JPH05309232A - Ozone decomposition filter - Google Patents

Ozone decomposition filter

Info

Publication number
JPH05309232A
JPH05309232A JP4159975A JP15997592A JPH05309232A JP H05309232 A JPH05309232 A JP H05309232A JP 4159975 A JP4159975 A JP 4159975A JP 15997592 A JP15997592 A JP 15997592A JP H05309232 A JPH05309232 A JP H05309232A
Authority
JP
Japan
Prior art keywords
ozone
mno
ozone decomposition
catalyst
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4159975A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Kimihiko Yoshida
公彦 吉田
Shiroji Ikeda
城二 池田
Masafumi Yoshimoto
雅文 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP4159975A priority Critical patent/JPH05309232A/en
Publication of JPH05309232A publication Critical patent/JPH05309232A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a decomposition catalyst ensuring a small pressure drop and excellent in flame resistance and ozone decomposing ability at a low cost. CONSTITUTION:A corrugated structure formed with kraft paper or corrugated cardboard is coated with a compsn. consisting essentially of one or more among SiO2, Al2O3 and TiO2 and an ozone decomposition catalyst in weight ratio of the former to the letter of 1:(0.1-10) to obtain the objective catalyst for decomposition of ozone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、工場などから排出され
る廃液や排ガス等の中に含まれるオゾンを分解するため
のオゾン分解用触媒フィルターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone decomposing catalyst filter for decomposing ozone contained in waste liquid, exhaust gas and the like discharged from factories and the like.

【従来の技術】従来、気体中に含まれる有害成分である
オゾンを除去する方法として活性炭、ゼオライト等の多
孔物質を用いる吸着法あるいはMnOなどの触媒など
を用いることによる酸化分解等の方法が行われてきた。
酸化分解法に用いる触媒として圧力損失が低いハニカム
状あるいはコルゲート状触媒が使われている。一方オゾ
ン除去フィルターは間接静電式複写機のコロナ放電部か
ら発生するオゾンの処理に使用されるためフィルター自
身が難燃性を有することが要求されている。そのため従
来吸着法に用いられている活性炭フィルターには難燃性
物質を含浸法などによって含有させてきた。また触媒フ
ィルターは不燃性のセラミック材料を用いてハニカム化
をするあるいは難燃処理された紙を用いてコルゲート化
をした触媒支持体にオゾン分解触媒を担持してきた。
(特公平4−17099)
2. Description of the Related Art Hitherto, as a method for removing ozone, which is a harmful component contained in a gas, an adsorption method using a porous material such as activated carbon or zeolite, or a method such as oxidative decomposition using a catalyst such as MnO 2 has been used. Has been done.
Honeycomb or corrugated catalysts with low pressure loss are used as catalysts for the oxidative decomposition method. On the other hand, since the ozone removal filter is used for treating ozone generated from the corona discharge part of the indirect electrostatic copying machine, the filter itself is required to have flame retardancy. Therefore, the activated carbon filter used in the conventional adsorption method has been made to contain a flame-retardant substance by the impregnation method or the like. Further, the catalyst filter has carried an ozone decomposition catalyst on a catalyst support which is made into a honeycomb by using a non-combustible ceramic material or is made into a corrugated form by using a flame-retardant paper.
(Japanese Patent Publication No. 4-17099)

【発明が解決しようとする問題点】しかしながら、上記
従来のオゾン除去フィルターのいずれもが充分に満足の
いくものであるとは言い難い。すなわち活性炭フィルタ
ーは難燃性物質を含有させるため吸着性能が低下し、ハ
ニカム状触媒は難燃性の問題がないもののコストが高
く、コルゲート状触媒はハニカム状触媒に比して若干低
くなるものの酸化活性を有する触媒を担持するため難燃
性を充分に克服したものと言い難いものであった。本発
明はこれらの問題を解決するためになされたものであっ
て、その目的とするところは従来のオゾン除去フィルタ
ーに比して極めて低廉安価でかつ難燃性に全く問題なく
低圧損、高活性なオゾン分解フィルターを提供すること
にある。
However, it is difficult to say that any of the conventional ozone removal filters described above is sufficiently satisfactory. That is, since the activated carbon filter contains a flame-retardant substance, the adsorption performance deteriorates, the honeycomb catalyst does not have the problem of flame retardance, but the cost is high, and the corrugated catalyst has an oxidation that is slightly lower than the honeycomb catalyst. It was difficult to say that the flame retardancy was sufficiently overcome because the catalyst having the activity was supported. The present invention has been made to solve these problems, and its object is to be extremely inexpensive and inexpensive as compared with a conventional ozone removal filter, and to have low pressure loss and high activity without any problem in flame retardancy. To provide a simple ozone decomposing filter.

【問題を解決するための手段】上記目的を達成するため
の本発明にかかるオゾン分解触媒は、難燃性を有する紙
を用いる必要はなく汎用されているクラフト紙又は段ボ
ール原紙を用いて形成されるコルゲート構造体に少なく
ともSiO、Al、TiOから選ばれた1種
以上好ましくはこれらの状態がコロイド状(一般的には
ゾル状と呼ばれている)であるものとオゾン分解能を有
する触媒活性種およびもしくは活性炭の重量比が固形分
基準で1:0.1〜10であるものが被覆されているこ
とを特徴としている。本発明において形成されるコルゲ
ート状ハニカムは通常の段ボール加工において用いられ
るクラフト紙、段ボール原紙からなり、公知の方法にお
いて紙の難燃性を向上させるために難燃化剤を添加する
ため紙強度が低下し、段ボール加工の上から紙質が制限
されることがないため、紙厚を薄くすることができるた
め開孔率を大きくとることができ、そのため通風時の圧
力損失を公知のものに比して小さくすることができるも
のである。本発明において用いるクラフト紙もしくは段
ボール原紙は、圧力損失を考慮した場合紙厚が30〜1
00μ程度が好ましい。30μ以下ではコルゲート加工
時の生産性が低下し、100μ以上では圧力損失が大き
くなるためである。これらのクラフト紙あるいは段ボー
ル原紙から片面段ボールの複数枚積層体又はハニカム構
造積層体を形成し、該積層体をその積層面に直交して適
当な厚さに裁断し、コルゲート状ハニカムが形成され
る。オゾン分解能を有する触媒活性種として既に本発明
者らが提案しているようなTi、Cu、Mn、Ni、F
e、Ag、Au、Mo、Zr、Sn、Nb、Wなどの種
々の金属、および金属酸化物もしくは硫酸塩の少なくと
も1種以上からなるもの、あるいはこれらに酸性粘度を
含有させたものなどを挙げることがてきる。こうした触
媒種としては、例えば担持されるべき金属酸化物を用い
て表せば、MnO、NiO、NiO、CuO、Fe
およびMnO−TiO、MnO−CuO、
MnO−Fe、MnO−AgO、NiO−
Co、NiO−TiO、NiO−MnO、N
iO−AgO、NiO−MoO、NiO−WO
NiO−SnO等および、MnO−AgO−Ti
、MnO−CuOーAgO、NiO−MnO
−AgO、NiO−MnO−TiO等を例示する
ことができる。本発明において用いる活性炭は、木炭、
やし殻などを水蒸気賦活あるいは薬品賦活した活性炭や
炭素繊維を前述した方法によって賦活した活性炭繊維な
どを用いることができる。本発明において用いる少なく
ともSiO、Al、TiOから選ばれた1種
以上は、フィルターのオゾン分解効率を低下させること
なく、難燃性を有しないコルゲート積層体を用いこの積
層体に自燃性のあるオゾン分解触媒およびもしくは活性
炭を被覆した場合においてもその量比を重量基準で少な
くともSiO、Al、TiOから選ばれた1
種以上:オゾン分解触媒およびもしくは活性炭=1:
0.1〜10とすることによってその自燃性を完全に抑
制することができるものである。また少なくともSiO
、Al、TiOから選ばれた1種以上の好ま
しい使用形態としてはゾル状であることが好ましい。こ
れらはコルゲート積層体への被覆時にバインダーとして
作用し被覆力を高めるとともに自燃性を有するオゾン分
解触媒およびもしくは活性炭との混合状態が高まりより
難燃性を高める。 実施例1 秤量が55g/m、紙厚が60μであるクラフト紙を
コルゲートマシン(ピッチ2.5mm、山高さ1.0m
m)に通じて片段シート(フルート)を得る。この時接
着剤として酢酸ビニルエマルジョンを用いた。次いでフ
ルートを酢酸エマルジョンを接着剤として積層しコルゲ
ート積層体を得た。これを所定サイズに切り出し試験に
供した。比表面積が67m/gであるMnO、0.
4kg、日産化学製シリカゾル(スノーテックスO、S
iO含有率20wt%)0.4kgを混合し、充分撹
拌を行いMnOとSiOの重量比が1:0.5であ
る被覆用スラリーを得た。このスラリーをコルゲート積
層体の貫通孔に通じ過剰スラリーを除去した後、乾燥し
オゾン分解フィルターを得た。このときオゾン分解層の
平均厚みは57μであった。なお厚みの算出はEPMA
による線分析によりn数を10としてその平均値を求め
ることにより行った。 実施例2 実施例1においてMnO、0.4kgのうち80gを
比表面積が110m/gであるTiOにかえたこと
以外、実施例1と同様にしてMnOとSiO−Ti
の重量比が1:0.7で、オゾン分解層の平均厚み
が52μであるオゾン分解フィルターを得た。 実施例3 実施例1においてMnO、0.2kg、シリカゾルを
0.4kgとすること以外、実施例1と同様にしてMn
とSiOの重量比が1:1で、オゾン分解層の平
均厚みが64μであるオゾン分解フィルターを得た。 実施例4 実施例1においてMnO、0.1kg、シリカゾルを
0.4kgとすること以外、実施例1と同様にしてMn
とSiOの重量比が1:2で、オゾン分解層の平
均厚みが70μであるオゾン分解フィルターを得た。 実施例5 実施例1においてMnO、0.1kg、シリカゾルを
0.1kgとし、さらにスラリー中に水を300g加え
ること以外、実施例1と同様にしてMnOとSiO
の重量比が1:0.125で、オゾン分解層の平均厚み
が59μであるオゾン分解フィルターを得た。 実施例6 実施例1においてMnO、0.1kg、シリカゾルを
40gとし、さらにスラリー中に水を360g加えるこ
と以外、実施例1と同様にしてMnOとSiOの重
量比が1:0.05で、オゾン分解層の平均厚みが53
μであるオゾン分解フィルターを得た。 実施例7 実施例1においてMnO、0.4kgのうち120g
を武田薬品製活性炭(白鷺A)に加えた以外、実施例1
と同様にしてMnO−活性炭−SiOの重量比が
1:0.5で、オゾン分解層の平均厚みが52μである
オゾン分解フィルターを得た。 実施例8 実施例1においてMnO、0.4kgのうち80gを
住友化学製γ−アルミナ(A−11)に加えた以外、実
施例1と同様にしてMnOとAl−SiO
重量比が1:0.7で、オゾン分解層の平均厚みが61
μであるオゾン分解フィルターを得た。 実施例9 実施例1においてMnO、0.4kgのうち160g
を比表面積が38m/gであるFe、40gを
AgOに加える以外、実施例1と同様にしてMnO
−Fe−AgOとSiOの重量比が1:0.
7で、オゾン分解層の平均厚みが66μであるオゾン分
解フィルターを得た。 参考例1 実施例1において得たコルゲート積層体を、比表面積が
67m/gであるMnO2400g、コーンスター
チ10g、イオン交換水400gを用いて調製したスラ
リーにて処理し以下実施例1と同様にして、オゾン分解
層の平均厚みが55μであるオゾン分解フィルターを得
た。 参考例2 秤量100g/mの段ボール原紙をグアンジン系難燃
剤(三洋化成サンフレームP−365の25%溶液)中
に含浸して乾燥した。この時含浸量は15g/mであ
った。これを使って実施例1において用いたコルゲート
マシンにてコルゲート加工を行った。以下実施例1と同
様にしてコルゲート積層体を得た。さらに以下参考例1
で用いたスラリーにて処理し、オゾン分解層の平均厚み
が71μであるオゾン分解フィルターを得た。上記実施
例1〜9、参考例1〜2で得た紙について、第1図にそ
のフローシートを示すような試験装置を用いて、下記反
応条件で触媒活性試験を行い、初期、10時間経過後、
及び100時間経過後のオゾン分解率を求めた。図にお
いて、(1)はオゾン発生器であり、これに導入された
エアーより適切な濃度のオゾンを発生させ、このオゾン
含有エアーを触媒層(2)に導く。オゾン分解率(%)
は、(3)のオゾン分析計にて測定される触媒層の入口
及び出口の値により次式で求められる。 (反応条件) 面積速度:50m/m・hr 入口オゾン濃度:2ppm 反応温度:28℃ 相対湿度:80% また得られたフィルター中に3.0m/secの空気を
通じ、フィルター通過前後の差圧を測定し圧力損失を求
めた。なおフィルターのガス流れ方向への厚みは20m
mで測定した。さらに得られたフィルターを用いて、U
L(Underwrites Laboratorie
s lnc)94Vにしたがう垂直燃焼試験を行った。 試験結果を表−1に示す。 上記表より明らかなように、実施例1〜9で得たいずれ
の触媒も、参考例1〜2で得た触媒に比べて高いオゾン
分解率(%)を有し、圧力損失が小さく、難燃性に優れ
ている。
The ozone decomposing catalyst according to the present invention for achieving the above object does not need to use a flame-retardant paper and is formed by using a widely used kraft paper or corrugated cardboard. In the corrugated structure, at least one selected from SiO 2 , Al 2 O 3 and TiO 2 is preferably in a colloidal state (generally called a sol state) and ozone resolution. Is coated with a catalyst having a weight ratio of the catalytically active species and / or activated carbon of 1: 0.1 to 10 based on the solid content. The corrugated honeycomb formed in the present invention is made of kraft paper or corrugated board that is usually used in corrugated board processing, and the paper strength is increased by adding a flame retardant to improve the flame retardancy of the paper in a known method. Since the paper quality is not reduced and the quality of the paper is not limited from the top of corrugated board processing, the paper thickness can be made thin and the porosity can be made large.Therefore, the pressure loss during ventilation is higher than that of the known one. It can be made smaller. The kraft paper or corrugated cardboard used in the present invention has a paper thickness of 30 to 1 when pressure loss is taken into consideration.
It is preferably about 00μ. This is because if the thickness is 30 μm or less, the productivity during corrugation is lowered, and if it is 100 μm or more, the pressure loss becomes large. A corrugated honeycomb is formed by forming a laminated body of a single-faced corrugated board or a honeycomb structure laminated body from these kraft papers or corrugated fiberboard and cutting the laminated body at an appropriate thickness perpendicular to the laminated surface. .. Ti, Cu, Mn, Ni, F as already proposed by the present inventors as catalytically active species having ozone decomposing ability
Examples include various metals such as e, Ag, Au, Mo, Zr, Sn, Nb, and W, and at least one metal oxide or sulfate, or those containing an acidic viscosity. Things will come. As such catalyst species, for example, MnO 2 , NiO, Ni 2 O, CuO, Fe can be represented by using a metal oxide to be supported.
2 O 3 and MnO 2 —TiO 2 , MnO 2 —CuO,
MnO 2 -Fe 2 O 3, MnO 2 -Ag 2 O, NiO-
Co 3 O 4, NiO-TiO 2, NiO-MnO 2, N
iO-Ag 2 O, NiO- MoO 3, NiO-WO 3,
NiO-SnO 2 or the like and, MnO 2 -Ag 2 O-Ti
O 2, MnO 2 -CuO over Ag 2 O, NiO-MnO 2
-Ag 2 O, it can be exemplified NiO-MnO 2 -TiO 2, and the like. The activated carbon used in the present invention is charcoal,
It is possible to use activated carbon in which palm shell or the like is activated by steam or chemicals, activated carbon fibers in which carbon fibers are activated by the method described above, and the like. At least one selected from SiO 2 , Al 2 O 3 , and TiO 2 used in the present invention is used in this laminate using a corrugated laminate that does not have flame retardancy without lowering the ozone decomposition efficiency of the filter. Even when a self-sustaining ozone decomposition catalyst and / or activated carbon is coated, the amount ratio is at least 1 selected from SiO 2 , Al 2 O 3 and TiO 2 on a weight basis.
Type or more: Ozone decomposition catalyst and / or activated carbon = 1:
By setting it as 0.1 to 10, the self-flammability can be completely suppressed. Also, at least SiO
As a preferred use form of one or more selected from 2 , Al 2 O 3 and TiO 2 , a sol form is preferable. These act as a binder at the time of coating the corrugated laminate to enhance the coating power and enhance the flame retardancy by increasing the mixing state with the ozone decomposing catalyst having self-combustibility and / or activated carbon. Example 1 A kraft paper having a basis weight of 55 g / m 2 and a paper thickness of 60 μ was made into a corrugated machine (pitch 2.5 mm, mountain height 1.0 m).
m) to obtain a single-stage sheet (flute). At this time, a vinyl acetate emulsion was used as an adhesive. Then, the flutes were laminated using an acetic acid emulsion as an adhesive to obtain a corrugated laminate. This was cut into a predetermined size and subjected to a test. MnO 2 , having a specific surface area of 67 m 2 / g, 0.
4 kg, Nissan Chemical Silica Sol (Snowtex O, S
0.4 kg of iO 2 content 20 wt%) was mixed and sufficiently stirred to obtain a coating slurry in which the weight ratio of MnO 2 and SiO 2 was 1: 0.5. This slurry was passed through the through holes of the corrugated laminate to remove excess slurry, and then dried to obtain an ozone decomposition filter. At this time, the average thickness of the ozone decomposition layer was 57 μm. The thickness is calculated by EPMA
It was carried out by determining the average value by setting the number of n to 10 by the line analysis by. Example 2 MnO 2 and SiO 2 —Ti in the same manner as in Example 1 except that 80 g of 0.4 kg of MnO 2 in Example 1 was replaced with TiO 2 having a specific surface area of 110 m 2 / g.
An ozone decomposition filter having an O 2 weight ratio of 1: 0.7 and an ozone decomposition layer having an average thickness of 52 μm was obtained. Example 3 Mn was prepared in the same manner as in Example 1 except that MnO 2 was 0.2 kg and silica sol was 0.4 kg in Example 1.
An ozone decomposition filter was obtained in which the weight ratio of O 2 to SiO 2 was 1: 1 and the average thickness of the ozone decomposition layer was 64 μm. Example 4 Mn was prepared in the same manner as in Example 1 except that 0.1 kg of MnO 2 and 0.4 kg of silica sol were used in Example 1.
An ozone decomposition filter was obtained in which the weight ratio of O 2 to SiO 2 was 1: 2 and the average thickness of the ozone decomposition layer was 70 μm. Example 5 MnO 2 and SiO 2 were prepared in the same manner as in Example 1 except that 0.1 kg of MnO 2 and 0.1 kg of silica sol were used in Example 1, and 300 g of water was added to the slurry.
An ozone decomposition filter having a weight ratio of 1: 0.125 and an average thickness of the ozone decomposition layer of 59μ was obtained. Example 6 The weight ratio of MnO 2 to SiO 2 was 1: 0.m in the same manner as in Example 1 except that MnO 2 was 0.1 kg, silica sol was 40 g, and water was added to the slurry in an amount of 360 g. 05, the average thickness of the ozone decomposition layer is 53
An ozonolysis filter having a μ was obtained. Example 7 MnO 2 in Example 1, 120 g out of 0.4 kg
Example 1 except that activated carbon (Shirasagi A) manufactured by Takeda Pharmaceutical Co., Ltd. was added.
In the same manner as described above, an ozone decomposition filter having a weight ratio of MnO 2 -activated carbon-SiO 2 of 1: 0.5 and an average thickness of the ozone decomposition layer of 52 μ was obtained. Example 8 MnO 2 and Al 2 O 3 —SiO 2 were prepared in the same manner as in Example 1 except that 80 g out of 0.4 kg of MnO 2 was added to γ-alumina (A-11) manufactured by Sumitomo Chemical. Is 1: 0.7, and the average thickness of the ozone decomposition layer is 61.
An ozonolysis filter having a μ was obtained. Example 9 MnO 2 in Example 1, 160 g out of 0.4 kg
The the Fe 2 O 3, 40g specific surface area of 38m 2 / g was inserted into the Ag 2 O, in the same manner as in Example 1 MnO 2
The weight ratio of —Fe 2 O 3 —Ag 2 O and SiO 2 is 1: 0.
In No. 7, an ozone decomposing filter having an average thickness of the ozone decomposing layer of 66 μ was obtained. Reference Example 1 The corrugated laminate obtained in Example 1 was treated with a slurry prepared using 2400 g of MnO 2 having a specific surface area of 67 m 2 / g, 10 g of corn starch, and 400 g of ion-exchanged water, and the same as in Example 1 below. Then, an ozone decomposition filter having an average thickness of the ozone decomposition layer of 55 μ was obtained. Reference Example 2 A corrugated cardboard base paper having a basis weight of 100 g / m 2 was impregnated with a guandin flame retardant (25% solution of Sanyo Kasei Sunframe P-365) and dried. At this time, the impregnated amount was 15 g / m 2 . Using this, corrugation was performed by the corrugating machine used in Example 1. Then, a corrugated laminate was obtained in the same manner as in Example 1. Reference Example 1 below
The slurry was used for the treatment to obtain an ozone decomposition filter having an ozone decomposition layer having an average thickness of 71 μm. For the papers obtained in the above Examples 1 to 9 and Reference Examples 1 and 2, a catalyst activity test was conducted under the following reaction conditions using a test apparatus whose flow sheet is shown in FIG. rear,
And the ozone decomposition rate after 100 hours have been obtained. In the figure, (1) is an ozone generator, which generates ozone of an appropriate concentration from the air introduced therein, and guides this ozone-containing air to the catalyst layer (2). Ozone decomposition rate (%)
Is calculated by the following equation from the values of the inlet and outlet of the catalyst layer measured by the ozone analyzer of (3). (Reaction conditions) Area velocity: 50 m 3 / m 2 · hr Inlet ozone concentration: 2 ppm Reaction temperature: 28 ° C. Relative humidity: 80% Further, air of 3.0 m / sec was passed through the obtained filter, and the difference before and after passing through the filter The pressure was measured and the pressure loss was calculated. The thickness of the filter in the gas flow direction is 20m.
It was measured in m. Further, using the obtained filter, U
L (Underwriters Laboratorie
vertical burn test according to s lnc) 94V. The test results are shown in Table 1. As is clear from the above table, all the catalysts obtained in Examples 1 to 9 have a higher ozone decomposition rate (%) than the catalysts obtained in Reference Examples 1 to 2 and have a small pressure loss, which is difficult. Excellent in flammability.

【発明の効果】本発明に係るオゾン分解触媒は、低廉安
価にしてオゾンを効率良く除去し、かつ長時間にわたっ
てその性能の劣化を示さず、圧力損失が小さく、難燃性
に優れている。
EFFECT OF THE INVENTION The ozone decomposition catalyst according to the present invention is inexpensive and inexpensive, efficiently removes ozone, does not show deterioration of its performance for a long time, has a small pressure loss, and is excellent in flame retardancy.

【図面の簡単な説明】[Brief description of drawings]

第1図は触媒活性試験のフローシートである。 (1)……オゾン発生器 (2)……触媒層 (3)……オゾン分析計 FIG. 1 is a flow sheet of the catalyst activity test. (1) …… Ozone generator (2) …… Catalyst layer (3) …… Ozone analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 雅文 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masafumi Yoshimoto 5-1, Ebishima-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】クラフト紙又は段ボール原紙を用いて形成
されるコルゲート状構造体に少なくともSiO、Al
、TiOから選ばれた1種以上とオゾン分解触
媒およびもしくは活性炭の重量比が固形分基準で1:
0.1〜10であるものが被覆されていることを特徴と
するオゾン分解フィルター。
1. A corrugated structure formed by using kraft paper or corrugated cardboard, and at least SiO 2 and Al.
The weight ratio of one or more selected from 2 O 3 and TiO 2 to the ozone decomposition catalyst and / or activated carbon is 1: based on the solid content.
An ozone decomposition filter characterized by being coated with 0.1 to 10.
【請求項2】少なくともSiO、Alから選ば
れた1種以上が被覆用スラリー中においてゾル状である
ことを特徴とするオゾン分解フィルター。
2. An ozone decomposing filter, wherein at least one selected from SiO 2 and Al 2 O 3 is in a sol state in the coating slurry.
JP4159975A 1992-05-07 1992-05-07 Ozone decomposition filter Pending JPH05309232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4159975A JPH05309232A (en) 1992-05-07 1992-05-07 Ozone decomposition filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4159975A JPH05309232A (en) 1992-05-07 1992-05-07 Ozone decomposition filter

Publications (1)

Publication Number Publication Date
JPH05309232A true JPH05309232A (en) 1993-11-22

Family

ID=15705268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4159975A Pending JPH05309232A (en) 1992-05-07 1992-05-07 Ozone decomposition filter

Country Status (1)

Country Link
JP (1) JPH05309232A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695578A1 (en) 1994-08-02 1996-02-07 Ngk Insulators, Ltd. Honeycomb structural bodies and method of producing the same
JP2003033666A (en) * 2001-07-26 2003-02-04 Denso Corp Catalyst filter and air cleaner
WO2006120885A1 (en) * 2005-05-09 2006-11-16 Toyo Boseki Kabushiki Kaisha Ozone-decomposing agent
JP2008114109A (en) * 2006-11-01 2008-05-22 Japan Vilene Co Ltd Flame-retardant ozone/voc removing filter
JP2010042413A (en) * 2009-10-06 2010-02-25 Toyobo Co Ltd Ozone decomposing agent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695578A1 (en) 1994-08-02 1996-02-07 Ngk Insulators, Ltd. Honeycomb structural bodies and method of producing the same
US5721037A (en) * 1994-08-02 1998-02-24 Ngk Insulators, Ltd. Honeycomb structural bodies and method of producing the same
JP2003033666A (en) * 2001-07-26 2003-02-04 Denso Corp Catalyst filter and air cleaner
JP4696231B2 (en) * 2001-07-26 2011-06-08 独立行政法人産業技術総合研究所 Method for producing catalyst filter
WO2006120885A1 (en) * 2005-05-09 2006-11-16 Toyo Boseki Kabushiki Kaisha Ozone-decomposing agent
US7875251B2 (en) 2005-05-09 2011-01-25 Toyo Boseki Kabushiki Kaisha Ozone-decomposing agent
JP2008114109A (en) * 2006-11-01 2008-05-22 Japan Vilene Co Ltd Flame-retardant ozone/voc removing filter
JP2010042413A (en) * 2009-10-06 2010-02-25 Toyobo Co Ltd Ozone decomposing agent
JP4711012B2 (en) * 2009-10-06 2011-06-29 東洋紡績株式会社 Ozonolysis agent

Similar Documents

Publication Publication Date Title
US4636485A (en) Filter comprising a catalyst on a substrate for purification of air
EP1628745B1 (en) Method and apparatus for purifying air using a photocatalyst
US5620672A (en) Layered catalyst composition
US6096277A (en) Pollutant removal from air in closed spaces
US20060182669A1 (en) Purification composition and filter for ozone-containing exhaust gas
JPH0523591A (en) Ozone filter and production thereof
EP0306945A1 (en) Oxidation of carbon monoxide and catalyst therefor
US5294419A (en) Method for removing nitrogen oxides and organic chlorine compounds from combustion waste gas
KR100473011B1 (en) Titanium oxide containing, corrugated cardboard and deodorizing elements
US5698165A (en) Ozone filter and process for producing the same
WO2005058467A2 (en) Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality
EP0722763A1 (en) NOx adsorbents
US5002920A (en) Catalyst for ozone decomposition
JPH05309232A (en) Ozone decomposition filter
JPH0443703B2 (en)
JP3725925B2 (en) Mesh sheet, deodorizing element and deodorizing device
JPH0663356A (en) Deodorizing method
JP2000225349A (en) Filter
JP2006217995A (en) Deodorant, method of manufacturing deodorant, and deodorizer using the deodrant
JP3725933B2 (en) Gas processing element and gas processing device
JPH11319580A (en) Photocatalyst filter
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2995608B2 (en) Ozone filter and its manufacturing method
JPH1094587A (en) Photocatalytic film
JP3470496B2 (en) Deodorization treatment method using ozone