JP5582527B2 - Method for producing graphitic carbon nitride - Google Patents

Method for producing graphitic carbon nitride Download PDF

Info

Publication number
JP5582527B2
JP5582527B2 JP2010066027A JP2010066027A JP5582527B2 JP 5582527 B2 JP5582527 B2 JP 5582527B2 JP 2010066027 A JP2010066027 A JP 2010066027A JP 2010066027 A JP2010066027 A JP 2010066027A JP 5582527 B2 JP5582527 B2 JP 5582527B2
Authority
JP
Japan
Prior art keywords
ions
metal
carbon nitride
metal ions
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010066027A
Other languages
Japanese (ja)
Other versions
JP2011195412A (en
Inventor
泰三 佐野
浩士 竹内
信彰 根岸
力 平川
咲子 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010066027A priority Critical patent/JP5582527B2/en
Publication of JP2011195412A publication Critical patent/JP2011195412A/en
Application granted granted Critical
Publication of JP5582527B2 publication Critical patent/JP5582527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属イオンを内包するグラファイト状窒化炭素及びその製造方法に関する。   The present invention relates to graphitic carbon nitride encapsulating metal ions and a method for producing the same.

近年、空気浄化を行う技術が研究されており、太陽光や室内光によって環境汚染物質を分解除去することが可能な光触媒が注目され、その研究が精力的に行われている。
酸化チタンはその代表的なものであり、強力な光触媒活性を示す。しかしながら、酸化チタンは、バンドギャップが大きくて太陽光の大部分を占める可視光が吸収されず、紫外光にのみに活性なため、太陽光を十分に利用することができない、紫外光が極めて弱い室内では機能しない、などの課題があった。そこで、可視光を利用することができるように、いろいろは改良がなされている。
例えば、酸化タングステンなどの半導体は、酸化チタンと比較してバンドギャップが小さいために可視光を吸収することができ、可視光活性な光触媒(可視光応答性光触媒)として期待されている(特許文献1、2)。これらの可視光応答性光触媒は、白金やパラジウム、銅化合物などの助触媒を利用して活性を向上させることが多い。
In recent years, air purification techniques have been studied, and photocatalysts capable of decomposing and removing environmental pollutants by sunlight and room light have attracted attention, and their research has been vigorously conducted.
Titanium oxide is a typical example and exhibits a strong photocatalytic activity. However, since titanium oxide has a large band gap and does not absorb visible light that occupies most of the sunlight and is active only to ultraviolet light, it cannot fully utilize sunlight, and ultraviolet light is extremely weak. There were issues such as not functioning indoors. Therefore, various improvements have been made so that visible light can be used.
For example, a semiconductor such as tungsten oxide can absorb visible light because it has a smaller band gap than titanium oxide, and is expected as a visible light active photocatalyst (visible light responsive photocatalyst) (Patent Document) 1, 2). These visible light responsive photocatalysts often improve their activity using a promoter such as platinum, palladium, or copper compound.

金属助触媒の添加は、一般的に触媒の高活性化に用いられるが、窒化炭素と金属イオンを複合化した化合物に関する報告は数件にとどまっている。
例えば、非特許文献1では、グラファイト状窒化炭素(以下、「g−C」ということもある。)を用いた、水の光分が提案されている。
g−Cの粉末については、メラミンまたはシアナミドを熱分解することで合成できることが80年代から知られているが、触媒作用は近年まで研究されておらず、実際、メラミンから合成されたg−Cをそのまま使っても、ほとんど触媒活性はない。前記非特許文献1では、g−Cの表面に白金やルテニウムを担持することで活性を向上させ、水の光分解(水素発生、酸素発生)に利用できるようにしたものである。
また、非特許文献2では、Feを添加して合成した窒化炭素を用い、過酸化水素を添加し、光を照射すると、ベンゼンがフェノールへと酸化されることが記載されている。
The addition of a metal promoter is generally used to increase the activity of the catalyst, but there are only a few reports on compounds in which carbon nitride and metal ions are combined.
For example, Non-Patent Document 1 proposes the light content of water using graphite-like carbon nitride (hereinafter sometimes referred to as “g-C 3 N 4 ”).
It has been known since the 1980s that the powder of g-C 3 N 4 can be synthesized by pyrolyzing melamine or cyanamide, but the catalytic action has not been studied until recently, and was actually synthesized from melamine. also uses exactly the g-C 3 N 4, there is little catalyst activity. The Non-Patent Document 1, to improve the activity by carrying surface platinum and ruthenium g-C 3 N 4, photolysis of water (hydrogen generation, oxygen generation) is obtained by available to.
Non-Patent Document 2 describes that when carbon nitride synthesized by adding Fe is used, hydrogen peroxide is added, and light is irradiated, benzene is oxidized to phenol.

一方、光触媒以外では、g−Cの粉末について、幾つかの報告がされている。
例えば、非特許文献3には、シリカをテーンプレートとして超微粒子g−Cを合成し、シリカをフッ酸で除去することにより、高比表面積のg−Cを合成する手法が記載されているが、光触媒活性については評価していない。
また、特許文献3、4には、g−Cを、MOH水溶液(M=K,Na,Li)或いは鉱酸で処理したものが、優れた蛍光特性或いは潤滑特性を示すことが記載されているが、触媒活性については何ら記載されていない。
さらに、特許文献5では、窒化炭素と遷移金属またはその合金と反応させることで得られる層状構造を有する窒化炭素の金属化合物粉末が、潤滑特性を示すと同時にその一部は常磁性を示すことが記載されているが、触媒については何ら記載がない。
On the other hand, except for the photocatalyst, several reports have been made on g-C 3 N 4 powder.
For example, Non-Patent Document 3 discloses a method for synthesizing g-C 3 N 4 having a high specific surface area by synthesizing ultrafine particles g-C 3 N 4 using silica as a tene plate and removing silica with hydrofluoric acid. However, photocatalytic activity is not evaluated.
Patent Documents 3 and 4 describe that g-C 3 N 4 treated with an aqueous MOH solution (M = K, Na, Li) or mineral acid exhibits excellent fluorescence characteristics or lubrication characteristics. However, there is no description about the catalytic activity.
Furthermore, in Patent Document 5, the metal compound powder of carbon nitride having a layered structure obtained by reacting carbon nitride with a transition metal or an alloy thereof exhibits lubrication characteristics and at the same time a part thereof exhibits paramagnetism. Although described, there is no description of the catalyst.

特開2009−61426号公報JP 2009-61426 A 特開2008−149312号公報JP 2008-149312 A 特開平02−206619号公報Japanese Patent Laid-Open No. 02-206619 特開平02−300233号公報Japanese Patent Laid-Open No. 02-300273 特開平02−308815号公報Japanese Patent Laid-Open No. 02-308815 特願2009−241049Japanese Patent Application No. 2009-2441049

前田和彦,堂免一成, WANG Xinchen, THOMAS Arne, ANTONIETTI Markus ,西原康師 触媒討論会討論会A予稿集 Vol.102nd, Page.126 (2008.09.23)「カーボンナイトライド(C3N4)の可視光照射下における光触媒活性」Kazuhiko Maeda, Kazunari Domen, WANG Xinchen, THOMAS Arne, ANTONIETTI Markus, Yasushi Nishihara Catalytic Conference Discussion Session A Proceedings Vol.102nd, Page.126 (2008.09.23) "Visible light irradiation of carbon nitride (C3N4) Under photocatalytic activity " Xiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti and Xinchen Wang J. AM. CHEM. SOC. 2009, 131, 11658-11659, Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible LightXiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti and Xinchen Wang J. AM. CHEM. SOC. 2009, 131, 11658-11659, Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light Matthijs Groenewolt, Markus Antonietti ;Adbanced Materials 2005, 17, 1789-1792, Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host MatricesMatthijs Groenewolt, Markus Antonietti; Adbanced Materials 2005, 17, 1789-1792, Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices

前述のとおり、金属助触媒の添加は、一般的に触媒の高活性化に用いられるが、窒化炭素と金属イオンを複合化した化合物に関する報告は数件にとどまっており(非特許文献1,2)、これらの触媒活性は充分なものではない。
一方、窒化炭素の原料となる含窒素有機化合物と、金属源となる金属塩を混合し、600℃付近で焼成する方法や、含窒素化合物を高温の金属ターゲット上にCVD法で析出させる方法が報告されているが、金属イオンと窒化炭素の相互作用を活かした材料は開発されていない。また、金属添加窒化炭素の比表面積は10m/g未満と極めて小さく、触媒としての活性がほとんどなかった。また、比表面積が小さいことは粒子が大きいことを示し、コーティング剤につかうのも困難であった。
さらに、上記の含窒素有機化合物と金属塩を混合して焼成する方法で、パラジウムのように酸化活性の高い金属元素含む窒化炭素を合成しようとしても、原料の含窒素有機化合物がパラジウムの触媒効果により燃焼してしまい、窒化炭素を含む化合物は得られなかった。
As described above, the addition of a metal promoter is generally used for high activation of the catalyst, but there are only a few reports on compounds in which carbon nitride and metal ions are combined (Non-patent Documents 1 and 2). ), Their catalytic activity is not sufficient.
On the other hand, there are a method in which a nitrogen-containing organic compound that is a raw material for carbon nitride and a metal salt that is a metal source are mixed and fired at around 600 ° C. Although it has been reported, a material utilizing the interaction between metal ions and carbon nitride has not been developed. Moreover, the specific surface area of the metal-added carbon nitride was as extremely small as less than 10 m 2 / g, and there was almost no activity as a catalyst. Further, a small specific surface area indicates that the particles are large, and it was difficult to use the coating agent.
Furthermore, even when trying to synthesize carbon nitride containing a metal element having a high oxidation activity such as palladium by the method of mixing and firing the above nitrogen-containing organic compound and metal salt, the raw material nitrogen-containing organic compound has a catalytic effect of palladium. The compound containing carbon nitride could not be obtained.

また、特許文献5では、微量のNiが窒素あるいは炭素と結合してグラファイト構造の中に入り込んでいると考えられるとしている。このように、窒化炭素の層間に金属イオンを挿入すると、触媒活性、光学特性、半導体特性、潤滑特性などを制御できることが、類似化合物である金属挿入グラファイトの研究から容易に類推される。しかしながら、高温で含窒素有機化合物と金属や金属化合物を反応させるために、比表面積の小さな窒化炭素しか得られず、触媒としての活性は得られない。   In Patent Document 5, it is considered that a small amount of Ni is combined with nitrogen or carbon and enters the graphite structure. Thus, it is easily inferred from the study of the metal-inserted graphite, which is a similar compound, that the catalytic activity, optical characteristics, semiconductor characteristics, lubrication characteristics, and the like can be controlled by inserting metal ions between carbon nitride layers. However, since the nitrogen-containing organic compound reacts with the metal or metal compound at a high temperature, only carbon nitride having a small specific surface area can be obtained, and the activity as a catalyst cannot be obtained.

本発明は、こうした現状を鑑みてなされたものであって、比表面積が大きな微粒子であり、充分な触媒活性を有するg−C、及びその簡便な製造方法を提供することを目的とするものである。 The present invention has been made in view of the present situation, and aims to provide g-C 3 N 4 having a large specific surface area and sufficient catalytic activity, and a simple production method thereof. To do.

本発明者らは、上記目的を達成すべく鋭意研究を重ね、グラファイト状窒化炭素の粉末を、アルカリ水溶液中又は酸性水溶液中で処理して得られた粉末を主成分とする可視光応答性光触媒を提案している(特許文献6)。
本発明者らはさらに検討を重ね、水熱合成の手法を用いることによっても上記課題を解決しうることが判明した。
すなわち、前述のとおり、高温で含窒素有機化合物と金属や金属化合物を反応させると、比表面積の小さな窒化炭素しか得られないが、数百度未満で、(i)比表面積の大きな窒化炭素に金属イオンを結合させる方法、(ii)窒化炭素と金属イオンを結合させつつ比表面積を増大させる方法、を見いだすことが上記課題の達成には必要であると考えた。
そして該方法についてさらに検討を重ねた結果、メラミンやシアナミドなどの含窒素有機化合物を熱分解してg−Cを調製したのち、金属イオンを含む水溶液と反応させ、金属イオンをg−Cの層状構造内に挿入することにより、これらが可能になることを見いだしたものである。
The inventors of the present invention have made extensive studies to achieve the above-mentioned object, and are a visible light-responsive photocatalyst mainly composed of powder obtained by treating graphite-like carbon nitride powder in an alkaline aqueous solution or an acidic aqueous solution. (Patent Document 6).
The present inventors have further studied and found that the above problem can be solved by using a hydrothermal synthesis technique.
That is, as described above, when a nitrogen-containing organic compound is reacted with a metal or metal compound at a high temperature, only a carbon nitride having a small specific surface area can be obtained. It was considered necessary to achieve the above problems to find out a method of bonding ions, and (ii) a method of increasing specific surface area while bonding carbon nitride and metal ions.
As a result of further examination of the method, a nitrogen-containing organic compound such as melamine or cyanamide was thermally decomposed to prepare g-C 3 N 4 , and then reacted with an aqueous solution containing metal ions. It has been found that this can be achieved by inserting it into the layered structure of C 3 N 4 .

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]グラファイト状窒化炭素の粉末を、金属塩化物、金属硫酸化物、又は金属硝酸化物から選ばれる金属化合物の水溶液中で加熱処理することを特徴とする、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。
[2]前記処理が、100〜150℃での加熱処理であることを特徴とする上記[1]の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。
[3]前記金属が、Li、Na、Mn、Fe、Co、Cu、Zn、Mo、Ru、Pd、Ag、Ba、及びPtから選ばれるいずれかであることを特徴とする上記[1]又は[2]の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。
[4]前記処理により、グラファイト状窒化炭素の比表面積増大させることを特徴とする上記[1]〜[3]のいずれかの、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。
[5]前記層間に金属イオンが挿入されたグラファイト状窒化炭素が、光触媒の有効成分であることを特徴とする上記[1]〜[4]のいずれかの、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] Graphite with metal ions inserted between layers, characterized by heat- treating graphite-like carbon nitride powder in an aqueous solution of a metal compound selected from metal chloride, metal sulfate, or metal nitrate Of carbon nitride.
[2] The method for producing graphitic carbon nitride according to [1] , wherein metal ions are inserted between layers, wherein the treatment is a heat treatment at 100 to 150 ° C.
[3] The above [1], wherein the metal is any one selected from Li, Na, Mn, Fe, Co, Cu, Zn, Mo, Ru, Pd, Ag, Ba, and Pt [2] A method for producing graphitic carbon nitride in which metal ions are inserted between layers.
[4] The method for producing graphite-like carbon nitride in which metal ions are inserted between the layers according to any one of [1] to [3], wherein the specific surface area of the graphite-like carbon nitride is increased by the treatment. .
[5] Graphite carbon nitride in which metal ions are inserted between the layers is an effective component of the photocatalyst, and metal ions are inserted between the layers according to any one of the above [1] to [4] A method for producing graphitic carbon nitride.

本発明によれば、さまざまな金属イオンを安定して保持し、耐薬品性に優れる全く新規な物質を製造することが可能であり、該方法で得られた物質により、優れた光吸収特性、熱触媒特性、光触媒特性を有する新規材料を提供することが可能となる。   According to the present invention, it is possible to stably hold various metal ions and to produce a completely new substance having excellent chemical resistance. By the substance obtained by the method, excellent light absorption characteristics, It is possible to provide a novel material having thermocatalytic properties and photocatalytic properties.

Agイオンを挿入したg−CのXPSスペクトルを示す図。It shows the XPS spectrum of g-C 3 N 4 inserting the Ag ions. g−CのX線回折図であり、(a)は、原料のg−C、(b)は、Feイオンを挿入したg−C、(c)は、従来の焼成法(参考:非特許文献1)で得られた鉄含有窒化炭素。It is an X-ray diffraction diagram of g-C 3 N 4 , (a) is g-C 3 N 4 of raw material, (b) is g-C 3 N 4 into which Fe ions are inserted, (c) is Iron-containing carbon nitride obtained by a conventional firing method (reference: Non-Patent Document 1). Feイオンを挿入したg−CのXPSスペクトルを示す図。It shows the XPS spectrum of g-C 3 N 4 inserting the Fe ions. g−CのX線回折図であり、(a)は、原料のg−C、(b)は、Pdイオンを挿入したg−C、(c)は、従来の焼成法でPdを窒化炭素に導入しようとして得られた粉末。It is an X-ray diffraction diagram of g-C 3 N 4 , (a) is g-C 3 N 4 of raw material, (b) is g-C 3 N 4 with Pd ion inserted, (c) is A powder obtained by trying to introduce Pd into carbon nitride by a conventional firing method. Pdイオンを挿入したg−CのXPSスペクトルを示す図。It shows the XPS spectrum of g-C 3 N 4 which has been inserted a Pd ion. Znイオンを挿入したg−CのXPSスペクトルを示す図。It shows the XPS spectrum of g-C 3 N 4 which has been inserted a Zn ion. 各種の金属イオンを挿入したg−CのX線回折図。X-ray diffraction diagram of the g-C 3 N 4 which inserts the various metal ions. 各種の金属イオンを挿入したg−CのXPSスペクトルの400eV付近の拡大図。Enlarged view of the vicinity 400eV the XPS spectrum of g-C 3 N 4 which inserts the various metal ions. 各種の金属イオンを挿入したg−CのXPSスペクトルの290eV付近の拡大図。Enlarged view of the vicinity 290eV the XPS spectrum of g-C 3 N 4 which inserts the various metal ions. 各種の金属イオンを挿入したg−C、未処理のg−C、および酸化チタンの可視紫外拡散反射スペクトルを示す図。Shows various metal ions inserted g-C 3 N 4, untreated g-C 3 N 4, and the ultraviolet-visible diffuse reflection spectrum of titanium oxide. Agを挿入したg−C粉末によるNOx除去試験のプロファイルを示す図。It shows the profile of NOx removal test by g-C 3 N 4 powder was inserted Ag.

本発明の金属窒化炭素化合物は、グラファイト状窒化炭素(g−C)の粉末を、金属化合物水溶液中で処理することにより、金属イオンをg−Cの層間に挿入したことを特徴とするものである。
すなわち、g−Cは、金属化合物水溶液中で処理することで、金属イオンがg−Cの層間に挿入されるとともに表面積が増大し、g−Cだけでは得られない機能を提供するものであり、多種の金属について同様の金属イオン挿入ができることから、多様な性質の金属窒化炭素化合物を提供できることを特徴とする。
In the metal carbon nitride compound of the present invention, a metal ion was inserted between layers of g-C 3 N 4 by treating graphite-like carbon nitride (g-C 3 N 4 ) powder in an aqueous metal compound solution. It is characterized by.
That is, when g-C 3 N 4 is treated in an aqueous metal compound solution, the metal ions are inserted between the layers of g-C 3 N 4 and the surface area is increased, and only g-C 3 N 4 can be obtained. This is a feature that provides a function that is not possible, and is characterized by the ability to provide metal carbon nitride compounds having various properties since the same metal ion insertion can be performed for various metals.

以下、本発明について、製造例及び具体的な測定結果を用いてより詳細に説明するが、本発明は、これらにより限定されるものではない。
(実施例1)
(g−C粉末の製造)
g−Cを次のようにして合成した。
メラミン(和光純薬製)30gを、アルミナ製るつぼに入れて蓋をし、550℃の電気炉で1時間焼成し、生成物を乳鉢で磨り潰した後、再びるつぼに入れてさらに1時間550℃で焼成した。得られる黄色の粉末を乳鉢で磨り潰し、g−C粉末を得た。
得られた試料の元素分析の結果、C/N比は0.67であり、やや理論値の0.75よりも小さく、炭素が少なかったが、X線回折の結果はg−Cであることを示した。
なお、窒化炭素の原材料としてシアナミドを用いた場合にも、ほぼ同様の結果が得られたことから、メラミン以外の窒化炭素の原材料を用いても良い。
Hereinafter, although this invention is demonstrated in detail using a manufacture example and a specific measurement result, this invention is not limited by these.
Example 1
(Production of g-C 3 N 4 powder)
g-C 3 N 4 was synthesized as follows.
30 g of melamine (manufactured by Wako Pure Chemical Industries, Ltd.) is placed in an alumina crucible, covered, baked in an electric furnace at 550 ° C. for 1 hour, the product is ground in a mortar, and then placed in a crucible again for 550 hours. Baked at ℃. The resulting yellow powder was ground in a mortar to obtain g-C 3 N 4 powder.
As a result of elemental analysis of the obtained sample, the C / N ratio was 0.67, which was slightly smaller than the theoretical value of 0.75 and the amount of carbon was small, but the result of X-ray diffraction was g-C 3 N 4. It showed that.
In addition, when cyanamide is used as a carbon nitride raw material, almost the same results are obtained, and therefore a carbon nitride raw material other than melamine may be used.

(g−Cへの金属イオンの挿入)
前記のg−C粉末0.5gと、硝酸銀0.2gと、水5mlをテフロン(登録商標)製るつぼに入れ、超音波発生器を利用して硝酸銀を溶解させた。この時の銀イオン濃度は0.24mol/lである。テフロン(登録商標)製るつぼをステンレス製ジャケットに入れ、マグネッチックスターラーで攪拌しながら加熱した。温度はステンレスジャケットの上部で熱電対を用いて測定し、温度調節器、スライダック、マントルヒーターを用いて温度を調節した。150℃で20時間加熱した後、放冷して室温とした。テフロン(登録商標)製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700)で遠心分離(20000Gで10分)することにより沈殿物を水洗する過程を数回くりかえし、銀(Ag)イオンの挿入されたg−Cを得た。
(Insertion of metal ions into g-C 3 N 4 )
0.5 g of the above g-C 3 N 4 powder, 0.2 g of silver nitrate, and 5 ml of water were put into a crucible made of Teflon (registered trademark), and silver nitrate was dissolved using an ultrasonic generator. The silver ion concentration at this time is 0.24 mol / l. A Teflon (registered trademark) crucible was placed in a stainless steel jacket and heated while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the top of the stainless steel jacket, and the temperature was adjusted using a temperature controller, slidac, and mantle heater. After heating at 150 ° C. for 20 hours, it was allowed to cool to room temperature. The suspension in the Teflon (registered trademark) crucible was centrifuged to obtain a precipitate. Add 30 ml of water to the precipitate, stir it, and centrifuge it in an ultracentrifuge (Kubota micro-cooled centrifuge model 3700) (10 minutes at 20000 G) to repeat the process of washing the precipitate with water several times. (Ag) g-C 3 N 4 into which ions were inserted was obtained.

Agイオンが挿入されたことを確認するために、得られた試料のX線光電子スペクトル(XPS)を測定した。XPSの測定には、FISONS社製ESCALAB−220iXLを用い、電子銃で中和しながらスペクトルを測定した。
図1は、その結果を示すものであり、365〜378evの領域に、Agイオンの存在を示すピークが確認された。370eVおよび376eV付近にピークのショルダーがあり、特殊な状態のAgイオンが存在していることを示しており、g−Cの層間に存在するAgイオンと推定される。
In order to confirm that Ag ions were inserted, an X-ray photoelectron spectrum (XPS) of the obtained sample was measured. For the XPS measurement, ESCALAB-220iXL manufactured by FISONS was used, and the spectrum was measured while neutralizing with an electron gun.
FIG. 1 shows the result, and a peak indicating the presence of Ag ions was confirmed in the region of 365 to 378 ev. There are peak shoulders in the vicinity of 370 eV and 376 eV, indicating that there are Ag ions in a special state, which are presumed to be Ag ions existing between the layers of g-C 3 N 4 .

〈実施例2〉
実施例1に記載の方法で合成したg−Cを0.5g、無水塩化鉄(FeCl)を0.3g、水を10mlはかり取り、テフロン(登録商標)製るつぼに入れ、超音波発生器を利用して塩化鉄を溶解させた。テフロン(登録商標)製るつぼをステンレス製ジャケットに入れ、マグネッチックスターラーで攪拌しながら150℃で20時間加熱した。放冷して室温としたのち、テフロン(登録商標)製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、超遠心分離機で遠心分離(20000Gで10分)することにより沈殿物を水洗する過程を数回くりかえし、鉄(Fe)イオンの挿入されたg−Cを得た。
<Example 2>
0.5 g of g-C 3 N 4 synthesized by the method described in Example 1, 0.3 g of anhydrous iron chloride (FeCl 3 ), and 10 ml of water are weighed and placed in a Teflon (registered trademark) crucible. Iron chloride was dissolved using a sonic generator. A Teflon (registered trademark) crucible was placed in a stainless steel jacket and heated at 150 ° C. for 20 hours while stirring with a magnetic stirrer. After allowing to cool to room temperature, the suspension in the Teflon (registered trademark) crucible was centrifuged to obtain a precipitate. 30 ml of water was added to the precipitate and stirred, and the process of washing the precipitate with water was repeated several times by centrifuging with an ultracentrifuge (20000 G for 10 minutes), and g- containing iron (Fe) ions inserted. C 3 N 4 was obtained.

図2は、X線回折図であり、(a)は、実施例1に記載の方法で合成したg−Cの回折図、(b)は、本実施例のFeイオンを挿入したg−Cの回折図、(c)は、従来の焼成法(上記非特許文献1)で得られた鉄含有窒化炭素の回折図である。
(a)に示すとおり、27.4°付近のメインピークと12〜25°にかけての不明瞭な回折が確認できる。メインピークの位置からg−Cの層間隔の平均は約3.3Åと算出され、従来から知られているg−Cであることが確認できた。
(b)に示すとおり、Feイオンを添加すると、27.4°のメインピークが減少した。ここで見られたピークの減少は、Feイオンが層間にランダムに挿入されることにより層間隔が3.3Å一定ではなくなり、周期構造が乱れることで回折が弱まったためである。新たに生じた鋭いピークは酸化鉄(α−Fe)に帰属され、過剰のFeイオンが酸化鉄として析出したことを示した。
一方、(c)に示すとおり、従来の焼成法で得られた鉄含有窒化炭素も同様の位置にピークを示したが、さらに27.4°のピークが小さくなっており、多量の鉄イオンが層間に存在し、周期構造がさらに乱れていることを示している。
これらの結果から、g−Cを鉄イオンを含む水溶液中、150℃で加熱すると、鉄(Fe)イオンを層間に含むg−Cが得られることが確認できた。
FIG. 2 is an X-ray diffraction diagram, (a) is a diffraction diagram of g-C 3 N 4 synthesized by the method described in Example 1, and (b) is an insertion of Fe ions of this example. The diffractogram of g-C 3 N 4 , (c) is a diffractogram of iron-containing carbon nitride obtained by a conventional firing method (Non-Patent Document 1).
As shown in (a), a main peak near 27.4 ° and an unclear diffraction from 12 to 25 ° can be confirmed. From the position of the main peak, the average of the layer spacing of g-C 3 N 4 was calculated to be about 3.3 mm, and it was confirmed that it was g-C 3 N 4 which has been conventionally known.
As shown in (b), when Fe ions were added, the 27.4 ° main peak decreased. The decrease in the peak observed here is because the Fe interval is not constant because the Fe ions are randomly inserted between the layers, and the diffraction is weakened by disturbing the periodic structure. The newly generated sharp peak was attributed to iron oxide (α-Fe 2 O 3 ), indicating that excess Fe ions were precipitated as iron oxide.
On the other hand, as shown in (c), the iron-containing carbon nitride obtained by the conventional firing method also showed a peak at the same position, but the peak at 27.4 ° was further reduced, and a large amount of iron ions It exists between layers and shows that the periodic structure is further disturbed.
From these results, it was confirmed that when g-C 3 N 4 was heated at 150 ° C. in an aqueous solution containing iron ions, g-C 3 N 4 containing iron (Fe) ions between layers was obtained.

さらに、得られた試料のX線光電子スペクトル(XPS)を測定して、Feイオンの導入を確認した。
図3は、その結果を示すものであり、点は測定点、実線は移動平均を示す。710ev付近にFeイオンの存在を示す立ち上がりが確認された。強度がきわめて弱いのは、Feイオンが層間にのみ存在し、表面にほとんど出ておらず、表面の測定感度が高いXPSで
検出しにくいためと考えられる。
Further, the introduction of Fe ions was confirmed by measuring the X-ray photoelectron spectrum (XPS) of the obtained sample.
FIG. 3 shows the results. The points indicate measurement points, and the solid line indicates a moving average. A rise indicating the presence of Fe ions was confirmed near 710 ev. It is considered that the intensity is extremely weak because Fe ions are present only between the layers, hardly appear on the surface, and are difficult to detect by XPS having high surface measurement sensitivity.

(実施例3)
Pd源として、塩化パラジウム(PdCl)を0.3g用い、実施例2と同様の方法で、パラジウム(Pd)イオンの挿入されたg−Cを得た。
図4は、X線回折図であり、(a)は、実施例1に記載の方法で合成したg−Cの回折図、(b)は、本実施例のPdイオンを挿入したg−Cの回折図、(c)は、従来の焼成法(上記非特許文献1)で得られた鉄含有窒化炭素の回折図である。
(a)に示す原料のg−Cに、Pdイオンを添加すると、27.4°のメインピークが減少し((b)参照)、Pdイオンが層間にランダムに挿入されたことを示した。34°付近のブロードなピークは酸化パラジウムに帰属され、過剰のPdイオンが酸化パラジウムとしてg−C上に析出したことを示した。
次に従来の焼成法によるPdイオンの挿入を試みた。メラミンとPdClをメノウ乳鉢で混合し、アルミナるつぼに入れて550℃で加熱したところ、黒色の粉末が得られた。そのX線回折図は、後述する図7の(c)のようになり、全くg−Cを含まなかった。40,47,68°付近の鋭いピークは金属パラジウムのものである。34°には酸化パラジウムのピークもみられた。550℃で加熱中にPdの触媒作用でメラミンが酸化分解されて消失し、Pd自身は還元されて金属パラジウムを生成したと考えられる。
これらの結果から、g−CをPdイオンを含む水溶液中、150℃で加熱すると、Pdイオンを層間に含むg−Cが得られることが確認できたが、従来の焼成法ではパラジウム(Pd)を挿入したg−Cを合成できないことが確認された。
(Example 3)
As a Pd source, 0.3 g of palladium chloride (PdCl 2 ) was used, and g-C 3 N 4 into which palladium (Pd) ions were inserted was obtained in the same manner as in Example 2.
FIG. 4 is an X-ray diffraction pattern, (a) is a diffraction pattern of g-C 3 N 4 synthesized by the method described in Example 1, and (b) is an insertion of Pd ions of this example. The diffractogram of g-C 3 N 4 , (c) is a diffractogram of iron-containing carbon nitride obtained by a conventional firing method (Non-Patent Document 1).
When Pd ions were added to the raw material g-C 3 N 4 shown in (a), the main peak at 27.4 ° decreased (see (b)), indicating that Pd ions were randomly inserted between the layers. Indicated. A broad peak around 34 ° was attributed to palladium oxide, indicating that excess Pd ions were deposited on g-C 3 N 4 as palladium oxide.
Next, an attempt was made to insert Pd ions by a conventional firing method. Melamine and PdCl 2 were mixed in an agate mortar, placed in an alumina crucible and heated at 550 ° C., and a black powder was obtained. The X-ray diffraction pattern was as shown in (c) of FIG. 7 described later, and did not contain g-C 3 N 4 at all. The sharp peaks around 40, 47 and 68 ° are those of metallic palladium. A peak of palladium oxide was also observed at 34 °. It is considered that during heating at 550 ° C., melamine was oxidized and disappeared by the catalytic action of Pd, and Pd itself was reduced to produce metallic palladium.
From these results, it was confirmed that when g-C 3 N 4 was heated at 150 ° C. in an aqueous solution containing Pd ions, g-C 3 N 4 containing Pd ions between layers was obtained. The method confirmed that g-C 3 N 4 into which palladium (Pd) was inserted could not be synthesized.

さらに、得られた試料のX線光電子スペクトル(XPS)を測定して、Pdイオンの導入を確認した。
図5は、その結果を示すものであり、335〜350eVの領域に、Pdイオンの存在を示すピークが確認された。酸化パラジウムのピークと比較してブロードになっており、通常の酸化パラジウム(PdO)とともに、特殊な状態のPdイオンが存在していることを示しており、g−Cの層間に存在するPdイオンと推定される。
Further, the X-ray photoelectron spectrum (XPS) of the obtained sample was measured to confirm the introduction of Pd ions.
FIG. 5 shows the result, and a peak indicating the presence of Pd ions was confirmed in the region of 335 to 350 eV. It is broader than the peak of palladium oxide, indicating that Pd ions in a special state exist together with normal palladium oxide (PdO), and exists between the layers of g-C 3 N 4 It is estimated that the Pd ion.

(実施例4)
Zn源として、塩化亜鉛(ZnCl)を0.2g用い、実施例2と同様の方法で、亜鉛(Zn)イオンの挿入されたg−Cを得た。
なお、ZnClを用いての挿入処理においては、200℃では大部分のg−Cが分解されてしまい、回収率がきわめて低く、挿入処理は、150℃未満にした方が良い。
Znイオンが挿入されたことを確認するために、得られた試料のX線光電子スペクトル(XPS)を測定した。
図6は、その結果を示すものであり、1022evを中心としたZnイオンの存在を示すピークが確認された。
Example 4
As a Zn source, 0.2 g of zinc chloride (ZnCl 2 ) was used, and g-C 3 N 4 into which zinc (Zn) ions were inserted was obtained in the same manner as in Example 2.
In the insertion process using ZnCl 2 , most of g-C 3 N 4 is decomposed at 200 ° C., and the recovery rate is extremely low, and the insertion process should be performed at less than 150 ° C.
In order to confirm that Zn ions were inserted, an X-ray photoelectron spectrum (XPS) of the obtained sample was measured.
FIG. 6 shows the result, and a peak indicating the presence of Zn ions centered at 1022 ev was confirmed.

(実施例5)
同様にして、各種金属イオンの挿入されたg−Cを得た。
実施例1〜4(Agイオン、Feイオン、Pdイオン、Znイオン)以外のイオンを挿入する場合には、g−C粉末0.5gと、挿入したい金属イオンを含む金属塩化物もしくは金属硫酸化物もしくは金属硝酸化物を0.2g〜0.3gと、水5mlをテフロン(登録商標)製るつぼに入れ、超音波発生器を利用して金属塩を溶解させた後、150℃で20時間加熱したのち、放冷して室温とした。テフロン(登録商標)製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700)で遠心分離(20000Gで10分)することにより沈殿物を水洗する過程を数回くりかえし、目的とする金属イオンが挿入されたg−Cを得た。
なお、ZnClの場合と同様に、RuClの場合も、150℃未満で処理をした方が、回収率を高めることができた。
図7は、g−C及び各種金属イオンを挿入したg−Cの粉末X線回折図である。
すべての回折図の27.4°付近に、層状化合物に特有のピークがある。このピークの位置から層間隔の平均は約3.3Åと算出され、主要な構造がg−Cであることが分かる。
各種の金属イオンを添加すると、金属無添加の場合と比較して、27.4°のメインピークが減少した。ここで見られたピークの減少は、金属が層間にランダムに挿入されることにより層間隔が3.3Å一定ではなくなり、回折が弱まったためである。ルテニウムイオン(Ru)や銀イオン(Ag)を添加した場合にはメインピークが著しく減少し、また、g−C以外のピークは見られなかった。他のイオンと比較して多くのイオンが層間に挿入され、かつ金属状や金属酸化物状のRuやAgの化合物が生成しないことを示した。
Cu,Ni,Co,Mn,Pt,Znを添加した場合にも、わずかにメインピークの減少がみられ、層間にイオンが挿入されたことを示した。Cuの場合には酸化銅のピークがみられ、過剰のCuイオンが酸化銅として析出したことを示した。それ以外の金属イオンを用いた時に見られる回折ピークは、いずれも金属や金属酸化物イオンによるものではなく、金属が挿入されたことにより新たに形成された周期構造に起因する。
(Example 5)
It was obtained in the same manner g-C 3 N 4 which inserted the various metal ions.
When inserting ions other than Examples 1 to 4 (Ag ions, Fe ions, Pd ions, Zn ions), 0.5 g of g-C 3 N 4 powder and a metal chloride containing metal ions to be inserted or 0.2 g to 0.3 g of metal sulfate or metal nitrate and 5 ml of water are placed in a Teflon (registered trademark) crucible, and the metal salt is dissolved using an ultrasonic generator, and then 20 ° C. at 150 ° C. After heating for hours, it was allowed to cool to room temperature. The suspension in the Teflon (registered trademark) crucible was centrifuged to obtain a precipitate. 30 ml of water was added to the precipitate and stirred, and the process of washing the precipitate with water was repeated several times by centrifugation (20,000 g for 10 minutes) using an ultracentrifuge (Microcooled Centrifuge Model 3700 manufactured by Kubota). to obtain a g-C 3 N 4 which metal ions are inserted to.
As in the case of ZnCl 2, in the case of RuCl 3 , it was possible to increase the recovery rate by processing at less than 150 ° C.
Figure 7 is a powder X-ray diffraction pattern of the g-C 3 N 4 and g-C 3 N 4 which has been inserted a variety of metal ions.
There is a peak peculiar to the layered compound around 27.4 ° in all the diffraction patterns. From the position of this peak, the average of the layer spacing is calculated to be about 3.3 cm, and it can be seen that the main structure is g-C 3 N 4 .
When various metal ions were added, the main peak at 27.4 ° decreased compared to the case where no metal ions were added. The decrease in the peak observed here is because the metal layer is randomly inserted between the layers, so that the layer interval is not constant by 3.3 mm and the diffraction is weakened. When ruthenium ions (Ru) or silver ions (Ag) were added, the main peak was remarkably reduced, and no peaks other than g-C 3 N 4 were observed. It was shown that many ions were inserted between the layers compared to other ions, and no metal-like or metal oxide-like Ru or Ag compound was formed.
Even when Cu, Ni, Co, Mn, Pt, or Zn was added, the main peak was slightly reduced, indicating that ions were inserted between the layers. In the case of Cu, a peak of copper oxide was observed, indicating that excessive Cu ions were precipitated as copper oxide. The diffraction peaks observed when other metal ions are used are not caused by metal or metal oxide ions, but are caused by a periodic structure newly formed by insertion of the metal.

図8は、各種の金属イオンを挿入したg−CのX線光電子スペクトル(XPS)を示す図であり、窒素原子の関与する400eV付近を拡大した図である。金属を挿入していないg−Cと比較して、窒素のピークが高いBinding Energy側(図の左側)にシフトしている。これは、金属イオンが窒素原子の電子を吸引していることを示し、挿入された金属イオンがg−Cと相互作用をしていることが確認できた。相互作用は、特にRu、Pd、Ag、Znで強く、Fe、Cuで中程度、Niでは比較的小さかった。 FIG. 8 is a diagram showing an X-ray photoelectron spectrum (XPS) of g-C 3 N 4 in which various metal ions are inserted, and is an enlarged view of the vicinity of 400 eV involving a nitrogen atom. Compared to g-C 3 N 4 which is not inserted the metal, the peak of the nitrogen has shifted to a higher Binding Energy side (left side in the figure). This indicates that the metal ions are attracting electrons of nitrogen atoms, and it was confirmed that the inserted metal ions interacted with g-C 3 N 4 . The interaction was particularly strong with Ru, Pd, Ag, and Zn, moderate with Fe and Cu, and relatively small with Ni.

図9は、各種の金属イオンを挿入したg−CのX線光電子スペクトル(XPS)を示す図であり、炭素原子の関与する290eV付近を拡大した図である。金属を挿入していないg−Cと比較して、炭素のピークが高いBinding Energy側(図の左側)にシフトしている。これは、金属イオンが挿入されることにより炭素原子の電子密度が下がっていることを示している。窒素原子のスペクトルで観測されたのと同様に、金属イオンがg−Cと相互作用をしていることの裏付けとなった。 FIG. 9 is a view showing an X-ray photoelectron spectrum (XPS) of g-C 3 N 4 in which various metal ions are inserted, and is an enlarged view of the vicinity of 290 eV involving carbon atoms. Compared to g-C 3 N 4 which is not inserted the metal is shifted to the peak of the carbon is highly Binding Energy side (left side in the figure). This indicates that the electron density of the carbon atom is lowered due to the insertion of the metal ion. As was observed in the spectrum of the nitrogen atom, were backed in the metal ions are interacting with g-C 3 N 4.

(実施例6)
g−Cに種々の金属イオンが挿されたことによる効果を確かめために、g−Cに添加物と水を加え、150℃で加熱処理したときの回収率(生成物の重量÷原料のg−Cの重量)と比表面積(BET面積)を示した。比表面積の測定には、窒素を吸着質として用いる多点BET法を利用した。測定にはカンタクローム社製Autosorb-1を用いた。約0.2gの試料を試料ホルダーに入れ、120℃で1時間脱気処理をした後、比表面積を測定した。
下記の表1は、その結果を示した表である。
(Example 6)
To confirm the g-C 3 N 4 to the effect due to the interpolated various metal ions, g-C 3 N 4 to additives and water were added, the recovery rate (the product upon heating at 0.99 ° C. ÷ the weight of the raw material g—C 3 N 4 ) and the specific surface area (BET area). For the measurement of the specific surface area, a multipoint BET method using nitrogen as an adsorbate was used. For the measurement, Autosorb-1 manufactured by Cantachrome was used. About 0.2 g of a sample was placed in a sample holder, deaerated at 120 ° C. for 1 hour, and then the specific surface area was measured.
Table 1 below shows the results.

表1から明らかなように、回収率はAgNOとPdClを添加した場合を除き、およそ100%であり、ほとんどg−Cの重量は変化しなかった。
このことから、極微量の金属イオンのみがg−Cに挿入されたことが分かる。回収率が112%となったAgNOや124%となったPdClを添加した場合には、より多量の銀イオンやパラジウムイオンが試料中に残ったものと考えられる。
g−Cと金属イオンの反応により、挿入した金属イオンの種類によらず、比表面積(BET面積)が増大し、g−Cが微粒子化していることが確認された。特に、BET面積の増大が顕著だったルテニウムイオンの挿入を、110℃と150℃で比較したところ、110℃で処理したg−CのBET面積は25.0m/g、150℃では67.2m/gだった。ルテニウムイオン挿入前は7.7m/gだったので、110℃でも金属イオンが挿入されるが、150℃の方がより金属イオンの挿入が促進され、より微細化されることが確認された。
後で説明する光触媒反応の促進においてほとんど効果のなかったNaClの添加を除き、比表面積は金属イオンの挿入により少なくとも50%、最大で870%まで増大した。
これに対し、従来の焼成法(参考:非特許文献1)でFeイオンを添加した窒化炭素の比表面積は4.8m/g、Znを添加すると3.9m/gであった。金属イオンを添加しない場合よりも比表面積が小さく、大きな粒子を形成することが分かる。これは、触媒や電池材料として利用するには好ましくない。
As is apparent from Table 1, the recovery rate was approximately 100% except when AgNO 3 and PdCl 2 were added, and the weight of g-C 3 N 4 was hardly changed.
This indicates that only the metal ions in trace amounts is inserted into the g-C 3 N 4. When AgNO 3 having a recovery rate of 112% or PdCl 2 having a recovery rate of 124% was added, it is considered that a larger amount of silver ions or palladium ions remained in the sample.
Due to the reaction between g-C 3 N 4 and metal ions, it was confirmed that the specific surface area (BET area) increased regardless of the type of inserted metal ions, and that g-C 3 N 4 was finely divided. In particular, when the insertion of ruthenium ions, in which the increase in the BET area was remarkable, was compared at 110 ° C. and 150 ° C., the BET area of g-C 3 N 4 treated at 110 ° C. was 25.0 m 2 / g, 150 ° C. Then, it was 67.2 m 2 / g. Since it was 7.7 m 2 / g before the insertion of ruthenium ions, metal ions were inserted even at 110 ° C., but it was confirmed that the insertion of metal ions was further promoted and refined at 150 ° C. .
Except for the addition of NaCl, which was not effective in promoting the photocatalytic reaction described later, the specific surface area was increased by at least 50% and up to 870% by insertion of metal ions.
On the other hand, the specific surface area of carbon nitride to which Fe ions were added by the conventional firing method (reference: Non-Patent Document 1) was 4.8 m 2 / g, and that of Zn was 3.9 m 2 / g. It can be seen that the specific surface area is smaller than when no metal ions are added and large particles are formed. This is not preferable for use as a catalyst or battery material.

(実施例7)
各種の金属イオンを挿入したg−Cの可視紫外拡散反射スペクトルを測定した。比較として未処理のg−Cおよび酸化チタンのスペクトルも測定した。可視紫外吸収スペクトロメータ(島津製UV−3600)に、拡散反射スペクトル測定用アタッチメント(ISR−3100)を取り付けて測定した。参照物質には硫酸バリウムを用いた。
図10は、その結果を示す図である。
図10から明らかなように、酸化チタンは約400nm以下の光を吸収して光触媒反応に利用でき、g−Cはより長い波長の可視光(約500nmまで)を吸収できる。
Agイオンを挿入すると、吸収端はわずかに長波長側にシフトし、バンドギャップが小さくなったことを示した。一方、150℃でZnイオンを挿入すると、吸収端は短波長側にシフトし、バンドギャップが大きくなったことを示した。図は割愛したが、110℃でZnイオンを挿入した場合にも、吸収端は短波長側にシフトしたが、シフト量は小さかった。金属イオンとの反応温度を下げることにより、挿入する金属量を調節することができ、光吸収特性も調節できることが分かった。PdやFeイオンを挿入した場合には、残存する金属酸化物により広範囲にわたって反射率が小さくなった。
以上のように金属イオンを挿入することにより、g−Cの光吸収特性を制御することができる。
(Example 7)
The visible ultraviolet diffuse reflectance spectrum of g-C 3 N 4 into which various metal ions were inserted was measured. Spectrum of g-C 3 N 4 and titanium oxide untreated as a comparison was also measured. Measurement was performed by attaching a diffuse reflection spectrum measurement attachment (ISR-3100) to a visible ultraviolet absorption spectrometer (Shimadzu UV-3600). Barium sulfate was used as a reference substance.
FIG. 10 is a diagram showing the results.
As is clear from FIG. 10, titanium oxide absorbs light of about 400 nm or less and can be used for the photocatalytic reaction, and g-C 3 N 4 can absorb longer wavelength visible light (up to about 500 nm).
When Ag ions were inserted, the absorption edge was slightly shifted to the longer wavelength side, indicating that the band gap was reduced. On the other hand, when Zn ions were inserted at 150 ° C., the absorption edge shifted to the short wavelength side, indicating that the band gap was increased. Although illustration is omitted, even when Zn ions were inserted at 110 ° C., the absorption edge was shifted to the short wavelength side, but the shift amount was small. It was found that by reducing the reaction temperature with metal ions, the amount of metal to be inserted can be adjusted, and the light absorption characteristics can also be adjusted. When Pd or Fe ions were inserted, the remaining metal oxide reduced the reflectance over a wide range.
By inserting metal ions as described above, the light absorption characteristics of g-C 3 N 4 can be controlled.

(実施例8)
図11は、Agイオンを挿入したg−Cによる光触媒NOx除去試験のプロファイルを示す図である。Agイオンの挿入は実施例1に記載した方法で行った。
NOx除去率の測定は次のようにして行った。
Agイオン挿入をしたg−C(0.2g)を少量の水に懸濁させ、幅50mm、長さ100mmのガラス板に全量を塗布し、50℃で乾燥させて光触媒試験片を調製した。試験片をJIS R1701−1に示された光触媒反応容器に設置し、パイレックス(登録商標)製のフタをして、NOガスを1.0ppm含む模擬汚染空気を1.0L/minで流通させた。湿度は25℃で6%とした。反応容器から出てくる模擬汚染空気中のNOおよびNOガス濃度を、化学発光式のNOx測定器(MonitorLabs社製8840)で測定した。白色蛍光灯(東芝製FL10W)の光を、紫外光除去フィルター(住友化学製スミペックスLF-39)を通して、6000Lxの強度で光触媒試料片に照射し、光触媒作用を観測した。NOx濃度(NOガス濃度とNOガス濃度の和)を求め、{[光を照射していないときのNOx濃度]−[光を照射したときのNOx濃度]}/{[光を照射していないときのNOx濃度]}×100をNOx除去率とした。
(Example 8)
FIG. 11 is a view showing a profile of a photocatalytic NOx removal test using g-C 3 N 4 into which Ag ions are inserted. The insertion of Ag ions was performed by the method described in Example 1.
The NOx removal rate was measured as follows.
Ag-inserted g-C 3 N 4 (0.2 g) is suspended in a small amount of water, and the entire amount is applied to a glass plate having a width of 50 mm and a length of 100 mm, and dried at 50 ° C. to prepare a photocatalyst test piece. Prepared. The test piece was placed in a photocatalytic reaction vessel shown in JIS R1701-1, covered with a Pyrex (registered trademark) lid, and simulated polluted air containing 1.0 ppm of NO gas was circulated at 1.0 L / min. . The humidity was 6% at 25 ° C. The NO and NO 2 gas concentrations in the simulated contaminated air coming out of the reaction vessel were measured with a chemiluminescent NOx measuring device (manufactured by MonitorLabs, 8840). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed. NOx concentration (the sum of NO gas concentration and NO 2 gas concentration) is determined and {[NOx concentration when light is not irradiated] − [NOx concentration when light is irradiated]} / {[light is irradiated NOx concentration when not present]} × 100 was defined as the NOx removal rate.

図11に示すように、光を当てている間NOの濃度が低下し、光照射を止めると濃度が元に戻ることから、光触媒反応が起こっていることが分かる。NOの一部はNOになり、さらにHNOとなって光触媒に吸着し、流通ガス中から取り除かれる。初期濃度とNOxの線で囲まれた部分の面積が、取り除かれたNOx量に相当する。 As shown in FIG. 11, the concentration of NO decreases while the light is applied, and the concentration returns to the original level when the light irradiation is stopped. Part of NO becomes NO 2 and further becomes HNO 3 and is adsorbed on the photocatalyst and removed from the circulating gas. The area of the portion surrounded by the initial concentration and NOx line corresponds to the removed NOx amount.

(実施例9)
表2は、金属を挿入したg−Cによる、光触媒作用を用いたNOx除去率、アセトアルデヒド除去率、トルエン除去率とBET面積の測定結果を示すものである。
NOx除去率の測定は、前記のAgイオンを挿入したg−Cによる光触媒NOx除去試験と同様にして行った。
Example 9
Table 2 shows the measurement results of NOx removal rate, acetaldehyde removal rate, toluene removal rate, and BET area using photocatalysis by g-C 3 N 4 with a metal inserted.
The NOx removal rate was measured in the same manner as the photocatalytic NOx removal test using g-C 3 N 4 with the Ag ions inserted therein.

また、アセトアルデヒド除去率の測定は次のようにして行った。
前記と同様にして調製した試験片を、前述と同じ光触媒反応容器に設置し、アセトアルデヒドガスを約2.0ppm含む模擬汚染空気を1.0L/minで流通させた。湿度は25℃で6%とした。反応容器から出てくる模擬汚染空気中のアセトアルデヒド濃度を、FID検出器付きのガスクロマトグラフ(島津製GC−14B)で測定した。白色蛍光灯(東芝製FL10W)の光を、紫外光除去フィルター(住友化学製スミペックスLF-39)を通して、6000Lxの強度で光触媒試料片に照射し、光触媒作用を観測した。{[光を照射していないときのアセトアルデヒド濃度]−[光を照射したときのアセトアルデヒド濃度]}/{[光を照射していないときのアセトアルデヒド濃度]}×100をアセトアルデヒド除去率とした。
The acetaldehyde removal rate was measured as follows.
A test piece prepared in the same manner as described above was placed in the same photocatalytic reaction vessel as described above, and simulated polluted air containing about 2.0 ppm of acetaldehyde gas was circulated at 1.0 L / min. The humidity was 6% at 25 ° C. The concentration of acetaldehyde in the simulated contaminated air coming out of the reaction vessel was measured with a gas chromatograph equipped with an FID detector (Shimadzu GC-14B). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed. {[Acetaldehyde concentration when not irradiating light] − [Acetaldehyde concentration when irradiating light]} / {[Acetaldehyde concentration when not irradiating light]} × 100 was defined as an acetaldehyde removal rate.

さらに、トルエン除去率の測定は次のようにして行った。
前記と同様にして調製した試験片を、同様の光触媒反応容器に設置し、トルエンガスを約1.0ppm含む模擬汚染空気を0.50L/minで流通させた。湿度は25℃で6%とした。反応容器から出てくる模擬汚染空気中のトルエン濃度を、FID検出器付きのガスクロマトグラフ(島津製GC−14B)で測定した。白色蛍光灯(東芝製FL10W)の光を、紫外光除去フィルター(住友化学製スミペックスLF-39)を通して、6000Lxの強度で光触媒試料片に照射し、光触媒作用を観測した。{[光を照射していないときのトルエン濃度]−[光を照射したときのトルエン濃度]}/{[光を照射していないときのトルエン濃度]}×100をトルエン除去率とした。
Furthermore, the toluene removal rate was measured as follows.
A test piece prepared in the same manner as described above was placed in the same photocatalytic reaction vessel, and simulated contaminated air containing about 1.0 ppm of toluene gas was circulated at 0.50 L / min. The humidity was 6% at 25 ° C. The toluene concentration in the simulated contaminated air coming out of the reaction vessel was measured with a gas chromatograph equipped with an FID detector (Shimadzu GC-14B). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed. {[Toluene concentration when not irradiating light] − [Toluene concentration when irradiating light]} / {[Toluene concentration when not irradiating light]} × 100 was defined as the toluene removal rate.

表2から明らかなように、従来の方法で得られる窒化炭素(添加物無し)のNOx除去効率は3.9%だった。水のみを加えて加熱しても、NOx除去率は向上しなかった。
これに対し、本発明の各種の金属イオンを挿入したg−Cを用いると、添加金属なしの場合に比べ、高いNOx除去が得られた。特に、銀イオンと亜鉛イオンを挿入した試料では3倍以上高いNOx除去活性が得られた。一方、NaイオンおよびMnイオンの挿入は、ほとんど効果がなかった。NOx除去試験の結果の詳細については、後に図で示す。
アセトアルデヒドおよびトルエンの除去試験においても、銀イオンの挿入の効果がみられた。アセトアルデヒドでは添加物なしの場合の2倍にまで除去率が向上した。トルエン分解では、添加物がないとトルエンを全く除去できなかったのに対し、銀イオンの挿入によりトルエンを分解できる状態にまで除去性能が向上した。金属イオンを添加して加熱することによりg−C粒子が微小化され、光触媒反応速度が著しく向上したとためと考えられる。
なお、使用した容器の耐熱温度が150℃だったために試験はしていないが、g−C耐熱性が520℃以上であり、また、150℃においても回収率がほぼ100%(表1)であり、まったく分解していないことから、水の超臨界となる375℃までは、容器の耐熱温度の許す範囲で金属イオンの挿入処理を行えると容易に推察される。
As is apparent from Table 2, the NOx removal efficiency of carbon nitride (without additive) obtained by the conventional method was 3.9%. Even when only water was added and heated, the NOx removal rate did not improve.
On the other hand, when g-C 3 N 4 into which various metal ions of the present invention were inserted was used, higher NOx removal was obtained than when no additive metal was used. In particular, a sample in which silver ions and zinc ions were inserted obtained NOx removal activity that was three times higher. On the other hand, insertion of Na ions and Mn ions had little effect. Details of the results of the NOx removal test will be shown later in the drawings.
In the removal test of acetaldehyde and toluene, the effect of insertion of silver ions was also observed. With acetaldehyde, the removal rate was improved up to twice that without the additive. In toluene decomposition, toluene could not be removed at all without additives, but the removal performance improved to a state where toluene could be decomposed by insertion of silver ions. This is considered to be because the g-C 3 N 4 particles were miniaturized by adding metal ions and heating, and the photocatalytic reaction rate was significantly improved.
Although the test was not conducted because the heat resistance temperature of the used container was 150 ° C., the heat resistance of g-C 3 N 4 was 520 ° C. or higher, and the recovery rate was almost 100% even at 150 ° C. (Table Since it is 1) and has not been decomposed at all, it is easily assumed that metal ions can be inserted up to the supercritical water temperature of 375 ° C. within the allowable temperature range of the container.

また、特許文献6で記述したようにアルカリ水溶液中で水熱処理した後に、さらに硝酸銀を添加して銀イオンの挿入をすると、NOx除去率が23%にまで増大した。
このことから、酸処理、アルカリ処理、金属イオン挿入を複数混ぜたり、金属イオンを複数混合しても良いと考えられる。ただし、酸やアルカリを加える場合には、g−Cが水熱処理中に分解され易いため、適宜温度を調整する必要がある。
Further, as described in Patent Document 6, after hydrothermal treatment in an alkaline aqueous solution, further addition of silver nitrate and insertion of silver ions increased the NOx removal rate to 23%.
From this, it is considered that a plurality of acid treatments, alkali treatments and metal ion insertions may be mixed, or a plurality of metal ions may be mixed. However, in the case of adding an acid or an alkali, it is necessary to adjust the temperature appropriately because g-C 3 N 4 is easily decomposed during the hydrothermal treatment.

第2周期から第6周期の金属化合物について窒化炭素に添加する効果を調べたところ、いずれの周期に属する金属についても、光触媒活性の向上や、比表面積の向上が確認できたが、特に第4、第5周期の8〜12族が高い効果を示した。原子番号でいうと、30〜47の元素が高い効果を示した。また、塩化物、硝酸塩、硫酸塩のいずれについても効果があった。特に塩化ルテニウム、塩化鉄が比表面積の増大に効果的だった。ただし、Ruを添加した場合には、NOガスおよびアセトアルデヒドの吸着が著しく起こり、光触媒反応を測定することができなかった(表2)。
従来の焼成法(参考:非特許文献2)でFeイオンを添加した窒化炭素によるNOx除去率は0.6%、Znを添加すると全くNOxを除去できなかった。比表面積が極めて小さいことと、高温で金属を反応させたために半導体の性質が低下したことが原因と考えられる。
As a result of examining the effect of adding the metal compound of the second period to the sixth period to carbon nitride, it was confirmed that the metal belonging to any period improved photocatalytic activity and the specific surface area. The 8th-12th group of the 5th period showed a high effect. In terms of atomic number, 30 to 47 elements showed a high effect. Also, any of chloride, nitrate and sulfate was effective. In particular, ruthenium chloride and iron chloride were effective in increasing the specific surface area. However, when Ru was added, NO gas and acetaldehyde adsorbed remarkably, and the photocatalytic reaction could not be measured (Table 2).
The NOx removal rate by carbon nitride to which Fe ions were added by a conventional firing method (reference: Non-Patent Document 2) was 0.6%, and when Zn was added, NOx could not be removed at all. The reason is considered to be that the specific surface area is extremely small and that the properties of the semiconductor deteriorated due to the reaction of the metal at a high temperature.

本発明の活性を向上させたg−Cを何らかの基材に塗布することで、光触媒材料として利用することができ、この材料を用いると、光のエネルギーを利用して、空気を浄化することができる。また、この材料は、アセトアルデヒド、トルエン、NOxの分解に利用でき、さらに、悪臭物質、大気汚染物質、或いは含酸素炭化水素、芳香族炭化水素、反応性無機ガス等のその他の類似の化合物の分解にも使える。 By applying g-C 3 N 4 with improved activity of the present invention to a certain substrate, it can be used as a photocatalytic material. When this material is used, air is purified by utilizing the energy of light. can do. This material can also be used for the decomposition of acetaldehyde, toluene, NOx, as well as the decomposition of malodorous substances, air pollutants, or other similar compounds such as oxygenated hydrocarbons, aromatic hydrocarbons, reactive inorganic gases, etc. Can also be used.

Claims (5)

グラファイト状窒化炭素の粉末を、金属塩化物、金属硫酸化物、又は金属硝酸化物から選ばれる金属化合物の水溶液中で加熱処理することを特徴とする、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。 Graphite-like carbon nitride in which metal ions are inserted between layers, characterized by heat- treating graphite-like carbon nitride powder in an aqueous solution of a metal compound selected from metal chloride, metal sulfate, or metal nitrate Manufacturing method. 前記処理が、100〜150℃での加熱処理であることを特徴とする請求項1に記載の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。 The method for producing graphitic carbon nitride having metal ions inserted between layers according to claim 1, wherein the treatment is a heat treatment at 100 to 150 ° C. 前記金属が、Li、Na、Mn、Fe、Co、Cu、Zn、Mo、Ru、Pd、Ag、Ba、及びPtから選ばれるいずれかであることを特徴とする請求項1又は2に記載の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。3. The metal according to claim 1, wherein the metal is any one selected from Li, Na, Mn, Fe, Co, Cu, Zn, Mo, Ru, Pd, Ag, Ba, and Pt. A method for producing graphitic carbon nitride in which metal ions are inserted between layers. 前記処理により、グラファイト状窒化炭素の比表面積増大させることを特徴とする請求項1〜3のいずれか1項に記載の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。 The method for producing graphite-like carbon nitride having metal ions inserted between layers according to any one of claims 1 to 3, wherein the specific surface area of the graphite-like carbon nitride is increased by the treatment . 前記層間に金属イオンが挿入されたグラファイト状窒化炭素が、光触媒の有効成分であることを特徴とする請求項1〜4のいずれか1項に記載の、層間に金属イオンが挿入されたグラファイト状窒化炭素の製造方法。The graphite-like carbon nitride with metal ions inserted between layers according to any one of claims 1 to 4, wherein the graphite-like carbon nitride with metal ions inserted between the layers is an effective component of a photocatalyst. A method for producing carbon nitride.
JP2010066027A 2010-03-23 2010-03-23 Method for producing graphitic carbon nitride Expired - Fee Related JP5582527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066027A JP5582527B2 (en) 2010-03-23 2010-03-23 Method for producing graphitic carbon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066027A JP5582527B2 (en) 2010-03-23 2010-03-23 Method for producing graphitic carbon nitride

Publications (2)

Publication Number Publication Date
JP2011195412A JP2011195412A (en) 2011-10-06
JP5582527B2 true JP5582527B2 (en) 2014-09-03

Family

ID=44874085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066027A Expired - Fee Related JP5582527B2 (en) 2010-03-23 2010-03-23 Method for producing graphitic carbon nitride

Country Status (1)

Country Link
JP (1) JP5582527B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540198B1 (en) * 2015-01-29 2015-07-29 성균관대학교산학협력단 Catalyst using carbon nitride support containing palladium for preparing acetic acid from carbonylation reaction of methanol and carbon monooxide, and preparation method thereof
CN105817638A (en) * 2016-05-31 2016-08-03 安徽工业大学 Cu@C@g-C3N4 nanocomposite and preparation method thereof
CN108067281A (en) * 2017-11-24 2018-05-25 辽宁大学 Porous g-C3N4Photochemical catalyst and its preparation method and application
CN109608410A (en) * 2019-01-25 2019-04-12 山东大学 A kind of preparation method of high-specific surface area multilevel structure melamine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711582B2 (en) * 2011-03-28 2015-05-07 株式会社ダイセル Photocatalyst and organic compound oxidation method using the same
CN102836734B (en) * 2012-09-20 2014-09-10 华东理工大学 Method for preparing AgX/g-C3N4 composite photocatalytic material
CN103028428B (en) * 2013-01-16 2014-09-10 华东理工大学 Method for preparing composite visual light catalytic material Ag3PO4 and g-C3N4
CN103752272B (en) * 2014-02-13 2015-06-24 河海大学 Graphene oxide loaded magnetic iron gold adsorption/photocatalyst, and preparation method and application thereof
CN103861630A (en) * 2014-03-12 2014-06-18 福州大学 Copolymerization-modified graphite-phase carbon nitride hollow ball visible light-driven photocatalyst
CN104874414B (en) * 2015-01-21 2017-06-20 辽宁石油化工大学 Bigger serface graphite phase carbon nitride photochemical catalyst and its photocatalytic degradation TCP reaction and photocatalysis hydrogen production solid/liquid/gas reactions in apply
CN104646044A (en) * 2015-02-15 2015-05-27 南京工程学院 G-C3N4/NiFe2O4 composite material, as well as preparation method and application thereof
CN104760940B (en) * 2015-03-09 2016-09-28 中国石油大学(华东) A kind of synthetic method of sandwich type composite nitride carbon
CN104971782B (en) * 2015-06-12 2017-06-16 湖南大学 Carbonitride antimony trisulfide/algaroth composite and its preparation method and application
CN105028436B (en) * 2015-07-09 2017-06-16 东南大学 Graphite phase carbon nitride as anti-biotic material new application
JP2017043511A (en) * 2015-08-26 2017-03-02 国立大学法人 鹿児島大学 Method for producing carbon nitride
CN105195202B (en) * 2015-10-19 2017-11-17 江苏科技大学 Narrow band gap carbonitride visible light catalyst and preparation method thereof
CN105214710A (en) * 2015-10-26 2016-01-06 南昌航空大学 A kind of nonmetal composite visible light catalyst g-C of new green environment protection 3n 4the preparation of/SiC and application thereof
CN105344370A (en) * 2015-11-30 2016-02-24 中南大学 Porous carbon nitride/copper sulfide photocatalytic composite material with p-n structure and preparation method thereof
JP6521317B2 (en) * 2015-12-03 2019-05-29 国立研究開発法人産業技術総合研究所 Metal complexed carbon nitride for deodorization and manufacturing method thereof
CN107694589B (en) * 2017-07-31 2020-04-28 天津城建大学 Preparation method of film composite material for photoelectrocatalytic hydrogen production
CN108101010B (en) * 2017-12-15 2020-11-27 南京理工大学 Preparation method of graphite phase carbon nitride quantum dots
CN108927198B (en) * 2018-07-09 2020-09-22 华南理工大学 Modified carbon nitride photocatalyst, preparation method thereof and method for synthesizing xylonic acid by photocatalytic oxidation of xylose
CN109351365A (en) * 2018-11-20 2019-02-19 北京化工大学 Hydrotalcite modifies g-C3N4New and effective photochemical catalyst and its application in deep desulfurization of fuel oil
CN110154182B (en) * 2019-06-10 2020-07-07 浙江农林大学 Preparation method of artificial wood for generating negative oxygen ions by bionic standing trees
CN110280289B (en) * 2019-07-05 2022-07-29 上海理工大学 Carbon nitride photocatalytic material and preparation method thereof
CN110759321A (en) * 2019-10-23 2020-02-07 东北大学 Preparation method of visible light absorption enhanced graphite phase carbon nitride material
CN111203260B (en) * 2020-02-25 2022-10-25 广州中国科学院沈阳自动化研究所分所 Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO
CN112264076A (en) * 2020-11-11 2021-01-26 中南大学 Photocatalyst for improving indoor VOCs removal efficiency and preparation method thereof
CN112337497B (en) * 2020-11-11 2023-03-28 深圳大学 Noble metal loaded g-C 3 N 4 Method for preparing photocatalyst
CN112337500A (en) * 2020-12-01 2021-02-09 南京工业大学 Interface optimized MOx/g-C3N4Composite photocatalyst and preparation method and application thereof
CN112742436B (en) * 2021-01-19 2022-10-18 黄河科技学院 Carbon nitride-based homojunction for photocatalytic production of hydrogen peroxide, and preparation method and application thereof
CN114950518B (en) * 2021-02-26 2024-02-20 广州大学 Cobalt/tubular graphite phase carbon nitride composite material and preparation method and application thereof
CN113735074A (en) * 2021-08-31 2021-12-03 大韩道恩高分子材料(上海)有限公司 Preparation method of inorganic nucleating agent for biodegradable material
CN115318311A (en) * 2022-07-06 2022-11-11 伊犁师范大学 FeCN @ MoS 2-x Nano composite material, preparation method and application thereof
CN115448266B (en) * 2022-09-20 2023-07-21 安徽理工大学 Preparation method of alpha and beta composite phase carbon nitride material combined by ferric oxide
CN116351383A (en) * 2023-05-10 2023-06-30 太原科技大学 Preparation and application of graphite carbon nitride/titanate nanocomposite adsorption material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650753B2 (en) * 1989-02-06 1997-09-03 セントラル硝子株式会社 Alkali metal compound of carbon nitride and method for producing the same
JP2704161B2 (en) * 1989-05-15 1998-01-26 セントラル硝子株式会社 Acid-treated derivative of carbon nitride and method for producing the same
EP1882522A1 (en) * 2005-03-11 2008-01-30 Nissan Motor Company Limited Hydrogen storage material, hydrogen storage structure, hydrogen storer, hydrogen storage apparatus, fuel cell vehicle, and process for producing hydrogen storage material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540198B1 (en) * 2015-01-29 2015-07-29 성균관대학교산학협력단 Catalyst using carbon nitride support containing palladium for preparing acetic acid from carbonylation reaction of methanol and carbon monooxide, and preparation method thereof
CN105817638A (en) * 2016-05-31 2016-08-03 安徽工业大学 Cu@C@g-C3N4 nanocomposite and preparation method thereof
CN105817638B (en) * 2016-05-31 2018-01-02 安徽工业大学 A kind of Cu@C@g C3N4Nano-complex and preparation method thereof
CN108067281A (en) * 2017-11-24 2018-05-25 辽宁大学 Porous g-C3N4Photochemical catalyst and its preparation method and application
CN108067281B (en) * 2017-11-24 2020-06-16 辽宁大学 Porous g-C3N4Photocatalyst and preparation method and application thereof
CN109608410A (en) * 2019-01-25 2019-04-12 山东大学 A kind of preparation method of high-specific surface area multilevel structure melamine
CN109608410B (en) * 2019-01-25 2021-06-29 山东大学 Preparation method of melamine with high specific surface area and multilevel structure

Also Published As

Publication number Publication date
JP2011195412A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5582527B2 (en) Method for producing graphitic carbon nitride
Abdullah et al. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview
Ma et al. Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
Lin et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
Xu et al. Microwave enhanced catalytic degradation of methyl orange in aqueous solution over CuO/CeO2 catalyst in the absence and presence of H2O2
Shand et al. Aqueous phase photocatalytic nitrate destruction using titania based materials: routes to enhanced performance and prospects for visible light activation
Bi et al. Visible‐Light Photocatalytic Conversion of Carbon Dioxide into Methane Using Cu2O/TiO2 Hollow Nanospheres
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
JP5756740B2 (en) Photocatalyst, method for producing the same, and method for treating nitrate-containing water
Haque et al. Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Golestanbagh et al. Preparation, characterization and photocatalytic properties of visible-light-driven CuO/SnO 2/TiO 2 photocatalyst
Sun et al. Highly efficient removal of tetracycline hydrochloride under neutral conditions by visible photo-Fenton process using novel MnFe2O4/diatomite composite
Platero et al. Mechanistic Considerations on the H2 Production by Methanol Thermal‐assisted Photocatalytic Reforming over Cu/TiO2 Catalyst
Wang et al. Ultra-deep desulfurization of model diesel fuel over Pr/Ce–N–TiO2 assisted by visible light
Ali et al. Synthesis and characterization of iron-alumina composites as novel efficient photocatalysts for removal of DBT
Do et al. Oxidative decomposition with PEG-MnO2 catalyst for removal of formaldehyde: Chemical aspects on HCHO oxidation mechanism
El-Salamony et al. Photo-catalytic study of Malachite green dye degradation using rice straw extracted activated carbon supported ZnO nano-particles
JP2009131761A (en) Photocatalytic body
Virkutyte et al. Fabrication and visible light photocatalytic activity of a novel Ag/TiO 2− x N x nanocatalyst
KR20160123178A (en) A manufacturing method of nanocomposite photocatalyst
Zhang et al. Novel strategies for 2, 8-dichlorodibenzo-p-dioxin degradation using ternary Au-modified iron doped TiO2 catalysts under UV–vis light illumination
Arora et al. Conversion of scrap iron into ultrafine α-Fe 2 O 3 nanorods for the efficient visible light photodegradation of ciprofloxacin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5582527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees