JP4714831B2 - Method and apparatus for joining micro electrical / electronic elements - Google Patents

Method and apparatus for joining micro electrical / electronic elements Download PDF

Info

Publication number
JP4714831B2
JP4714831B2 JP2005161070A JP2005161070A JP4714831B2 JP 4714831 B2 JP4714831 B2 JP 4714831B2 JP 2005161070 A JP2005161070 A JP 2005161070A JP 2005161070 A JP2005161070 A JP 2005161070A JP 4714831 B2 JP4714831 B2 JP 4714831B2
Authority
JP
Japan
Prior art keywords
high voltage
substrate
electronic
micro
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005161070A
Other languages
Japanese (ja)
Other versions
JP2006339334A (en
Inventor
武志 今野
満 江頭
幹彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005161070A priority Critical patent/JP4714831B2/en
Publication of JP2006339334A publication Critical patent/JP2006339334A/en
Application granted granted Critical
Publication of JP4714831B2 publication Critical patent/JP4714831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

この出願の発明は、微小電気・電子素子を基板上に設けられた電極に接合する方法及び装置に関するものである。より詳しくは、この出願の発明は、微小な半導体素子やバンプ接合電極のような微小電気・電子素子を配線基板の電極や金属バッド電極へ搭載・接合するための方法及び装置に関するものである。   The invention of this application relates to a method and apparatus for bonding a microelectric / electronic element to an electrode provided on a substrate. More specifically, the invention of this application relates to a method and an apparatus for mounting and bonding a minute electric / electronic element such as a minute semiconductor element or a bump bonding electrode to an electrode of a wiring board or a metal bad electrode.

従来より、半導体素子等のリード電極やパッド電極を基板に接合する場合、あらかじめ半導体素子等が配置・搭載された基板をリフロー炉に入れて、熱風や赤外線等を用いてこれを加熱することにより一括接合する手法が使用されてきた。今後、基板等に搭載する半導体素子等の小型化・集積化が一層進み、高密度実装の傾向(非特許文献1)が加速されると、半導体素子等内でのリード電極間の間隔あるいはパッド電極間の間隔が狭くなり、接合処理に際して発生するこれら狭窄した配線スペース間でのブリッジが深刻な問題となることが容易に想定できる。   Conventionally, when a lead electrode or pad electrode of a semiconductor element or the like is bonded to a substrate, the substrate on which the semiconductor element or the like is arranged and mounted in advance is placed in a reflow furnace and heated by using hot air or infrared rays. A technique of batch joining has been used. In the future, as semiconductor elements mounted on substrates and the like are further miniaturized and integrated, and the tendency for high-density mounting (Non-Patent Document 1) is accelerated, the distance between pads or pads in the semiconductor elements etc. It can be easily assumed that the gap between the electrodes becomes narrow and a bridge between these narrowed wiring spaces generated during the bonding process becomes a serious problem.

またハンダボール等で電気的な接合をはかるBGA(ボール・グリッド・アレイ)方式においては、リフロー炉による接合処理の温度が300℃以下であることから、ハンダの表面で生成しているハンダ酸化物が溶融したハンダ内に取り込まれて、接合部の電気抵抗を上昇させる要因となっている。今後、搭載部品の小型化が進むとともに、ハンダボールのサイズも小型化が進むことは避けられない。このことはハンダボールの体積に対する表面積の割合の増大を意味し、ハンダとハンダ酸化物との比率が酸化物サイドに大きく傾いていき、その結果として接合部の電気抵抗が大きく上昇していくことを示唆している。   Also, in the BGA (ball grid array) system that performs electrical bonding with solder balls or the like, the soldering oxide formed on the surface of the solder because the temperature of the bonding process in the reflow furnace is 300 ° C. or lower. Is taken into the melted solder, which increases the electrical resistance of the joint. In the future, it will be inevitable that the size of the mounted parts will be reduced and the size of the solder balls will also be reduced. This means an increase in the ratio of the surface area to the volume of the solder ball, and the ratio of solder to solder oxide is greatly inclined toward the oxide side, and as a result, the electrical resistance of the joint is greatly increased. It suggests.

近年、利用が増大している半導体化セラミクス素子においても、小型化・集積化により上記と同様な問題が生じてくる。
工業調査会、CSP技術のすべて、P.45、図1.20(1997)
Even in the semiconductor ceramic elements, which have been increasingly used in recent years, the same problems as described above arise due to miniaturization and integration.
Industrial Research Committee, CSP technology, 45, Figure 1.20 (1997)

しかしながら、上記従来技術では、小型化・集積化に伴う狭窄した配線スペース間でのブリッジに対する有効な対策がとられていない。   However, in the above prior art, an effective measure against a bridge between narrowed wiring spaces due to downsizing and integration is not taken.

また、半導体素子等と基板を接合する現在の一括接合処理においては、接合時にこれらハンダ酸化物を処理し接合部の電気抵抗の上昇を防ぐ有効な手段は持ち合わせていない。   Further, in the current collective bonding process for bonding a semiconductor element or the like to a substrate, there is no effective means for treating these solder oxides at the time of bonding to prevent an increase in electrical resistance of the bonded portion.

この出願は、以上のとおりの事情に鑑みてなされたもので、小型化・集積化に伴う半導体素子等の実装プロセスにおける要求に応え、微小なバンプ接合電極や半導体化セラミクス粒子のような微小電気・電子素子を、ブリッジを生じさせずに、また酸化物生成に起因する接合部の電気抵抗の上昇を防止して配線基板の電極や金属バッド電極へ搭載・接合するための新規な微小電気・電子素子の接合方法及び接合装置を提供することを課題とする。   This application was made in view of the circumstances as described above. In response to the demands in the mounting process of semiconductor elements and the like due to miniaturization and integration, a micro-electricity such as a micro-bump bonding electrode and semi-conducting ceramic particles. New micro-electricity for mounting and bonding electronic devices to wiring board electrodes and metal pad electrodes without causing bridging and preventing increase in electrical resistance of the junction due to oxide formation It is an object to provide a bonding method and a bonding apparatus for an electronic element.

この出願の発明は、上記課題を解決するものとして、第1には、基板上に設けられた電極上に微小電気・電子素子を当接させた状態で、中央に尖った先端が突出した高融点材製の導電性放電プローブが取り付けられるとともにその周囲に配置された作動ガスの吹き付け手段を持つとともに、導電性放電プローブの先端で微小電気・電子素子を静電気力あるいは真空吸着力により吸着し、移動及び位置決めを行うマニュピレータ機能を有するトーチ型電極を用い、トーチ型電極の導電性放電プローブを微小電気・電子素子と接触配置するか又は一定距離だけ離間配置し、作動ガスをトーチ型電極の導電性放電プローブの長さ方向に沿って供給しながら導電性放電プローブと基板上の電極との間に高電圧を印加して放電を発生させ、その熱エネルギーにより微小電気・電子素子を基板上の電極に接合させることを特徴とする微小電気・電子素子の接合方法を提供する。
In order to solve the above-mentioned problems, the invention of this application is as follows. First, in a state where a minute electric / electronic element is brought into contact with an electrode provided on a substrate, a high point with a sharp tip protruding in the center is provided. A conductive discharge probe made of a melting point material is attached and it has a working gas spraying means arranged around it, and adsorbs micro electric / electronic elements by electrostatic force or vacuum adsorption force at the tip of the conductive discharge probe, Using a torch-type electrode having a manipulator function for movement and positioning, the conductive discharge probe of the torch-type electrode is placed in contact with a minute electric / electronic element or spaced apart by a certain distance, and the working gas is conducted to the torch-type electrode. While supplying along the length of the conductive discharge probe, a high voltage is applied between the conductive discharge probe and the electrode on the substrate to generate a discharge. Chromatography by providing a method of bonding micro-electromechanical or electronic device characterized by bonding the micro-electromechanical and electronic element to electrodes on the substrate.

また、第2には、上記第1の発明において、作動ガスとして、不活性ガスと還元性ガスとの混合ガスを用いることを特徴とする微小電気・電子素子の接合方法を提供する。   According to a second aspect of the present invention, there is provided a method for joining micro-electric / electronic elements, characterized in that, in the first invention, a mixed gas of an inert gas and a reducing gas is used as the working gas.

また、第には、上記第1又は2の発明において、パルス状高電圧を印加することにより、放電を間欠的に繰り返し行うことを特徴とする微小電気・電子素子の接合方法を提供する。
According to a third aspect of the present invention, there is provided a method for joining micro electric / electronic elements according to the first or second aspect of the invention, wherein the discharge is intermittently repeated by applying a pulsed high voltage.

また、第には、上記第の発明において、パルス状高電圧の印加を、放電電圧の波高値、パルス幅及びデューティ比を制御して行うことを特徴とする微小電気・電子素子の接合方法を提供する。
According to a fourth aspect of the present invention, in the third invention, the application of the pulsed high voltage is performed by controlling the peak value of the discharge voltage, the pulse width, and the duty ratio. Provide a method.

また、第には、微小電気・電子素子を基板上に設けられた電極と接合させるための装置であって、中央に尖った先端が突出した高融点材製の導電性放電プローブが取り付けられるとともにその周囲に配置された作動ガスの吹き付け手段を持つとともに、導電性放電プローブの先端で微小電気・電子素子を静電気力あるいは真空吸着力により吸着し、移動及び位置決めを行うマニュピレータ機能を有するトーチ型電極と、導電性放電プローブと基板に設けられた電極との間に高電圧を印加する直流高電圧電源と、微小電気・電子素子を包み込むように導電性放電プローブの長さ方向に沿って作動ガスを供給する作動ガス供給部を備え、導電性放電プローブを微小電気・電子素子と接触配置するか又は一定距離だけ離間配置し、作動ガス供給部により作動ガスを供給しながら直流高電圧電源により導電性放電プローブと基板上の電極との間に高電圧を印加して放電を発生させ、その熱エネルギーにより微小電気・電子素子を基板上の電極に接合させることを特徴とする微小電気・電子素子の接合装置を提供する。
In addition, the fifth is a device for joining a micro electric / electronic element to an electrode provided on a substrate, and a conductive discharge probe made of a high melting point material having a pointed tip protruding in the center is attached. A torch type having a manipulator function for moving and positioning by adsorbing a minute electric / electronic element by electrostatic force or vacuum attracting force at the tip of the conductive discharge probe while having a working gas spraying means disposed around the same. Operates along the length of the conductive discharge probe so as to wrap the electrode, the DC high-voltage power supply that applies a high voltage between the conductive discharge probe and the electrode provided on the substrate, and the minute electric / electronic element Provided with a working gas supply unit for supplying gas, the conductive discharge probe is placed in contact with the micro electric / electronic element or separated by a certain distance, and the working gas supply unit While supplying a working gas, a high voltage is applied between the conductive discharge probe and the electrode on the substrate by a DC high voltage power source to generate a discharge, and the thermal energy causes the microelectric / electronic element to be transferred to the electrode on the substrate. The present invention provides a bonding apparatus for a micro electric / electronic element characterized in that the bonding is performed on a micro electric / electronic element.

また、第には、上記第の発明において、作動ガス供給部が、不活性ガスと還元ガスとの混合ガスを供給するものであることを特徴とする微小電気・電子素子の接合装置を提供する。
According to a sixth aspect of the present invention, there is provided a bonding apparatus for a micro electric / electronic element according to the fifth aspect , wherein the working gas supply unit supplies a mixed gas of an inert gas and a reducing gas. provide.

また、第には、上記第5又は6の発明において、直流高電圧電源が、パルス状高電圧を印加することができる電源であることを特徴とする微小電気・電子素子の接合装置を提供する。
According to a seventh aspect of the present invention, there is provided a bonding apparatus for micro electric / electronic elements according to the fifth or sixth aspect, wherein the DC high voltage power source is a power source capable of applying a pulsed high voltage. To do.

さらに、第には、上記第の発明において、直流高電圧電源が、パルス状高電圧の
印加を、放電電圧の波高値、パルス幅及びデューティ比を制御して行うことができるものであることを特徴とする微小電気・電子素子の接合装置を提供する。
Further, the eighth, in the seventh invention, the DC high voltage power supply, the application of a pulsed high voltage, the peak value of the discharge voltage, in which can be performed by controlling the pulse width and the duty ratio The present invention provides a bonding apparatus for micro electric / electronic elements.

この出願の発明によれば、先が尖った導電性放電プローブ(導電性針)を用い、作動ガスを供給しながら放電により局所及び急速加熱を行うため、小型化・集積化に伴う半導体素子等の実装プロセスにおける要求に応えることができ、バンプ接合電極や半導体化セラミクス素子のような微小電気・電子素子を、ブリッジを生じさせずに、配線基板上の電極や金属パッド電極へ搭載・接合することが可能となる。   According to the invention of this application, a conductive discharge probe (conductive needle) having a sharp point is used to perform local and rapid heating by discharging while supplying a working gas. It is possible to meet the requirements in the mounting process, and mount and bond micro electrical / electronic elements such as bump bonding electrodes and semiconducting ceramic elements to electrodes on the wiring board and metal pad electrodes without causing bridges. It becomes possible.

また、大気圧下での接合のため、接合のために特別な容器を必要とせず、既設の製造ライン中への組み入れが容易となる。   Further, since the bonding is performed under atmospheric pressure, a special container is not required for the bonding, and the incorporation into the existing production line is facilitated.

また、局所的な急速加熱及び急速冷却を利用しての接合のため、ハンダ酸化物等の溶融をも可能とし、酸化物生成に起因する接合部の電気抵抗の上昇を防止することができる。   Further, since bonding is performed using local rapid heating and rapid cooling, it is possible to melt solder oxide and the like, and to prevent an increase in electrical resistance of the bonded portion due to oxide generation.

また、作動ガス中に適当な還元ガスを混合することにより、たとえば酸化被膜を還元しながらの接合が可能となる。   Further, by mixing an appropriate reducing gas in the working gas, for example, joining while reducing the oxide film is possible.

また、パルス状の放電電圧の波高値、パルス幅及びデューティ比(パルスの休止と供給時の比)の制御により、3000Kを超える放電の温度にもかかわらず、基板を傷めることなく接合を行うことができる上、放電エネルギーの制御を容易とし、接合処理の確度を上げることができる。   In addition, by controlling the peak value, pulse width and duty ratio (ratio between pulse pause and supply) of the pulsed discharge voltage, bonding is performed without damaging the substrate despite the discharge temperature exceeding 3000K. In addition, the discharge energy can be easily controlled and the accuracy of the bonding process can be increased.

また、トーチ型電極に微小電気・電子素子を個別に吸着、移動、位置決めする等のマニュピレータ機能を持たせることにより、一括接合処理等で生じた搭載微小電気・電子素子の位置ズレ等を個別に修正していくことも可能となる。   In addition, by providing manipulator functions such as individually attracting, moving, and positioning micro electric / electronic elements to the torch type electrodes, individual displacements of mounted micro electric / electronic elements caused by batch bonding processing, etc. It is also possible to make corrections.

また、基板全体を加熱することなく接合が行えるので、微小電気・電子素子のふくらみや散りといった悪影響となる現象の発生を防止することができる。   In addition, since bonding can be performed without heating the entire substrate, it is possible to prevent the occurrence of adverse effects such as swelling and scattering of microelectric / electronic elements.

さらに、微小な接合対象部のみが局所的に高温となるため、特に専用の冷却機構を設けなくとも短時間で冷却され、作業時間が短縮できる利点もある。   In addition, since only the minute joining target portion is locally heated, there is an advantage that the working time can be shortened by cooling in a short time without providing a special cooling mechanism.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

この出願の発明では、導電性放電プローブ(導電性針)を備えたトーチ型電極を用い、作動ガスを吹き付けながら放電を行い、基板に設けられた電極上に微小電気・電子素子を接合させる。ここで、微小電気・電子素子とは、典型的には、たとえば半導体集積回路等の製造に使用されるバンプ接合電極や半導体化セラミクス粒子等の粒子状素子や、直方体の電子セラミクスデバイス(セラミクスコンデンサやフィルタ素子[表面にハンダ層を設けたもの])等を含む、微小な電気素子又は電子素子のことをいう。微小電気・電子素子のサイズは下限が10μm程度のものである。   In the invention of this application, using a torch type electrode provided with a conductive discharge probe (conductive needle), discharge is performed while blowing a working gas, and a micro electric / electronic element is joined on the electrode provided on the substrate. Here, the micro electric / electronic elements typically include, for example, particulate elements such as bump junction electrodes and semiconducting ceramic particles used in the manufacture of semiconductor integrated circuits, etc., and cuboid electronic ceramic devices (ceramic capacitors). Or a filter element [having a solder layer on the surface]) or the like. The lower limit of the size of the micro electric / electronic element is about 10 μm.

トーチ型電極としては、中央に尖った先端が突出した高融点材製の導電性放電プローブが取り付けられるとともにその周囲に配置された作動ガスの吹き付け手段を持つものを用いる。導電性放電プローブとしては、高融点(融点2200〜3400℃程度)を有し、高剛性かつ耐熱性を備えている材料で構成されていることが望ましく、たとえばW、WC、WSi、MoSi、TiB2、CrB2等を用いることができる。接合の際、導電性放電プローブは、微小電気・電子素子と接触配置するか又は一定距離だけ離間配置させる。その場合、導電性放電プローブ側を陽極とし、基板上の電極側を陰極とする。 As the torch-type electrode, an electrode to which a conductive discharge probe made of a high melting point material having a pointed tip projecting at the center is attached and which has a working gas spraying means disposed around it is used. The conductive discharge probe is preferably made of a material having a high melting point (melting point of about 2200 to 3400 ° C.) and high rigidity and heat resistance. For example, W, WC, WSi, MoSi, TiB 2 , CrB 2 or the like can be used. At the time of joining, the conductive discharge probe is placed in contact with the minute electric / electronic element or spaced apart by a certain distance. In that case, the conductive discharge probe side is the anode, and the electrode side on the substrate is the cathode.

作動ガスの吹き付け手段は、作動ガスをトーチ型電極の導電性放電プローブの長さ方向に沿って供給し、接合対象となる微小電気・電子素子を作動ガスで包み込むように吹き付けを行う。作動ガスは、接合する部位に吹き付けることにより、接合部位の酸化防止を行う。作動ガスとしては、アルゴン、ヘリウム等の不活性ガスと、H2、CO等の還元性ガ
スとの混合ガスを用いることができる。混合ガスを用いる場合には、接合する微小電気・電子素子の表面に生成する酸化物を還元しながらの接合が可能となる。作動ガスの吹き付け手段としては、導電性放電プローブと同軸の1本のパイプ状のものであってもよいし、複数本(たとえば3本や4本等)の吹き付け管を導電性放電プローブの回りに一定間隔で配置したものであってもよい。
The working gas spraying means supplies the working gas along the length direction of the conductive discharge probe of the torch type electrode, and sprays so that the micro electric / electronic element to be joined is wrapped with the working gas. The working gas is blown onto the part to be joined to prevent oxidation of the joined part. As the working gas, a mixed gas of an inert gas such as argon or helium and a reducing gas such as H 2 or CO can be used. In the case of using a mixed gas, it is possible to perform bonding while reducing oxides generated on the surfaces of the microelectric / electronic elements to be bonded. The working gas spraying means may be in the form of a single pipe coaxial with the conductive discharge probe, or a plurality of (for example, three or four) spraying tubes around the conductive discharge probe. It may be arranged at regular intervals.

放電を発生させるための電源としては、直流高電圧電源を用いる。直流高電圧電源としては、たとえばコッククロフト・ウォルトン回路を利用したパルス状高電圧発生電源を用いることができる。   A DC high voltage power supply is used as a power supply for generating discharge. As the DC high voltage power source, for example, a pulsed high voltage generating power source using a Cockcroft-Walton circuit can be used.

この場合、パルス状高電圧の波高値、パルス幅及びデューティ比(パルスの休止と供給時の比)を制御することにより、放電のエネルギーの制御が容易となり、接合処理の確度を上げることができる利点がある。その場合の放電条件は、たとえば高電圧(2〜10kV程度)、低電流(1〜100mA程度)とすることができる。放電時間は、10秒以下である。   In this case, by controlling the peak value, pulse width, and duty ratio (ratio between pulse pause and supply) of the pulsed high voltage, the discharge energy can be easily controlled, and the accuracy of the bonding process can be increased. There are advantages. The discharge conditions in that case can be, for example, a high voltage (about 2 to 10 kV) and a low current (about 1 to 100 mA). The discharge time is 10 seconds or less.

この出願の発明では、トーチ型電極として、導電性放電プローブの先端で微小電気・電子素子を静電気力あるいは真空吸着力により吸着し、移動及び位置決めができるマニュピレータ機能を有するものを用いることができる。この場合、トーチ型電極をX方向、Y方向、Z方向、周方向に移動・傾斜可能な構成(トーチ型電極をステージの保持部材で保持させ、ステージを上記各方向に移動可能にする)としてもよいし、基板を載置するステージ側を上記各方向に移動可能な構成としてもよいし、両者を組み合わせた構成としてもよい。   In the invention of this application, a torch type electrode having a manipulator function capable of adsorbing a minute electric / electronic element at the tip of a conductive discharge probe by electrostatic force or vacuum attracting force, and moving and positioning can be used. In this case, the torch type electrode can be moved and tilted in the X direction, Y direction, Z direction, and circumferential direction (the torch type electrode is held by the holding member of the stage so that the stage can be moved in the above directions). Alternatively, the stage side on which the substrate is placed may be configured to be movable in each of the above directions, or a combination of both.

この出願の発明によれば、トーチ型電極の導電性放電プローブを微小電気・電子素子と接触配置するか又は一定距離だけ離間配置し、作動ガス供給部により作動ガスを供給しながら直流高電圧電源により導電性放電プローブと基板上の電極との間に高電圧を印加して放電を発生させ、その熱エネルギーにより微小電気・電子素子を基板上の電極に接合させる。作動ガス供給部をトーチ型電極に組み込むことにより、導電性放電プローブと対向電極となる配線パターン間で大気圧、高電圧・低電流の放電条件とした細く絞られた放電炎を発生させ、その熱プラズマのエネルギーを利用して接合を行う。放電による熱プラズマは、優に3000Kを超えるが、細く絞られた放電炎は、細く尖った導電性放電プローブと作動ガスの吹き出しにより放電経路がガイドされることにより、適切な接合が可能となる。ここで、直流高電圧電源としてパルス状高電圧を印加できるものを使用することにより、放電電圧の波高値、パルス幅及びデューティ比(パルスの休止と供給時の比)を制御すると、基板を傷めることなく、接合処理が高い確度で行えるようになる。   According to the invention of this application, the direct current high voltage power supply is provided while the conductive discharge probe of the torch type electrode is placed in contact with the minute electric / electronic element or spaced apart by a certain distance and the working gas is supplied by the working gas supply unit. Thus, a high voltage is applied between the conductive discharge probe and the electrode on the substrate to generate a discharge, and the microelectric / electronic element is joined to the electrode on the substrate by the thermal energy. By incorporating the working gas supply unit into the torch-type electrode, a narrowed discharge flame with a discharge condition of atmospheric pressure, high voltage and low current is generated between the conductive discharge probe and the wiring pattern serving as the counter electrode. Bonding is performed using the energy of thermal plasma. Thermal plasma due to discharge is well above 3000K, but a thinly-squeezed discharge flame can be properly joined by guiding the discharge path with a thin, pointed conductive discharge probe and blowing of working gas. . Here, by using a DC high voltage power supply that can apply a pulsed high voltage, controlling the peak value, pulse width, and duty ratio (ratio between pulse pause and supply) of the discharge voltage will damage the substrate. Therefore, the joining process can be performed with high accuracy.

また、トーチ型電極に微小電気・電子素子を個別に吸着、移動、位置決めする等のマニュピレータ機能を持たせると、一括接合処理等で生じた搭載微小電気・電子素子の位置ズレ等を個別に修正していくことが可能となる。この場合、微小電気・電子素子を導電性放電プローブに吸着するには、まず導電性放電プローブを微小電気・電子素子に接触させる。その後、微小電気・電子素子(対象サイズは10μm以上)が400μm以下のサイズの場合、導電性放電プローブに20〜100Vの電圧を印加して静電気力を生じさせて捕捉する。微小電気・電子素子のサイズが100μm以上の場合、たとえば、導電性放電プローブを作動ガス吹き付け手段内部に格納してからトーチ型電極のノズルを吸い込み口と
して、微小電気・電子素子とノズル間の真空吸着力を用いて行うことができる。
In addition, if a manipulator function such as individually attracting, moving, and positioning micro electric / electronic elements to the torch-type electrode is provided, the misalignment of the mounted micro electric / electronic elements caused by batch bonding processing, etc., can be individually corrected. It becomes possible to do. In this case, in order to attract the minute electric / electronic element to the conductive discharge probe, first, the conductive discharge probe is brought into contact with the minute electric / electronic element. Thereafter, when the micro electrical / electronic element (target size is 10 μm or more) is 400 μm or less, a voltage of 20 to 100 V is applied to the conductive discharge probe to generate and capture the electrostatic force. When the size of the micro electric / electronic element is 100 μm or more, for example, after storing the conductive discharge probe in the working gas spraying means, the nozzle of the torch type electrode is used as a suction port, and the vacuum between the micro electric / electronic element and the nozzle is used. This can be done using the adsorption force.

また、基板全体を加熱することなく接合が行えるので、微小電気・電子素子のふくらみや散りといった悪影響となる現象の発生が防止できる。さらに、微小な接合対象部のみが局所的に高温となるため、特に専用の冷却機構を設けなくとも短時間で冷却され、作業時間が短縮できる。   In addition, since bonding can be performed without heating the entire substrate, it is possible to prevent the occurrence of adverse effects such as swelling or scattering of micro-electric / electronic elements. Furthermore, since only the minute joining target portion is locally heated, it can be cooled in a short time without particularly providing a dedicated cooling mechanism, and the working time can be shortened.

以下、実施例によりこの出願の発明ついてさらに詳しく説明する。もちろん、この出願の発明は上記の実施形態及び以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Hereinafter, the invention of this application will be described in more detail with reference to examples. Of course, the invention of this application is not limited to the above embodiment and the following examples, and it goes without saying that various aspects are possible in detail.

実施例1
図1は、この出願の発明による一実施例の接合方法及び接合装置を模式的に示す図である。トーチ型電極(1)は、W(タングステン)からなる中央に尖った先端が突出した導電性放電プローブ(2)(先端径2μm)を備え、その周囲には作動ガスである不活性ガス(4)(この例では(N2ガス))の通路(5)及び吹き出し口(6)を有するガス吹
き付け手段(3)が配置されている。ガス吹き付け手段(3)はSUS304鋼により構成されている。ガス吹き付け手段(3)は不活性ガス(4)を供給するための容器(7)に連結されている。
Example 1
FIG. 1 is a diagram schematically showing a joining method and joining apparatus according to an embodiment of the present invention. The torch-type electrode (1) includes a conductive discharge probe (2) (tip diameter 2 μm) with a pointed tip protruding from the center made of W (tungsten), and an inert gas (4 as a working gas) around it. ) (In this example (N 2 gas)) a gas blowing means (3) having a passage (5) and a blow-out port (6) is arranged. The gas blowing means (3) is made of SUS304 steel. The gas blowing means (3) is connected to a container (7) for supplying an inert gas (4).

一方、Cuからなる金属パッド(8)を設けたガラスエポキシ製基板(9)が、図示しないステージ上に載置されている。トーチ型電極(1)の導電性放電プローブ(2)は陽極としてパルス方式の高電圧電源(10)(マクセレック社製;商品名RHV−10K1PN型)に接続されている。また金属パッド(8)は陰極としてパルス方式の高電圧電源(10)に接続されている。金属パッド(8)には直径800μmのチタン酸バリウム(BaTiO3)粒子状素子(11)を当接させた。 On the other hand, a glass epoxy substrate (9) provided with a metal pad (8) made of Cu is placed on a stage (not shown). The conductive discharge probe (2) of the torch type electrode (1) is connected as an anode to a pulse-type high voltage power source (10) (manufactured by Maxelec; trade name RHV-10K1PN type). The metal pad (8) is connected as a cathode to a pulse type high voltage power supply (10). A barium titanate (BaTiO 3 ) particulate element (11) having a diameter of 800 μm was brought into contact with the metal pad (8).

上記のような構成により粒子状素子(11)を金属パッド(8)に接合するために、トーチ型電極(1)の導電性放電プローブ(2)の先端を粒子状素子(11)と50μm以上500μm以下離間させて、パルス方式の高電圧電源(10)により下記の条件で高電圧を印加して放電を行い、プラズマを発生させた。その際、粒子状素子(11)と金属パッド(8)あるいは基板(9)で放電による高温の熱を集中させるため及び酸化防止のために作動ガスである不活性ガス(4)をガス吹き付け手段(3)により導電性放電プローブ(2)と同軸に粒子状素子(11)を包み込むような形に吹き付けた。この吹き付けにより接合対象部が大気からシールドされ、さらに、パルス放電が接合対象部に集中し、酸化被膜のない接合を行うことができた。   In order to join the particulate element (11) to the metal pad (8) with the above configuration, the tip of the conductive discharge probe (2) of the torch type electrode (1) is at least 50 μm from the particulate element (11). Plasma was generated by performing discharge by applying a high voltage under the following conditions with a pulse-type high voltage power supply (10) at a distance of 500 μm or less. At that time, an inert gas (4), which is a working gas, is used for gas concentration in order to concentrate high-temperature heat from the discharge in the particulate element (11) and the metal pad (8) or the substrate (9) and to prevent oxidation. By (3), it sprayed in the shape which wraps the particulate element (11) coaxially with the electroconductive discharge probe (2). By this spraying, the part to be joined was shielded from the atmosphere, and further, pulse discharge was concentrated on the part to be joined, and joining without an oxide film could be performed.

接合条件
電圧:1.8〜2kV
電流:10mA
平均パルス幅:0.27msec.
放電時間:5〜10秒
実施例2
図2は、電子セラミクスの一種である半導体化セラミクス粒子(12)表面にハンダ等の低融点導電性微粒子(13)を島状に被覆した粒子状素子(11)を金属パッド(8)に接合させる方法を概念的に示す。なお、図2において、図1と同様な要素には同じ符号を付してある。図2の(a)はホットプレートまたはリフローにより加熱して接合する従来の接合方法であり、図2の(b)はこの出願の発明による接合方法である。一般にセラミクスは耐熱性が良いので高温から低温まで広い範囲で使用でき、これを半導体化させた
セラミクスはサーミスタ等の抵抗素子やコンデンサ材料として利用できる。この半導体化セラミクス粒子(12)は表面に電極となる低融点導電性微粒子(13)を形成することにより低電気抵抗のコンタクト性を備えた実装容易な電子セラミクス素子となる。図2(a)の(14)はホットプレートである。
Joining conditions Voltage: 1.8-2kV
Current: 10mA
Average pulse width: 0.27 msec.
Discharge time: 5-10 seconds Example 2
FIG. 2 shows the bonding of a particulate element (11) having a surface of semiconducting ceramic particles (12), which is a kind of electronic ceramics, coated with islands of low melting point conductive fine particles (13) such as solder to metal pads (8). Conceptually shows how to make it happen. In FIG. 2, the same elements as those in FIG. 2A shows a conventional joining method in which heating is performed by hot plate or reflow, and FIG. 2B shows the joining method according to the invention of this application. In general, ceramics have good heat resistance and can be used in a wide range from high temperature to low temperature. Ceramics made from semiconductors can be used as resistance elements such as thermistors and capacitor materials. The semiconducting ceramic particles (12) form a low melting point conductive fine particle (13) serving as an electrode on the surface, thereby forming an electronic ceramic element having low electrical resistance and easy mounting. (14) in FIG. 2 (a) is a hot plate.

図2(a)に示した粒子接合方法はホットプレートやリフローによりハンダ等の低融点導電性微粒子(13)が溶融するまで加熱する必要がある。したがって、加熱・冷却に要する接合時間が長くなり、広い面積を加熱することになる。加熱後の接合界面に酸化被膜が付着し接合性が悪くなり、ハンダは表面張力によりふくらんだり広い範囲に流れ易くなる。将来、高密度実装が進むと、素子はさらに小型化し、従来の接合方法では、接続ピッチも狭くなりピッチ間で短絡することも予想される。   The particle bonding method shown in FIG. 2A needs to be heated until the low melting point conductive fine particles (13) such as solder are melted by hot plate or reflow. Therefore, the bonding time required for heating / cooling is increased, and a large area is heated. An oxide film adheres to the bonded interface after heating, resulting in poor bonding, and the solder tends to swell or flow over a wide range due to surface tension. As high-density mounting progresses in the future, the device will be further miniaturized, and with the conventional bonding method, the connection pitch will be narrowed and short-circuiting between the pitches is expected.

一方、図2(b)で示したこの出願の発明による粒子接合方法では、放電により瞬間的なパルス放電を繰り返し加える。この接合方法では、局所領域を瞬間的に加熱するので、すぐに冷却されるため、半導体化セラミクス(12)の表面の低融点導電性微粒子(13)と金属パッド(8)の接触点近傍が酸化被膜を形成することなく溶融・凝固する。さらに、この出願の発明による接合方法では、基板全体を加熱することがないので、ハンダのふくらみや散りといった素子にとって悪影響となる現象は起こらない。   On the other hand, in the particle bonding method according to the invention of this application shown in FIG. 2B, instantaneous pulse discharge is repeatedly applied by discharge. In this bonding method, since the local region is instantaneously heated and thus immediately cooled, the vicinity of the contact point between the low melting point conductive fine particles (13) on the surface of the semiconducting ceramics (12) and the metal pad (8) Melts and solidifies without forming an oxide film. Further, in the bonding method according to the invention of this application, since the entire substrate is not heated, a phenomenon that adversely affects the device such as solder swelling and scattering does not occur.

図3は、電子セラミクス素子の一例として、半導体化チタン酸バリウムの粒子表面に20μm篩下のハンダ粒子を被覆した複合粒子を示す。半導体化チタン酸バリウムはPTC特性を示すセラミクス材料であり、粒子表面には島状に被覆したハンダが観察される。ハンダは導通を確保するためのコンタクト電極に利用するが、金属パッドの粒子間に配置することにより、図4に示すような温度と抵抗の良好な特性が得られる。   FIG. 3 shows, as an example of an electronic ceramic element, composite particles in which the surface of semiconducting barium titanate particles is coated with solder particles under a 20 μm sieve. Semiconducting barium titanate is a ceramic material exhibiting PTC characteristics, and solder coated in an island shape is observed on the particle surface. Solder is used as a contact electrode for ensuring conduction, but by disposing it between the metal pad particles, good temperature and resistance characteristics as shown in FIG. 4 can be obtained.

図5は、粒子表面をハンダで島状に被覆した直径800μmの半導体化チタン酸バリウム粒子とハンダ層を銅表面に被覆した基板を、この出願の発明の接合方法により接合した結果を示す写真である。放電は導電性放電プローブ(2)と粒子状素子(11)を50μm以上500μm以下離間させてパルス状電圧を印加した。その他の接合条件は実施例1と同様とした。その結果、ハンダとなじみにくい半導体化セラミクス粒子がハンダを介して銅基板と溶融接合し、電気的な導通が得られた。   FIG. 5 is a photograph showing the result of joining the 800 μm-diameter semiconducting barium titanate particles with the surface of the particles coated with solder and the substrate with the solder layer coated on the copper surface by the joining method of the invention of this application. is there. For discharging, a pulsed voltage was applied by separating the conductive discharge probe (2) and the particulate element (11) from 50 μm to 500 μm. Other joining conditions were the same as those in Example 1. As a result, semiconducting ceramic particles that were not easily compatible with solder were melt bonded to the copper substrate via the solder, and electrical conduction was obtained.

図6は、低融点導電性微粒子(13)であるハンダ粒子で島状に被覆された半導体化セラミクス粒子(12)と銅基板と間の抵抗値を測定する回路の概略図を示した。抵抗値は金属パッド(8)に接合された粒子状素子(11)と先端径500μmの抵抗測定用金属針(15)を接触させ、加圧してから抵抗測定用金属針(15)と金属パッド(8)間の抵抗値を精密抵抗測定器(16)を用いて測定した。ホットプレート(14)で加熱して接合した従来法の場合は抵抗値が約50MΩとなった。一方、この出願の発明による接合方法では、粒子状素子(11)と基板(9)上の金属パッド(8)を放電接合した場合の抵抗値は約300kΩとなり、抵抗値を2桁小さくできることが分かった。   FIG. 6 shows a schematic diagram of a circuit for measuring the resistance value between the semiconductive ceramic particles (12) covered with solder particles, which are the low melting point conductive fine particles (13), in an island shape and the copper substrate. The resistance is measured by bringing the particulate element (11) bonded to the metal pad (8) into contact with the resistance measuring metal needle (15) having a tip diameter of 500 μm and pressurizing it, and then the resistance measuring metal needle (15) and the metal pad. The resistance value between (8) was measured using a precision resistance measuring instrument (16). In the case of the conventional method in which heating was performed with a hot plate (14), the resistance value was about 50 MΩ. On the other hand, in the joining method according to the invention of this application, the resistance value when the particulate element (11) and the metal pad (8) on the substrate (9) are joined by discharge is about 300 kΩ, and the resistance value can be reduced by two orders of magnitude. I understood.

図7は、粒子状素子(11)を電子回路基板(17)に表面実装したときの模式図である。基板表面には導通ライン(18)があらかじめ描画されており、粒子状素子(11)が配線された導通ライン(18)の任意の位置に配置すれば、電源(19)より供給された信号を受けて、抵抗素子やコンデンサ素子を組み込んだ電子回路が完成できる。   FIG. 7 is a schematic view when the particulate element (11) is surface-mounted on the electronic circuit board (17). A conduction line (18) is drawn in advance on the surface of the substrate. If the conductive line (18) is arranged at an arbitrary position on which the particulate element (11) is wired, a signal supplied from the power source (19) is supplied. In response, an electronic circuit incorporating a resistance element and a capacitor element can be completed.

この出願の発明による一実施例の接合方法及び接合装置を模式的に示す図である。It is a figure which shows typically the joining method and joining apparatus of one Example by invention of this application. 半導体化セラミクス粒子表面にハンダ等の低融点導電性微粒子を島状に被覆した粒子状素子を金属パッドに接合させる方法を概念的に示す図で、(a)が従来の方法、(b)がこの出願の発明による方法である。The figure which shows notionally the method of joining the particulate element which coat | covered the low melting point electroconductive fine particles, such as solder | pewter, on the surface of semiconducting ceramic particle | grains to the metal pad, (a) is the conventional method, (b) The method according to the invention of this application. ハンダ被覆された半導体化チタン酸バリウム複合粒子を写真で示す図である。It is a figure which shows the semiconductor-ized barium titanate composite particle by which solder coating was carried out with a photograph. 図3の複合粒子を金属パッドの粒子間に配置したときの温度−抵抗特性を示す図である。It is a figure which shows a temperature-resistance characteristic when the composite particle | grains of FIG. 3 are arrange | positioned between the particle | grains of a metal pad. ハンダ被覆された半導体化チタン酸バリウム複合粒子と銅基板との接合の様子を写真で示す図である。It is a figure which shows the mode of joining of the semiconductor-coated barium titanate composite particles coated with solder and the copper substrate. ハンダ被覆されたの粒子表面にハンダ微粒子と銅基板の接合回路の抵抗測定の概略説明図である。It is a schematic explanatory drawing of the resistance measurement of the joining circuit of a solder fine particle and a copper substrate on the particle | grain surface of solder coating. 粒子状素子を電子回路基板に表面実装したときの模式図である。It is a schematic diagram when a particulate element is surface-mounted on an electronic circuit board.

符号の説明Explanation of symbols

1 トーチ型電極
2 導電性放電プローブ
3 ガス吹き付け手段
4 不活性ガス
5 不活性ガスの通路
6 吹き出し口
7 不活性ガス用容器
8 金属パッド
9 基板
10 高電圧電源
11 粒子状素子
12 半導体化セラミクス粒子
13 低融点導電性微粒子
14 ホットプレート
15 抵抗測定用金属針
16 精密抵抗測定器
17 電子回路基板
18 導通ライン
19 電源

DESCRIPTION OF SYMBOLS 1 Torch type electrode 2 Conductive discharge probe 3 Gas spraying means 4 Inert gas 5 Passage of inert gas 6 Outlet 7 Inert gas container 8 Metal pad 9 Substrate 10 High voltage power supply 11 Particulate element 12 Semiconductor ceramic particle 13 Low melting point conductive fine particles 14 Hot plate 15 Metal needle for resistance measurement 16 Precision resistance measuring instrument 17 Electronic circuit board 18 Conducting line 19 Power supply

Claims (8)

基板上に設けられた電極上に微小電気・電子素子を当接させた状態で、中央に尖った先端が突出した高融点材製の導電性放電プローブが取り付けられるとともにその周囲に配置された作動ガスの吹き付け手段を持つとともに、導電性放電プローブの先端で微小電気・電子素子を静電気力あるいは真空吸着力により吸着し、移動及び位置決めを行うマニュピレータ機能を有するトーチ型電極を用い、トーチ型電極の導電性放電プローブを微小電気・電子素子と接触配置するか又は一定距離だけ離間配置し、作動ガスをトーチ型電極の導電性放電プローブの長さ方向に沿って供給しながら導電性放電プローブと基板上の電極との間に高電圧を印加して放電を発生させ、その熱エネルギーにより微小電気・電子素子を基板上の電極に接合させることを特徴とする微小電気・電子素子の接合方法。 A conductive discharge probe made of a high melting point material with a sharp pointed tip protruding in the center with a micro electrical / electronic element in contact with an electrode provided on the substrate is attached and operated around it. A torch type electrode having a manipulator function for adsorbing a minute electric / electronic element by electrostatic force or vacuum adsorption force at the tip of a conductive discharge probe and moving and positioning the gas is provided. The conductive discharge probe and the substrate are arranged in contact with the micro electric / electronic element or spaced apart by a certain distance while supplying the working gas along the length direction of the conductive discharge probe of the torch type electrode. A high voltage is applied to the upper electrode to generate a discharge, and the heat energy joins the microelectric / electronic element to the electrode on the substrate. Method of bonding micro-electromechanical or electronic element characterized. 作動ガスとして、不活性ガスと還元性ガスとの混合ガスを用いることを特徴とする請求項1 記載の微小電気・電子素子の接合方法。   The method of joining micro electric / electronic elements according to claim 1, wherein a mixed gas of an inert gas and a reducing gas is used as the working gas. パルス状高電圧を印加することにより、放電を間欠的に繰り返し行うことを特徴とする請求項1又は2に記載の微小電気・電子素子の接合方法。 3. The method for bonding micro electric / electronic elements according to claim 1, wherein the discharge is intermittently repeated by applying a pulsed high voltage. パルス状高電圧の印加を、放電電圧の波高値、パルス幅及びデューティ比を制御して行うことを特徴とする請求項記載の微小電気・電子素子の接合方法。 4. The method for bonding micro electric / electronic elements according to claim 3 , wherein the pulsed high voltage is applied by controlling the peak value, pulse width and duty ratio of the discharge voltage. 微小電気・電子素子を基板上に設けられた電極と接合させるための装置であって、
中央に尖った先端が突出した高融点材製の導電性放電プローブが取り付けられるとともにその周囲に配置された作動ガスの吹き付け手段を持つとともに、導電性放電プローブの先端で微小電気・電子素子を静電気力あるいは真空吸着力により吸着し、移動及び位置決めを行うマニュピレータ機能を有するトーチ型電極と、
導電性放電プローブと基板上に設けられた電極との間に高電圧を印加する直流高電圧電源と、
微小電気・電子素子を包み込むように導電性放電プローブの長さ方向に沿って作動ガスを供給する作動ガス供給部を備え、
導電性放電プローブを微小電気・電子素子と接触配置するか又は一定距離だけ離間配置し、作動ガス供給部により作動ガスを供給しながら直流高電圧電源により導電性放電プローブと基板上の電極との間に高電圧を印加して放電を発生させ、その熱エネルギーにより微小電気・電子素子を基板上の電極に接合させることを特徴とする微小電気・電子素子の接合装置。
An apparatus for joining a micro electric / electronic element with an electrode provided on a substrate,
A conductive discharge probe made of a high melting point material with a pointed tip protruding in the center is attached, and there is a working gas spraying means placed around it , and the tip of the conductive discharge probe electrostatically charges micro electrical and electronic elements. A torch-type electrode having a manipulator function that is attracted by force or vacuum attracting force and moves and positions ;
A direct-current high-voltage power supply that applies a high voltage between the conductive discharge probe and an electrode provided on the substrate;
Provided with a working gas supply unit that feeds a working gas along the length direction of the conductive discharge probe so as to wrap the micro electrical / electronic element,
The conductive discharge probe is placed in contact with the micro electric / electronic element or spaced apart by a fixed distance, and the working gas supply unit supplies the working gas to the conductive high-voltage power supply between the conductive discharge probe and the electrode on the substrate. An apparatus for joining micro electric / electronic elements, wherein a high voltage is applied between the electrodes to generate a discharge, and the micro electric / electronic elements are joined to electrodes on the substrate by the thermal energy.
作動ガス供給部が、不活性ガスと還元ガスとの混合ガスを供給するものであることを特徴とする請求項記載の微小電気・電子素子の接合装置。 6. The bonding apparatus for a micro electric / electronic element according to claim 5 , wherein the working gas supply unit supplies a mixed gas of an inert gas and a reducing gas. 直流高電圧電源が、パルス状高電圧を印加することができる電源であることを特徴とする請求項5又は6に記載の微小電気・電子素子の接合装置。 7. The apparatus for joining micro electric / electronic elements according to claim 5 , wherein the DC high voltage power source is a power source capable of applying a pulsed high voltage. 直流高電圧電源が、パルス状高電圧の印加を、放電電圧の波高値、パルス幅及びデューティ比を制御して行うことができるものであることを特徴とする請求項記載の微小電気・電子素子の接合装置。
8. The micro electric / electronic device according to claim 7 , wherein the DC high voltage power source is capable of applying a pulsed high voltage by controlling a peak value of a discharge voltage, a pulse width and a duty ratio. Device bonding device.
JP2005161070A 2005-06-01 2005-06-01 Method and apparatus for joining micro electrical / electronic elements Expired - Fee Related JP4714831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161070A JP4714831B2 (en) 2005-06-01 2005-06-01 Method and apparatus for joining micro electrical / electronic elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161070A JP4714831B2 (en) 2005-06-01 2005-06-01 Method and apparatus for joining micro electrical / electronic elements

Publications (2)

Publication Number Publication Date
JP2006339334A JP2006339334A (en) 2006-12-14
JP4714831B2 true JP4714831B2 (en) 2011-06-29

Family

ID=37559638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161070A Expired - Fee Related JP4714831B2 (en) 2005-06-01 2005-06-01 Method and apparatus for joining micro electrical / electronic elements

Country Status (1)

Country Link
JP (1) JP4714831B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795772B1 (en) * 2007-02-28 2008-01-17 주식회사 고려반도체시스템 Method of preventing melted metallic compound from having oxidized film thereon during bump formation process and apparatus therefor
JP2009297738A (en) * 2008-06-12 2009-12-24 Taiyo Nippon Sanso Corp Shielding gas for arc brazing and arc brazing method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261865A (en) * 1997-03-19 1998-09-29 Toshiba Corp Mounting method of electric part
JP2000133670A (en) * 1998-10-28 2000-05-12 Internatl Business Mach Corp <Ibm> Bump, its forming method, and its manufacturing equipment
JP2001205441A (en) * 2000-01-18 2001-07-31 Ramu Technologies:Kk Arc welding method and torch for arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261865A (en) * 1997-03-19 1998-09-29 Toshiba Corp Mounting method of electric part
JP2000133670A (en) * 1998-10-28 2000-05-12 Internatl Business Mach Corp <Ibm> Bump, its forming method, and its manufacturing equipment
JP2001205441A (en) * 2000-01-18 2001-07-31 Ramu Technologies:Kk Arc welding method and torch for arc welding

Also Published As

Publication number Publication date
JP2006339334A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US6455785B1 (en) Bump connection with stacked metal balls
US4937006A (en) Method and apparatus for fluxless solder bonding
US10668558B2 (en) Metal wiring bonding structure and production method therefor
US6288376B1 (en) Method and apparatus for melting a bump by induction heating
US20070170227A1 (en) Soldering method
US20150174686A1 (en) Method and device for joining conductors to substrates
US7279409B2 (en) Method for forming multi-layer bumps on a substrate
EP0494463B1 (en) Connection method and connection device for electrical connection of small portions
CN103180079A (en) Production method for solder transfer base material, solder precoating method, and solder transfer base material
JP4714831B2 (en) Method and apparatus for joining micro electrical / electronic elements
US5334422A (en) Electrical connector having energy-formed solder stops and methods of making and using the same
JP4823656B2 (en) Manufacturing method of package parts
WO1997032457A1 (en) Method for manufacturing electronic circuit device
JP2017531734A (en) Plasma coating of thermoelectrically active materials with nickel and tin.
JP2006100454A (en) Bonding device employing solder
JP2014224302A (en) Base metal composite electrode of electronic ceramic element, and manufacturing method thereof
JP2004146731A (en) Manufacturing method of multilayer wiring substrate
TW201811130A (en) Metal wiring bonding structure and production method therefor
JP2004119866A (en) Collet chuck and element mounting method using the same
JP2007277619A (en) Method of depositing particle according to electrophoresis
CN112643165A (en) Device for melting welding material and method for establishing electronic connection
JPH03241756A (en) Apparatus and method of mounting semiconductor integrated circuit
JP3947144B2 (en) Bump forming method on semiconductor element or wiring board
JPH03129830A (en) Bump formation
JP3787620B2 (en) 3D assembly equipment for small objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees