対して前述の分割噴射制御用プログラムは、分割噴射を行う運転領域にあるか否かを判定した結果、肯定判定であった場合には、さらに空燃比のフィードバック補正値が規定値(例えば3%)を超えた空燃比学習モードに入ったか否かを判定し、肯定判定であった場合に特定分割噴射制御用プログラムに基づく燃料噴射を行うように作成されている。   The fuel injection based on the specific split injection control program is also performed when the split injection is performed and when the air-fuel ratio further deviates from the target air-fuel ratio by a predetermined value or more. On the other hand, if the above-described split injection control program determines whether or not it is in the operation region in which split injection is performed, if the determination is affirmative, the air-fuel ratio feedback correction value is further set to a specified value (for example, 3%), it is determined whether or not the air-fuel ratio learning mode has been entered. If the determination is affirmative, the fuel injection based on the specific split injection control program is performed.

また特定分割噴射制御用プログラムに基づく燃料噴射は、分割噴射が行われるときに、さらに1噴射あたりの燃料噴射量が最小である場合に行われるようになっており、このとき特定分割噴射制御用プログラムは2次噴の発生タイミングに合わせて新たな燃料噴射を行うように作成されている。1噴射あたりの燃料噴射量が最小である場合の燃料噴射量(以下、最小燃料噴射量qminと称す)と、2次噴の発生タイミングとについては燃料噴射弁31の特性に応じて実験により予め定められた値がROMに格納されている。   Further, the fuel injection based on the specific split injection control program is performed when the split injection is performed and when the fuel injection amount per injection is the minimum. At this time, the fuel injection for the specific split injection control is performed. The program is created so as to perform new fuel injection in accordance with the generation timing of the secondary injection. The fuel injection amount when the fuel injection amount per injection is the minimum (hereinafter referred to as the minimum fuel injection amount qmin) and the timing of occurrence of the secondary injection are previously determined by experiments according to the characteristics of the fuel injection valve 31. The determined value is stored in the ROM.

これに対して前述の分割噴射制御用プログラムは、分割噴射を行う運転領域にあるか否かを判定した結果、肯定判定であった場合には、さらに燃料噴射量が最小燃料噴射量qminであるか否かを判定し、肯定判定であった場合に、特定分割噴射制御用プログラムに基づく燃料噴射を行うように作成されている。またこの場合には、特定分割噴射制御用プログラムに基づき2次噴の発生タイミングに合わせて新たな燃料噴射が行われる。本実施例ではマイコンと、内燃機関50制御用プログラムや分割噴射制御用プログラムなどとで、各種の検出手段や判定手段や制御手段などが実現されており、特にマイコンと特定分割噴射制御用プログラムとで特定分割噴射制御手段が実現されている。   On the other hand, if the above-described split injection control program determines whether or not it is in the operation region in which split injection is performed, if the determination is affirmative, the fuel injection amount is further the minimum fuel injection amount qmin. If the determination is affirmative, the fuel injection based on the specific split injection control program is performed. Further, in this case, new fuel injection is performed in accordance with the generation timing of the secondary injection based on the specific divided injection control program. In this embodiment, the microcomputer, the internal combustion engine 50 control program, the divided injection control program, and the like realize various detection means, determination means, control means, and the like. Thus, the specific split injection control means is realized.

次に、ECU1で行われる処理を図2に示すフローチャートを用いて詳述する。ECU1は、CPUがROMに格納された上述の特定分割噴射制御用プログラムなどの各種のプログラムに基づき、フローチャートに示す処理を実行することで2次噴の発生を防止すべく分割噴射を制御する。CPUは内燃機関50の運転状態を検出する処理を実行するとともに、内燃機関50の運転状態が分割噴射を行う運転領域にあるか否かを判定する処理を実行する(ステップS11)。否定判定であれば本フローチャートで特段の処理を要しない処理を終了する。一方、肯定判定であれば、CPUはさらに内燃機関50の運転状態が所定の運転領域にあるか否かを判定する処理を実行する(ステップS12)。   Next, the process performed by ECU1 is explained in full detail using the flowchart shown in FIG. The ECU 1 controls the divided injection so that the secondary injection is prevented by executing the processing shown in the flowchart based on various programs such as the above-described specific divided injection control program stored in the ROM. The CPU executes a process of detecting the operating state of the internal combustion engine 50 and also executes a process of determining whether or not the operating state of the internal combustion engine 50 is in an operating region where split injection is performed (step S11). If the determination is negative, processing that does not require special processing is terminated in this flowchart. On the other hand, if the determination is affirmative, the CPU further executes a process of determining whether or not the operating state of the internal combustion engine 50 is in a predetermined operating region (step S12).

ステップS12で肯定判定であれば、CPUは燃料を噴射した後、予め定められた噴射インターバルに基づき、新たな燃料噴射を行うよう、分割噴射を制御するための処理を実行する(ステップS13)。これにより、燃料噴射間の2次噴の発生を防止して空燃比のずれを抑制できるとともに、内燃機関50が高速で回転しているときや、混合気の均質性を向上させるべく、複数回に亘って分割噴射を行うときにも分割噴射を好適に行える。なお、このときの新たな燃料噴射のタイミングT1の一例を図3に模式的に示す。一方、ステップS12で否定判定であれば、CPUは空燃比のフィードバック補正値が規定値(例えば3%)を超えた空燃比学習モードに入ったか否かを判定する処理を実行する(ステップS14)。肯定判定であればステップS13に進む。これにより、燃料噴射間の2次噴の発生を防止して、空燃比が大幅にずれてしまうことを防止できる。   If an affirmative determination is made in step S12, the CPU executes a process for controlling the divided injection so that a new fuel injection is performed based on a predetermined injection interval after the fuel is injected (step S13). As a result, the occurrence of secondary injection during fuel injection can be prevented and the deviation of the air-fuel ratio can be suppressed, and a plurality of times can be taken when the internal combustion engine 50 is rotating at a high speed or to improve the homogeneity of the air-fuel mixture. The divided injection can be suitably performed also when the divided injection is performed. An example of the new fuel injection timing T1 at this time is schematically shown in FIG. On the other hand, if a negative determination is made in step S12, the CPU executes a process of determining whether or not the air-fuel ratio learning mode in which the air-fuel ratio feedback correction value exceeds a specified value (eg, 3%) has been entered (step S14). . If it is affirmation determination, it will progress to step S13. Thereby, it is possible to prevent the occurrence of secondary injection during fuel injection and prevent the air-fuel ratio from deviating significantly.

一方、ステップS14で否定判定であれば、CPUは燃料噴射量が最小燃料噴射量qminであるか否かを判定する処理を実行する(ステップS15)。否定判定であれば特段の処理を要しないため、本フローチャートに示す処理を終了する。一方、肯定判定であれば、CPUは燃料を噴射した後、2次噴の発生タイミングに合わせて新たな燃料噴射するよう、分割噴射を制御するための処理を実行する(ステップS16)。これにより、燃料噴射間の2次噴の発生を防止して空燃比のずれを抑制できるとともに、燃料噴射量が最小である場合の燃料噴射を安定させてばらつきを低減できるほか、最小燃料噴射量qminの限界も拡大できる。なお、このときの新たな燃料噴射タイミングT2の一例を図4に示す。以上により、分割噴射時に2次噴の影響で空燃比がずれてしまうことを抑制できるECU1を実現できる。   On the other hand, if a negative determination is made in step S14, the CPU executes a process of determining whether or not the fuel injection amount is the minimum fuel injection amount qmin (step S15). If the determination is negative, no particular processing is required, and the processing shown in this flowchart is terminated. On the other hand, if it is affirmation determination, after injecting fuel, CPU will perform the process for controlling split injection so that a new fuel may be injected according to the generation timing of secondary injection (step S16). As a result, it is possible to prevent the occurrence of secondary injection between fuel injections to suppress the deviation of the air-fuel ratio, stabilize fuel injection when the fuel injection amount is minimum, reduce variations, and reduce the minimum fuel injection amount. The limit of qmin can be expanded. An example of the new fuel injection timing T2 at this time is shown in FIG. As described above, it is possible to realize the ECU 1 that can suppress the deviation of the air-fuel ratio due to the influence of the secondary injection during the divided injection.

上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

ECU1を内燃機関システム100と共に模式的に示す図である。1 is a diagram schematically showing an ECU 1 together with an internal combustion engine system 100. FIG. ECU1で行われる処理をフローチャートで示す図である。It is a figure which shows the process performed by ECU1 with a flowchart. 新たな燃料噴射のタイミングT1の一例を模式的に示す図である。It is a figure which shows typically an example of timing T1 of new fuel injection. 新たな燃料噴射のタイミングT2の一例を模式的に示す図である。It is a figure which shows typically an example of the timing T2 of new fuel injection. 燃料を分割噴射したときの様子を燃料噴射率で示す図である。It is a figure which shows a mode when fuel is divided and injected with a fuel injection rate.

符号の説明Explanation of symbols

1 ECU
10 吸気系
20 排気系
30 燃料噴射系
31 燃料噴射弁
50 内燃機関
100 内燃機関システム
1 ECU
DESCRIPTION OF SYMBOLS 10 Intake system 20 Exhaust system 30 Fuel injection system 31 Fuel injection valve 50 Internal combustion engine 100 Internal combustion engine system

Claims (5)

内燃機関の燃料噴射を制御するための内燃機関の燃料噴射制御装置であって、
燃料の分割噴射を行うにあたって、燃料を噴射した後、2次噴が発生するときまでの間に新たな燃料噴射を行う特定分割噴射制御手段を備えることを特徴とする内燃機関の燃料噴射制御装置。
A fuel injection control device for an internal combustion engine for controlling fuel injection of the internal combustion engine,
A fuel injection control device for an internal combustion engine, comprising: specific split injection control means for performing a new fuel injection after the fuel is injected until the secondary injection occurs when performing the fuel split injection .
前記特定分割噴射制御手段が、燃料を噴射した後、予め定められた噴射インターバルに基づき、新たな燃料噴射を行うことを特徴とする請求項1記載の燃料噴射制御装置。 2. The fuel injection control device according to claim 1, wherein the specific divided injection control means performs new fuel injection based on a predetermined injection interval after injecting fuel. 前記分割噴射が行われるときに、さらに1噴射あたりの燃料噴射期間が所定値以下である場合に、前記特定分割噴射制御手段が燃料噴射を行うことを特徴とする請求項1または2記載の内燃機関の燃料噴射制御装置。 3. The internal combustion engine according to claim 1, wherein when the split injection is performed, the specific split injection control unit performs fuel injection when a fuel injection period per injection is equal to or less than a predetermined value. Engine fuel injection control device. 前記分割噴射が行われるときに、さらに空燃比が目標空燃比から所定値以上ずれていた場合に、前記特定分割噴射制御手段が燃料噴射を行うことを特徴とする請求項1または2記載の内燃機関の燃料噴射制御装置。 3. The internal combustion engine according to claim 1, wherein when the split injection is performed, the specific split injection control means performs fuel injection when the air-fuel ratio further deviates from a target air-fuel ratio by a predetermined value or more. Engine fuel injection control device. 前記分割噴射が行われるときに、さらに1噴射あたりの燃料噴射量が最小である場合に、前記特定分割噴射制御手段が、前記2次噴の発生タイミングに合わせて新たな燃料噴射を行うことを特徴とする請求項1または2記載の内燃機関の燃料噴射制御装置。 When the split injection is performed and the fuel injection amount per injection is further minimum, the specific split injection control means performs a new fuel injection in accordance with the generation timing of the secondary injection. 3. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection control device is an internal combustion engine.
JP2007042006A 2007-02-22 2007-02-22 Fuel injection control device for internal combustion engine Expired - Fee Related JP4715768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042006A JP4715768B2 (en) 2007-02-22 2007-02-22 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042006A JP4715768B2 (en) 2007-02-22 2007-02-22 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008202559A JP2008202559A (en) 2008-09-04
JP4715768B2 true JP4715768B2 (en) 2011-07-06

Family

ID=39780307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042006A Expired - Fee Related JP4715768B2 (en) 2007-02-22 2007-02-22 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4715768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236698B2 (en) * 2019-02-20 2022-02-01 King Abdullah University Of Science And Technology Internal combustion engines having pre-ignition mitigation controls and methods for their operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293159U (en) * 1985-12-02 1987-06-13
JPH08312414A (en) * 1995-05-16 1996-11-26 Toyota Motor Corp Electronic control fuel injection device of diesel engine
JPH11210587A (en) * 1998-01-23 1999-08-03 Kubota Corp Fuel injection device for diesel engine
JP2001263141A (en) * 2000-03-15 2001-09-26 Denso Corp Electromagnetic fuel injection device
JP2005171931A (en) * 2003-12-12 2005-06-30 Denso Corp Fuel injection control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293159U (en) * 1985-12-02 1987-06-13
JPH08312414A (en) * 1995-05-16 1996-11-26 Toyota Motor Corp Electronic control fuel injection device of diesel engine
JPH11210587A (en) * 1998-01-23 1999-08-03 Kubota Corp Fuel injection device for diesel engine
JP2001263141A (en) * 2000-03-15 2001-09-26 Denso Corp Electromagnetic fuel injection device
JP2005171931A (en) * 2003-12-12 2005-06-30 Denso Corp Fuel injection control device

Also Published As

Publication number Publication date
JP2008202559A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4635853B2 (en) Control device for internal combustion engine
JP2010112244A (en) Control device and control method
KR101035439B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP2008309036A (en) Fuel estimation device
JP5790419B2 (en) Control device for internal combustion engine
JP2018105191A (en) Control device of internal combustion engine
JP4715768B2 (en) Fuel injection control device for internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP2003232234A (en) Fuel supply control device of internal combustion engine
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP2005016397A (en) Air-fuel ratio controller for multi-cylinder engine
JP3902589B2 (en) Control device for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP2021131032A (en) Controller of internal combustion engine
JP5644342B2 (en) Control device for multi-cylinder internal combustion engine
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4576884B2 (en) Control device and control method for internal combustion engine
JP7493885B2 (en) Control device for internal combustion engine
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine
JP4844757B2 (en) Combustion control device for in-cylinder internal combustion engine
JP2008175118A (en) Catalyst deterioration detection device
JP5796465B2 (en) Fuel injection device for internal combustion engine
JP6217613B2 (en) Engine control device
JP4904999B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees