JP2659821B2 - Ozone decomposition catalyst - Google Patents

Ozone decomposition catalyst

Info

Publication number
JP2659821B2
JP2659821B2 JP1263998A JP26399889A JP2659821B2 JP 2659821 B2 JP2659821 B2 JP 2659821B2 JP 1263998 A JP1263998 A JP 1263998A JP 26399889 A JP26399889 A JP 26399889A JP 2659821 B2 JP2659821 B2 JP 2659821B2
Authority
JP
Japan
Prior art keywords
ozone
particles
catalyst
axis diameter
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1263998A
Other languages
Japanese (ja)
Other versions
JPH03127626A (en
Inventor
浩 藤田
恵久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toda Kogyo Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1263998A priority Critical patent/JP2659821B2/en
Publication of JPH03127626A publication Critical patent/JPH03127626A/en
Application granted granted Critical
Publication of JP2659821B2 publication Critical patent/JP2659821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオゾン分解触媒、特に排オゾン処理を低温で
行うために用いる触媒に関するものである。
Description: TECHNICAL FIELD The present invention relates to an ozone decomposition catalyst, and more particularly to a catalyst used for performing waste ozone treatment at a low temperature.

〔従来の技術〕[Conventional technology]

一般にオゾンは強力な酸化作用を有するため、脱臭、
脱色、殺菌処理などに利用される。しかし、これらの処
理装置ではオゾンは完全に利用されず、一部は未反応の
まま大気中に放出される。又、電子写真複写機や空気浄
化機などのように高電圧装置を組込んだ機器からのオゾ
ン発生も問題視されており、特にこれらの機器は室内に
おかれるため、微量のオゾンであつても室内は汚染され
る。オゾンは臭いの強い気体で僅か0.1ppmの濃度でも感
知でき、人体に対しても極めて有害であるため、これの
除去が求められている。
In general, ozone has a strong oxidizing effect,
Used for decolorization and sterilization. However, ozone is not completely utilized in these treatment apparatuses, and a part of the ozone is released to the atmosphere without reacting. Ozone generation from devices incorporating high voltage devices such as electrophotographic copiers and air purifiers has also been viewed as a problem. Even the room is polluted. Ozone is a highly odorous gas that can be detected at concentrations as low as 0.1 ppm and is extremely harmful to the human body.

従来、オゾンの除去は活性炭法や熱分解法、薬液洗浄
法などが知られているが、活性炭法はオゾン分解の進行
に伴う活性炭自身の消耗や不活性化が起り、このため時
々活性炭を補充しなければならない。また高濃度オゾン
の場合には反応熱により活性炭自身が発火燃焼に至る危
険性がある。熱分解法は分解速度を大きくするために30
0℃程度の高温を要し、そのための加熱費用がかさみ処
理コストが高くつく。薬液洗浄法は薬液の補充が必要で
あり、このため処理コストも高く、又ミストが飛散する
などの問題がある。
Conventionally, removal of ozone has been known by the activated carbon method, thermal decomposition method, chemical cleaning method, etc.However, the activated carbon method consumes and deactivates the activated carbon itself as the ozone decomposition progresses, and thus sometimes replenishes the activated carbon Must. In the case of high-concentration ozone, there is a risk that the activated carbon itself may ignite and burn due to the heat of reaction. Pyrolysis requires 30 to increase the decomposition rate.
A high temperature of about 0 ° C. is required, which increases the heating cost and the processing cost. The chemical solution cleaning method requires replenishment of the chemical solution, and therefore has a problem that the processing cost is high and mist is scattered.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述の種々問題を踏まえ、オゾンを低コストで分解除
去するための研究がなされ最近触媒を用いる方法が種々
提案されている。例えばAl2O3,SiO2,TiO2を担体とし
て、V,Cr,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Snを
活性体とするオゾン分解触媒が特開昭53−14688号公報
にて開示されている。これに次いで珪藻土に特定量のNi
を担持した触媒(特開昭53−54189号公報)、Mn酸化物
の特定割合のCoを添加した触媒(特開昭57−136940号公
報)が開示されている。更に最近、TiO2−SiO2及びTiO2
−ZrO2などの二元系酸化物とMn,Fe,Co,Ni,Ag,Pt,Pd,Rh
などの金属からなる触媒(特開昭62−97643号公報)
や、TiO2−P2O5を担体として、これに上記特開昭62−97
643号公報に開示の金属を組合せた触媒(特開昭62−132
546号公報)が開示されている。また安価な触媒として
水酸化鉄または酸化鉄水化物を含む触媒を用いた廃オゾ
ン処理方法(特開昭59−42022号公報)が開示されてい
る。
In view of the various problems described above, studies have been made to decompose and remove ozone at low cost, and various methods using a catalyst have recently been proposed. For example, ozone using Al 2 O 3 , SiO 2 , TiO 2 as a carrier and V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Sn as an active substance A cracking catalyst is disclosed in JP-A-53-14688. This is followed by a specific amount of Ni
(Japanese Patent Application Laid-Open No. 53-54189) and a catalyst in which a specific proportion of Co of Mn oxide is added (Japanese Patent Application Laid-Open No. 57-136940). More recently, TiO 2 -SiO 2 and TiO 2
− Binary oxides such as ZrO 2 and Mn, Fe, Co, Ni, Ag, Pt, Pd, Rh
Catalyst composed of such metals (Japanese Patent Application Laid-Open No. 62-97643)
Or TiO 2 -P 2 O 5 as a carrier,
No. 643, a catalyst comprising a combination of metals (JP-A-62-132)
No. 546). Further, a waste ozone treatment method using a catalyst containing iron hydroxide or iron oxide hydrate as an inexpensive catalyst is disclosed (JP-A-59-42222).

しかしこれらの触媒はいずれも加熱(例えば50℃以
上)しなければ分解効率が悪く、常温での分解活性は十
分とは云えない。
However, if these catalysts are not heated (for example, 50 ° C. or higher), the decomposition efficiency is poor, and the decomposition activity at room temperature cannot be said to be sufficient.

上記技術水準に鑑み、本発明はガス中に含まれるオゾ
ンを触媒により分解するに当り、常温で分解活性の優れ
る安価なオゾン分解触媒を提供しようとするものであ
る。
In view of the above technical level, the present invention aims at providing an inexpensive ozone decomposition catalyst having excellent decomposition activity at room temperature when decomposing ozone contained in a gas with a catalyst.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは上記目的に沿つて、安価な触媒として鉄
系を主体に低温分解活性を向上させるべく検討を重ねた
結果、笹の葉状の超微細構造を有する含水酸化第二鉄粒
子が、低温において優れたオゾン分解活性を示すことを
見出し本発明を完成するに至つた。
The inventors of the present invention have conducted repeated studies to improve the low-temperature decomposition activity mainly of an iron-based catalyst as an inexpensive catalyst in accordance with the above-mentioned object.As a result, hydrous ferric oxide particles having a bamboo leaf-like ultrafine structure were obtained. The inventors have found that they exhibit excellent ozonolysis activity at low temperatures, and have completed the present invention.

すなわち本発明は、スジ状の超微細構造を有している
長軸径0.2〜1.0μmで軸比(長軸径/短軸径)3〜10の
笹の葉状を呈した含水酸化第二鉄粒子粉末からなるオゾ
ン分解触媒である。
That is, the present invention relates to an aqueous ferric hydroxide containing bamboo leaves having a stripe-like ultrafine structure and having a major axis diameter of 0.2 to 1.0 μm and an axial ratio (major axis diameter / minor axis diameter) of 3 to 10 It is an ozone decomposition catalyst composed of particle powder.

〔作用〕[Action]

本発明のスジ状の超微細構造を有している長軸径0.2
〜1.0μmで軸比(長軸径/短軸径)3〜10の笹の葉状
を呈した含水酸化第二鉄粒子粉末は、これをオゾン分解
触媒として用いた場合には比表面積が大きく、このため
オゾンとの接触面積が大きいことに起因して、オゾンの
分解を効率よく行い、特に常温での分解活性が高い。す
なわち、この特徴は本発明で特定される含水酸化第二鉄
粒子粉末がスジ状の超微細構造を有している長軸径0.2
〜1.0μmで軸比(長軸径/短軸径)3〜10の笹の葉状
を呈した粒子であることから比表面積が極めて大きく、
更に笹の葉状を呈して丸味を帯びていることから粒子と
粒子がくつついて重なり合うことが少ないため空隙率が
大きく、ガスの透過性もよいためオゾンとの接触面積が
大きいことに起因する。
The major axis diameter 0.2 having a streak-like ultrafine structure of the present invention
The ferric hydroxide oxide particles having a bamboo leaf shape with an axial ratio (major axis diameter / short axis diameter) of 3 to 10 at ~ 1.0 μm have a large specific surface area when used as an ozone decomposition catalyst. Due to the large contact area with ozone, ozone can be efficiently decomposed, and the decomposition activity at room temperature is particularly high. That is, this feature is characterized in that the ferric hydroxide-containing powder specified in the present invention has a long axis diameter of 0.2 having a streak-like ultrafine structure.
Since the particles are bamboo-leaf-shaped particles with an axial ratio (major axis diameter / short axis diameter) of 3 to 10 μm, the specific surface area is extremely large.
Furthermore, since it has a bamboo leaf shape and is rounded, particles are less likely to be caught and overlap with each other, so that the porosity is large, and the gas permeability is good, so that the contact area with ozone is large.

なお、従来、オゾン分解触媒として含水酸化第二鉄粒
子(酸化鉄水化物)を用いるものとして前出特開昭59−
42022号公報に記載の方法があるが、この方法による場
合には、含水酸化第二鉄の結晶水が一般式Fe2O3・xH2O
において、xが1.5以上のものを使用して含水酸化第二
鉄粒子の水分を制御することによつてオゾンを分解する
ものであり、一方、本発明は、結晶水は最も安定な型で
ある上記一般式におけるx=1を有しており、且つ、オ
ゾンと含水酸化第二鉄粒子との接触面積を大きくするこ
とによつてオゾンを分解するものであり、その作用機構
を全く異にするものである。
Conventionally, as a catalyst using oxidized ferric oxide particles (iron oxide hydrate) as an ozonolysis catalyst, it has been disclosed in
Although there is a method described in 42022 publication, in the case of this method, the water of crystallization of hydrous ferric oxide has the general formula Fe 2 O 3 xH 2 O
Wherein x is at least 1.5 to decompose ozone by controlling the water content of the hydrous ferric oxide particles. On the other hand, in the present invention, water of crystallization is the most stable type. It has x = 1 in the above general formula, and decomposes ozone by increasing the contact area between ozone and ferric hydroxide particles. The action mechanism is completely different. Things.

本発明に使用する含水酸化第二鉄微粒子粉末のスジ状
の超微細構造を有している長軸径を0.2〜1.0μmと特定
し、かつ軸比(長軸径/短軸径)3〜10と特定したの
は、長軸径1.0μm以上の粒子では比表面積が小さくな
り不適当であり、長軸径0.2μm以下の粒子ではあまり
に微細なため粒子間の凝集が生じて好ましくないからで
ある。また、軸比3以下の粒子ではスジ状の超微細構造
を有している笹の葉状を呈するという粒子の特徴が小さ
くなり、軸比10以上の粒子では針状の形状に近くなり好
ましくないからである。
The long axis diameter of the ferrous hydroxide fine particle powder used in the present invention having a line-like ultrafine structure is specified to be 0.2 to 1.0 μm, and the axial ratio (long axis diameter / short axis diameter) is 3 to 3. The reason for specifying 10 is that particles having a major axis diameter of 1.0 μm or more have a small specific surface area and are unsuitable, and particles having a major axis diameter of 0.2 μm or less are too fine to cause aggregation between particles, which is not preferable. is there. In addition, particles having an axial ratio of 3 or less have the characteristic of particles having a bamboo leaf shape having a streak-like ultrafine structure, and particles having an axial ratio of 10 or more approach a needle-like shape, which is not preferable. It is.

次に、本発明に使用する含水酸化第二鉄粒子粉末の製
法について説明するが、このものは下記のような製法に
よつて容易に得られる。
Next, a method for producing the ferric oxide-containing particles used in the present invention will be described, which can be easily obtained by the following method.

即ち、第一鉄塩水溶液に第一鉄塩に対して1当量以上
の炭酸アルカリを加えて反応させてFeCO3を得、得られ
たFeCO3を含む水溶液中に酸素含有ガスを通気して酸化
反応することにより得られる。上記製造法において、第
一鉄塩水溶液としては硫酸第一鉄水溶液、塩化第一鉄水
溶液等が用いられる。第一鉄塩水溶液に炭酸アルカリを
加えFeCO3を得る場合、炭酸アルカリに水酸化アルカリ
を併用してもよい。炭酸アルカリとしては炭酸ナトリウ
ム、炭酸カリウム、炭酸水素アルミニウム等を単独で、
又はこれらと水酸化アルカリを併用して使用する場合は
水酸化アルカリとして水酸化ナトリウム、水酸化カリウ
ム、水酸化アンモニウム等が用いられる。また場合によ
り非酸化性雰囲気下で熟成してもよい。
That is, an aqueous ferrous salt solution is reacted by adding one or more equivalents of an alkali carbonate relative to a ferrous salt to give a FeCO 3, the aerated with oxygen-containing gas into the aqueous solution containing the resulting FeCO 3 by oxidation It is obtained by reacting. In the above production method, an aqueous ferrous sulfate solution, an aqueous ferrous chloride solution, or the like is used as the aqueous ferrous salt solution. When alkali carbonate is added to the aqueous ferrous salt solution to obtain FeCO 3 , alkali carbonate may be used in combination with alkali carbonate. As the alkali carbonate, sodium carbonate, potassium carbonate, aluminum hydrogen carbonate and the like alone,
Alternatively, when these are used in combination with an alkali hydroxide, sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like is used as the alkali hydroxide. In some cases, aging may be performed in a non-oxidizing atmosphere.

酸化反応時の溶液のpHは7〜11である。pH7以下、又
はpH11以上である場合には、笹の葉状を呈した含水酸化
第二鉄粒子を得ることはできない。また、酸化反応時の
温度が30℃以下では笹の葉状を呈した含水酸化第二鉄粒
子を得ることができず、80℃以上である場合には粒状の
黒色沈でんが混在してくるので、酸化反応時の温度は30
〜80℃に設定すべきである。酸化手段は酸素含有ガス
(例えば空気)を液中に通気することにより行い、また
当該通気ガスや機械的操作等により撹拌しながら行うの
が好ましい。
The pH of the solution during the oxidation reaction is 7-11. When the pH is 7 or less or 11 or more, it is impossible to obtain ferric hydroxide particles having a leaf shape like bamboo leaves. In addition, when the temperature during the oxidation reaction is 30 ° C or less, it is not possible to obtain bamboo leaf-shaped hydrous ferric hydroxide particles, and when the temperature is 80 ° C or more, granular black precipitates are mixed, The temperature during the oxidation reaction is 30
It should be set at ~ 80 ° C. The oxidizing means is preferably performed by aerating an oxygen-containing gas (for example, air) into the liquid, and is preferably performed while stirring by the aerated gas or mechanical operation.

なお、本発明触媒は、そのまま粉末状又はペレツト状
に造粒成形して用いてもよく、また紙や不織布などに混
入あるいは添着し、これをハニカム構造、ラミネート構
造に成形して用いることもできる。更にハニカル及びラ
ミネート構造の基材に添着し、オゾン除去用フイルター
として用いることもできる。
The catalyst of the present invention may be used as it is by granulating and forming it into a powder or a pellet, or may be mixed or attached to paper or nonwoven fabric and formed into a honeycomb structure or a laminated structure. . Further, it can be used as a filter for removing ozone by being attached to a substrate having a honeycomb or laminate structure.

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

〔実施例1〕 反応容器中に3.53mol/のNa2CO3水溶液20を入れ、
次いで1mol/のFeSO4水溶液30を添加、混合し、温度
40℃においてFeCO3を得た。得られたFeSO3を含む水溶液
中に温度40℃において毎分150の空気を4時間通気し
て酸化反応を行い、黄褐色沈澱粒子を生成させた。なお
空気通気中の反応溶液のpHは9.6であつた。
Example 1 A 3.53 mol / Na 2 CO 3 aqueous solution 20 was placed in a reaction vessel,
Next, 1 mol / FeSO 4 aqueous solution 30 was added and mixed, and the temperature was increased.
At 40 ° C., FeCO 3 was obtained. Oxidation reaction was performed by passing air at 150 ° C./min. For 4 hours at a temperature of 40 ° C. into the obtained aqueous solution containing FeSO 3 to generate yellow-brown precipitate particles. The pH of the reaction solution during air ventilation was 9.6.

生成した黄褐色沈でん粒子を常温により、別、水
洗、乾燥粉砕して黄褐色粒子粉末2.61kgを得た。
The resulting yellow-brown precipitated particles were separately washed with water, dried and pulverized at room temperature to obtain 2.61 kg of yellow-brown particle powder.

得られた黄褐色粒子粉末はX線回折の結果、含水酸化
第二鉄であることが確認できた。又、この微粉末は第1
図に示す電子顕微鏡写真(倍率150000倍)の通り平均値
で長軸径0.25μm、軸比(長軸比/短軸比)8、比表面
積106m2/gのスジ状の超微細構造を有している笹の葉状
を呈した含水酸化第二鉄粒子からなつていることが確認
できた。
As a result of X-ray diffraction, the obtained yellow-brown particle powder was confirmed to be ferric hydroxide. This fine powder is the first
As shown in the electron micrograph (magnification: 150,000 times) shown in the figure, the average value of the major axis diameter is 0.25 μm, the axial ratio (major axis ratio / minor axis ratio) is 8, and the specific surface area is 106 m 2 / g. It could be confirmed that it consisted of ferric hydroxide particles having the shape of bamboo leaves.

この微粉末を10〜20メツシユに整粒し、25mlをガラス
製カラム(内径25mmφ)に充填して、10ppmのオゾンを
含む試験ガスを3.6/minの流量で(ガス空塔速度=900
0h-1)触媒層に通気し、室温(25℃)におけるオゾン分
解率下記式により求めたところ96%であつた。
This fine powder is sized to 10 to 20 mesh, 25 ml is filled in a glass column (inner diameter 25 mmφ), and a test gas containing 10 ppm ozone is supplied at a flow rate of 3.6 / min (gas superficial velocity = 900
0h -1 ) Ozone decomposition rate at room temperature (25 ° C.) was found to be 96% as determined by the following equation.

〔比較例〕 反応容器中に0.68mol/のFeSO4水溶液80を入れ、
次いで4.32mol/のNaOH水溶液10を添加、混合し、続
いて温度40℃において130/minの割合で空気を通気し
ながら4時間反応を行い黄褐色沈でん粒子を生成させ
た。なお空気通気中の反応溶液のpHは5.8〜4.0であつ
た。
(Comparative Example) A 0.68 mol / FeSO 4 aqueous solution 80 was placed in a reaction vessel,
Next, a 4.32 mol / NaOH aqueous solution 10 was added and mixed, followed by a reaction at a temperature of 40 ° C. for 4 hours while passing air at a rate of 130 / min to produce yellow-brown precipitated particles. The pH of the reaction solution during air ventilation was 5.8 to 4.0.

生成した黄褐色沈でん粒子を常法により、別、水
洗、乾燥粉砕して黄褐色粒子粉末1.83kgを得た。X線回
折の結果この粒子粉末は含水酸化第二鉄であることが確
認できたが、その結晶は第2図に示す電子顕微鏡写真
(倍率100000倍)の通り平均値で長軸径0.3μm、軸比
(長軸径/短軸径)10の針状構造を有した含水酸化第二
鉄粒子であることが確認された。また比表面積を測定し
たところ9.5m2/gであつた。
The resulting tan precipitated particles were separated, washed with water, dried and pulverized by a conventional method to obtain 1.83 kg of tan particle powder. As a result of X-ray diffraction, it was confirmed that the particles were hydrous ferric hydroxide, and the crystals thereof had an average value of 0.3 μm in major axis diameter as shown in the electron micrograph (magnification: 100000 times) shown in FIG. It was confirmed that the particles were hydrous ferric oxide particles having an acicular structure having an axial ratio (major axis diameter / minor axis diameter) of 10. When the specific surface area was measured, it was 9.5 m 2 / g.

この微粉末のオゾン分解活性を実施例1の方法に準
じ、測定した結果80%であつた。
The ozonolysis activity of this fine powder was measured according to the method of Example 1 and found to be 80%.

〔実施例2〕 実施例1で得た笹の葉状の超微細構造をもつ含水酸化
第二鉄と比較例で得た針状構造の含水酸化第二鉄、及び
試薬の酸化第二鉄(Fe2O3)の3種類について触媒層の
温度を50℃、80℃、120℃と変えた以外は、実施例1と
同様の方法でオゾン分解率を測定した。この結果を第1
表に示す。
[Example 2] Hydrous ferric oxide having a bamboo leaf-like ultrafine structure obtained in Example 1, hydrous ferric oxide having a needle-like structure obtained in Comparative Example, and ferric oxide (Fe) as a reagent The ozone decomposition rate was measured in the same manner as in Example 1 except that the temperature of the catalyst layer was changed to 50 ° C., 80 ° C., and 120 ° C. for the three types of 2 O 3 ). This result is
It is shown in the table.

〔発明の効果〕 本発明に係るオゾン分解触媒はオゾンの分解性能特に
常温での使用時における分解活性に優れているためオゾ
ン分解触媒として最適である。
[Effect of the Invention] The ozone decomposing catalyst according to the present invention is excellent as an ozone decomposing catalyst because of its excellent ozone decomposing performance, particularly when used at room temperature.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1で得られた含水酸化第二鉄微
粒子粉末の電子顕微鏡写真の拡大写真(×150000)であ
る。 第2図は比較例で得られた含水酸化第二鉄微粒子粉末の
電子顕微鏡写真の拡大写真(×100000)である。
FIG. 1 is an enlarged photograph (× 150,000) of an electron micrograph of the hydrous ferric oxide fine particle powder obtained in Example 1 of the present invention. FIG. 2 is an enlarged photograph (× 100,000) of an electron micrograph of the hydrous ferric oxide fine particle powder obtained in the comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−42023(JP,A) 特開 昭59−42022(JP,A) 特公 昭60−34481(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-42023 (JP, A) JP-A-59-4022 (JP, A) JP-B-60-34481 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スジ状の超微細構造を有している長軸径0.
2〜1.0μmで軸比(長軸径/短軸径)3〜10の笹の葉状
を呈した含水酸化第二鉄粒子からなることを特徴とする
オゾン分解触媒。
(1) a long axis having a streak-like ultrafine structure having a long axis diameter of 0.1 mm;
An ozone decomposition catalyst comprising 2 to 1.0 μm and an axis ratio (major axis diameter / short axis diameter) of 3 to 10 and comprising leaf-shaped bamboo leaf-containing ferric hydroxide oxide particles.
JP1263998A 1989-10-12 1989-10-12 Ozone decomposition catalyst Expired - Fee Related JP2659821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263998A JP2659821B2 (en) 1989-10-12 1989-10-12 Ozone decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263998A JP2659821B2 (en) 1989-10-12 1989-10-12 Ozone decomposition catalyst

Publications (2)

Publication Number Publication Date
JPH03127626A JPH03127626A (en) 1991-05-30
JP2659821B2 true JP2659821B2 (en) 1997-09-30

Family

ID=17397128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263998A Expired - Fee Related JP2659821B2 (en) 1989-10-12 1989-10-12 Ozone decomposition catalyst

Country Status (1)

Country Link
JP (1) JP2659821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017568B2 (en) * 1991-07-24 2000-03-13 亀山 秀雄 Methanol reforming method
JP2002233718A (en) * 2001-02-13 2002-08-20 Nippon Pure Tec Kk Filtering material for air filter
JP5092681B2 (en) * 2007-10-22 2012-12-05 株式会社豊田中央研究所 Ozone decomposition removal catalyst and ozonolysis removal method using the same

Also Published As

Publication number Publication date
JPH03127626A (en) 1991-05-30

Similar Documents

Publication Publication Date Title
JP5582527B2 (en) Method for producing graphitic carbon nitride
Yusuf et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review
Ohtani et al. Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution
WO2019179109A1 (en) Preparation method for catalyst for ozone decomposition
CN108435160B (en) Cerium-manganese catalyst for decomposing ozone at wide temperature and high airspeed, preparation method and application
CN107555481B (en) Manganese oxide material and preparation method thereof
KR101547100B1 (en) Bimetallic catalyst for high nitrate reduction and selectivity and Manufacturing method thereof
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
KR20130020897A (en) Tungsten oxide photocatalyst and method for producing the same
CN107597142A (en) A kind of new Z-type sound catalyst for antibiotic waste water of degrading and its preparation method and application
Hua et al. Thermocatalytic Degradation of Gaseous Formaldehyde Using Transition Metal‐Based Catalysts
CN110711579B (en) Silver-manganese catalyst for decomposing ozone, preparation method and application thereof
CN109225218B (en) Silver-manganese oxide composite catalyst, preparation method and application thereof
JP2659821B2 (en) Ozone decomposition catalyst
WO2011118695A1 (en) Tungsten oxide secondary structure having antimicrobial activity
Inel et al. Photocatalytic deposition of bismuth (III) ions onto TiO2 powder
Aquino et al. Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr (VI) and Fenton-assisted degradation of methyl orange
JPH0859244A (en) Granular goethite fine particulate powder, its production and production of granular iron oxide fine particulate powder using the same fine particulate powder
JPH04371228A (en) Gold catalyst for removal of malodorous substance
WO2019239936A1 (en) Porous iron oxide catalyst body
JP4089989B2 (en) Method of treating harmful substances in water with titanium oxide photocatalyst
TWI594793B (en) Catalytic material of ferrite for treating nox in waste gases with selective catalytic reduction reaction and method thereof
JP3470496B2 (en) Deodorization treatment method using ozone
WO2019033695A1 (en) Manganese oxide material and method for preparing same
JP2002220205A (en) Contact oxidation method for carbonaceous compound

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees