JP4710701B2 - Deterioration diagnosis method and apparatus for polymer material - Google Patents

Deterioration diagnosis method and apparatus for polymer material Download PDF

Info

Publication number
JP4710701B2
JP4710701B2 JP2006114794A JP2006114794A JP4710701B2 JP 4710701 B2 JP4710701 B2 JP 4710701B2 JP 2006114794 A JP2006114794 A JP 2006114794A JP 2006114794 A JP2006114794 A JP 2006114794A JP 4710701 B2 JP4710701 B2 JP 4710701B2
Authority
JP
Japan
Prior art keywords
polymer material
deterioration
diagnosed
wavelength
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006114794A
Other languages
Japanese (ja)
Other versions
JP2007285930A (en
Inventor
哲美 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006114794A priority Critical patent/JP4710701B2/en
Publication of JP2007285930A publication Critical patent/JP2007285930A/en
Application granted granted Critical
Publication of JP4710701B2 publication Critical patent/JP4710701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、高分子材料を用いている電気機器、例えば、変圧器や、変成器、開閉器、回転機、絶縁用スペーサ、絶縁用ブッシングなどの長時間の運転によって、その電気機器に組み込まれた高分子材料がどの程度劣化を受けているかを判定する高分子材料の劣化診断方法および装置に関し、特に、その高分子材料を非破壊的に診断する高分子材料の劣化診断方法および装置に関する。   The present invention can be incorporated into an electrical device using a polymer material, for example, a transformer, a transformer, a switch, a rotating machine, an insulating spacer, an insulating bushing, etc. for a long time. More particularly, the present invention relates to a degradation diagnosis method and apparatus for a polymer material for nondestructively diagnosing the polymer material.

例えば、電気機器に組み込まれる絶縁材料などに用いられる高分子材料の不可逆的変成、すなわち、劣化と呼ばれる現象に対する診断には、従来よりさまざまな方法が用いられている。表1は、高分子材料の従来の劣化診断方法を示している。高分子材料の劣化を診断するための各種物性に対する診断項目と、その診断を実施した場合に電気機器に組み込まれた高分子材料を供試材料の切り出しなどで破壊させる必要があるか否かを示している。表1における各診断項目の説明を以下に述べる。   For example, various methods have conventionally been used for irreversible transformation of a polymer material used as an insulating material incorporated in an electrical device, that is, for diagnosis of a phenomenon called deterioration. Table 1 shows a conventional deterioration diagnosis method for polymer materials. Diagnostic items for various physical properties for diagnosing degradation of polymer materials, and whether or not it is necessary to destroy polymer materials incorporated in electrical equipment by cutting out the test materials, etc. Show. A description of each diagnostic item in Table 1 is given below.

Figure 0004710701

高分子材料は、継続的な使用により熱的な劣化を生じるが、その元となる現象は、高分子自体の分子鎖の切断による分子量の減少、末端原子の酸化によるC−C(炭素原子の一重結合部)またはC=C(炭素原子の二重結合部)における炭素原子の遊離、充填材として用いられている異質材料との結合部からの切断などによって生じる。
Figure 0004710701

Polymer materials cause thermal degradation due to continuous use, but the underlying phenomenon is that the molecular weight decreases due to the molecular chain scission of the polymer itself, and the C—C (carbon atoms This is caused by liberation of carbon atoms at C = C (double bond portion of carbon atoms) or cutting from a bond portion with a foreign material used as a filler.

炭素原子の結合部から炭素原子が遊離すれば、高分子材料の電気的特性に影響が及ぶのでその電気的特性である誘電正接、絶縁破壊電圧、絶縁抵抗などが診断される。しかし、相当に多量に炭素原子が遊離しないと、高分子材料の電気的特性は変化しない。劣化の末期になってはじめて電気的特性に変化が現れる。従って、高分子材料の劣化を診断する方法としては、電気的特性は非常に感度が悪い。なお、絶縁抵抗は、湿度や汚れなど周囲の雰囲気の影響を受け易く診断値の信頼性に欠ける。   If the carbon atom is liberated from the bonding portion of the carbon atom, the electrical characteristics of the polymer material are affected, so that the electrical characteristics such as dielectric loss tangent, dielectric breakdown voltage, and insulation resistance are diagnosed. However, the electrical properties of the polymeric material do not change unless a significant amount of carbon atoms are liberated. Only after the end of deterioration changes in electrical properties appear. Therefore, as a method for diagnosing the deterioration of the polymer material, the electrical characteristics are very insensitive. The insulation resistance is easily affected by the surrounding atmosphere such as humidity and dirt, and the reliability of the diagnostic value is lacking.

分子鎖の切断は、高分子材料が力学的に脆くなるという傾向を示し、高分子材料の力学的特性における破断強度や粘弾性率による診断方法がある。
音響伝搬特性は、例えば、音の伝搬速度は高分子材料の弾性率やポアソン比、密度などで決定される力学的特性に対応するが、電気機器に使用している形状での測定は困難であるとともに測定精度の点からも劣っている。
The molecular chain breakage tends to cause the polymer material to become mechanically brittle, and there is a diagnostic method based on the breaking strength and viscoelasticity in the mechanical properties of the polymer material.
The acoustic propagation characteristics, for example, the sound propagation speed corresponds to the mechanical characteristics determined by the elastic modulus, Poisson's ratio, density, etc. of the polymer material, but it is difficult to measure in the shape used for electrical equipment. It is also inferior in terms of measurement accuracy.

分子の結合特性に基づく診断であるFT・IR(Fourier Transform Infrared Spectrometer フーリエ変換赤外分光法)やATR(Attenuated Total Reflection 全反射吸収法)は、高分子材料に赤外線を射て、その吸収または反射スペクトルを求める方法である。それによって、その材料の分子結合状態を分析し、材料の劣化の程度を知ることができる。この方法は、材料の劣化の程度を詳細に知ることができるという長所があるが、大がかりで精密な測定器による赤外領域の光測定であるために、電気機器が設置された現地での測定は非常に困難である。   FT / IR (Fourier Transform Infrared Spectrometer) and ATR (Attenuated Total Reflection Total Reflection Absorption), which are diagnostics based on the binding properties of molecules, irradiate polymer materials with infrared rays and absorb or reflect them. This is a method for obtaining a spectrum. Thereby, the molecular bonding state of the material can be analyzed to know the degree of deterioration of the material. This method has the advantage of being able to know in detail the degree of material degradation, but because it is a large-scale, precise measuring instrument that measures light in the infrared region, it can be measured at the site where electrical equipment is installed. Is very difficult.

表1では、分子の結合状態に依存する変成として色差を分類している。殆どの高分子材料が、経年的な変化としてその表面色の変化が生ずることは一般的に知られている。例えば、ポリアミドのような窒素を分子の側鎖に持つ材料で初期において無色透明であっても経年とともに窒素が遊離するために黄色みを帯びてくることなどは、ポリアミドの大量の用途である繊維を用いている被覆などでは本質的な弱点とされている。ポリアミド以外の高分子材料でも、経年とともに紫外線や熱を受けた場合には変色する。これは、C−CまたはC=C結合からの炭素原子の遊離、カルボニル基などの生成によることが知られている。   In Table 1, the color difference is classified as a modification depending on the binding state of the molecule. It is generally known that most polymer materials undergo a change in surface color as a change over time. For example, even if it is a colorless and transparent material with nitrogen in the side chain of the molecule like polyamide, it is yellowish because nitrogen is liberated over time. It is considered an essential weakness in coatings that use sapphire. Even polymer materials other than polyamide change color when exposed to ultraviolet rays or heat over time. This is known to be due to liberation of carbon atoms from C—C or C═C bonds, generation of carbonyl groups, and the like.

実用的な高分子材料では、紫外線による劣化を表面のみにとどめたり、劣化による変色を隠したりするために、樹脂中に樹脂の骨格に関わらない副成分として着色剤が配合されている場合が多い。特に、美観や意匠に対して格別な考慮が要求されない電気機器の場合には、着色剤の役割として表面の劣化を隠すために劣化後の色と同様の色が用いられることも行われており、樹脂の骨格である炭素間の結合の変成による変色が一層不分明になっている場合も多い。   In practical polymer materials, a colorant is often blended in the resin as a subcomponent that is not related to the resin skeleton in order to limit the deterioration due to ultraviolet rays only to the surface or hide the discoloration due to the deterioration. . In particular, in the case of electrical equipment that does not require special consideration for aesthetics and design, the same color as the deteriorated color is also used to conceal the deterioration of the surface as the role of the colorant. In many cases, the discoloration due to the transformation of the bond between carbon, which is the skeleton of the resin, is further unclear.

なお、上記の着色剤は、一般には顔料と呼ばれる、長期間の使用においても色の変化が生じくい無機系の金属酸化物、例えば鉄、コバルト、亜鉛、ニッケルなどの酸化物が所要の着色に応じて使用され、この時、高分子材料の硬化反応に対する阻害、一般的に触媒毒とならないように選定される。場合によっては、一般には染料と呼ばれる、有機系の着色剤も用いられる時があるが、着色の広範囲な選択は可能であるものの、長期間の使用に対する耐性は劣る。   The above colorants are generally called pigments, and inorganic metal oxides that do not easily change color even after long-term use, for example, oxides such as iron, cobalt, zinc, and nickel, are required for coloring. At this time, the polymer material is selected so that it does not inhibit the curing reaction of the polymer material, and generally does not become a catalyst poison. In some cases, an organic colorant, generally called a dye, is sometimes used, but a wide selection of coloration is possible, but resistance to long-term use is poor.

また、高分子材料には、着色剤に加えて、さらに無機充填材が配合される場合もある。無機充填材は、高分子材料間に分散させることで、機械的性質である破断強度や弾性率の向上、耐熱性の向上をもたらすとともに、高分子材料よりも安価な材料の場合には樹脂全体としての低価格化を目的に混合される。このための材料としては、無機系材料として鉱物質の、シリカ、アルミナ、ガラスなどが選定される。形状は球状粉末の他、繊維性のものが用いられる場合もある。   In addition to the colorant, an inorganic filler may be further added to the polymer material. Inorganic fillers can be dispersed between polymer materials to improve mechanical properties such as breaking strength, elastic modulus, and heat resistance, and in the case of materials cheaper than polymer materials, the entire resin It is mixed for the purpose of lowering the price. As a material for this purpose, minerals such as silica, alumina, and glass are selected as inorganic materials. In addition to spherical powder, the shape may be fibrous.

電気機器に用いられる樹脂の代表的なものであるエポキシ樹脂の場合、熱的ストレスの下で経年劣化した表面の色は、人間の視覚的な効果を示す色度として明度と彩度の低下として現れる。色差計などの測定器は、彩度を色相の2次元と明度の1次元を組み合わせた3次元空間でその表面色の差異が秤量される。色差計による秤量値は、人間の視覚的効果と一致しているため、直感的にその判定結果が受け入れやすいという利点を持つが、反面、着色剤が上記のように樹脂が劣化したことを隠すように配合されている場合には、色差としては殆ど現れないために劣化の判定が困難である。   In the case of epoxy resin, which is a typical resin used in electrical equipment, the color of the surface that has deteriorated over time under thermal stress is a decrease in lightness and saturation as chromaticity that shows human visual effects. appear. A measuring instrument such as a color difference meter measures the difference in surface color in a three-dimensional space in which saturation is combined with two dimensions of hue and one dimension of lightness. Since the weighing value by the color difference meter matches the human visual effect, it has the advantage that the judgment result can be accepted intuitively, but on the other hand, the colorant hides the deterioration of the resin as described above. In such a case, it is difficult to determine deterioration because the color difference hardly appears.

元来、人間の色覚は、白色光源の下で物質表面からの反射光を認識するもので、反射光のスペクトルとして示すことが可能である。人間にとっての白色光は、太陽光線のもので、それを視覚細胞のセンサとしてフィルタリングされた380nmから780nmの約400nmの幅で中央で最大感度となる曲線のスペクトルを持つ光を指す。このような限定された範囲のスペクトルとフィルタリングにより制限を受けた内で定義される色差においては、着色剤が配合された樹脂の劣化の有無に対して色差に差異が出ないのは当然の結果となる。   Originally, human color vision recognizes reflected light from the surface of a substance under a white light source, and can be shown as a spectrum of reflected light. White light for humans refers to light having a curved spectrum with a maximum sensitivity at the center with a width of about 400 nm from 380 nm to 780 nm, which is filtered from a solar cell as a sensor of a visual cell. In the color difference defined within such a limited range of spectrum and limited by filtering, it is a natural result that there is no difference in color difference with respect to the presence or absence of deterioration of the resin compounded with the colorant. It becomes.

一方で、物理的な白色性は、波長の全範囲で等しい強度を持つ光ということになる。FT−IRも遠赤外という範囲で一定の白色性を有した光を用いてフーリエ変換によりスペクトル分解した波長別の情報からさまざまな物質の同定に用いられていることは公知の事である。図4は、着色材の配合されていない樹脂の劣化による変色の様相を概念的に示した反射光スペクトル図である。縦軸が光強度、横軸が波長で、その横軸に可視光の範囲が示されている。特性線Xが白色光のスペクトル、特性線Yが劣化前の樹脂の反射光スペクトル、特性線Zが劣化後の樹脂の反射光スペクトルである。劣化前の樹脂の反射光が特性線Yのように白色光(特性線Xのように波長の全範囲で等しい強度を持つ)の場合、熱劣化により炭素の遊離が生ずると特性線Zのように全体として反射光の光強度が低下するが、可視光の長波長側である赤色から赤外域では反射光の光強度の低下の度合いが弱い。   On the other hand, physical whiteness means light having the same intensity over the entire wavelength range. It is well known that FT-IR is also used for identification of various substances from wavelength-specific information that is spectrally resolved by Fourier transform using light having a constant whiteness in the far infrared range. FIG. 4 is a reflected light spectrum diagram conceptually showing an aspect of discoloration due to deterioration of a resin not containing a colorant. The vertical axis represents the light intensity, the horizontal axis represents the wavelength, and the horizontal axis represents the range of visible light. Characteristic line X is the spectrum of white light, characteristic line Y is the reflected light spectrum of the resin before deterioration, and characteristic line Z is the reflected light spectrum of the resin after deterioration. When the reflected light of the resin before deterioration is white light like the characteristic line Y (having the same intensity over the entire wavelength range as the characteristic line X), if the liberation of carbon occurs due to thermal deterioration, the characteristic line Z In general, the light intensity of the reflected light decreases, but the degree of decrease in the light intensity of the reflected light is weak in the red to infrared region, which is the long wavelength side of visible light.

上述の色差計を用いた高分子材料の劣化の測定方法が、非特許文献1に開示されている。この非特許文献1では、古くから行われてきた目視点検での色による劣化度の判定に対して、測色計の進歩により定量的に色を測定することができるようになり劣化度が定量化されたとした上で、測色計の定量化の方法として2種類の表色系を比較し劣化度との相関性を調べている。いずれもCIE(国際照明委員会)の表色法に基づく3刺激値(3波長)による方法で劣化度との相関性を見出せるとしている。   A non-patent document 1 discloses a method for measuring deterioration of a polymer material using the above color difference meter. In this non-patent document 1, in contrast to the determination of the degree of deterioration by color in visual inspection that has been performed for a long time, the color can be measured quantitatively by the progress of the colorimeter, and the degree of deterioration is quantified. Then, as a method of quantifying the colorimeter, two color systems are compared and the correlation with the degree of deterioration is examined. In any case, it is said that a correlation with the degree of deterioration can be found by a method using tristimulus values (three wavelengths) based on the colorimetric method of CIE (International Commission on Illumination).

一方、視覚の波長範囲に限定されない色のスペクトルによる絶縁材料の劣化度検出方法が、特許文献1に開示されている。特許文献1に記載の劣化度検出方法は、ある2つの波長の光に対する反射率の差または比により、油、ガス、空気中にある紙、樹脂などの劣化度を評価しようとするものである。
特開平10−74628号公報 芳賀義昭、外4名,「色による絶縁劣化監視法の検討」,第22回電気絶縁材料シンポジウム講演予稿集,平成元年,No.P−20,p.159−162
On the other hand, Patent Document 1 discloses a method for detecting the degree of deterioration of an insulating material using a color spectrum that is not limited to the visual wavelength range. The degradation level detection method described in Patent Document 1 is intended to evaluate the degradation level of oil, gas, paper in the air, resin, and the like based on a difference or ratio of reflectance with respect to light of two wavelengths. .
Japanese Patent Laid-Open No. 10-74628 Yoshiaki Haga, 4 others, “Examination of insulation degradation monitoring method by color”, Proceedings of the 22nd Symposium on Electrical Insulation Materials, No. 1989 P-20, p. 159-162

しかしながら、前述したような従来の高分子材料の劣化診断方法は、診断のために電気機器自体を破壊させる必要があったり、着色剤が配合されている高分子材料の場合は、色差による劣化診断が困難であるという問題があった。
すなわち、表1に示されたように、絶縁破壊電圧、破断強度の診断では、高分子材料自体が破壊されてしまう。また、誘電正接、絶縁抵抗、弾性率、FT・IR、ATRの診断では、供試材料自体は破壊させないが、供試材料の切り出しで電気機器自体が破壊されてしまう。音響伝搬特性の診断では、電気機器は破壊させないが、前述したように電気機器に使用している形状での測定は困難であるとともに、測定精度の点からも劣っているので実用化が難しい。
However, the conventional polymer material deterioration diagnosis method as described above needs to destroy the electrical device itself for diagnosis, or in the case of a polymer material with a colorant blended, deterioration diagnosis by color difference. There was a problem that was difficult.
That is, as shown in Table 1, in the diagnosis of dielectric breakdown voltage and breaking strength, the polymer material itself is broken. Moreover, in the diagnosis of dielectric loss tangent, insulation resistance, elastic modulus, FT / IR, and ATR, the test material itself is not destroyed, but the electrical device itself is destroyed by cutting out the test material. In the diagnosis of the acoustic propagation characteristics, the electric device is not destroyed, but as described above, it is difficult to measure in the shape used in the electric device, and it is difficult to put it to practical use because it is inferior in terms of measurement accuracy.

また、色差による劣化度の診断では電気機器自体は破壊させないで済むが、着色剤が配合されている高分子材料の場合、図4の傾向とは異なり、より複雑な様相を呈する。すなわち、前述のように着色剤として茶色や黄色など劣化後の色と似せたものが配合されているので、劣化による反射光スペクトルの変動特性として、可視光の波長領域では劣化による強度変化が少ない上に、反射光スペクトルが、樹脂の劣化によるものと着色材によるものとの混合による、例えばS字状などの複雑なスペクトル曲線となる場合がある。そのために、着色剤が配合されている高分子材料の劣化の様相を反射光スペクトルから判定することが非常に困難であった。   In the diagnosis of the degree of deterioration due to the color difference, the electrical device itself does not have to be destroyed. However, in the case of a polymer material in which a colorant is blended, a more complicated aspect is presented unlike the tendency of FIG. That is, as described above, the colorant is blended with a color similar to the deteriorated color such as brown or yellow, and as a variation characteristic of the reflected light spectrum due to deterioration, there is little intensity change due to deterioration in the wavelength region of visible light. In addition, the reflected light spectrum may be a complex spectral curve such as an S-shape due to a mixture of the resin deterioration and the colorant. Therefore, it has been very difficult to determine the deterioration aspect of the polymer material containing the colorant from the reflected light spectrum.

この発明は、上記のような問題点を解消するためになされたもので、この発明の目的は、電気機器に組み込まれた高分子材料が、着色剤や無機充填材などが配合された高分子材料であっても、この高分子材料の劣化を電気機器の据え付け現地で非破壊的に、かつ精度よく診断することができる高分子材料の劣化診断方法および装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to provide a polymer material incorporated in an electrical device, in which a colorant, an inorganic filler, or the like is blended. It is an object of the present invention to provide a method and apparatus for diagnosing deterioration of a polymer material, which can diagnose the deterioration of the polymer material in a non-destructive and accurate manner at the installation site of an electric device.

上記目的を達成するために、この発明によれば、着色剤と無機充填材とが配合されている高分子材料の劣化の程度を診断する方法であって、予め被診断の高分子材料と同一種類の高分子材料を熱劣化させ各熱劣化時間における反射率スペクトルを求めておき、互いに波長の異なる2種類の単一波長光として、前記着色剤の反射のピークとなる領域の波長λ2のものと、劣化により前記無機充填材の反射が顕著になる近赤外領域の波長λ3のものとを選び、前記各熱劣化時間における反射率スペクトルから各熱劣化時間における波長λ2,λ3の反射率R2,R3を求め、座標の一方軸をR2、他方の軸をR3として、前記各熱劣化時間における反射率R2とR3とを前記座標にプロットし、前記プロット同士を結ぶ軌跡線を求めておき、前記被診断の高分子材料の一部に前記2種類の単一波長光をそれぞれ照射し各波長に対する反射率を求め、前記被診断の高分子材料の反射率R2とR3とが前記軌跡線の上のどの位置にあるかを調べることにより前記被診断の高分子材料の劣化の程度を判定するようにするとよい(請求項1の発明)。   In order to achieve the above object, according to the present invention, there is provided a method for diagnosing the degree of deterioration of a polymer material in which a colorant and an inorganic filler are blended, which is the same as the polymer material to be diagnosed in advance. Two types of single-wavelength light having different wavelengths from each other are obtained by degrading various kinds of polymer materials by thermal degradation, and having a wavelength λ2 in a region where the colorant has a reflection peak. And a wavelength λ3 in the near-infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration, and the reflectance R2 of the wavelengths λ2 and λ3 at each heat deterioration time from the reflectance spectrum at each heat deterioration time. , R3, one axis of coordinates is R2, and the other axis is R3, and the reflectances R2 and R3 at the respective heat degradation times are plotted on the coordinates, and a locus line connecting the plots is obtained. Said covered The two types of single-wavelength light are respectively irradiated to a part of the polymer material, and the reflectance for each wavelength is obtained. The reflectances R2 and R3 of the polymer material to be diagnosed are on the locus line. It is preferable to determine the degree of deterioration of the polymer material to be diagnosed by examining the position (invention of claim 1).

この発明では、照射光に対する反射率の測定に基づく劣化診断であることにより、電気機器に組み込まれた例えばエポキシ樹脂などの高分子材料を電気機器の据付現地で非破壊的に劣化診断することができる。
また、着色剤の反射のピークとなる領域の波長λ2と、劣化により無機充填材の反射が顕著になる近赤外領域の波長λ3とにおける反射率を基にして判定するので、被診断の高分子材料が、樹脂の劣化による反射率変化特性とは異質の特性を示す要素である着色剤や無機充填剤が配合された高分子材料であっても、着色剤や無機充填剤の反射率特性に影響されないで、劣化後の反射率スペクトルの特徴を見出すことができ、的確で精度のよい劣化診断を行うことができる。
In the present invention, the deterioration diagnosis is based on the measurement of the reflectance with respect to the irradiation light, so that a non-destructive deterioration diagnosis of a polymer material such as an epoxy resin incorporated in the electric device can be performed at the installation site of the electric device. it can.
In addition, since the determination is made based on the reflectance in the wavelength λ2 in the region where the reflection of the colorant is peaked and the wavelength λ3 in the near-infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration, Even if the molecular material is a polymer material containing a colorant or an inorganic filler, which is a different element from the reflectance change characteristic due to deterioration of the resin, the reflectance characteristic of the colorant or inorganic filler It is possible to find the characteristics of the reflectance spectrum after deterioration without being influenced by the above, and to perform accurate and accurate deterioration diagnosis.

また、反射率R2およびR3を両軸とした2次元座標における軌跡線が寿命のほぼ半分で屈折する曲線を描くので、その屈曲点から被診断の高分子材料の劣化の程度を明確に判定することができる。
また、この発明によれば、着色剤と無機充填材とが配合されている高分子材料の劣化の程度を診断する方法であって、予め被診断の高分子材料と同一種類の高分子材料を熱劣化させ各熱劣化時間における反射率スペクトルを求めておき、互いに波長の異なる3種類の単一波長光として、前記着色剤により吸収され前記無機充填材の反射の影響を受けない領域の波長λ1のものと、前記着色剤の反射のピークとなる領域の波長λ2のものと、劣化により前記無機充填材の反射が顕著になる近赤外領域の波長λ3のものとを選び、前記各熱劣化時間における反射率スペクトルから各熱劣化時間における波長λ1,λ2,λ3の反射率R1,R2,R3を求めて、この反射率R1,R2,R3から各熱劣化時間での反射率の比R2/R1とR3/R1とを求め、座標の一方軸をR2/R1、他方の軸をR3/R1として、前記各熱劣化時間における反射率の比R2/R1とR3/R1とを前記座標にプロットし、前記プロット同士を結ぶ軌跡線を求めておき、前記被診断の高分子材料の一部に前記3種類の単一波長光をそれぞれ照射し各波長に対する反射率を求め、前記被診断の高分子材料の反射率の比R2/R1とR3/R1とが前記軌跡線の上のどの位置にあるかを調べることにより前記被診断の高分子材料の劣化の程度を判定するようにしてもよい(請求項2の発明)。
In addition, since the locus line in the two-dimensional coordinates with the reflectances R2 and R3 as both axes draws a curve that is refracted at almost half of its lifetime, the degree of deterioration of the polymer material to be diagnosed is clearly determined from the inflection point. be able to.
In addition, according to the present invention, there is provided a method for diagnosing the degree of deterioration of a polymer material in which a colorant and an inorganic filler are blended, wherein a polymer material of the same type as the polymer material to be diagnosed is previously obtained. The reflectance spectrum at each thermal degradation time after thermal degradation is obtained, and the wavelength λ1 of the region that is absorbed by the colorant and is not affected by the reflection of the inorganic filler as three types of single wavelength light having different wavelengths. And those having a wavelength λ2 in the region where the colorant has a reflection peak and those having a wavelength λ3 in the near-infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration. The reflectances R1, R2, and R3 of the wavelengths λ1, λ2, and λ3 at the respective heat deterioration times are obtained from the reflectance spectrum at the time, and the ratio R2 / R of the reflectance at each heat deterioration time is obtained from the reflectances R1, R2, and R3. R1 and R3 / R1 The coordinate ratio R2 / R1 and R3 / R1 are plotted on the coordinates with one axis of coordinates R2 / R1 and the other axis R3 / R1, and the plots are connected to each other. A trajectory line is obtained, the three types of single-wavelength light are respectively irradiated to a part of the polymer material to be diagnosed, and the reflectance for each wavelength is obtained, and the reflectance ratio of the polymer material to be diagnosed The degree of deterioration of the diagnosed polymer material may be determined by examining where R2 / R1 and R3 / R1 are located on the locus line (invention of claim 2). .

この発明では、上記請求項1の発明と同様に、照射光に対する反射率の測定に基づく劣化診断であることにより、電気機器に組み込まれた例えばエポキシ樹脂などの高分子材料を電気機器の据付現地で非破壊的に劣化診断することができる。
また、着色剤により吸収され無機充填材の反射の影響を受けない領域の波長λ1と、着色剤の反射のピークとなる領域の波長λ2と、劣化により無機充填材の反射が顕著になる近赤外領域の波長λ3とにおける反射率を基にして判定するので、被診断の高分子材料が、樹脂の劣化による反射率変化特性とは異質の特性を示す要素である着色剤や無機充填材が配合された高分子材料であっても、着色剤や無機充填材の反射率特性に影響されないで、劣化後の反射率スペクトルの特徴を見出すことができ、的確で精度のよい劣化診断を行うことができる。
In the present invention, as in the first aspect of the present invention, the deterioration diagnosis is based on the measurement of the reflectance with respect to the irradiated light, so that the polymer material such as an epoxy resin incorporated in the electric device is installed at the installation site of the electric device. Can be used for non-destructive degradation diagnosis.
In addition, the wavelength λ1 of the region that is absorbed by the colorant and is not affected by the reflection of the inorganic filler, the wavelength λ2 of the region that is the peak of the reflection of the colorant, and the near red in which the reflection of the inorganic filler becomes noticeable due to deterioration. Since the determination is based on the reflectance at the wavelength λ3 in the outer region, the colorant or inorganic filler, which is an element that shows characteristics different from the reflectance change characteristics due to deterioration of the resin, is the polymer material to be diagnosed. Even with blended polymer materials, the characteristics of the reflectance spectrum after degradation can be found without being affected by the reflectance characteristics of colorants and inorganic fillers, and accurate and accurate degradation diagnosis can be performed. Can do.

また、反射率比R2/R1およびR3/R1を両軸とした2次元座標における軌跡線が寿命のほぼ半分で屈折する曲線を描くので、その屈曲点から被診断の高分子材料の劣化の程度を明確に判定することができる。
なお、高分子材料では、例えば紫外線による選択的な着色剤の退色や樹脂の微細なひび割れによる白濁、さらには、化学物質、特に酸性物質またはアルカリ性物質の付着によって、反射率の異常な変化が引き起こされる場合があるが、この発明のように、波長λ2、λ3に加えて、波長λ1に対する反射率も測定することにより、劣化による光反射スペクトルの全体の形状が明確になるので、上記のような反射率特性の異常な変化がある場合に、誤診断することが避けられる。
In addition, since the locus line in the two-dimensional coordinates having the reflectance ratios R2 / R1 and R3 / R1 as both axes draws a curve that is refracted at almost half of the lifetime, the degree of deterioration of the polymer material to be diagnosed from the inflection point Can be clearly determined.
In polymer materials, for example, selective colorant fading due to ultraviolet rays, white turbidity due to fine cracks in the resin, and abnormal changes in reflectance caused by adhesion of chemical substances, particularly acidic substances or alkaline substances. However, as in the present invention, in addition to the wavelengths λ 2 and λ 3, by measuring the reflectance with respect to the wavelength λ 1, the overall shape of the light reflection spectrum due to deterioration becomes clear. Misdiagnosis can be avoided when there is an abnormal change in reflectance characteristics.

また、請求項1に記載の高分子材料の劣化診断方法を実施する装置であって、前記被診断の高分子材料の一部に波長λ2,λ3の単一波長光をそれぞれ照射する照射手段と、前記一部からの反射光を検知して信号を出力する受光手段と、この受光手段の出力信号から前記被診断の高分子材料の反射率のR2とR3とを演算し、前記軌跡線と参照することにより前記被診断の高分子材料の劣化の程度を判定して報知する判定手段とを備えるようにするとよい(請求項3の発明)。   An apparatus for performing the degradation diagnosis method for a polymer material according to claim 1, wherein irradiation means irradiates a part of the polymer material to be diagnosed with single-wavelength light having wavelengths λ 2 and λ 3, respectively. A light receiving means for detecting the reflected light from the part and outputting a signal; and calculating the reflectance R2 and R3 of the polymer material to be diagnosed from the output signal of the light receiving means; It is preferable to provide determination means for determining and notifying the degree of deterioration of the polymer material to be diagnosed by referring to it (the invention of claim 3).

また、請求項2に記載の高分子材料の劣化診断方法を実施する装置であって、前記被診断の高分子材料の一部に波長λ1,λ2,λ3の単一波長光をそれぞれ照射する照射手段と、前記一部からの反射光を検知して信号を出力する受光手段と、この受光手段の出力信号から前記被診断の高分子材料の反射率の比R2/R1とR3/R1とを演算し、前記軌跡線と参照することにより前記被診断の高分子材料の劣化の程度を判定して報知する判定手段とを備えるようにするとよい(請求項4の発明)。   An apparatus for carrying out the degradation diagnosis method for a polymer material according to claim 2, wherein the irradiation is performed by irradiating a part of the polymer material to be diagnosed with single-wavelength light having wavelengths λ1, λ2, and λ3. Means, a light receiving means for detecting the reflected light from the part and outputting a signal, and a reflectance ratio R2 / R1 and R3 / R1 of the polymer material to be diagnosed from the output signal of the light receiving means. It is preferable to include determination means for calculating and referring to the locus line to determine and notify the degree of deterioration of the polymer material to be diagnosed (invention of claim 4).

上記請求項3〜4の発明によれば、照射光に対する反射率の測定に基づく劣化診断であることにより、電気機器に組み込まれた例えばエポキシ樹脂などの高分子材料を電気機器の据付現地で非破壊的に劣化診断することができる高分子劣化診断装置を提供することができる。なお、照射手段や受光手段の被診断の高分子材料表面への保持部を絶縁物で構成しておけば、被診断の高分子材料が充電されていても電気機器の運転を中止することなく劣化診断をすることができる。   According to the third to fourth aspects of the present invention, since the deterioration diagnosis is based on the measurement of the reflectance with respect to the irradiation light, a polymer material such as an epoxy resin incorporated in the electric device is not installed at the installation site of the electric device. It is possible to provide a polymer degradation diagnostic apparatus capable of destructive degradation diagnosis. In addition, if the holding part of the irradiation means and the light receiving means on the surface of the polymer material to be diagnosed is made of an insulator, the operation of the electric device is not stopped even if the polymer material to be diagnosed is charged. Deterioration diagnosis can be made.

この発明によれば、照射光に対する反射率の測定に基づく劣化診断であることにより、電気機器に組み込まれた高分子材料を電気機器の据付現地で非破壊的に劣化診断することができるとともに、少なくとも、着色剤の反射のピークとなる領域の波長λ2と、劣化により無機充填材の反射が顕著になる近赤外領域の波長λ3との2つの波長における反射率を基にして判定するので、被診断の高分子材料が、着色剤や無機充填材が配合された高分子材料であっても、着色剤や無機充填材の反射率特性に影響されないで的確で精度のよい劣化診断を行うことができる。   According to the present invention, the deterioration diagnosis is based on the measurement of the reflectance with respect to the irradiation light, so that the polymer material incorporated in the electric equipment can be diagnosed nondestructively at the installation site of the electric equipment, Since the determination is based on the reflectance at two wavelengths, at least the wavelength λ2 in the region where the peak of the colorant is reflected and the wavelength λ3 in the near infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration. Even if the polymer material to be diagnosed is a polymer material containing a colorant or an inorganic filler, accurate and accurate deterioration diagnosis is performed without being affected by the reflectance characteristics of the colorant or inorganic filler. Can do.

以下、実施例を用いて、この発明による高分子材料の劣化診断方法および劣化診断装置について詳細に説明するが、この発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, the polymer material deterioration diagnosis method and deterioration diagnosis apparatus according to the present invention will be described in detail using examples, but the present invention is not limited to the examples.

図1は、この発明の実施例1にかかる高分子材料の劣化診断方法を説明する反射率スペクトル図である。縦軸が反射率、横軸が波長であり、着色剤と無機充填材とが配合された高分子材料を200℃一定の雰囲気で熱劣化させた場合の光反射スペクトル、すなわち反射率スペクトル曲線が複数示されている。各反射率スペクトル曲線に示された数字は、それぞれ熱劣化させた時間である。この高分子材料は、エポキシ樹脂に着色剤として赤またはこげ茶色の無機系顔料を、無機充填材として白色の無機系粉末を配合したものである。   FIG. 1 is a reflectance spectrum diagram for explaining a degradation diagnosis method for a polymer material according to Example 1 of the present invention. The vertical axis represents the reflectance, the horizontal axis represents the wavelength, and the light reflection spectrum when the polymer material in which the colorant and the inorganic filler are blended is thermally deteriorated at a constant temperature of 200 ° C., that is, the reflectance spectrum curve is shown. Multiple are shown. The numbers shown in each reflectance spectrum curve are the times of thermal degradation. This polymer material is an epoxy resin blended with a red or dark brown inorganic pigment as a colorant and a white inorganic powder as an inorganic filler.

図1において、劣化時間が0時間から10時間のものは、ほぼ同じ特性であり、波長570nm程度から反射率が立ち上がり、波長630nmで飽和し、それ以上の波長ではほぼ平坦な反射率を示しており、その反射率スペクトル曲線はS字状の飽和曲線となっている。これは、透明な樹脂に有色の顔料が白色の無機充填材を背景に反射した特性であり、着色剤自体の反射率スペクトル曲線とほぼ同じである。劣化時間が96時間から230時間になるにしたがって、反射率スペクトル曲線は、そのS字状飽和曲線における反射率の立ち上がる波長が長波長側に移行し、230時間の劣化では、その反射率スペクトル曲線は、波長600nmから反射率が漸増し、波長900nmまで上昇を続ける曲線、すなわち、波長に対する単調増加曲線となる。230時間よりさらに長い時間劣化すると、反射率は、長波長側で劣化の進行とともに上昇するようになる。   In FIG. 1, the degradation time of 0 to 10 hours is almost the same characteristic, and the reflectance rises from a wavelength of about 570 nm, saturates at a wavelength of 630 nm, and shows a substantially flat reflectance at a wavelength longer than that. The reflectance spectrum curve is an S-shaped saturation curve. This is a characteristic in which a colored pigment is reflected on a transparent resin against a white inorganic filler, and is almost the same as the reflectance spectrum curve of the colorant itself. As the degradation time is changed from 96 hours to 230 hours, the reflectance spectrum curve of the S-shaped saturation curve shifts the wavelength at which the reflectance rises to the longer wavelength side. Is a curve in which the reflectance gradually increases from a wavelength of 600 nm and continues to increase to a wavelength of 900 nm, that is, a monotonically increasing curve with respect to the wavelength. When the deterioration is further longer than 230 hours, the reflectance increases with the progress of deterioration on the long wavelength side.

目視によって観測される波長は前述のように780nmまでなので、劣化時間が230時間までは樹脂の炭化により黒くなっていくが、それ以上の劣化時間では樹脂の灰化と無機充填材の遊離により白くなっていくように目視される。図1において、可視領域における反射率スペクトル曲線は、劣化時間の96時間のものと1000時間のものとは殆ど差異がないので、可視領域の反射率だけ、例えば、図1における波長λ1やλ2の反射率だけで劣化診断を行うのは困難であることが分かる。   Since the wavelength observed visually is up to 780 nm as described above, the blackening is caused by the carbonization of the resin until the deterioration time is 230 hours. However, the whitening is caused by the ashing of the resin and the liberation of the inorganic filler. It is visually observed to become. In FIG. 1, the reflectance spectrum curve in the visible region has almost no difference between the degradation time of 96 hours and that of 1000 hours, so only the reflectance in the visible region, for example, the wavelengths λ1 and λ2 in FIG. It can be seen that it is difficult to make a deterioration diagnosis only with the reflectance.

しかし、図1の反射率スペクトル図には、上述のように、劣化時間が230時間までは、反射率スペクトル曲線がS字状の飽和曲線を描くとともに、劣化時間が230時間以上になると、可視領域の長波長側から赤外領域、例えば、波長λ3を含む領域にかけては、反射率スペクトル曲線が波長に対する単調増加曲線を描くという特徴が見られる。
そこで、図1の反射率スペクトル図における上記の特徴に着目し、劣化診断の方法として、被診断の高分子材料と同一種類の高分子材料について予め図1のような各熱劣化時間における反射率スペクトル曲線を求めておき、次に、被診断の高分子材料に波長λ1,λ2,λ3をそれぞれピーク波長とする3種類の単色光をそれぞれ照射し、波長λ1,λ2,λ3における反射率をそれぞれ調べ、図1の反射率スペクトル曲線と参照することによって被診断の高分子材料の劣化の程度を判定する。
However, in the reflectance spectrum diagram of FIG. 1, as described above, the reflectance spectrum curve draws an S-shaped saturation curve until the degradation time is 230 hours, and is visible when the degradation time is 230 hours or more. From the long wavelength side of the region to the infrared region, for example, the region including the wavelength λ3, there is a characteristic that the reflectance spectrum curve draws a monotonically increasing curve with respect to the wavelength.
Therefore, paying attention to the above characteristics in the reflectance spectrum diagram of FIG. 1, as a method for diagnosing degradation, the reflectance at each thermal degradation time as shown in FIG. A spectrum curve is obtained, and then the polymer material to be diagnosed is irradiated with three types of monochromatic light having wavelengths λ1, λ2, and λ3 as peak wavelengths, respectively, and the reflectances at wavelengths λ1, λ2, and λ3 are respectively determined. By examining and referring to the reflectance spectrum curve of FIG. 1, the degree of deterioration of the polymer material to be diagnosed is determined.

この場合、上記の波長λ1,λ2,λ3は次のように選定する。すなわち、λ1は、例えば、530nmなど反射率が熱劣化の有無に殆ど依存しない領域、すなわち着色剤により吸収され無機充填材の反射の影響を受けない領域の波長とする。また、λ2は、例えば、630nmなど初期の劣化により反射率が大きく低下する領域、すなわち着色剤の反射のピークとなる領域の波長とする。また、λ3は、例えば、830nmなど劣化の終期に反射率が増加する領域、すなわち劣化により無機充填材の反射が顕著になる近赤外領域の波長とする。   In this case, the wavelengths λ1, λ2, and λ3 are selected as follows. That is, λ1 is, for example, a wavelength of a region such as 530 nm in which the reflectance hardly depends on the presence or absence of thermal deterioration, that is, a region that is absorbed by the colorant and is not affected by the reflection of the inorganic filler. In addition, λ2 is a wavelength of a region where the reflectance is greatly reduced due to initial deterioration such as 630 nm, that is, a region where the reflection peak of the colorant is peaked. In addition, λ3 is a wavelength in a region where the reflectance increases at the end of deterioration such as 830 nm, that is, a wavelength in the near infrared region where the reflection of the inorganic filler becomes remarkable due to the deterioration.

このように選定された波長λ1,λ2,λ3における反射率を基にして判定することにより、被診断の高分子材料がS字状飽和曲線の反射率スペクトル特性を有し、劣化がまだ少ない状態にあるのか、あるいは、被診断の高分子材料が単調増加曲線の反射率スペクトル特性を有し、劣化が進んだ状態にあるのかを判断することができる。
次に、被診断の高分子材料の波長λ1,λ2,λ3での反射率と、被診断の高分子材料と同一種類の高分子材料の各熱劣化時間における反射率スペクトルとの対比により劣化程度を的確に判定するための具体的な判定処理は、次のように行うことができる。
By determining based on the reflectance at the wavelengths λ1, λ2, and λ3 selected in this way, the polymer material to be diagnosed has the reflectance spectrum characteristic of an S-shaped saturation curve, and the deterioration is still small Or whether the polymer material to be diagnosed has a reflectance spectrum characteristic of a monotonically increasing curve and is in a state of advanced deterioration.
Next, the degree of deterioration is determined by comparing the reflectance at wavelengths λ1, λ2, and λ3 of the polymer material to be diagnosed with the reflectance spectrum at each thermal degradation time of the same type of polymer material as the polymer material to be diagnosed. Specific determination processing for accurately determining whether or not can be performed as follows.

図2は、この発明の実施例1にかかる高分子材料の劣化診断方法における具体的な判定処理方法を説明する特性線図である。前述の波長λ1、λ2、λ3における反射率(反射光の照射光に対する強度の比)をR1、R2、R3とし、2次元座標として横軸に反射率の比R2/R1を目盛り、縦軸に反射率の比R3/R1を目盛る。図1における反射率スペクトルから各熱劣化時間における反射率の比R2/R1とR3/R1とを上記の2次元座標にプロットし、そのプロット同士を結ぶ屈折した軌跡線Pを求める。プロット■は、温度θ2(200℃)の雰囲気で高分子材料を熱劣化させた場合のものであり、プロット◆は、温度θ1(220℃)の雰囲気で高分子材料を熱劣化させたものである。軌跡線Pは、温度条件にはよらないことが分かる。このことは、この軌跡線Pは、高分子材料の劣化診断に使えることを示している。すなわち、軌跡線Pにおける端部P1,P3および屈折点P2は、それぞれ異なる劣化の程度を示している。通常、劣化の程度または劣化度は、その材料の曲げ強度などの機械的強度により示されることが多く、劣化していない状態を劣化度0とし、材料の機械的強度が半分になる状態を寿命である劣化度1としている。劣化度は、温度一定の雰囲気で劣化した場合、熱の履歴時間に比例するので、劣化度を0から1の間で数値的に定量化することができる。P1,P2,P3のポイントは、このようにして定義された劣化度から数値的に示すと、それぞれ劣化度が0,0.3から0.7,1となっている。すなわち、屈折点P2は、ほぼ中程度の劣化度に相当している。この屈折点P2を超えて縦軸方向への変化が大きくなると、劣化度が1、すなわち、寿命に近いということが分かる。劣化診断の判定として、寿命にどの程度近づいているか、その反対に今後どの位電気機器として機能できるかという余寿命が診断結果として示されることが多いが、これまでに使用されてきた運転時間に対する考慮がなされていなかった。屈折点P2を検出することによって、高分子材料が寿命の半分程度まで到達していることが分かり、その電気機器をこれまでと同一の使い方をしている限り、これまでの経過時間と同程度の寿命を有していることが分かる。したがって、予め被診断の高分子材料と同一種類の高分子材料について2次元座標における軌跡線Pを求めておき、被診断の高分子材料の反射率の比R2/R1とR3/R1に対応する座標点(R2/R1,R3/R1)が軌跡線Pの上のどの位置にあるかを調べることにより被診断の高分子材料の劣化の程度を判定することができ、被診断の高分子材料の劣化の程度が明確になる。   FIG. 2 is a characteristic diagram illustrating a specific determination processing method in the deterioration diagnosis method for polymer materials according to the first embodiment of the present invention. The reflectances (the ratio of the intensity of the reflected light to the irradiated light) at the wavelengths λ1, λ2, and λ3 are R1, R2, and R3. The two-dimensional coordinates are the reflectance ratio R2 / R1 on the horizontal axis and the vertical axis is the scale. The reflectance ratio R3 / R1 is graduated. From the reflectance spectrum in FIG. 1, the reflectance ratios R2 / R1 and R3 / R1 at each heat deterioration time are plotted on the above two-dimensional coordinates, and a refracted locus line P connecting the plots is obtained. Plot ■ shows a case where the polymer material is thermally deteriorated in an atmosphere of temperature θ2 (200 ° C.), and plot ◆ shows a case where the polymer material is thermally deteriorated in an atmosphere of temperature θ1 (220 ° C.). is there. It can be seen that the locus line P does not depend on the temperature condition. This indicates that the locus line P can be used for deterioration diagnosis of the polymer material. That is, the end portions P1 and P3 and the refraction point P2 in the locus line P indicate different degrees of deterioration. Usually, the degree or degree of deterioration is often indicated by the mechanical strength such as the bending strength of the material. The state in which the material is not deteriorated is defined as a degree of deterioration of 0, and the state in which the mechanical strength of the material is halved is the life. The degree of deterioration is 1. The degree of deterioration is proportional to the heat history time when it deteriorates in an atmosphere with a constant temperature, and therefore the degree of deterioration can be numerically quantified between 0 and 1. The points of P1, P2, and P3 are represented by the degree of deterioration from 0, 0.3 to 0.7, 1 when numerically shown from the degree of deterioration thus defined. That is, the refraction point P2 corresponds to a moderate degree of deterioration. When the change in the vertical axis direction increases beyond the refraction point P2, it can be seen that the degree of deterioration is 1, that is, near the lifetime. In the diagnosis of deterioration diagnosis, the remaining life of how close the life is and how much it can function as an electrical device is often shown as a result of diagnosis. There was no consideration. By detecting the refraction point P2, it can be seen that the polymer material has reached about half of its life, and as long as the electrical equipment is used in the same way as before, it is about the same as the elapsed time so far. It can be seen that it has a lifetime of Therefore, a locus line P in two-dimensional coordinates is obtained in advance for the same type of polymer material as the polymer material to be diagnosed, and corresponds to the reflectance ratio R2 / R1 and R3 / R1 of the polymer material to be diagnosed. By examining the position on the locus line P where the coordinate points (R2 / R1, R3 / R1) are located, it is possible to determine the degree of deterioration of the polymer material to be diagnosed, and to determine the polymer material to be diagnosed. The degree of deterioration becomes clear.

なお、図1で反射率スペクトル曲線を示した高分子材料は、着色剤が、樹脂の劣化による変色を可視領域でマスクするように選定されたものであり、劣化による変化の出やすい赤色から近赤外の領域において反射率が高くなっているため、目視やそれと同等の波長に対する感度を持つ従来の測色計では劣化度の判定がし難いが、この発明の方法によれば、図1の反射率スペクトル図において選定された3点の波長λ1、λ2、λ3での反射率測定を行い、図2の特性線図による判定処理を行うことにより、劣化度を的確に判定することが可能となる。   In the polymer material showing the reflectance spectrum curve in FIG. 1, the colorant is selected so as to mask the color change due to the deterioration of the resin in the visible region. Since the reflectance is high in the infrared region, it is difficult to determine the degree of deterioration with a conventional colorimeter having a sensitivity to visual observation or a wavelength equivalent to that, but according to the method of the present invention, FIG. It is possible to accurately determine the degree of degradation by performing reflectance measurement at the three wavelengths λ1, λ2, and λ3 selected in the reflectance spectrum diagram and performing the determination process using the characteristic diagram of FIG. Become.

一方、高分子材料に配合される着色剤として、反射率のほとんどが500nm以下の波長領域にあるような顔料が選定されている場合には、図1の反射率スペクトル図において選定された波長での反射率測定を行っても、図2と同様な2つの反射率比R2/R1およびR3/R1を両軸とした特性線図における横軸、すなわち、反射率比R2/R1での変化がほとんど現れないため、劣化の初期における劣化診断は難しいが、着色剤の反射率が大きな領域の波長をλ2とするとともに着色剤の反射がほとんど無い領域の波長をλ1とするような波長選定を行うことにより、図2と同様な特性線図における横軸での変化が充分に現れるようになり、劣化の初期においても的確な劣化診断を行うことができるようになる。   On the other hand, when a pigment having most of the reflectance in the wavelength region of 500 nm or less is selected as the colorant blended in the polymer material, the wavelength selected in the reflectance spectrum diagram of FIG. 2, the horizontal axis in the characteristic diagram with the two reflectance ratios R2 / R1 and R3 / R1 as the two axes similar to FIG. 2, that is, the change in the reflectance ratio R2 / R1 is not changed. Deterioration diagnosis at the initial stage of deterioration is difficult because it hardly appears, but wavelength selection is performed so that the wavelength in the region where the colorant reflectance is large is λ2 and the wavelength in the region where there is almost no colorant reflection is λ1. As a result, the change on the horizontal axis in the characteristic diagram similar to FIG. 2 appears sufficiently, and an accurate deterioration diagnosis can be performed even in the early stage of deterioration.

図3は、この発明の実施例2にかかる高分子材料の劣化診断装置の構成を説明するブロック図である。A1は、着色剤と無機充填材とが配合されている被診断の高分子材料である。電気機器Aが、充電部A2を高分子材料A1で覆うようにして構成されている。高分子材料A1の表面の一点A3を遮光するように絶縁性の保持部材Gが取り付けられ、その保持部材Gに投光ヘッドB5と受光ヘッドC1が嵌め込まれている。照射手段は、前述の波長λ1,λ2,λ3のそれぞれの単色光を発光させる3つの発光素子B2と、この発光素子B2のそれぞれに必要に応じて電力を供給する選択器B1と、3つの発光素子B2からの光を1つに纏めて光ケーブルや透明な光導通部材からなる伝送路B4に送るものであってスターカプラなどからなる光分配器B3と、高分子材料A1の一点A3に照射光Eを向けるように設けられた前述の投光ヘッドB5とからなる。受光手段は、高分子材料A1の一点A3からの反射光Fを受けるように設けられた前述の受光ヘッドC1と、受光ヘッドC1からの光を光ケーブルや透明な光導通部材からなる伝送路C2を介して受け電気信号に変換する受光素子C3と、受光素子C3からの電気信号を増幅する増幅器C4と、この増幅器C4で増幅されたアナログ信号をデジタル信号に変換するA/D変換器C5とからなる。判定手段Dは演算部であり、各波長λ1,λ2,λ3におけるデジタル信号から反射率R1,R2,R3を求めるとともに、反射率の比R2/R1,R3/R1を座標データとして算出し、予め入力されている図2のような軌跡線Pと比較することによって劣化度を判定し報知する。なお、各波長λ1,λ2,λ3における反射率R1,R2,R3は、標準白色拡散反射板との比較により較正され、数値化される。   FIG. 3 is a block diagram for explaining the configuration of the polymer material deterioration diagnosis apparatus according to the second embodiment of the present invention. A1 is a polymer material to be diagnosed in which a colorant and an inorganic filler are blended. The electric device A is configured to cover the charging unit A2 with the polymer material A1. An insulating holding member G is attached to shield one point A3 on the surface of the polymer material A1, and the light projecting head B5 and the light receiving head C1 are fitted into the holding member G. The irradiating means includes three light emitting elements B2 that emit monochromatic lights having the wavelengths λ1, λ2, and λ3, a selector B1 that supplies power to each of the light emitting elements B2 as necessary, and three light emitting elements. The light from the element B2 is collected and sent to a transmission line B4 made of an optical cable or a transparent light conducting member, and is irradiated to a light distributor B3 made of a star coupler or the like and one point A3 of the polymer material A1. And the above-described light projecting head B5 provided to face E. The light receiving means includes the above-described light receiving head C1 provided so as to receive the reflected light F from one point A3 of the polymer material A1, and the transmission path C2 made of light from the light receiving head C1 through an optical cable or a transparent light conducting member. A light receiving element C3 for converting into an electric signal received through the amplifier, an amplifier C4 for amplifying the electric signal from the light receiving element C3, and an A / D converter C5 for converting the analog signal amplified by the amplifier C4 into a digital signal. Become. The determination means D is an arithmetic unit that obtains the reflectances R1, R2, and R3 from the digital signals at the respective wavelengths λ1, λ2, and λ3, calculates the reflectance ratios R2 / R1, R3 / R1 as coordinate data, The degree of deterioration is determined and notified by comparing with the locus line P as shown in FIG. The reflectances R1, R2, and R3 at the wavelengths λ1, λ2, and λ3 are calibrated and quantified by comparison with a standard white diffuse reflector.

図3において、投光ヘッドB5は、高分子材料A1の一点A3に斜めから対向するように設けられ、受光ヘッドC1は、高分子材料A1の一点A3にほぼ直角に対向するように設けられている。ここで、高分子材料A1の一点A3が必ずしも完全拡散面でなく、一般的には全反射する成分を持っているので、有効な拡散成分のみを取り出すために、投光ヘッドB5からの照射光Eの方向は、一点A3に対して45度程度の角度になるように選ばれている。   In FIG. 3, the light projecting head B5 is provided so as to face the one point A3 of the polymer material A1 obliquely, and the light receiving head C1 is provided so as to face the one point A3 of the polymer material A1 substantially at right angles. Yes. Here, since one point A3 of the polymer material A1 is not necessarily a completely diffusing surface and generally has a component that totally reflects, irradiation light from the light projecting head B5 is used to extract only an effective diffusing component. The direction of E is selected so as to have an angle of about 45 degrees with respect to one point A3.

3つの発光素子B2は、前述の波長λ1,λ2,λ3をそれぞれピーク波長とする単色光を発光する発光素子であって、レーザーダイオードやLEDなどが使用される。3つの発光素子B2からの光は、スターカプラなどからなる光分配器B3でもって纏められて1つの光路である伝送路B4に送られるとともに、選択器B1でもって電力供給対象を選択するという操作により動作させる発光素子を選択することができるので、機械的な光路の切り替えを行うことなく電気的な操作だけで照射する光を切り替えることができる。   The three light emitting elements B2 are light emitting elements that emit monochromatic light having the aforementioned wavelengths λ1, λ2, and λ3 as peak wavelengths, and laser diodes, LEDs, and the like are used. Light from the three light-emitting elements B2 is collected by an optical distributor B3 made of a star coupler or the like and sent to a transmission path B4 which is one optical path, and an operation for selecting a power supply target by a selector B1. Thus, the light emitting element to be operated can be selected, so that the light to be irradiated can be switched only by an electrical operation without switching the mechanical optical path.

また、図3の装置において、高分子材料A1の一点A3とは異なる位置の一点A4を測定の対象とすることにより、被診断の高分子材料の異なる熱的履歴を診断することができる。高分子材料A1の一点A4のように電気機器Aの充電部A2から離れた部分や重力から見て下にある部分では、充電部A2からの熱抵抗が大きく、かつ外気への熱伝達が働く。そのために、一点A4のような場所は、他の場所に比べて電気機器の使用時における温度の上昇値が小さくなる。一般に、高分子材料の温度による劣化速度は、数1の式のアレニウス則に従う。ここで、Dは劣化の量、dD/dtは劣化の進行速度、ΔEは材料の自由化エネルギー、Rは気体定数、Tは温度である。   Further, in the apparatus shown in FIG. 3, by making a measurement target one point A4 at a position different from one point A3 of the polymer material A1, different thermal histories of the polymer material to be diagnosed can be diagnosed. In the part away from the charging part A2 of the electric device A, such as one point A4 of the polymer material A1, or in the lower part when viewed from the gravity, the thermal resistance from the charging part A2 is large and heat transfer to the outside air works. . Therefore, a place such as one point A4 has a smaller temperature rise value when the electric device is used than in other places. In general, the deterioration rate of a polymer material due to temperature follows the Arrhenius law of the equation (1). Here, D is the amount of degradation, dD / dt is the rate of progress of degradation, ΔE is the liberalization energy of the material, R is the gas constant, and T is the temperature.

[数1]
dD/dt=exp(−ΔE/RT)
これまでに知られている高分子材料の殆どは、実用的な温度範囲である90℃から180℃において8から10Kの温度の低下により劣化速度は半減する。一方で実用的な電気機器が50cm程度の高さを有しているとき、上部の高分子材料の表面温度に比べて底面の高分子材料の表面温度はより低く、20K以上の温度差がある。これにより、劣化速度として1/4から1/6の部分を測定していることになり、同一の電気機器に用いられている同一の高分子材料の異なる劣化度のデータが得られる。実質的に1/4から1/6の劣化速度は、劣化が無いと見なしてよいので、未劣化のサンプルが入手出来ず、その反射率が分からないときには簡易的な未劣化の比較サンプルとして用いることができる。
[Equation 1]
dD / dt = exp (−ΔE / RT)
Most of the polymer materials known so far have a degradation rate halved by a temperature drop of 8 to 10 K in a practical temperature range of 90 ° C. to 180 ° C. On the other hand, when a practical electric device has a height of about 50 cm, the surface temperature of the bottom polymer material is lower than the surface temperature of the upper polymer material, and there is a temperature difference of 20K or more. . As a result, a portion of 1/4 to 1/6 is measured as the deterioration rate, and data of different deterioration degrees of the same polymer material used in the same electric device is obtained. Substantially a degradation rate of 1/4 to 1/6 may be considered as no degradation, so an undegraded sample is not available and is used as a simple undegraded comparative sample when its reflectivity is unknown. be able to.

また、図3において、保持部材Gが絶縁性なので、高分子材料A1の表面の電位が充電部A2からの静電誘導により接地電位より高くなり、投光ヘッドB5や受光ヘッドC1を接地することができなくても、電気機器Aをそのまま充電した状態で測定や診断をすることができる。
また、高分子材料では、例えば紫外線による選択的な着色剤の退色や樹脂の微細なひび割れによる白濁、さらには化学物質、特に酸性物質またはアルカリ性物質の付着によって、反射率特性の異常な変化が引き起こされる場合がある。
In FIG. 3, since the holding member G is insulative, the surface potential of the polymer material A1 becomes higher than the ground potential by electrostatic induction from the charging unit A2, and the light projecting head B5 and the light receiving head C1 are grounded. Even if it is not possible, measurement and diagnosis can be performed with the electric device A charged as it is.
In polymer materials, for example, selective colorant fading due to ultraviolet rays, white turbidity due to fine cracks in the resin, and adhesion of chemical substances, particularly acidic substances or alkaline substances, cause abnormal changes in reflectance characteristics. May be.

しかしながら、上述の実施例1〜2による高分子材料の劣化診断方法および装置では、波長λ2、λ3に加えて、着色剤により吸収され無機充填材の反射の影響を受けない領域の波長λ1に対する反射率も測定するようにしており、これにより、劣化による光反射スペクトルの全体の形状が明確になるので、上記のような反射率特性の異常な変化がある場合に、誤診断を避けることができる。なお、高分子材料における紫外線による選択的な着色剤の退色や樹脂の微細なひび割れによる白濁などの場合の光反射スペクトル変化は、波長λ1に対する反射強度の上昇となって現れるが、上記のような波長λ1に対する反射率も測定する劣化診断方法を適用することにより、誤診断が避けられる。   However, in the polymer material deterioration diagnosis method and apparatus according to Examples 1 and 2 described above, in addition to the wavelengths λ2 and λ3, the reflection to the wavelength λ1 of the region that is absorbed by the colorant and is not affected by the reflection of the inorganic filler. Since the overall shape of the light reflection spectrum due to deterioration is clarified, the erroneous diagnosis can be avoided when there is an abnormal change in the reflectance characteristics as described above. . Note that the change in the light reflection spectrum in the case of the fading of the selective colorant due to ultraviolet rays in the polymer material or the white turbidity due to fine cracks in the resin appears as an increase in the reflection intensity with respect to the wavelength λ1, but as described above By applying a deterioration diagnosis method that also measures the reflectance with respect to the wavelength λ1, misdiagnosis can be avoided.

また、高分子材料における上記のような反射率特性の異常については、設置場所の環境条件に基づいて反射率特性の異常な変化が発生している可能性が高いと判断することができる場合が多く、反射率特性の異常な変化を目視により確認することができる場合も多い。従って、被診断の高分子材料において上記のような反射率特性の異常な変化が発生しておらず、被診断の高分子材料の劣化が通常の劣化によると見なされる場合には、λ2およびλ3の2波長の反射率が得られれば、劣化程度を判定することができるので、上記の図1〜3で説明した実施例1〜2によるλ1,λ2,λ3の3波長の反射率を用いた構成の代わりに、λ2,λ3の2波長の反射率を用いた構成を適用することができる。   In addition, regarding the abnormality in reflectance characteristics as described above in a polymer material, it may be determined that there is a high possibility that an abnormal change in reflectance characteristics has occurred based on the environmental conditions of the installation location. In many cases, abnormal changes in reflectance characteristics can be visually confirmed. Therefore, in the case where the abnormal change in reflectance characteristics as described above does not occur in the polymer material to be diagnosed, and the deterioration of the polymer material to be diagnosed is considered to be due to the normal deterioration, λ2 and λ3 Therefore, since the degree of deterioration can be determined, the three-wavelength reflectances λ1, λ2, and λ3 according to Examples 1 and 2 described above with reference to FIGS. Instead of the configuration, a configuration using the reflectivity of two wavelengths λ2 and λ3 can be applied.

すなわち、着色剤と無機充填材とが配合されている高分子材料を対象とした、この発明による高分子材料の劣化診断方法の構成として、実施例1の構成の代わりに、予め被診断の高分子材料と同一種類の高分子材料を熱劣化させ各熱劣化時間における反射率スペクトルを求めておき、互いに波長の異なる2種類の単一波長光として、前記着色剤の反射のピークとなる領域の波長λ2のものと、劣化により前記無機充填材の反射が顕著になる近赤外領域の波長λ3のものとを選び、前記各熱劣化時間における反射率スペクトルから各熱劣化時間における波長λ2,λ3の反射率R2,R3を求め、座標の一方軸をR2、他方の軸をR3として、前記各熱劣化時間における反射率R2とR3とを前記座標にプロットし、前記プロット同士を結ぶ軌跡線を求めておき、前記被診断の高分子材料の一部に前記2種類の単一波長光をそれぞれ照射し各波長に対する反射率を求め、前記被診断の高分子材料の反射率R2とR3とが前記軌跡線の上のどの位置にあるかを調べることにより前記被診断の高分子材料の劣化の程度を判定する構成とすることができ、このような構成とすれば、被診断の高分子材料の一部に照射する単一波長光が2種類で済むことなどにより、劣化診断の処理速度をより高速化することができる。なお、このλ2,λ3の2波長の反射率を用いた劣化診断方法の判定処理で用いる2次元座標は、実施例1に対応する図2の特性線図における2次元座標の横軸を反射率の比R2/R1から反射率R2に置き換え、縦軸を反射率の比R3/R1から反射率R3に置き換えたものである。そして、この反射率R2,R3を両軸とした2次元座標において、予め被診断の高分子材料と同一種類の高分子材料について求めた各熱劣化時間における波長λ2,λ3の反射率R2,R3をプロットし、プロット同士を結んで得られる軌跡線は、図2における軌跡線Pと同様に端部P1(劣化度=0),P3(劣化度=1)および屈折点P2(劣化度=0.3〜0.7)を有する屈折した軌跡線となる。そして、被診断の高分子材料の反射率R2とR3とに対応する座標点(R2,R3)が上記の軌跡線の上のどの位置にあるかを調べることにより、実施例1によるλ1,λ2,λ3の3波長の反射率を用いた構成と同様に、被診断の高分子材料の劣化の程度を明確に判定することができる。   That is, as a configuration of the polymer material deterioration diagnosis method according to the present invention for a polymer material in which a colorant and an inorganic filler are blended, instead of the configuration of the first embodiment, a high diagnosis target is used. A polymer material of the same type as the molecular material is thermally deteriorated to obtain a reflectance spectrum at each heat deterioration time, and two kinds of single wavelength light having different wavelengths are used as regions of the peak of reflection of the colorant. A wavelength λ2 and a wavelength λ3 in the near-infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration are selected, and wavelengths λ2, λ3 at each heat deterioration time are determined from the reflectance spectrum at each heat deterioration time. The reflectances R2 and R3 are obtained, the coordinates R1 and the other axis R3, the reflectances R2 and R3 at the respective heat degradation times are plotted on the coordinates, and the traces connecting the plots And irradiating a part of the polymer material to be diagnosed with the two types of single-wavelength light to obtain the reflectance for each wavelength, and the reflectances R2 and R3 of the polymer material to be diagnosed Can be configured to determine the degree of deterioration of the polymer material to be diagnosed by examining the position on the locus line. With such a configuration, the polymer to be diagnosed can be determined. The processing speed of the deterioration diagnosis can be further increased because only two types of single-wavelength light are applied to a part of the material. Note that the two-dimensional coordinates used in the determination process of the deterioration diagnosis method using the two-wavelength reflectances λ2 and λ3 are the reflectances on the horizontal axis of the two-dimensional coordinates in the characteristic diagram of FIG. The ratio R2 / R1 is replaced with the reflectance R2, and the vertical axis is replaced with the reflectance ratio R3 / R1 with the reflectance R3. Then, in the two-dimensional coordinates with the reflectances R2 and R3 as both axes, the reflectances R2 and R3 of the wavelengths λ2 and λ3 at the respective heat deterioration times obtained in advance for the same kind of polymer material as the polymer material to be diagnosed. , And the locus lines obtained by connecting the plots are the end portions P1 (degradation degree = 0), P3 (degradation degree = 1) and the refraction point P2 (degradation degree = 0), similarly to the locus line P in FIG. .3-0.7) is a refracted trajectory line. Then, by examining which position on the locus line the coordinate points (R2, R3) corresponding to the reflectances R2 and R3 of the polymer material to be diagnosed are λ1, λ2 according to the first embodiment. , Λ3, the degree of deterioration of the polymer material to be diagnosed can be clearly determined in the same manner as the configuration using the reflectance of the three wavelengths.

また、この発明による高分子材料の劣化診断装置の構成として、実施例2の構成の代わりに、被診断の高分子材料の一部に波長λ2,λ3の単一波長光をそれぞれ照射する照射手段と、前記一部からの反射光を検知して信号を出力する受光手段と、この受光手段の出力信号から前記被診断の高分子材料の反射率R2とR3とを演算し、予め被診断の高分子材料と同一種類の高分子材料について求めた各熱劣化時間における波長λ2,λ3の反射率R2,R3を、R2、R3を両軸とした2次元座標にプロットし前記プロット同士を結んで求めておいた軌跡線と参照することにより前記被診断の高分子材料の劣化の程度を判定して報知する判定手段とを備えた構成とすることができ、このような構成とすれば、発光素子B2が2つで済むことなどにより、劣化診断装置の構成をより簡素化することができる。なお、このλ2,λ3の2波長の反射率を用いた劣化診断装置は、実施例2に対応する図3のブロック図における照射手段Bの発光素子B2を、波長λ2,λ3のそれぞれの単色光を発光させる2つの発光素子とするとともに、判定手段D(演算部)には反射率R2,R3を両軸とした2次元座標での軌跡線を基にした判定処理機能を設けた構成となり、このような装置構成により、上記のλ2,λ3の2波長の反射率を用いた劣化診断方法を実施することができる。   Further, as a configuration of the polymer material deterioration diagnosis apparatus according to the present invention, instead of the configuration of the second embodiment, irradiation means for irradiating a part of the polymer material to be diagnosed with single-wavelength light of wavelengths λ2 and λ3, respectively A light receiving means for detecting the reflected light from the part and outputting a signal, and calculating the reflectances R2 and R3 of the polymer material to be diagnosed from the output signal of the light receiving means, The reflectances R2 and R3 of the wavelengths λ2 and λ3 at each thermal degradation time obtained for the same kind of polymer material as the polymer material are plotted in two-dimensional coordinates with R2 and R3 as both axes, and the plots are connected. By referring to the obtained locus line, it can be configured to include a determination unit that determines and notifies the degree of deterioration of the polymer material to be diagnosed. Two elements B2 are enough More, it is possible to simplify the configuration of the deterioration diagnosis device. Note that the degradation diagnosis apparatus using the reflectances of the two wavelengths λ2 and λ3 uses the monochromatic light of the wavelengths λ2 and λ3 as the light emitting element B2 of the irradiation unit B in the block diagram of FIG. The determination means D (calculation unit) is provided with a determination processing function based on a locus line in two-dimensional coordinates with the reflectances R2 and R3 as both axes. With such an apparatus configuration, it is possible to implement the deterioration diagnosis method using the reflectances of the two wavelengths λ2 and λ3.

また、この発明による高分子材料の劣化診断装置として、実施例2に対応する図3のブロック図で示されるような、3つの発光素子B2を備え、λ1,λ2,λ3の3波長の反射率を測定することのできる装置構成に加えて、診断方式切替え操作手段(スイッチ)を設けておき、被診断の高分子材料において上述のような反射率特性の異常な変化が発生していると見なされる場合と、被診断の高分子材料の劣化が通常の劣化によると見なされる場合とに対応して、λ1,λ2,λ3の3波長の反射率を用いた劣化診断方法(3波長方式)と、λ2,λ3の2波長の反射率を用いた劣化診断方法(2波長方式)とを切替えて実施するようにしてもよい。なお、このような構成では、判定手段D(演算部)において、反射率の比R2/R1,R3/R1を両軸とした2次元座標での軌跡線を基にした3波長方式用の判定処理機能と、反射率R2,R3を両軸とした2次元座標での軌跡線を基にした2波長方式用の判定処理機能との両方を設けることが必要となるが、通常は、被診断の高分子材料の劣化が通常の劣化による場合に対応した2波長方式を選定しておいて、より高速な劣化診断処理を行い、被診断の高分子材料において反射率特性の異常な変化が発生している場合には、上記診断方式切替え操作手段により3波長方式に切替えて、反射率特性の異常な変化による誤診断のない的確な劣化診断処理を行う、というように運用することができる。   In addition, the polymer material deterioration diagnosis apparatus according to the present invention includes three light emitting elements B2 as shown in the block diagram of FIG. 3 corresponding to Example 2, and has reflectances of three wavelengths of λ1, λ2, and λ3. In addition to the device configuration capable of measuring the above, it is considered that a diagnostic method switching operation means (switch) is provided, and the above-described abnormal change in the reflectance characteristic occurs in the polymer material to be diagnosed. And a deterioration diagnosis method (three-wavelength method) using reflectances of three wavelengths of λ1, λ2, and λ3 corresponding to a case where deterioration of a polymer material to be diagnosed is considered to be due to normal deterioration, , Λ2, λ3 The deterioration diagnosis method (two-wavelength method) using the reflectivity of two wavelengths may be switched and executed. In such a configuration, the determination means D (calculation unit) determines for the three-wavelength method based on a locus line in two-dimensional coordinates with the reflectance ratios R2 / R1 and R3 / R1 as both axes. It is necessary to provide both a processing function and a determination processing function for a two-wavelength method based on a locus line in two-dimensional coordinates with the reflectances R2 and R3 as both axes. By selecting a two-wavelength method corresponding to the case where the deterioration of the polymer material is due to normal deterioration, faster deterioration diagnosis processing is performed, and abnormal changes in the reflectance characteristics occur in the polymer material to be diagnosed In such a case, switching to the three-wavelength method by the diagnostic method switching operation means can be performed so as to perform an accurate deterioration diagnosis process without erroneous diagnosis due to an abnormal change in reflectance characteristics.

この発明は、変圧器や、変成器、開閉器、回転機、絶縁用スペーサ、絶縁用ブッシングなどの電気機器の長時間の運転によって、その電気機器に組み込まれた高分子材料がどの程度劣化を受けているかを電気機器の据え付け現地で非破壊的に診断するのに利用することができる。   This invention is based on how long a polymer material incorporated in an electrical device deteriorates due to long-term operation of the electrical device such as a transformer, a transformer, a switch, a rotating machine, an insulating spacer, and an insulating bushing. It can be used for non-destructive diagnosis at the installation site of electrical equipment.

この発明の実施例1にかかる高分子材料の劣化診断方法を説明する反射率スペクトル図Reflectance spectrum diagram for explaining a method for diagnosing deterioration of a polymer material according to Example 1 of the present invention この発明の実施例1にかかる高分子材料の劣化診断方法を説明する特性線図Characteristic diagram illustrating a method for diagnosing deterioration of a polymer material according to Example 1 of the invention この発明の実施例2にかかる高分子材料の劣化診断装置の構成を示すブロック図FIG. 3 is a block diagram showing a configuration of a polymer material deterioration diagnosis apparatus according to a second embodiment of the present invention; 着色材の配合されていない樹脂の劣化による変色の様相を概念的に示した反射光スペクトル図Reflected light spectrum diagram conceptually showing the appearance of discoloration due to deterioration of resin not containing colorant

符号の説明Explanation of symbols

A:電気機器、A1:高分子材料、A2:充電部、A3,A4:一点、B:照射手段、B1:選択器、B2:発光素子、B3:光分配器、B4:伝送路、B5:投光ヘッド、C:受光手段、C1:受光ヘッド、C2:伝送路、C3:受光素子、C4:増幅器、C5:A/D変換器、D:判定手段(演算部) A: electrical equipment, A1: polymer material, A2: charging unit, A3, A4: one point, B: irradiation means, B1: selector, B2: light emitting element, B3: light distributor, B4: transmission line, B5: Light projecting head, C: light receiving means, C1: light receiving head, C2: transmission path, C3: light receiving element, C4: amplifier, C5: A / D converter, D: determination means (calculation unit)

Claims (4)

着色剤と無機充填材とが配合されている高分子材料の劣化の程度を診断する方法であって、予め被診断の高分子材料と同一種類の高分子材料を熱劣化させ各熱劣化時間における反射率スペクトルを求めておき、互いに波長の異なる2種類の単一波長光として、前記着色剤の反射のピークとなる領域の波長λ2のものと、劣化により前記無機充填材の反射が顕著になる近赤外領域の波長λ3のものとを選び、前記各熱劣化時間における反射率スペクトルから各熱劣化時間における波長λ2,λ3の反射率R2,R3を求め、座標の一方軸をR2、他方の軸をR3として、前記各熱劣化時間における反射率R2とR3とを前記座標にプロットし、前記プロット同士を結ぶ軌跡線を求めておき、
前記被診断の高分子材料の一部に前記2種類の単一波長光をそれぞれ照射し各波長に対する反射率を求め、前記被診断の高分子材料の反射率R2とR3とが前記軌跡線の上のどの位置にあるかを調べることにより前記被診断の高分子材料の劣化の程度を判定することを特徴とする高分子材料の劣化診断方法。
A method for diagnosing the degree of deterioration of a polymer material in which a colorant and an inorganic filler are blended, wherein the polymer material of the same type as the polymer material to be diagnosed is thermally deteriorated at each heat deterioration time. The reflectance spectrum is obtained, and the two kinds of single wavelength light having different wavelengths from each other have the wavelength λ2 in the region where the colorant is reflected, and the reflection of the inorganic filler becomes noticeable due to deterioration. The one with the wavelength λ3 in the near-infrared region is selected, and the reflectances R2 and R3 of the wavelengths λ2 and λ3 at each thermal degradation time are obtained from the reflectance spectrum at each thermal degradation time. With the axis as R3, the reflectances R2 and R3 at the respective heat deterioration times are plotted on the coordinates, and a locus line connecting the plots is obtained.
The two types of single-wavelength light are respectively irradiated on a part of the polymer material to be diagnosed to obtain the reflectance for each wavelength, and the reflectances R2 and R3 of the polymer material to be diagnosed are the locus lines. A method for diagnosing deterioration of a polymer material, comprising: determining a degree of deterioration of the polymer material to be diagnosed by examining the position on the top.
着色剤と無機充填材とが配合されている高分子材料の劣化の程度を診断する方法であって、予め被診断の高分子材料と同一種類の高分子材料を熱劣化させ各熱劣化時間における反射率スペクトルを求めておき、互いに波長の異なる3種類の単一波長光として、前記着色剤により吸収され前記無機充填材の反射の影響を受けない領域の波長λ1のものと、前記着色剤の反射のピークとなる領域の波長λ2のものと、劣化により前記無機充填材の反射が顕著になる近赤外領域の波長λ3のものとを選び、前記各熱劣化時間における反射率スペクトルから各熱劣化時間における波長λ1,λ2,λ3の反射率R1,R2,R3を求めて、この反射率R1,R2,R3から各熱劣化時間での反射率の比R2/R1とR3/R1とを求め、座標の一方軸をR2/R1、他方の軸をR3/R1として、前記各熱劣化時間における反射率の比R2/R1とR3/R1とを前記座標にプロットし、前記プロット同士を結ぶ軌跡線を求めておき、前記被診断の高分子材料の一部に前記3種類の単一波長光をそれぞれ照射し各波長に対する反射率を求め、前記被診断の高分子材料の反射率の比R2/R1とR3/R1とが前記軌跡線の上のどの位置にあるかを調べることにより前記被診断の高分子材料の劣化の程度を判定することを特徴とする高分子材料の劣化診断方法。 A method for diagnosing the degree of deterioration of a polymer material in which a colorant and an inorganic filler are blended, wherein the polymer material of the same type as the polymer material to be diagnosed is thermally deteriorated at each heat deterioration time. A reflectance spectrum is obtained, and three types of single-wavelength light having different wavelengths are absorbed by the colorant and have a wavelength λ1 in a region not affected by the reflection of the inorganic filler, and the colorant Select one having a wavelength λ2 in the region where the reflection is peaked and one having a wavelength λ3 in the near-infrared region where the reflection of the inorganic filler becomes noticeable due to deterioration. The reflectances R1, R2, and R3 of the wavelengths λ1, λ2, and λ3 at the degradation time are obtained, and the reflectance ratios R2 / R1 and R3 / R1 at each thermal degradation time are obtained from the reflectances R1, R2, and R3. , One axis of coordinates is R / R1, the other axis is R3 / R1, the reflectance ratios R2 / R1 and R3 / R1 at each thermal degradation time are plotted on the coordinates, and a locus line connecting the plots is obtained, A part of the polymer material to be diagnosed is irradiated with each of the three types of single-wavelength light to obtain the reflectance for each wavelength, and the reflectance ratios R2 / R1 and R3 / R1 of the polymer material to be diagnosed are A method of diagnosing deterioration of a polymer material, wherein the degree of deterioration of the polymer material to be diagnosed is determined by examining the position on the locus line. 請求項1に記載の高分子材料の劣化診断方法を実施する装置であって、前記被診断の高分子材料の一部に波長λ2,λ3の単一波長光をそれぞれ照射する照射手段と、前記一部からの反射光を検知して信号を出力する受光手段と、この受光手段の出力信号から前記被診断の高分子材料の反射率R2とR3とを演算し、前記軌跡線と参照することにより前記被診断の高分子材料の劣化の程度を判定して報知する判定手段とを備えたことを特徴とする高分子材料の劣化診断装置。 An apparatus for performing the degradation diagnosis method for a polymer material according to claim 1, wherein the irradiation means irradiates a part of the polymer material to be diagnosed with single-wavelength light of wavelengths λ2 and λ3, and A light receiving means for detecting a reflected light from a part and outputting a signal, and calculating the reflectances R2 and R3 of the polymer material to be diagnosed from the output signal of the light receiving means, and refer to the locus line And a determination means for determining and notifying of the degree of deterioration of the polymer material to be diagnosed. 請求項2に記載の高分子材料の劣化診断方法を実施する装置であって、前記被診断の高分子材料の一部に波長λ1,λ2,λ3の単一波長光をそれぞれ照射する照射手段と、前記一部からの反射光を検知して信号を出力する受光手段と、この受光手段の出力信号から前記被診断の高分子材料の反射率の比R2/R1とR3/R1とを演算し、前記軌跡線と参照することにより前記被診断の高分子材料の劣化の程度を判定して報知する判定手段とを備えたことを特徴とする高分子材料の劣化診断装置。 An apparatus for performing the degradation diagnosis method for a polymer material according to claim 2, comprising: irradiation means for irradiating a part of the polymer material to be diagnosed with single-wavelength light having wavelengths λ1, λ2, and λ3, respectively. A light receiving means for detecting the reflected light from the part and outputting a signal, and calculating a reflectance ratio R2 / R1 and R3 / R1 of the polymer material to be diagnosed from the output signal of the light receiving means. And a determination means for determining and notifying the degree of deterioration of the polymer material to be diagnosed by referring to the locus line.
JP2006114794A 2006-04-18 2006-04-18 Deterioration diagnosis method and apparatus for polymer material Active JP4710701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114794A JP4710701B2 (en) 2006-04-18 2006-04-18 Deterioration diagnosis method and apparatus for polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114794A JP4710701B2 (en) 2006-04-18 2006-04-18 Deterioration diagnosis method and apparatus for polymer material

Publications (2)

Publication Number Publication Date
JP2007285930A JP2007285930A (en) 2007-11-01
JP4710701B2 true JP4710701B2 (en) 2011-06-29

Family

ID=38757834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114794A Active JP4710701B2 (en) 2006-04-18 2006-04-18 Deterioration diagnosis method and apparatus for polymer material

Country Status (1)

Country Link
JP (1) JP4710701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787565B2 (en) * 2011-03-23 2015-09-30 株式会社東芝 Insulation deterioration diagnosis method
IL230879A0 (en) 2014-02-06 2014-09-30 Eli Margalit Spectral properties-based system and method for feeding masterbatches into a plastic processing machine
JP6191643B2 (en) * 2015-03-26 2017-09-06 日新電機株式会社 Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
JP6964399B2 (en) * 2015-09-02 2021-11-10 旭有機材株式会社 Piping member deterioration diagnosis method and equipment
JP6670629B2 (en) * 2016-02-19 2020-03-25 株式会社日立産機システム Diagnostic system for electrical equipment
JP6668101B2 (en) * 2016-02-17 2020-03-18 株式会社日立産機システム Diagnostic method and diagnostic system for electrical equipment provided with resin mold for electrical insulation
WO2017141793A1 (en) * 2016-02-17 2017-08-24 株式会社日立産機システム Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation
JP7000169B2 (en) * 2018-01-15 2022-01-19 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP7237516B2 (en) * 2018-10-24 2023-03-13 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
US20220306374A1 (en) * 2020-08-27 2022-09-29 Akimoto Seisakusyo Co., Ltd. Container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159242A (en) * 1984-08-31 1986-03-26 Toshiba Corp Method for diagnosing deterioration of insulating material
JPH0526809A (en) * 1991-07-24 1993-02-02 Yaskawa Electric Corp Photodetecting probe
JPH0599978A (en) * 1991-10-03 1993-04-23 Yaskawa Electric Corp Detecting method of thermal deterioration of insulating material
JPH06273326A (en) * 1993-03-24 1994-09-30 Densen Sogo Gijutsu Center Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JPH07286956A (en) * 1994-02-25 1995-10-31 Hitachi Ltd Deterioration level measuring system and measuring device
JPH1074628A (en) * 1996-06-28 1998-03-17 Hitachi Ltd Method and apparatus for electric device deterioration diagnosis
JP2004077469A (en) * 1994-02-25 2004-03-11 Hitachi Ltd Degradation level measurement system and measurement device for material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159242A (en) * 1984-08-31 1986-03-26 Toshiba Corp Method for diagnosing deterioration of insulating material
JPH0526809A (en) * 1991-07-24 1993-02-02 Yaskawa Electric Corp Photodetecting probe
JPH0599978A (en) * 1991-10-03 1993-04-23 Yaskawa Electric Corp Detecting method of thermal deterioration of insulating material
JPH06273326A (en) * 1993-03-24 1994-09-30 Densen Sogo Gijutsu Center Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JPH07286956A (en) * 1994-02-25 1995-10-31 Hitachi Ltd Deterioration level measuring system and measuring device
JP2004077469A (en) * 1994-02-25 2004-03-11 Hitachi Ltd Degradation level measurement system and measurement device for material
JPH1074628A (en) * 1996-06-28 1998-03-17 Hitachi Ltd Method and apparatus for electric device deterioration diagnosis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation
KR102655984B1 (en) 2021-11-15 2024-04-11 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Also Published As

Publication number Publication date
JP2007285930A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4710701B2 (en) Deterioration diagnosis method and apparatus for polymer material
CN101943656A (en) Detection optical is measured the method for the pollutant of test tube
KR100517104B1 (en) Non-destructive diagnostic method and non-destructive diagnostic apparatus
CN101228435B (en) Detecting and categorizing of foreign substances in a strand-like textile material
Stroyuk et al. Nondestructive characterization of polymeric components of silicon solar modules by near-infrared absorption spectroscopy (NIRA)
JP6191643B2 (en) Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
EP3327736B1 (en) Method for determining abnormality in oil-filled electric apparatus
JP3794290B2 (en) Article deterioration diagnosis method, quality inspection method, material judgment method and diagnostic device, article deterioration management method
WO2002033387A2 (en) Method and apparatus for nondestructive determination of polymer hydrolytic stability
JP3860846B2 (en) Material degradation degree measuring system and measuring device
JP2017110916A (en) Deterioration diagnostic device and deterioration diagnostic method
JP6811699B2 (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device
JPH0619323B2 (en) Insulation deterioration diagnosis method
JP2004077469A (en) Degradation level measurement system and measurement device for material
JPH1074628A (en) Method and apparatus for electric device deterioration diagnosis
JPH09222393A (en) Device for diagnosing degree of deterioration
WO2017163065A1 (en) Portable optical analysis apparatus for universal application
JP2019215230A (en) Electric wire coating deterioration detector and electric wire coating deterioration detection method
Ossia et al. Novel chromatic technique based on optical absorbance in characterizing mineral hydraulic oil degradation
JPH07260688A (en) Method for diagnosing deterioration of polymer material using fluorescence
CN106018328A (en) Method for differentiating true and false edible bird's nests
JP3205212B2 (en) Degradation diagnostic device
WO2016055527A2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
CN112432920A (en) Transmission-reflection type temperature sensing near-infrared probe measuring system
JP2000249660A (en) Apparatus and method for inspection of surface

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250