JP4711012B2 - Ozonolysis agent - Google Patents

Ozonolysis agent Download PDF

Info

Publication number
JP4711012B2
JP4711012B2 JP2009232232A JP2009232232A JP4711012B2 JP 4711012 B2 JP4711012 B2 JP 4711012B2 JP 2009232232 A JP2009232232 A JP 2009232232A JP 2009232232 A JP2009232232 A JP 2009232232A JP 4711012 B2 JP4711012 B2 JP 4711012B2
Authority
JP
Japan
Prior art keywords
iron compound
iron
ozone
liquid
ozonolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009232232A
Other languages
Japanese (ja)
Other versions
JP2010042413A (en
Inventor
和宏 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009232232A priority Critical patent/JP4711012B2/en
Publication of JP2010042413A publication Critical patent/JP2010042413A/en
Application granted granted Critical
Publication of JP4711012B2 publication Critical patent/JP4711012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、空気中に存在するオゾン(O)を分解除去するオゾン分解触媒に関する。 The present invention relates to an ozone decomposition catalyst that decomposes and removes ozone (O 3 ) present in the air.

コロナ放電による帯電方式を採用した電気集塵式空気清浄機や電子写真複写機などにおいては、コロナ放電が機内の空気中で行われるために、機内に多量のオゾンが発生する。そしてこのオゾンは、非常に臭いが強く、酸化性の高い気体であり、例えば空気中に0.1ppmの濃度が存在するだけで、息切れやめまい、吐き気、頭痛などの生理作用を生じさせるものであるため、各機器からこのようなオゾンを機外に漏洩させることは回避しなければならない。   In an electrostatic precipitator type air cleaner or an electrophotographic copying machine adopting a charging method by corona discharge, a large amount of ozone is generated in the apparatus because corona discharge is performed in the air in the apparatus. This ozone is a very odorous and highly oxidative gas that, for example, has a concentration of 0.1 ppm in the air, causing physiological effects such as shortness of breath, dizziness, nausea and headache. For this reason, it is necessary to avoid leakage of ozone from each device.

このような問題を克服するために、オゾンを分解するフィルタが各種提案されている。形態も様々であるが、オゾン分解剤に着眼すると次のようになる。   In order to overcome such problems, various filters for decomposing ozone have been proposed. There are various forms, but when focusing on the ozonolysis agent, it is as follows.

まず、活性炭の細孔容積を制御したオゾン分解剤が開示されている(例えば特許文献1参照)。   First, an ozonolysis agent in which the pore volume of activated carbon is controlled is disclosed (for example, see Patent Document 1).

しかしながら、活性炭の細孔容積を制御しても、炭素の消失反応であるため、経時的に劣化率が大きくなり、長期間に渡って、高効率を維持することができないという問題がある。   However, even if the pore volume of the activated carbon is controlled, there is a problem that since it is a carbon disappearance reaction, the deterioration rate increases with time, and high efficiency cannot be maintained over a long period of time.

更に、活性炭の表面にα−FeOOHと5Fe23・H2Oとを担持されたオゾン分解剤が開示されている(例えば特許文献2参照)。 Additionally, alpha-FeOOH and 5Fe 2 O 3 · H 2 O and ozonolysis agent carried on the surface of the activated carbon has been disclosed (for example, see Patent Document 2).

しかしながら、かかる手法は、活性炭依存の分解反応であり、活性炭単体よりは高効率を維持する事が可能であるが、やはり経時的に劣化率が大きくなり、長期間に渡って、高効率を維持することができないという問題がある。   However, this method is an activated carbon-dependent decomposition reaction, and it is possible to maintain a higher efficiency than that of the activated carbon alone, but the deterioration rate increases with time, and the high efficiency is maintained over a long period of time. There is a problem that you can not.

一方、鉄、銅複合酸化物から各種オゾン分解剤も開示されている(例えば特許文献3、特許文献4参照)。   On the other hand, various ozone decomposing agents are also disclosed from iron and copper complex oxides (see, for example, Patent Document 3 and Patent Document 4).

しかしながら、鉄酸化物、銅酸化物の複合化合物では、オゾン分解性能が不十分であるため、貴金属を併用することによりオゾン分解性能を向上させるもので、極めて高価な触媒となり、産業上広く利用するには困難なものであった。   However, the complex compound of iron oxide and copper oxide has insufficient ozonolysis performance, so it improves ozonolysis performance by using a noble metal in combination, and becomes an extremely expensive catalyst and widely used in industry. It was difficult.

特開昭56−168824号公報JP 56-168824 A 特開2002−233718号公報Japanese Patent Laid-Open No. 2002-233718 特開昭62−201648号公報Japanese Patent Laid-Open No. 62-201648 特開平02−187148号公報Japanese Patent Laid-Open No. 02-187148

本発明は上記従来技術の課題を背景になされたものであり、本発明の目的は、オゾンを初めとする人体に有害なガスの除去性能が高く、長寿命で、安価であるオゾン分解剤を提供することを目的とする。   The present invention has been made against the background of the problems of the prior art described above, and the object of the present invention is to provide an ozone decomposing agent that has a high performance for removing gases harmful to the human body including ozone, has a long life, and is inexpensive. The purpose is to provide.

上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、鉄化合物とスピネル構造の鉄化合物を含有するオゾン分解剤である。   As a result of intensive studies to solve the above problems, the present invention has finally been completed. That is, the present invention is an ozonolysis agent containing an iron compound and an iron compound having a spinel structure.

前記鉄化合物がFe23、FeO(OH)、Fe(OH)3の少なくとも一種の酸化物を含み、前記スピネル構造の鉄化合物がMnFe24、ZnFe24、NiFe24、CuFe24、CoFe24の少なくとも一種の酸化物を含むオゾン分解剤が上記目的に適する。 The iron compound includes at least one oxide of Fe 2 O 3 , FeO (OH), and Fe (OH) 3 , and the spinel structure iron compound is MnFe 2 O 4 , ZnFe 2 O 4 , NiFe 2 O 4 , An ozone decomposing agent containing at least one oxide of CuFe 2 O 4 and CoFe 2 O 4 is suitable for the above purpose.

鉄化合物とスピネル構造の鉄化合物を含有するオゾン分解剤により、低価格で、長期にわたって満足すべきオゾン除去性能を発現することが可能となる。   An ozone decomposing agent containing an iron compound and an iron compound having a spinel structure can exhibit satisfactory ozone removal performance over a long period of time at a low price.

本発明は、鉄化合物とスピネル構造の鉄化合物の両者を含むオゾン分解剤であることが好ましい。鉄化合物とスピネル構造の鉄化合物両者を含むことにより、優れたオゾン分解性能が得られるからである。かかる組み合わせにより優れたオゾン分解性能が得られる原因については定かではないが、両者を含むことをオゾンの酸素原子の取込、及び放出がスムーズを行われるためと推測する。   The present invention is preferably an ozonolysis agent containing both an iron compound and an iron compound having a spinel structure. It is because excellent ozonolysis performance can be obtained by including both an iron compound and an iron compound having a spinel structure. Although it is not certain about the reason that such combination provides excellent ozonolysis performance, it is assumed that the inclusion of both causes smooth incorporation and release of ozone oxygen atoms.

本発明にかかる鉄化合物は、Fe23、FeO(OH)、Fe(OH)3の少なくとも一種の酸化物を含むことが好ましい。これらの鉄化合物を採用することにより、スピネル構造の鉄化合物の存在と相まって、より優れたオゾン分解性能を発揮するからである。鉄化合物の製法は、水溶性鉄塩を炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム等で中和後に高温で焼成する方法や、水溶性鉄塩を炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム等で中和し、その後、ペルオキソ二硫酸カリウム、次亜塩素酸ナトリウム、過酸化水素水等の酸化剤で水中酸化する方法や、水溶性鉄塩を炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム等で中和し、その後、液中に空気を通気して、溶存酸素で水中酸化する方法や、水溶性鉄塩を高温で焼成する方法などにより作製することが可能である。 The iron compound according to the present invention preferably contains at least one oxide of Fe 2 O 3 , FeO (OH), and Fe (OH) 3 . This is because by adopting these iron compounds, combined with the presence of iron compounds having a spinel structure, it exhibits better ozonolysis performance. The iron compound can be produced by neutralizing water-soluble iron salts with ammonium carbonate, sodium hydrogen carbonate, sodium carbonate, etc., and then firing the water-soluble iron salts with ammonium carbonate, sodium hydrogen carbonate, sodium carbonate, etc. Then, the method of oxidizing in water with an oxidizing agent such as potassium peroxodisulfate, sodium hypochlorite, and hydrogen peroxide water, and neutralizing the water-soluble iron salt with ammonium carbonate, sodium bicarbonate, sodium carbonate, etc. Then, it can be produced by a method in which air is passed through the liquid and oxidized in water with dissolved oxygen, or a method in which a water-soluble iron salt is baked at a high temperature.

一方、スピネル構造の鉄化合物は、MnFe24、ZnFe24、NiFe24、CuFe24、CoFe24の少なくとも一種の酸化物を含むことが好ましい。スピネル構造の鉄化合物の製法は、各金属の酸化物、炭酸塩の粉末を混合し、800℃以上の高温で加熱合成する方法や、Fe、Ni、Co、Mnは各金属をシュウ酸塩として共沈して、600〜800℃で加熱する方法や、水溶性金属塩を炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム等で中和後、反応液に窒素ガスを通気しながら40〜80℃まで加熱し、一定温度に保持した後、窒素ガスを空気に変えて、撹拌しながら溶存酸素で酸化する方法などにより作製することが可能である。 On the other hand, the iron compound having a spinel structure preferably contains at least one oxide of MnFe 2 O 4 , ZnFe 2 O 4 , NiFe 2 O 4 , CuFe 2 O 4 , and CoFe 2 O 4 . The spinel-structured iron compound is manufactured by mixing each metal oxide and carbonate powder and heating and synthesizing it at a high temperature of 800 ° C. or higher. Fe, Ni, Co, and Mn are used as oxalate for each metal. Co-precipitated and heated at 600-800 ° C, or neutralized water-soluble metal salt with ammonium carbonate, sodium bicarbonate, sodium carbonate, etc., then heated to 40-80 ° C with nitrogen gas flowing through the reaction solution Then, after maintaining at a constant temperature, it can be produced by a method of changing nitrogen gas to air and oxidizing with dissolved oxygen while stirring.

前記の方法により、鉄化合物とスピネル構造の鉄化合物を個別に作製して混合する方法が挙げられる。しかし、合理的に鉄化合物とスピネル構造の鉄化合物を作製するには、鉄化合物とスピネル構造の鉄化合物を共沈法で作製する方法が好ましい。   A method of individually preparing and mixing an iron compound and an iron compound having a spinel structure by the above-described method is mentioned. However, in order to rationally produce an iron compound and an iron compound having a spinel structure, a method of producing an iron compound and an iron compound having a spinel structure by a coprecipitation method is preferable.

より具体的には、水溶性金属塩を炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム等で中和後、窒素を通気しないで反応液に空気を通気しながら40〜80℃まで加熱し、一定温度に保持し、撹拌しながら溶存酸素で酸化する方法である。更に、200〜400℃で焼成することでFeOOH、Fe(OH)3等の酸化を進行させることも可能である。この方法で行うことにより、40℃以下の低温側で鉄化合物を生成し、40℃以上の温度でスピネル構造の鉄化合物が生成していると考えられる。 More specifically, after neutralizing the water-soluble metal salt with ammonium carbonate, sodium hydrogen carbonate, sodium carbonate or the like, the mixture is heated to 40 to 80 ° C. while aerating air to the reaction solution without aeration of nitrogen, and kept at a constant temperature. This is a method of holding and oxidizing with dissolved oxygen while stirring. Furthermore, it is possible to advance oxidation of FeOOH, Fe (OH) 3, etc. by firing at 200 to 400 ° C. By carrying out by this method, it is considered that an iron compound is generated on the low temperature side of 40 ° C. or lower, and an iron compound having a spinel structure is generated at a temperature of 40 ° C. or higher.

オゾン分解触媒に含有するマンガン、亜鉛、ニッケル、銅、コバルトは、マンガン、亜鉛、ニッケル、銅、コバルトの含有率は、オゾン分解触媒の鉄元素に対して3〜50モル%で配合することが好ましく、10〜30モル%がより好ましい。3モル%未満の場合は、スピネル構造の生成率が低くなり、オゾン分解性能が低くなる。一方、50モル%を超える場合は、マンガン、亜鉛、ニッケル、銅、コバルト由来の化合物の生成が多くなり、オゾン分解性能が低くなる。   Manganese, zinc, nickel, copper, and cobalt contained in the ozonolysis catalyst may be blended at 3 to 50 mol% of manganese, zinc, nickel, copper, and cobalt with respect to the iron element of the ozonolysis catalyst. Preferably, 10-30 mol% is more preferable. When the amount is less than 3 mol%, the rate of formation of the spinel structure is lowered, and the ozonolysis performance is lowered. On the other hand, when it exceeds 50 mol%, the production | generation of the compound derived from manganese, zinc, nickel, copper, and cobalt increases and ozonolysis performance becomes low.

鉄化合物、スピネル構造の鉄化合物の構造は、X線回折により確認することができる。一方、オゾン分解触媒に含有する鉄、マンガン、亜鉛、ニッケル、銅、コバルトは、マンガン、亜鉛、ニッケル、銅、コバルトの金属元素の含有率は、蛍光X線により確認することができる。   The structure of the iron compound and the iron compound having a spinel structure can be confirmed by X-ray diffraction. On the other hand, for iron, manganese, zinc, nickel, copper, and cobalt contained in the ozone decomposition catalyst, the content of metal elements of manganese, zinc, nickel, copper, and cobalt can be confirmed by fluorescent X-rays.

前記の鉄化合物とスピネル構造の鉄化合物を含有するオゾン分解触媒を粉末またはペレット状に成形して単独で充填層などに使用するだけでなく、他の脱臭剤や分解剤と混合したり併用したりして使用することができる。また、不織布、織物、シート基材に添着してプリーツ形状、ハニカム形状に成形加工して使用することができる。さらに、シート、アルミ箔からなるハニカム基材、ウレタンに添着して使用することができる。   The ozone decomposition catalyst containing the iron compound and spinel structure iron compound is molded into powder or pellets and used alone for a packed bed, etc., but also mixed with other deodorizers and decomposers. Can be used. Further, it can be used after being formed into a pleated shape or a honeycomb shape by being attached to a nonwoven fabric, a woven fabric, or a sheet base material. Furthermore, it can be used by being attached to a sheet, a honeycomb substrate made of aluminum foil, or urethane.

以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明方法を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the effects of the present invention will be described more specifically by way of examples. The following examples are not intended to limit the method of the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are included in the technical scope of the present invention.

まず、本実施例で用いたオゾン分解剤の試験方法を以下に示す。   First, the test method of the ozonolysis agent used in this example is shown below.

(スピネル構造)
鉄化合物、スピネル構造の鉄化合物は、X線回折による格子面間隔(d値)を測定することにより確認することができる。測定条件は、CuKα線源、電圧40KV、電流37.5mA、走査範囲15〜75°、走査速度0.124°/minで実施した。測定結果をJCPDS(Joint Committee of Powder Diffraction Standarts)カードと比較し、格子面間隔から確認できる。例えば、MnFe24のd値は、相対強度が高い順に、2.56、1.50、3.01、1.64等である。
(Spinel structure)
The iron compound and the iron compound having a spinel structure can be confirmed by measuring the lattice spacing (d value) by X-ray diffraction. The measurement conditions were a CuKα radiation source, a voltage of 40 KV, a current of 37.5 mA, a scanning range of 15 to 75 °, and a scanning speed of 0.124 ° / min. The measurement result can be confirmed from the lattice plane spacing by comparing with a JCPDS (Joint Committee of Powder Diffraction Standards) card. For example, the d value of MnFe 2 O 4 is 2.56, 1.50, 3.01, 1.64, etc. in descending order of relative strength.

(オゾン除去率)
オゾン分解剤を0.1g計量して内径12.5mmのガラス製カラムに充填した。温度25℃、相対湿度50%RHに調整した8ppmのオゾンを含む空気を、風量2L/minでカラムに供給した。カラムの入口、出口のオゾン濃度を測定し、除去率を次式から算出した。オゾン濃度は紫外線吸収法オゾン濃度測定器で測定した。
(Ozone removal rate)
0.1 g of ozonolysis agent was weighed and packed into a glass column having an inner diameter of 12.5 mm. Air containing 8 ppm of ozone adjusted to a temperature of 25 ° C. and a relative humidity of 50% RH was supplied to the column at a flow rate of 2 L / min. The ozone concentration at the inlet and outlet of the column was measured, and the removal rate was calculated from the following equation. The ozone concentration was measured with an ultraviolet absorption method ozone concentration measuring device.

(数式1)
除去率(%)=[1−(オゾン出口濃度)/(オゾン入口濃度)×100]
(Formula 1)
Removal rate (%) = [1- (ozone outlet concentration) / (ozone inlet concentration) × 100]

(実施例1)
硫酸鉄[FeSO4・7H2O]5.5g、硫酸マンガン[MnSO4・5H2O]1.2gを500ml、20℃のイオン交換水に溶解させてA液を得た。一方、炭酸ナトリウム[Na2CO3]8gを500ml、20℃のイオン交換水に溶解させてB液を得た。A液にB液をゆっくり添加して鉄化合物が含むC液を得た。このC液中に空気を通気しながら1時間撹拌した。その後、50℃まで昇温して6時間撹拌した。C液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、100℃の空気中で10時間乾燥した。得られた触媒は、Fe23、FeO(OH)の鉄化合物とMnFe24のスピネル構造の鉄化合物を含有しており、Mn元素比率は20モル%であった。
Example 1
Liquid A was obtained by dissolving 5.5 g of iron sulfate [FeSO 4 .7H 2 O] and 1.2 g of manganese sulfate [MnSO 4 .5H 2 O] in 500 ml of ion-exchanged water at 20 ° C. On the other hand, 8 g of sodium carbonate [Na 2 CO 3 ] was dissolved in 500 ml of ion exchange water at 20 ° C. to obtain a liquid B. Liquid B was slowly added to liquid A to obtain liquid C containing an iron compound. It stirred for 1 hour, ventilating air in this C liquid. Then, it heated up to 50 degreeC and stirred for 6 hours. Liquid C was filtered off, washed with ion exchange water until the filtrate became neutral, and then dried in air at 100 ° C. for 10 hours. The obtained catalyst contained an iron compound of Fe 2 O 3 and FeO (OH) and an iron compound having a spinel structure of MnFe 2 O 4 , and the Mn element ratio was 20 mol%.

(実施例2)
硫酸鉄[FeSO4・7H2O]5.5g、硫酸銅[CuSO4・5H2O]1.2gを500ml、20℃のイオン交換水に溶解させてA液を得た。一方、炭酸ナトリウム[Na2CO3]8gを500ml、20℃のイオン交換水に溶解させてB液を得た。A液にB液をゆっくり添加して鉄化合物が含むC液を得た。このC液中に空気を通気しながら1時間撹拌した。その後、50℃まで昇温して6時間撹拌した。C液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、100℃の空気中10時間乾燥した。得られた触媒は、Fe23、FeO(OH)の鉄化合物とCuFe24のスピネル構造の鉄化合物を含有しており、Cu元素比率は20モル%であった。
(Example 2)
Liquid A was obtained by dissolving 5.5 g of iron sulfate [FeSO 4 .7H 2 O] and 1.2 g of copper sulfate [CuSO 4 .5H 2 O] in 500 ml of ion-exchanged water at 20 ° C. On the other hand, 8 g of sodium carbonate [Na 2 CO 3 ] was dissolved in 500 ml of ion exchange water at 20 ° C. to obtain a liquid B. Liquid B was slowly added to liquid A to obtain liquid C containing an iron compound. It stirred for 1 hour, ventilating air in this C liquid. Then, it heated up to 50 degreeC and stirred for 6 hours. Liquid C was filtered off, washed with ion exchange water until the filtrate was neutral, and then dried in air at 100 ° C. for 10 hours. The obtained catalyst contained an iron compound of Fe 2 O 3 and FeO (OH) and an iron compound of a spinel structure of CuFe 2 O 4 , and the Cu element ratio was 20 mol%.

(実施例3)
実施例1の触媒を250℃の空気中で3時間空気酸化した。得られた触媒は、Fe23の鉄化合物とMnFe24のスピネル構造の鉄化合物を含有しており、Cu元素比率は20モル%であった。
(Example 3)
The catalyst of Example 1 was air oxidized in air at 250 ° C. for 3 hours. The obtained catalyst contained an Fe 2 O 3 iron compound and an MnFe 2 O 4 spinel-structure iron compound, and the Cu element ratio was 20 mol%.

(実施例4)
実施例2の触媒を250℃の空気中で3時間空気酸化した。得られた触媒は、Fe23の鉄化合物とCuFe24のスピネル構造の鉄化合物を含有しており、Cu元素比率は20モル%であった。
Example 4
The catalyst of Example 2 was air oxidized in air at 250 ° C. for 3 hours. The obtained catalyst contained an iron compound of Fe 2 O 3 and an iron compound of a spinel structure of CuFe 2 O 4 , and the Cu element ratio was 20 mol%.

(比較例1)
硫酸鉄[FeSO4・7H2O]5.5gを500ml、20℃のイオン交換水に溶解させてA液を得た。一方、炭酸ナトリウム[Na2CO3]8gを500ml、20℃のイオン交換水に溶解させてB液を得た。A液にB液をゆっくり添加して鉄化合物が含むC液を得た。このC液中に空気を通気しながら1時間撹拌した。その後、50℃まで昇温して6時間撹拌した。C液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、100℃の空気中で10時間乾燥した。得られた触媒は、Fe23、FeO(OH)の鉄化合物であった。
(Comparative Example 1)
Liquid A was obtained by dissolving 5.5 g of iron sulfate [FeSO 4 .7H 2 O] in 500 ml of ion exchange water at 20 ° C. On the other hand, 8 g of sodium carbonate [Na 2 CO 3 ] was dissolved in 500 ml of ion exchange water at 20 ° C. to obtain a liquid B. Liquid B was slowly added to liquid A to obtain liquid C containing an iron compound. It stirred for 1 hour, ventilating air in this C liquid. Then, it heated up to 50 degreeC and stirred for 6 hours. Liquid C was filtered off, washed with ion exchange water until the filtrate became neutral, and then dried in air at 100 ° C. for 10 hours. The obtained catalyst was an iron compound of Fe 2 O 3 and FeO (OH).

(比較例2)
比較例1の触媒を250℃の空気中で3時間空気酸化した。得られた触媒は、Fe23の鉄化合物であった。
(Comparative Example 2)
The catalyst of Comparative Example 1 was air oxidized in air at 250 ° C. for 3 hours. The obtained catalyst was an iron compound of Fe 2 O 3 .

実施例1〜3に関して、初期のオゾン除去率、60時間後のオゾン除去率が高く、経時的な劣化が小さいことが分かる。一方、比較例1〜2に関して、初期のオゾン除去率から低性能であることが分かる。   Regarding Examples 1 to 3, it can be seen that the initial ozone removal rate, the ozone removal rate after 60 hours are high, and the deterioration over time is small. On the other hand, regarding Comparative Examples 1-2, it turns out that it is low performance from the initial ozone removal rate.

Figure 0004711012
Figure 0004711012

本願発明にかかるオゾン分解剤は、初期から長期に渡って、高効率を維持することが可能であり、幅広いオゾン分解除去分野に利用することができ、産業界に寄与することが大である。   The ozonolysis agent according to the present invention can maintain high efficiency from the initial stage over a long period of time, can be used in a wide range of ozonolysis removal fields, and contributes to the industry.

Claims (1)

Fe、FeO(OH)、Fe(OH)の少なくとも一種を含む鉄化合物と、MnFe、ZnFe、NiFe、CuFe、CoFeの少なくとも一種の酸化物を含むスピネル構造の鉄化合物を含有し、マンガン、亜鉛、ニッケル、銅、コバルトの鉄元素に対する含有率が3〜50モル%で配合されていることを特徴とするオゾン分解剤。 An iron compound containing at least one of Fe 2 O 3 , FeO (OH), and Fe (OH) 3 , and at least one of MnFe 2 O 4 , ZnFe 2 O 4 , NiFe 2 O 4 , CuFe 2 O 4 , and CoFe 2 O 4 . An ozone decomposing agent comprising an iron compound having a spinel structure containing a kind of oxide and containing 3 to 50 mol% of manganese, zinc, nickel, copper, and cobalt with respect to an iron element.
JP2009232232A 2009-10-06 2009-10-06 Ozonolysis agent Expired - Fee Related JP4711012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232232A JP4711012B2 (en) 2009-10-06 2009-10-06 Ozonolysis agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232232A JP4711012B2 (en) 2009-10-06 2009-10-06 Ozonolysis agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005135889A Division JP4820575B2 (en) 2005-05-09 2005-05-09 Ozonolysis agent

Publications (2)

Publication Number Publication Date
JP2010042413A JP2010042413A (en) 2010-02-25
JP4711012B2 true JP4711012B2 (en) 2011-06-29

Family

ID=42014221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232232A Expired - Fee Related JP4711012B2 (en) 2009-10-06 2009-10-06 Ozonolysis agent

Country Status (1)

Country Link
JP (1) JP4711012B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128191B (en) * 2014-07-10 2016-08-17 陕西科技大学 Bismuth tungstate modified magnetic separation Hollow Compound photocatalyst and preparation method thereof
CN105233845A (en) * 2015-10-09 2016-01-13 中国环境科学研究院 ZnFe2O4/BiOBr magnetic photocatalyst and preparation method thereof
US10533472B2 (en) * 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727903A (en) * 1980-07-24 1982-02-15 Toshiba Mach Co Ltd Method and apparatus for decomposing ozone
JPS5842022A (en) * 1981-09-07 1983-03-11 Fuji Photo Optical Co Ltd Endoscope using solid-state image pickup element
JPH03193117A (en) * 1989-12-22 1991-08-22 Sakai Chem Ind Co Ltd Ozone decomposition
JPH04104840A (en) * 1990-08-23 1992-04-07 Sakai Chem Ind Co Ltd Ozone decomposition catalyst
JPH05309232A (en) * 1992-05-07 1993-11-22 Sakai Chem Ind Co Ltd Ozone decomposition filter
JPH07308573A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Treating agent for air pollution material
JP2002233718A (en) * 2001-02-13 2002-08-20 Nippon Pure Tec Kk Filtering material for air filter
CN1465427A (en) * 2002-07-02 2004-01-07 中国科学院生态环境研究中心 Catalyzing method for eliminating O3 and simutaneously eliminating O3 and CO

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727903A (en) * 1980-07-24 1982-02-15 Toshiba Mach Co Ltd Method and apparatus for decomposing ozone
JPS5842022A (en) * 1981-09-07 1983-03-11 Fuji Photo Optical Co Ltd Endoscope using solid-state image pickup element
JPH03193117A (en) * 1989-12-22 1991-08-22 Sakai Chem Ind Co Ltd Ozone decomposition
JPH04104840A (en) * 1990-08-23 1992-04-07 Sakai Chem Ind Co Ltd Ozone decomposition catalyst
JPH05309232A (en) * 1992-05-07 1993-11-22 Sakai Chem Ind Co Ltd Ozone decomposition filter
JPH07308573A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Treating agent for air pollution material
JP2002233718A (en) * 2001-02-13 2002-08-20 Nippon Pure Tec Kk Filtering material for air filter
CN1465427A (en) * 2002-07-02 2004-01-07 中国科学院生态环境研究中心 Catalyzing method for eliminating O3 and simutaneously eliminating O3 and CO

Also Published As

Publication number Publication date
JP2010042413A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4820575B2 (en) Ozonolysis agent
Zhang et al. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism
Chen et al. 3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect
Zhang et al. Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater
JP6370309B2 (en) Magnetic hydrotalcite complex and method for producing the same
CN107555481B (en) Manganese oxide material and preparation method thereof
JP4744270B2 (en) Sulfur compound removing agent, method for producing the same, and sulfur compound removing filter
Liu et al. Plasma-catalytic oxidation of toluene on Fe2O3/sepiolite catalyst in DDBD reactor
KR20150095133A (en) Bimetallic catalyst for high nitrate reduction and selectivity and Manufacturing method thereof
Zhang et al. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal: enhanced catalytic efficiency and suppressed metal leaching
JP4711012B2 (en) Ozonolysis agent
Eslami et al. Magnetically separable MgFe2O4 nanoparticle for efficient catalytic ozonation of organic pollutants
Zhang et al. Simultaneous catalytic elimination of formaldehyde and ozone over one‐dimensional rod‐like manganese dioxide at ambient temperature
Chen et al. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation
Du et al. Hollow multi-dimension CoCeS/C as peroxymonosulfate activator toward ofloxacin degradation via coexisting free radical and nonradical pathways
EP0468055A1 (en) Composition having air cleaning power
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP2008279439A (en) Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method
JP4839718B2 (en) Ozonolysis agent
Rafiq et al. Efficient heterogeneous activation of peroxymonosulfate by manganese-doped LaCoO3 perovskites for metronidazole degradation: A mechanistic study and reaction pathways
JPH04371228A (en) Gold catalyst for removal of malodorous substance
WO2019033695A1 (en) Manganese oxide material and method for preparing same
JP2005238199A (en) Ammonia cleaning catalyst, cleaning method for ammonia using it and ammonia cleaning apparatus
JP2659821B2 (en) Ozone decomposition catalyst
JPS6038972B2 (en) Ozone decomposition catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees