JP3017568B2 - Methanol reforming method - Google Patents

Methanol reforming method

Info

Publication number
JP3017568B2
JP3017568B2 JP3208683A JP20868391A JP3017568B2 JP 3017568 B2 JP3017568 B2 JP 3017568B2 JP 3208683 A JP3208683 A JP 3208683A JP 20868391 A JP20868391 A JP 20868391A JP 3017568 B2 JP3017568 B2 JP 3017568B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methanol
temperature
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3208683A
Other languages
Japanese (ja)
Other versions
JPH05116901A (en
Inventor
山 秀 雄 亀
島 義 実 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP3208683A priority Critical patent/JP3017568B2/en
Publication of JPH05116901A publication Critical patent/JPH05116901A/en
Application granted granted Critical
Publication of JP3017568B2 publication Critical patent/JP3017568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はメタノールの改質方法に
関し、特に、水素と一酸化炭素の収率を高くすることの
できるメタノールの改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming methanol, and more particularly to a method for reforming methanol capable of increasing the yield of hydrogen and carbon monoxide.

【0002】[0002]

【従来技術】水素ガスは石油精製、脱硫、アンモニア合
成、各種化成品の合成等に多く用いられる他、冶金工
業、半導体産業、食品工業用としての需要も多く、最近
では燃料電池等のエネルギー分野への応用も期待されて
いる。
2. Description of the Related Art Hydrogen gas is widely used in petroleum refining, desulfurization, ammonia synthesis, synthesis of various chemical products, etc., and is also in great demand for metallurgy industry, semiconductor industry, food industry, and recently in the energy field such as fuel cells. The application to is expected.

【0003】水素製造法として、従来から行われている
方法としてはLPG、LNG、ナフサ等の炭化水素の水
蒸気改質法がある。しかしながら、この従来の方法は、
一般に反応温度が高い(800〜1000℃)、脱硫操
作が必要である等の問題があり、大規模な水素ガスの製
造に適する一方、中規模又は小規模な水素ガスの製造法
としては不適当であるとされている。
As a conventional method for producing hydrogen, there is a method for steam reforming hydrocarbons such as LPG, LNG, and naphtha. However, this conventional method,
In general, there are problems such as a high reaction temperature (800 to 1000 ° C.) and necessity of desulfurization operation, which is suitable for large-scale production of hydrogen gas, but unsuitable for a medium- or small-scale production of hydrogen gas. It is supposed to be.

【0004】これに対し、メタノールを原料とする水素
ガスの製造は、原料としてのメタノールの輸送や貯蔵が
容易であること、反応が比較的低温で行えること及び脱
硫操作が不要である等の利点があるのみならず、大規模
な装置から小規模な装置に至るまで容易に適応すること
ができる。更に、水素消費装置に隣接させて改質装置を
設置し、無人化運転を行っても生産ラインを一貫体制と
することも可能となることから、メタノール改質による
水素ガス製造への期待は大きい。しかしながら、この反
応は大きな吸熱反応であるため反応温度を制御すること
が難しく、反応効率や反応の選択性の点で必ずしも満足
すべき結果が得られないという欠点があった。
On the other hand, the production of hydrogen gas using methanol as a raw material has advantages such as easy transportation and storage of methanol as a raw material, the fact that the reaction can be performed at a relatively low temperature, and the desulfurization operation is not required. Not only is there an easy adaptation from large to small devices. Furthermore, since a reformer can be installed adjacent to the hydrogen consuming device and the production line can be integrated even if unmanned operation is performed, hydrogen gas production by methanol reforming is highly expected. . However, since this reaction is a large endothermic reaction, it is difficult to control the reaction temperature, and there is a disadvantage that a satisfactory result cannot always be obtained in terms of reaction efficiency and reaction selectivity.

【0005】一方、一般に触媒活性は触媒の表面の大き
さに比例することから、従来、触媒を超微粒子化したり
触媒担体の表面積を大きくすることが行われている。こ
のような観点から、通常、触媒の形状は粉状又は粒状で
あるが、近年熱伝導型触媒体が提案されたことに伴い
(特開昭47−33785号)、反応器の器壁を触媒表
面とする提案(実開昭63−16835号)もなされ、
反応熱を少しでも有効に利用しようとする試みがなされ
ている(「ラネー型接触反応エレメント」、表面、第2
4巻、143〜153頁(1986年)参照)。
On the other hand, since the catalytic activity is generally proportional to the size of the surface of the catalyst, it has heretofore been practiced to make the catalyst ultrafine or increase the surface area of the catalyst carrier. From such a viewpoint, the shape of the catalyst is usually powdery or granular. However, with the recent proposal of a heat conduction type catalyst body (Japanese Patent Application Laid-Open No. 47-33785), the wall of the reactor is catalyzed. A proposal for the surface (Japanese Utility Model Application Laid-Open No. 63-16835) was also made.
Attempts have been made to use the reaction heat as little as possible ("Raney-type contact reaction element", surface, secondary
4, pp. 143-153 (1986)).

【0006】しかしながら、熱伝導型触媒はその熱伝導
という機能を発揮させるために、反応壁を構成しうる平
面形状を有する熱伝導性担体の該表面上に触媒を担持せ
しめたものとなるので、触媒としての表面積は粉状又は
粒状のものより著しく小さくなり、不利とならざるを得
ない。
However, in order to exhibit the function of heat conduction, the heat conduction type catalyst is obtained by supporting the catalyst on the surface of a heat conduction carrier having a planar shape capable of forming a reaction wall. The surface area of the catalyst is significantly smaller than that of the powdery or granular form, which is disadvantageous.

【0007】[0007]

【発明が解決しようとする課題】一方、工業的に触媒反
応を行う場合、反応塔に粒状又は粉状触媒を充填する
と、反応塔の直径方向に、反応塔の外周近傍の温度が高
く中心部の温度が低くなるような温度勾配が生ずるた
め、反応効率や反応の選択性の点で満足すべき結果を得
られない場合があり、特にメタノールの改質反応におい
ては、水素と一酸化炭素の収率が低いという欠点があっ
た。
On the other hand, in the case of performing a catalytic reaction industrially, if a granular or powdery catalyst is filled in the reaction tower, the temperature near the outer periphery of the reaction tower is high in the diameter direction of the reaction tower and the central part is high. Temperature may be low, so that satisfactory results may not be obtained in terms of the reaction efficiency and the selectivity of the reaction.In particular, in the reforming reaction of methanol, hydrogen and carbon monoxide may not be obtained. There was a drawback that the yield was low.

【0008】そこで、本発明者等は係る従来の欠点を解
決すべく鋭意検討した結果、メタノールの改質反応に面
状触媒体を使用した場合には、従来の粒状触媒体や粉状
触媒体を使用した場合より、効率よく改質反応を行わせ
ることができる上、生成物である水素と一酸化炭素の比
率を高くすることができることを見いだし、本発明に到
達した。
The inventors of the present invention have conducted intensive studies in order to solve the conventional disadvantages. As a result, when a planar catalyst was used for the methanol reforming reaction, the conventional granular catalyst or powdery catalyst was used. It has been found that the reforming reaction can be carried out more efficiently than in the case of using, and the ratio of hydrogen, which is a product, to carbon monoxide can be increased.

【0009】従って本発明の目的は、効率良くメタノー
ルを分解すると共に、生成物中の水素と一酸化炭素の量
を容易に高くすることのできるメタノールの改質方法を
提供することにある。
Accordingly, an object of the present invention is to provide a method for reforming methanol which can efficiently decompose methanol and easily increase the amounts of hydrogen and carbon monoxide in a product.

【0010】[0010]

【課題を解決するための手段】本発明の上記の目的は、
触媒体を使用するメタノールの改質方法において、該触
媒体として、陽極酸化被膜を有する連続状金属基体の表
面に超微粒子のメタノール分解触媒物質を担持せしめた
連続触媒体を使用し、メタノールの分解反応を行わせる
ことを特徴とするメタノールの改質方法によって達成さ
れた。
SUMMARY OF THE INVENTION The above objects of the present invention are as follows.
In the methanol reforming method using a catalyst, a continuous catalyst in which an ultrafine methanol decomposition catalyst material is supported on the surface of a continuous metal substrate having an anodized film is used as the catalyst , and methanol is decomposed. The reaction was achieved by a method for reforming methanol, characterized in that the reaction was carried out.

【0011】本発明で使用する触媒担体となる基体は
少なくともその表面に陽極酸化被膜を有することが必要
である。 従って、本発明においては、該基体を調製する
ための連続状金属として、アルミニウム又は表面にアル
ミニウム層を少なくとも10μm有するものを使用する
ことが好ましい。
[0011] substrate as a catalyst carrier for use in the present invention,
Must have an anodic oxide coating on at least its surface
It is. Therefore, in the present invention, the substrate is prepared.
As a continuous shaped metal for, it is preferable to use those having at least 10μm aluminum layer on an aluminum or surface.

【0012】上記連続状金属の表面は、担持される触媒
の量を増大させるために、特に陽極酸化によって粗面化
される
The surface of the continuous metal is roughened, especially by anodizing, in order to increase the amount of supported catalyst.
Is done .

【0013】アルミニウム表面の陽極酸化の技術は周知
であり、処理液として例えばクロム酸水溶液、酸水溶
液、硫酸水溶液等を使用することも周知である。陽極酸
化の条件は、アルミニウムのBET表面積が大きくなる
ように適宜設定することが好ましく、本発明においては
陽極酸化の処理液温度を、常温〜50℃、特に30〜4
0℃とすることが好ましい。常温未満ではBET表面積
が小さくなり、一方50℃を越えると溶解が激しく、経
済的に酸化膜を形成させることが困難となる。
[0013] and techniques anodized aluminum surface is known, the treatment liquid as for example an aqueous solution of chromic acid, acid solution is also known to use a sulfuric acid aqueous solution or the like. The anodizing conditions are preferably set appropriately so as to increase the BET surface area of the aluminum. In the present invention, the temperature of the anodizing treatment liquid is from room temperature to 50 ° C., particularly 30 to 4 ° C.
The temperature is preferably set to 0 ° C. If the temperature is lower than normal temperature, the BET surface area is small. On the other hand, if the temperature exceeds 50 ° C., the dissolution is severe, and it is difficult to form an oxide film economically.

【0014】又、この陽極酸化の処理時間は処理条件に
よって異なるが、例えば2.5重量%のクロム酸水溶液
を処理液とし、処理浴温度を38℃、電流密度を19.
0A/m2 とした場合には2時間以上、特に4時間以上
とすることが好ましい。
The anodic oxidation treatment time varies depending on the treatment conditions. For example, a 2.5 wt% chromic acid aqueous solution is used as the treatment liquid, the treatment bath temperature is 38 ° C., and the current density is 19.
When it is 0 A / m 2 , it is preferably at least 2 hours, particularly preferably at least 4 hours.

【0015】上記の如くして陽極酸化によるアルミナ表
面を設けた基体の表面を、更に、50〜350℃の熱水
又は水蒸気によって処理して触媒体の表面積を更に増大
せしめることもできる。この場合の熱水のpHは、7以
上特に10〜12とすることが処理時間を短縮する上で
好ましい。
The surface of the substrate provided with the alumina surface formed by anodic oxidation as described above can be further treated with hot water or steam at 50 to 350 ° C. to further increase the surface area of the catalyst. In this case, the pH of the hot water is preferably 7 or more, particularly 10 to 12, in order to shorten the processing time.

【0016】熱水処理の処理時間は熱水のpHによって
も異なるが、1時間以上とすることが好ましく、約2時
間処理することによりほぼpH値に関係なくBET表面
積を顕著に増大させることができる。又、熱水処理の後
には、400〜550℃で10分〜3時間焼成すること
が好ましい。
Although the treatment time of the hot water treatment varies depending on the pH of the hot water, it is preferably at least 1 hour. By treating for about 2 hours, the BET surface area can be significantly increased substantially irrespective of the pH value. it can. After the hot water treatment, baking at 400 to 550 ° C. for 10 minutes to 3 hours is preferable.

【0017】本発明では、上記の如くして調製した基体
上に、公知の含浸法又は電着法によって超微粒子触媒を
基体表面に担持せしめて、目的とする高活性の連続触媒
体を得ることができる。特に、前記熱水処理において、
微粒子触媒を含有する70〜90℃、好ましくは80〜
85℃の熱水を使用した場合には、熱水処理と同時に触
媒を基体表面に担持せしめることができるので、連続触
媒体製造の工程を簡略化できるのみならず、触媒活性の
点でも特に優れた連続触媒体を得ることができるので、
微粒子触媒を含有する熱水で処理した後、乾燥し、次い
で400〜550℃で焼成する方法は、特に好ましい。
In the present invention, an ultra-fine particle catalyst is supported on the surface of the substrate prepared as described above by a known impregnation method or an electrodeposition method to obtain a desired highly active continuous catalyst. Can be. In particular, in the hot water treatment,
70-90 ° C. containing a fine-particle catalyst, preferably 80-90 ° C.
When hot water of 85 ° C. is used, the catalyst can be supported on the substrate surface at the same time as the hot water treatment, so that not only the process of manufacturing a continuous catalyst can be simplified, but also the catalyst activity is particularly excellent. Continuous catalyst body can be obtained,
A method of treating with hot water containing a particulate catalyst, drying, and then calcining at 400 to 550 ° C. is particularly preferred.

【0018】この場合、熱水中に含有される超微粒子触
媒の量は特に限定されるものではないが、0.25g/
リットル〜1.0g/リットルの範囲が好ましい。濃度
が高すぎると不経済となり、低すぎると必要とする処理
時間が長くなる。
In this case, the amount of the ultrafine catalyst contained in the hot water is not particularly limited, but is 0.25 g /
The range is preferably from liter to 1.0 g / liter. If the concentration is too high, it becomes uneconomical, and if it is too low, the required processing time becomes long.

【0019】本発明で使用する超微粒子触媒はメタノー
ルの分解触媒として機能する限り特に限定されるもので
はないが、白金、パラジウム、クロム、マンガン、亜
鉛、鉄、ニッケル及びコバルトの中から選択することが
好ましい。又、これらの触媒物質を組み合わせることも
できる。
The ultrafine particle catalyst used in the present invention is methanol
Although it is not particularly limited as long as it functions as a catalyst for decomposing hydrogen, it is preferable to select from platinum, palladium, chromium, manganese, zinc, iron, nickel and cobalt. Also, these catalyst substances can be combined.

【0020】尚、超微粒子触媒の粒径は約1nm〜10
0nmであり、好ましくは約1nm〜50nmの範囲で
ある。又、連続触媒体としてBET表面積は、金属基体
の見かけの表面積の3000倍以上であることが、触媒
活性の観点から好ましい。
The particle diameter of the ultrafine catalyst is about 1 nm to 10 nm.
0 nm, preferably in the range of about 1 nm to 50 nm. In addition, the BET surface area of the continuous catalyst is preferably 3000 times or more the apparent surface area of the metal substrate from the viewpoint of catalytic activity.

【0021】本発明においては、上記の如くして板状、
リボン状、管状、ハニカム状等の連続状触媒体を得るこ
とができるので、これらの触媒体を適宜反応塔に充填
し、或いは、これらの触媒体を用いて反応室を形成せし
めて、メタノールの分解反応を行う。特に気相反応が好
適である。
In the present invention, as described above,
Since a continuous catalyst such as a ribbon, a tube, or a honeycomb can be obtained, these catalysts are appropriately filled in a reaction tower, or a reaction chamber is formed using these catalysts to form methanol. Perform a decomposition reaction. Particularly, a gas phase reaction is preferable.

【0022】反応室内のメタノールの圧力は常圧〜30
kg/m2 であり、好ましくは常圧〜20kg/m2
ある。反応温度は250℃〜800℃であり、好ましく
は300℃〜450℃である。この場合の生成物は水
素、一酸化炭素、水及びメタンであるが、反応温度を約
400℃とした場合には、従来の粒状触媒や粉状触媒を
用いた場合に比し、水素及び一酸化炭素の収量を大幅に
増大させることができる。
The pressure of methanol in the reaction chamber is from normal pressure to 30
a kg / m 2, preferably atmospheric pressure to 20 kg / m 2. The reaction temperature is from 250C to 800C, preferably from 300C to 450C. The products in this case are hydrogen, carbon monoxide, water and methane. When the reaction temperature is about 400 ° C., hydrogen and carbon monoxide are higher than when a conventional granular catalyst or powdery catalyst is used. The yield of carbon oxide can be greatly increased.

【0023】何故、本発明の方法の場合に、上記の如く
水素と一酸化炭素の収量が増大するのかは必ずしも明確
ではないが、次のように推定することができる。一般
に、反応のための加熱は反応管の外壁から行うが、通常
の粒状触媒や粉状触媒を反応管に充填した場合、充填さ
れた触媒の熱伝導度が低いため、反応管の外壁付近の温
度は中心部の温度に比して高くなり、反応管の直径方向
に温度分布が生ずる。従って、従来においては、事実上
かなり広い温度範囲の反応が同時に進行するので反応の
選択性が良くならない。
The reason why the yield of hydrogen and carbon monoxide increases as described above in the case of the method of the present invention is not necessarily clear, but can be estimated as follows. Generally, heating for the reaction is performed from the outer wall of the reaction tube.However, when a normal granular catalyst or a powdery catalyst is filled in the reaction tube, the heat conductivity of the filled catalyst is low, so that the vicinity of the outer wall of the reaction tube is low. The temperature is higher than the temperature at the center, and a temperature distribution occurs in the diameter direction of the reaction tube. Therefore, conventionally, the reaction in a considerably wide temperature range proceeds simultaneously, and the selectivity of the reaction is not improved.

【0024】これに対し、連続状触媒体を、例えばハニ
カム状触媒体に加工して使用した場合には、ハニカムの
熱伝導性が良いので上記の如き温度分布が生ぜず、反応
が極めて狭い温度範囲で進行するので、反応の選択性が
良好となる。更に、反応ガス及び生成ガスの触媒との接
触時間(反応室内における滞留時間)も両者で異なるこ
とは明らかであるから、これらの要因も、両者の反応の
選択性の差異に寄与しているものと推定される。
On the other hand, when a continuous catalyst is used after being processed into a honeycomb catalyst, for example, since the honeycomb has good thermal conductivity, the temperature distribution does not occur as described above, and the temperature at which the reaction is extremely narrow is obtained. Since the reaction proceeds within the range, the selectivity of the reaction is improved. Further, since it is clear that the contact time of the reaction gas and the product gas with the catalyst (residence time in the reaction chamber) is different between the two, these factors also contribute to the difference in the selectivity of the two reactions. It is estimated to be.

【0025】[0025]

【発明の効果】本発明によれば、メタノールを熱分解し
て高収率で水素と一酸化炭素を得ることができ、これら
の生成物は水性ガスとは異なり極めて高純度であるの
で、高付加価値有機物の合成や燃料電池等に対して有用
である。
According to the present invention, hydrogen and carbon monoxide can be obtained in a high yield by thermally decomposing methanol, and since these products have extremely high purity unlike water gas, It is useful for the synthesis of value-added organic substances and fuel cells.

【0026】[0026]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0027】実施例1.連続触媒体を使用する本発明の
場合と、粒状触媒を使用する従来型の場合について、以
下の如く、コンピューターによるシュミレーションを行
い比較した。
Embodiment 1 FIG. Computer simulations were performed and compared for the case of the present invention using a continuous catalyst body and the conventional case using a granular catalyst as follows.

【0028】連続触媒体を使用した反応器として図1a
に示すようなフィン型反応器を使用した。この反応器
は、各フィンの高さを12mm、フィン間隔を5mm、
フィン厚みを2mmとし(図1b)、横巾40cmの反
応室を20段重ねた長さ3mのものであり、各層間に加
熱のための溶融塩等の熱媒を流すものである。一方、従
来型として、流状触媒を充填した直径24mmのパイプ
(図2b)を、直径1mの管に780本内蔵させた長さ
3mの固定層型反応器(図2a)を用いた。
FIG. 1A shows a reactor using a continuous catalyst body.
A fin type reactor as shown in FIG. The reactor had a height of each fin of 12 mm, a fin spacing of 5 mm,
The thickness of the fin is 2 mm (FIG. 1b), and the length of the reaction chamber is 3 m in which 20 reaction chambers each having a width of 40 cm are stacked, and a heating medium such as a molten salt for heating is passed between the respective layers. On the other hand, as a conventional type, a fixed-bed reactor having a length of 3 m (FIG. 2 a) was used in which 780 pipes each having a diameter of 24 mm filled with a flow catalyst and embedded in a tube having a diameter of 1 m were used.

【0029】各場合とも、反応器入口の温度は反応器外
壁の温度に等しいものとし、ガス流量を7kg/m2
秒として、反応温度を400℃とした場合のメタノール
の改質反応について、反応器の入口からの距離と温度又
は転化率の関係を推定した。各温度におけるフィン型反
応器の結果は図3に示した通りであり、従来型反応器の
場合は図4に示した通りである。
In each case, the temperature at the inlet of the reactor is equal to the temperature of the outer wall of the reactor, and the gas flow rate is 7 kg / m 2 ···
The relationship between the distance from the inlet of the reactor and the temperature or the conversion was estimated for the reforming reaction of methanol when the reaction temperature was 400 ° C. in seconds. The results of the fin-type reactor at each temperature are as shown in FIG. 3, and those of the conventional reactor are as shown in FIG.

【0030】各図において、点線は反応器の外壁近傍、
その下の線は反応器の中心付近についてシュミレートし
たものであり、最下線は全体としての転化率の様子を示
したものである。
In each figure, the dotted line indicates the vicinity of the outer wall of the reactor,
The lower line is a simulation of the vicinity of the center of the reactor, and the lower line shows the overall conversion.

【0031】これらの結果から明らかな如く、本発明の
反応器の場合には、外壁近傍と中心部との温度差が小さ
いのに比し、従来型の反応器の場合には、上記温度差が
極めて大きいことが判る。又、メタノールの転化率は本
発明の方が従来型の場合より大きくなっている。尚、シ
ュミレートに際しては、反応速度式として r=kP1 /(1+K1 1 +K2 2 2 を使用した(石油学会誌、第33巻、第3号、173頁
(1990))。但し、上式において、rはメタノール
の反応速度(モル/g−cat・時間)、kは速度定数
(モル/g−cat・時間)、P1 はメタノールの分
圧、P2 はCOの分圧、K1 はメタノールの吸着平衡定
数、K2 はCOの吸着平衡定数である。
As is clear from these results, in the case of the reactor of the present invention, the temperature difference between the vicinity of the outer wall and the central portion was small, whereas in the case of the conventional reactor, the temperature difference was small. Is very large. Also, the conversion of methanol is higher in the present invention than in the conventional type. In the simulation, r = kP 1 / (1 + K 1 P 1 + K 2 P 2 ) 2 was used as a reaction rate equation (Journal of the Petroleum Institute, Vol. 33, No. 3, page 173 (1990)). However, in the above equation, r is the reaction rate (mol / g-cat · time) methanol, k is the rate constant (mol / g-cat · time), P 1 is partial partial pressure of methanol, P 2 is the CO pressure, K 1 is the adsorption equilibrium constant of methanol, K 2 is the adsorption equilibrium constant of CO.

【0032】実施例2.厚さ0.1mmのアルミニウム
板基体を5重量%の水酸化ナトリウムで5分間洗浄した
後水洗し、次いで30重量%の硝酸で洗浄し、更に水洗
した。上記の如く前処理した基体を、2.5重量%のク
ロム酸水溶液を用いて液温30℃、電流密度19.0A
/m2 で陽極酸化を行った。
Embodiment 2 FIG. The aluminum plate substrate having a thickness of 0.1 mm was washed with 5% by weight of sodium hydroxide for 5 minutes, washed with water, then with 30% by weight of nitric acid, and further washed with water. The substrate pretreated as described above was treated with a 2.5% by weight chromic acid aqueous solution at a liquid temperature of 30 ° C. and a current density of 19.0 A.
/ M 2 was carried out.

【0033】得られた陽極酸化アルミナ表面を有する基
体を、1.0g/リットルの超微粒子白金触媒を含有す
るpH11.0で80℃の溶液に2時間浸漬して熱水処
理した後、溶液から基体を取り出して乾燥し、次いで5
50℃で2時間焼成して、触媒体を得た。
The obtained substrate having an anodized alumina surface was immersed in a solution containing 1.0 g / l of ultrafine platinum catalyst at pH 11.0 and 80 ° C. for 2 hours, and subjected to hot water treatment. The substrate is taken out and dried, then 5
It was calcined at 50 ° C. for 2 hours to obtain a catalyst.

【0034】得られた触媒体の見掛けの表面積(金属基
体の見かけの表面積)は2.78×10-32 /g、B
ET表面積は20m2 /g、白金担持量は0.56重量
%であった。又、白金微粒子の径は2〜3nmであっ
た。
The apparent surface area (apparent surface area of the metal substrate) of the obtained catalyst was 2.78 × 10 −3 m 2 / g,
The ET surface area was 20 m 2 / g, and the amount of supported platinum was 0.56% by weight. The diameter of the platinum particles was 2-3 nm.

【0035】得られた触媒0.32gを40cc/分で
流れる水素気流中、400℃で1時間前処理した後、窒
素ガスが50ml/分流れる反応器中に置き、メタノー
ルを1μリットル(〜2.6×10-5モル)のパルス量
となるように注入して改質反応を行った。
After 0.32 g of the obtained catalyst was pretreated at 400 ° C. for 1 hour in a hydrogen stream flowing at 40 cc / min, it was placed in a reactor in which nitrogen gas flowed at 50 ml / min, and 1 μl of methanol (〜2 (6 × 10 −5 mol) to carry out a reforming reaction.

【0036】反応温度を300℃、350℃及び400
℃としたときの改質結果は表1に示した通りである。
The reaction temperature is 300 ° C., 350 ° C. and 400 ° C.
Table 1 shows the results of the reforming at a temperature of ° C.

【表1】 [Table 1]

【0037】比較例1.ペレット状アルミナを所定濃度
の塩化白金酸水溶液に含浸し、白金を担持させて、見掛
け表面積1.27×10-32 /g、BET表面積25
0m2 /g:白金担持量0.67重量%の粒状触媒を調
製した。実施例1で使用した板状触媒の代りに上記粒状
触媒0.34gを使用した他は実施例1と全く同様にし
て表2の結果を得た。
Comparative Example 1 The pelletized alumina was impregnated with an aqueous solution of chloroplatinic acid having a predetermined concentration to support platinum, and had an apparent surface area of 1.27 × 10 −3 m 2 / g and a BET surface area of 25.
0 m 2 / g: A granular catalyst having a platinum loading of 0.67% by weight was prepared. The results in Table 2 were obtained in exactly the same manner as in Example 1 except that 0.34 g of the above-mentioned granular catalyst was used instead of the plate-like catalyst used in Example 1.

【0038】[0038]

【表2】 [Table 2]

【0039】比較例2.白金担持量を6.27重量%と
した他は比較例1と全く同様にして得た粒状触媒を0.
35g用いた他は全く比較例1と同様にして表3の結果
を得た。
Comparative Example 2 A granular catalyst obtained in the same manner as in Comparative Example 1 except that the amount of supported platinum was 6.27% by weight was 0.2%.
Except that 35 g was used, the results in Table 3 were obtained in the same manner as in Comparative Example 1.

【0040】[0040]

【表3】 [Table 3]

【0041】実施例2及び比較例1〜2の結果は、本発
明のメタノール改質反応においては水素及び一酸化炭素
が従来より多く生成し、特に、400℃程度において
は、従来法との差が極めて大きくなることを実証するも
のである。
The results of Example 2 and Comparative Examples 1 and 2 show that in the methanol reforming reaction of the present invention, more hydrogen and carbon monoxide are produced than before, and especially at about 400 ° C. Is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板状触媒体をフィン状に有する反応器(a図)
及びフィン部分の拡大図(b図)である。
FIG. 1 shows a reactor having a plate-shaped catalyst body in a fin shape (FIG. 1a).
FIG. 4 is an enlarged view of the fin portion (FIG. 5B).

【図2】従来タイプの固定層型反応器の概念図(a図)
及び触媒充填パイプの部分拡大断面図(b図)である。
FIG. 2 is a conceptual diagram of a conventional fixed-bed reactor (FIG. A).
FIG. 3 is a partially enlarged cross-sectional view (b diagram) of a catalyst-filled pipe.

【図3】板状触媒体を使用した場合の、反応温度が40
0℃のときのメタノール改質反応における、反応器入口
からの距離に対する反応器外壁近傍及び中心部の温度並
びに転化率の変化を示す図である。図中点線は、反応器
外壁近傍の温度、その下の実線は反応器中心部の温度で
あり、一番下の実線はメタノールの転化率を示す。
FIG. 3 shows a reaction temperature of 40 when a plate-like catalyst is used.
FIG. 5 is a diagram showing changes in the temperature near the outer wall of the reactor and the center thereof and the conversion in the methanol reforming reaction at 0 ° C. with respect to the distance from the reactor inlet. In the figure, the dotted line shows the temperature near the outer wall of the reactor, the solid line below it shows the temperature at the center of the reactor, and the bottom solid line shows the conversion of methanol.

【図4】従来の固定層型反応器を使用した場合の、反応
温度が400℃のときのメタノール改質反応における、
反応器入口からの距離に対する反応器外壁近傍及び中心
部の温度並びに転化率の変化を示す図である。図中点線
は、反応器外壁近傍の温度、その下の実線は反応器中心
部の温度であり、一番下の実線はメタノールの転化率を
示す。
FIG. 4 shows the results of a methanol reforming reaction at a reaction temperature of 400 ° C. using a conventional fixed-bed reactor.
It is a figure which shows the change of the temperature of the outer wall of a reactor, and the center part with respect to the distance from a reactor inlet, and a conversion. In the figure, the dotted line shows the temperature near the outer wall of the reactor, the solid line below it shows the temperature at the center of the reactor, and the bottom solid line shows the conversion of methanol.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河 島 義 実 千葉県袖ヶ浦市上泉1280 出光興産株式 会社内 (56)参考文献 特開 平2−68144(JP,A) 特開 平2−143010(JP,A) 特開 平2−144154(JP,A) 特開 昭49−36594(JP,A) 実開 昭63−16835(JP,U) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshimi Kawashima 1280 Kamiizumi, Sodegaura-shi, Chiba Idemitsu Kosan Co., Ltd. (56) References JP-A-2-68144 (JP, A) JP-A-2-143010 (JP, A) JP-A-2-144154 (JP, A) JP-A-49-36594 (JP, A) JP-A-63-16835 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 触媒体を使用するメタノールの改質方法
において、該触媒体として、陽極酸化被膜を有する連続
状金属基体の表面に超微粒子のメタノール分解触媒物質
を担持せしめた連続触媒体を使用し、メタノールの分解
反応を行わせることを特徴とするメタノールの改質方
法。
1. A method for reforming methanol using a catalyst body, wherein a continuous catalyst body having an ultrafine methanol decomposition catalyst material supported on a surface of a continuous metal substrate having an anodized film is used as the catalyst body. And decomposition of methanol
A method for reforming methanol, which comprises conducting a reaction .
【請求項2】 触媒体のBET表面積が金属基体の見か
けの表面積の3000倍以上である請求項1に記載のメ
タノールの改質方法。
2. The method for reforming methanol according to claim 1, wherein the BET surface area of the catalyst body is 3000 times or more the apparent surface area of the metal substrate.
JP3208683A 1991-07-24 1991-07-24 Methanol reforming method Expired - Fee Related JP3017568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208683A JP3017568B2 (en) 1991-07-24 1991-07-24 Methanol reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208683A JP3017568B2 (en) 1991-07-24 1991-07-24 Methanol reforming method

Publications (2)

Publication Number Publication Date
JPH05116901A JPH05116901A (en) 1993-05-14
JP3017568B2 true JP3017568B2 (en) 2000-03-13

Family

ID=16560343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208683A Expired - Fee Related JP3017568B2 (en) 1991-07-24 1991-07-24 Methanol reforming method

Country Status (1)

Country Link
JP (1) JP3017568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540975B2 (en) * 1998-07-27 2003-04-01 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
JP4937584B2 (en) * 2004-02-02 2012-05-23 独立行政法人物質・材料研究機構 Intermetallic compound Ni3Al catalyst for methanol reforming and methanol reforming method using the same
CN100408156C (en) * 2006-09-18 2008-08-06 西安交通大学 Metal foam catalytic reforming reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059077Y2 (en) * 1986-07-16 1993-03-05
JP2707626B2 (en) * 1988-09-05 1998-02-04 東ソー株式会社 Method for producing catalyst for hydrogenation reaction
JPH0386240A (en) * 1989-08-30 1991-04-11 Toda Kogyo Corp Catalyst for purification of exhaust gas
JP2659821B2 (en) * 1989-10-12 1997-09-30 三菱重工業株式会社 Ozone decomposition catalyst

Also Published As

Publication number Publication date
JPH05116901A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
Abghoui et al. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides
JP6670754B2 (en) Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
Itoh et al. Tube-wall catalytic membrane reactor for hydrogen production by low-temperature ammonia decomposition
Ganley et al. Development of a microreactor for the production of hydrogen from ammonia
KR101052385B1 (en) Use of Metal Supported Copper Catalysts for Alcohol Reforming
Fukuhara et al. A novel nickel-based catalyst for methane dry reforming: A metal honeycomb-type catalyst prepared by sol–gel method and electroless plating
US20130149211A1 (en) Graphene oxide and graphite oxide catalysts and systems
Lee et al. Studies on the steam and CO2 reforming of methane for GTL-FPSO applications
US20130045865A1 (en) High activity early transition metal carbide and nitride based catalysts
Zhang et al. Fast start-up structured CuFeMg/Al2O3 catalyst applied in microreactor for efficient hydrogen production in methanol steam reforming
Kim et al. A microreactor with metallic catalyst support for hydrogen production by partial oxidation of dimethyl ether
Fukuhara et al. Catalytic properties of plate-type copper-based catalysts, for steam reforming of methanol, on an aluminum plate prepared by electroless plating
Xu et al. Catalytic properties of alkali-leached Ni3Al for hydrogen production from methanol
US3228892A (en) Method for preparing supported catalytic structures
WO2005085127A1 (en) Method for producing hydrogen and system therefor
Khan et al. Recent advances in bimetallic catalysts for hydrogen production from ammonia
Javaid et al. Continuous dehydrogenation of aqueous formic acid under sub-critical conditions by use of hollow tubular reactor coated with thin palladium oxide layer
JP3017568B2 (en) Methanol reforming method
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
JP4431338B2 (en) Method for producing hydrogen using thermally conductive catalyst body
Fukuhara et al. Low-temperature water-gas shift reaction of plate-type copper-based catalysts on an aluminum plate prepared by electroless plating
WO2011111351A1 (en) Method for producing chlorine using fixed bed reactor
JP2001302203A (en) Method for reforming methanol and method for producing continuous catalyzer for reforming methanol
CA1178787A (en) Catalytic process for producing a gas containing hydrogen
JPH084104Y2 (en) Exothermic reactor that doubles as a heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees