JP2019215230A - Electric wire coating deterioration detector and electric wire coating deterioration detection method - Google Patents

Electric wire coating deterioration detector and electric wire coating deterioration detection method Download PDF

Info

Publication number
JP2019215230A
JP2019215230A JP2018112109A JP2018112109A JP2019215230A JP 2019215230 A JP2019215230 A JP 2019215230A JP 2018112109 A JP2018112109 A JP 2018112109A JP 2018112109 A JP2018112109 A JP 2018112109A JP 2019215230 A JP2019215230 A JP 2019215230A
Authority
JP
Japan
Prior art keywords
deterioration
reflectance
electric wire
wavelength band
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018112109A
Other languages
Japanese (ja)
Inventor
秀樹 西出
Hideki Nishide
秀樹 西出
岡田 直喜
Naoki Okada
直喜 岡田
大木 秀人
Hideto Oki
秀人 大木
優弥 野口
Yuya Noguchi
優弥 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2018112109A priority Critical patent/JP2019215230A/en
Publication of JP2019215230A publication Critical patent/JP2019215230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide an electric wire coating deterioration detector and an electric wire coating deterioration detection method, capable of securing diagnostic accuracy of deterioration degree including excessive fouling of an electric wire to be tested.SOLUTION: When the deterioration degree of an electric wire 2 to be tested is detected, a deterioration diagnosis unit 12 irradiates a light source 6 with light, and splits the reflected light by a spectroscope 7 to obtain a reflectance of each wavelength. At this time, the deterioration diagnosis unit 12 determines whether or not the electric wire 2 to be tested is excessively fouled, based on the reflectance of 750 nm in a wavelength band not affected by the deterioration. The deterioration diagnosis unit 12 performs deterioration diagnosis on the electric wire 2 that has not been determined to be excessively fouled.SELECTED DRAWING: Figure 1

Description

本発明は、電線の劣化有無を検出する電線被覆劣化検出装置及び電線被覆劣化検出方法に関する。   The present invention relates to an electric wire coating deterioration detecting device and an electric wire coating deterioration detecting method for detecting the presence or absence of electric wire deterioration.

従来、受変電設備の制御盤等に配策される制御配線(電線)は、その被覆部の経年劣化が進行すると、自身の配線を通じての制御信号の伝達が適切に行われなくなる可能性がある。これは、受変電設備の電力機器の誤作動の原因にも繋がる。そこで、電力機器の誤作動等を未然に防止するために、制御配線の劣化度を検出することが行われている。   2. Description of the Related Art Conventionally, control wiring (electric wires) routed to a control panel or the like of a power receiving and transforming facility may not properly transmit a control signal through its own wiring as its covering part deteriorates over time. . This also leads to the cause of malfunction of the power equipment of the substation facility. Therefore, in order to prevent a malfunction or the like of a power device, a degree of deterioration of a control wiring is detected.

制御配線の劣化度の検出方法として、検査対象の制御配線に白色光を照射し、その反射光を受光して分光器によって分光し、新品と劣化品とで差が顕著となる特定の2つの波長での反射率の差から、制御配線の劣化状況を検出する方法が周知である(特許文献1等参照)。   As a method of detecting the degree of deterioration of the control wiring, the control wiring to be inspected is irradiated with white light, the reflected light is received and separated by a spectroscope. A method of detecting a deterioration state of a control wiring from a difference in reflectance at a wavelength is well known (see Patent Document 1 and the like).

特開2011−7662号公報JP 20117662 A

ところで、制御配線は、設置環境の影響により油脂等が付着すると、付着物が制御配線の被覆内部へ浸透する場合がある。こうなると、被覆部の表面をクリーニングしても清浄化されず、過汚損となってしまう。被覆部の過汚損は、新品よりも全体的に光の反射率が低くなる。このため、過汚損品の場合、新品と劣化品との間の反射率の関係性が満足されず、従来の劣化度の検出方法では過汚損品を検出できない問題があった。このように、検出精度を一層よくしたいニーズがあった。   By the way, when fats and oils adhere to the control wiring due to the influence of the installation environment, the adhered substance may penetrate into the coating of the control wiring. In this case, even if the surface of the coating portion is cleaned, the surface is not cleaned, resulting in excessive contamination. Excessive fouling of the coating results in a lower overall light reflectance than a new one. For this reason, in the case of an excessively soiled product, the relationship between the reflectance between the new product and the deteriorated product is not satisfied, and there is a problem that the conventional method for detecting the degree of deterioration cannot detect the excessively soiled product. Thus, there is a need to improve the detection accuracy.

本発明の目的は、検査対象である電線の過汚損を含む劣化度の診断精度確保を可能にした電線被覆劣化検出装置及び電線被覆劣化検出方法を提供することにある。   An object of the present invention is to provide a wire coating deterioration detecting device and a wire coating deterioration detecting method which can ensure the accuracy of diagnosis of a degree of deterioration including excessive contamination of a wire to be inspected.

前記問題点を解決する電線被覆劣化検出装置は、検査対象の電線に光を照射して、その反射光を分光器によって分光し、分光後の各波長の反射率に基づき、前記検査対象の電線の劣化度の検出を行う構成であって、前記検査対象の電線の劣化度と相関のある第1波長帯域の反射率と、当該第1波長帯域と補色関係にある第2波長帯域の反射率との反射率比を求め、当該反射率比を基に前記検査対象の電線の劣化度を検出する劣化診断部を備え、当該劣化診断部は、前記劣化度の判定時、劣化の影響を受けない波長帯域の反射率を基に、前記検査対象の電線の過汚損の検出を行う。   The wire coating deterioration detecting device that solves the above problem irradiates the inspection target wire with light, splits the reflected light with a spectroscope, and based on the reflectance of each wavelength after the splitting, based on the reflectance of the inspection target wire. And a reflectance of a first wavelength band correlated with the degradation of the inspection target wire, and a reflectance of a second wavelength band complementary to the first wavelength band. And a deterioration diagnostic unit for detecting the degree of deterioration of the electric wire to be inspected based on the reflectivity ratio, and the deterioration diagnostic unit is affected by deterioration when determining the degree of deterioration. Based on the reflectance of the wavelength band that does not exist, the detection of excessive contamination of the inspection target electric wire is performed.

本構成によれば、検査対象である電線の劣化度の検出のみならず、過汚損の検出も可能とした。よって、検査対象である電線の過汚損を含む劣化度の診断精度を確保することが可能となる。   According to this configuration, it is possible to detect not only the degree of deterioration of the electric wire to be inspected but also the detection of excessive contamination. Therefore, it is possible to ensure the accuracy of diagnosing the degree of deterioration including excessive contamination of the electric wire to be inspected.

前記電線被覆劣化検出装置において、前記劣化診断部は、前記第2波長帯域の反射率を基に、前記過汚損の検出を実行することが好ましい。この構成によれば、検査対象の電線の劣化度を検出する際に用いる第2波長帯域の反射率を利用して、電線の過汚損の検出も行うことが可能となる。   In the wire covering deterioration detecting device, it is preferable that the deterioration diagnosing unit detects the excessive contamination based on the reflectance in the second wavelength band. According to this configuration, it is possible to detect excessive contamination of the electric wire by using the reflectance of the second wavelength band used when detecting the degree of deterioration of the electric wire to be inspected.

前記電線被覆劣化検出装置において、前記劣化診断部は、検査対象とした電線の1サンプルに対し、劣化の影響を受けない波長帯域の反射率を基に過汚損を検出する処理を複数回実行し、過汚損を検出した回数が規定値を超えた場合に、そのサンプルを過汚損ありと判定することが好ましい。この構成によれば、劣化の影響を受けない波長帯域の反射率が過汚損と判定可能な値となる結果が複数回発生する場合に限り、そのサンプルを過汚損品と判定する。よって、検査対象である電線が過汚損品であるか否かの判定結果を精度よく得ることが可能となる。   In the wire covering deterioration detecting device, the deterioration diagnosis unit executes a process of detecting excessive contamination multiple times for one sample of the wire to be inspected based on the reflectance in a wavelength band not affected by the deterioration. When the number of times of detection of excessive contamination exceeds a specified value, it is preferable to determine that the sample is excessively soiled. According to this configuration, the sample is determined to be an excessively contaminated product only when the result that the reflectance in the wavelength band not affected by the deterioration has a value that can be determined to be excessively contaminated is generated a plurality of times. Therefore, it is possible to accurately obtain a determination result as to whether or not the wire to be inspected is an excessively soiled product.

前記電線被覆劣化検出装置において、前記劣化診断部は、検査対象とした電線のサンプルに対して過汚損がないと判定できた場合に、当該サンプルについての前記劣化度の判定を実行することが好ましい。この構成によれば、過汚損が検出されなかったサンプルのみ劣化度の判定を実施するので、劣化度の判定を無駄に実施せずに済む。   In the electric wire covering deterioration detecting device, it is preferable that, when it is determined that the sample of the electric wire to be inspected has no excessive contamination, the deterioration diagnosis unit performs the determination of the degree of deterioration for the sample. . According to this configuration, the determination of the degree of deterioration is performed only on the sample for which no excessive contamination has been detected.

前記問題点を解決する電線被覆劣化検出方法は、検査対象の電線に光を照射して、その反射光を分光器によって分光し、分光後の各波長の反射率に基づき、前記検査対象の電線の劣化度の検出を行う方法であって、前記検査対象の電線の劣化度と相関のある第1波長帯域の反射率と、当該第1波長帯域と補色関係にある第2波長帯域の反射率との反射率比を求め、当該反射率比を基に前記検査対象の電線の劣化度を検出し、前記劣化度の判定時、劣化の影響を受けない波長帯域の反射率を基に、前記検査対象の電線の過汚損の検出を行う。   The wire coating deterioration detection method for solving the above problems is to irradiate the inspection target wire with light, split the reflected light with a spectroscope, and based on the reflectance of each wavelength after the splitting, the inspection target wire. A reflectance of a first wavelength band correlated with the degradation degree of the inspection target wire, and a reflectance of a second wavelength band having a complementary color relationship with the first wavelength band. Calculate the reflectance ratio of the inspection target wire based on the reflectance ratio, based on the reflectance ratio, when determining the degree of degradation, based on the reflectance of a wavelength band that is not affected by the degradation, Detects excessive contamination of the inspection target wire.

本発明によれば、検査対象である電線の過汚損を含む劣化度の診断精度を確保することができる。   ADVANTAGE OF THE INVENTION According to this invention, the diagnostic accuracy of the deterioration degree containing the excessive contamination of the electric wire under test can be ensured.

一実施形態の電線被覆劣化検出装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the electric wire coating deterioration detection apparatus of one Embodiment. 熱劣化電線被覆の反射率測定結果を示す波形図。The waveform diagram which shows the reflectance measurement result of a thermally deteriorated electric wire coating. 熱劣化電線被覆の反射率比−破断伸度曲線を示す特性図。FIG. 4 is a characteristic diagram showing a reflectance ratio-elongation at break curve of a thermally deteriorated electric wire coating. 新品と過汚損品との比較スペクトラムを示す波形図。The waveform diagram which shows the comparison spectrum of a new article and an excessively soiled product. 過汚損品の反射率比と破断伸度との関係を示す特性図。FIG. 4 is a characteristic diagram showing a relationship between a reflectance ratio of an excessively soiled product and an elongation at break. 新品電線被覆の反射率測定結果を示す波形図。The waveform diagram which shows the measurement result of the reflectance of the new electric wire covering. 過汚損品電線被覆の反射率測定結果を示す波形図。The waveform diagram which shows the reflectance measurement result of the excessively soiled product electric wire coating. 劣化度及び過汚損の判定時に実行されるフローチャート。9 is a flowchart executed when determining the degree of deterioration and excessive contamination.

以下、電線被覆劣化検出装置及び電線被覆劣化検出方法の一実施形態を図1〜図8に従って説明する。
図1に示すように、電線被覆劣化検出装置1は、電線2の被覆劣化を診断する装置である。ところで、電線被覆劣化の指標として、JIS規格に記載されている破断時の伸び(破断伸度[%])がある。破断伸度は、基準長L0の電線被覆(電線2)を引っ張ったときの切断時の伸び率のことをいう。破断伸度は、切断時の長さをL1とすると、「破断伸度=((L1−L0)/L0×100)」の式により表される。判断伸度が例えば100%未満の場合、その電線2は規格不適合(劣化)となる。
Hereinafter, an embodiment of an electric wire coating deterioration detecting apparatus and an electric wire coating deterioration detecting method will be described with reference to FIGS.
As shown in FIG. 1, an electric wire coating deterioration detecting device 1 is a device for diagnosing electric wire 2 coating deterioration. By the way, as an index of electric wire coating deterioration, there is elongation at break (elongation at break [%]) described in JIS standards. The breaking elongation refers to the elongation at the time of cutting when the wire coating (wire 2) having the reference length L0 is pulled. The breaking elongation is represented by an equation of “breaking elongation = ((L1−L0) / L0 × 100)” where L1 is the length at the time of cutting. If the elongation is less than 100%, for example, the electric wire 2 becomes non-compliant (deteriorated).

一般に、電線2は、劣化すると破断伸度が低下していく。例えば、初期品の破断伸度が約250%であれば、劣化進展により、破断伸度が250→200→150→100%と低下していく。よって、破断伸度は、電線被覆の劣化度が大きくなるに連れて低くなる数値であり、電線被覆の劣化度と相関がある。この破断伸度は、電線被覆の表面の反射率と相関がある。よって、電線被覆劣化検出装置1は、電線被覆表面の反射率と破断伸度との相関(反射率−破断伸度曲線)から、電線2の破断伸度、すなわち劣化度を数値化する。   In general, when the wire 2 deteriorates, the elongation at break decreases. For example, if the elongation at break of the initial product is about 250%, the elongation at break decreases from 250 → 200 → 150 → 100% due to deterioration progress. Therefore, the breaking elongation is a numerical value that decreases as the degree of deterioration of the electric wire coating increases, and has a correlation with the degree of deterioration of the electric wire coating. This breaking elongation has a correlation with the reflectance of the surface of the electric wire coating. Therefore, the wire-covering deterioration detecting device 1 quantifies the breaking elongation, that is, the degree of deterioration of the wire 2 from the correlation between the reflectance of the wire-covering surface and the breaking elongation (reflectance-breaking elongation curve).

電線2は、例えば受変電設備の制御盤に配策される制御配線等に用いられる電気機器用ビニル絶縁電線(JIS_C3316)である。電線2は、被覆部3がビニル系絶縁材料からなる。被覆部3の色は、例えば電気機器用に多用されている黄色である。被覆部3の着色剤は、例えばアゾ系顔料が使用されている。ここで、規格JIS_C3316の「電気機器用ビニル絶縁電線」では、電線仕様として、「破断伸度100%以上」が要求され、一方で、「破断伸度100%未満」の電線は仕様外として規格不適合品(完全劣化品)となる。   The electric wire 2 is, for example, a vinyl insulated electric wire (JIS_C3316) for electric equipment used for control wiring and the like arranged in a control panel of a substation facility. The electric wire 2 has a coating 3 made of a vinyl-based insulating material. The color of the covering portion 3 is, for example, yellow, which is frequently used for electric equipment. As the colorant of the coating portion 3, for example, an azo pigment is used. Here, “vinyl insulated wires for electric equipment” of the standard JIS_C3316 requires “elongation at break of 100% or more” as the wire specification, while wires with “elongation at break of less than 100%” are out of specification. It becomes a nonconforming product (completely deteriorated product).

電線被覆劣化検出装置1は、検査対象である電線2に照射光を当てる光源6と、電線2からの反射光の波長範囲を計測する分光器7と、分光器7により測定された各波長帯域の反射率データDaを基に電線2の劣化診断を行う制御部8と、電線2の劣化診断の際に使用する判定データDbを記憶したメモリ9とを備える。   The electric wire coating deterioration detecting device 1 includes a light source 6 that irradiates light to the electric wire 2 to be inspected, a spectrometer 7 that measures a wavelength range of reflected light from the electric wire 2, and each wavelength band measured by the spectrometer 7. And a memory 9 that stores determination data Db used in the deterioration diagnosis of the electric wire 2 based on the reflectance data Da.

光源6は、例えば300〜1200nmの波長域の光(白色光)を発光する白色光源である。光源6は、検査対象である電線2に対して白色光を照射する。電線2に照射された白色光は、電線2の被覆部3の表面で反射するとともに、反射光が分光器7に入射される。   The light source 6 is a white light source that emits light (white light) in a wavelength range of 300 to 1200 nm, for example. The light source 6 irradiates the electric wire 2 to be inspected with white light. The white light applied to the electric wire 2 is reflected on the surface of the covering portion 3 of the electric wire 2, and the reflected light is incident on the spectroscope 7.

分光器7は、例えば300〜1200nmの波長範囲の光を測定する。本例の分光器7は、入射した光(反射光)を300〜1200nmの波長域の間で例えば所定波長(例えば10nm)ごとに分光し、分光により細分化した各波長の反射光の強度を測定する。   The spectroscope 7 measures light in a wavelength range of, for example, 300 to 1200 nm. The spectroscope 7 of the present embodiment disperses the incident light (reflected light) in a wavelength range of 300 to 1200 nm, for example, at predetermined wavelengths (for example, 10 nm), and determines the intensity of the reflected light of each wavelength subdivided by the spectroscopy. Measure.

制御部8は、例えばCPU(Central Processing Unit)からなるとともに、分光器7から入力する各波長帯域の反射率データDaを入力する。制御部8は、分光器7から入力した反射率データDaを基に電線2(被覆部3)の劣化度を診断する劣化診断部12を備える。劣化診断部12は、分光器7から入力する反射光の反射率データDaを基に、メモリ9内に記憶された判定データDbを用いて、電線2の劣化診断を実行する。判定データDbは、例えば反射率と破断伸度との相関を示す近似曲線Cであることが好ましい。   The control unit 8 includes, for example, a CPU (Central Processing Unit) and receives reflectance data Da of each wavelength band input from the spectroscope 7. The control unit 8 includes a deterioration diagnosis unit 12 that diagnoses the degree of deterioration of the electric wire 2 (the covering unit 3) based on the reflectance data Da input from the spectroscope 7. The deterioration diagnosis unit 12 performs the deterioration diagnosis of the electric wire 2 based on the reflectance data Da of the reflected light input from the spectroscope 7 and using the determination data Db stored in the memory 9. It is preferable that the determination data Db is, for example, an approximate curve C indicating a correlation between the reflectance and the elongation at break.

図2に、熱劣化電線被覆の反射率測定結果を示す。同図に示されるように、劣化電線を用いて反射率測定を行った場合、劣化状態(破断伸度低下)に応じて、所定の波長域の反射率が低下する特徴がある。図2の場合、例えば波長500〜700nm域の反射率が低下する。なお、図2では、劣化度(破断伸度)が異なる熱劣化電線(加速熱劣化電線)の反射スペクトルである。また、同図は、必要な波長範囲の反射率の波長範囲を抽出して図示しているが、実際には、分光器7の性能に応じた波長帯域の反射率データDaが存在する。   FIG. 2 shows the measurement results of the reflectance of the heat-degraded wire coating. As shown in the figure, when reflectance measurement is performed using a deteriorated electric wire, the reflectance in a predetermined wavelength range is reduced according to the deterioration state (decrease in elongation at break). In the case of FIG. 2, for example, the reflectance in the wavelength region of 500 to 700 nm is reduced. FIG. 2 is a reflection spectrum of heat-degraded electric wires (accelerated heat-degraded electric wires) having different degrees of deterioration (elongation at break). Although FIG. 2 shows the reflectance wavelength range in the necessary wavelength range, the reflectance data Da actually exists in the wavelength band according to the performance of the spectroscope 7.

ここで、図2に示すように、特定の波長帯域において、新品電線の反射率に対して、劣化電線の反射率が大きく異なる波長域が存在することが分かる。同図の場合、例えば540〜580nmの波長帯域(以降、第1波長帯域λ1と記す)で、新品電線と劣化電線とで反射率が大きく変化している。よって、本例の場合、第1波長帯域λ1の反射率変化を電線2の劣化の指標とする。   Here, as shown in FIG. 2, it can be seen that in a specific wavelength band, there is a wavelength range in which the reflectance of the deteriorated wire greatly differs from the reflectance of the new wire. In the case of the drawing, for example, in a wavelength band of 540 to 580 nm (hereinafter, referred to as a first wavelength band λ1), the reflectance largely changes between the new electric wire and the deteriorated electric wire. Therefore, in the case of this example, the change in the reflectance of the first wavelength band λ1 is used as an index of the deterioration of the electric wire 2.

ところで、反射率データDaの波長帯域には、反射率が低下する第1波長帯域λ1が存在しても、反射率が低下しない帯域(以降、第2波長帯域λ2と記す)が存在する。本例の場合、第2波長帯域λ2は、第1波長帯域λ1と補色関係にある波長帯域であって、740〜780nmとなっている。本例では、これら第1波長帯域λ1及び第2波長帯域λ2の変化の特異性を利用して、新品又は劣化品を識別する。また、新品又は劣化品の判定にあたっては、第1波長帯域λ1及び第2波長帯域λ2の比率(反射比率:λ2/λ1)を求めることで、測定試料ごとに異なるスペクトラムの傾き(ベースライン)を補正する。これにより、測定誤差の影響を回避する。   By the way, in the wavelength band of the reflectance data Da, there is a band in which the reflectance does not decrease (hereinafter, referred to as a second wavelength band λ2) even though the first wavelength band λ1 in which the reflectance decreases exists. In the case of this example, the second wavelength band λ2 is a wavelength band having a complementary color relationship with the first wavelength band λ1, and is 740 to 780 nm. In this example, a new product or a deteriorated product is identified using the specificity of the change in the first wavelength band λ1 and the second wavelength band λ2. In determining whether a product is new or deteriorated, the slope (base line) of the spectrum that differs for each measurement sample is determined by calculating the ratio (reflection ratio: λ2 / λ1) of the first wavelength band λ1 and the second wavelength band λ2. to correct. This avoids the effects of measurement errors.

さらに、反射比率の算出時にノイズによる特異ピークの影響を緩和するために、各第1波長帯域λ1及び第2波長帯域λ2の平均値を求めて、劣化診断を実行する。具体的には、第1波長帯域λ1(540〜580nm)の反射率平均を「λ1R」とし、第2波長帯域λ2(740〜780nm)の反射率平均をλ2Rとし、加速熱劣化電線の反射率比R1(=λ2R/λ1R)を算出する。以上のように、本例の劣化診断部12は、反射率平均から算出される反射率比R1(λ2R/λ1R)を求めて、電線2の劣化診断を実行する。   Furthermore, in order to mitigate the influence of the singular peak due to noise when calculating the reflection ratio, an average value of each of the first wavelength band λ1 and the second wavelength band λ2 is obtained, and deterioration diagnosis is performed. Specifically, the reflectance average of the first wavelength band λ1 (540 to 580 nm) is “λ1R”, the reflectance average of the second wavelength band λ2 (740 to 780 nm) is λ2R, and the reflectance of the accelerated heat-degraded wire is The ratio R1 (= λ2R / λ1R) is calculated. As described above, the deterioration diagnosis unit 12 of the present example obtains the reflectance ratio R1 (λ2R / λ1R) calculated from the reflectance average, and executes the deterioration diagnosis of the electric wire 2.

図3に、反射率比R1と破断伸度との相関性を示す。同図に示されるように、反射率比R1が低い値をとると、破断伸度が高くなる。この場合、電線2が正常であると判断できる。一方、反射率比R1が高い値をとると、破断伸度が低くなる。この場合、電線2が劣化していると判断できる。このように、反射率比R1の値から、電線2の劣化診断を行う。   FIG. 3 shows the correlation between the reflectance ratio R1 and the elongation at break. As shown in the figure, when the reflectance ratio R1 has a low value, the elongation at break increases. In this case, it can be determined that the electric wire 2 is normal. On the other hand, when the reflectance ratio R1 takes a high value, the elongation at break decreases. In this case, it can be determined that the electric wire 2 has deteriorated. Thus, the deterioration diagnosis of the electric wire 2 is performed from the value of the reflectance ratio R1.

図4に、新品電線及び過汚損電線の各反射率の比較スペクトラムを示す。過汚損電線は、例えば被覆部3の表面に油脂等が付着して内部に汚れが浸透した電線をいう。設置環境等により、電線2には油脂等が付着する可能性があり、この場合、油脂等が被覆部3の内部に浸透してしまうと、測定前に電線2の表面をクリーニングしても清浄化されず、過汚損の状態となることがある。過汚損電線は、新品電線よりも全体的に反射率が低く、スペクトラムの傾き(ベースライン)に違いが生じる。   FIG. 4 shows a comparison spectrum of each reflectance of the new electric wire and the excessively soiled electric wire. The excessively soiled electric wire is, for example, an electric wire in which oil or the like adheres to the surface of the covering portion 3 and dirt penetrates into the inside. Depending on the installation environment, there is a possibility that grease or the like may adhere to the wire 2. In this case, if grease or the like penetrates into the inside of the coating portion 3, the surface of the wire 2 is cleaned even before the measurement. May be excessively soiled. The excessively stained electric wire has a lower reflectance than the new electric wire as a whole, and a difference occurs in the slope (base line) of the spectrum.

また、図5に示すように、反射率比R1は、通常ならば1.35〜1.50付近の値をとるのに対し、過汚損品は劣化が進行していない状態(例えば、破断伸度255%)でも、規格不適合値(約1.5)を上回る1.81を示す。このように、過汚損電線の場合、反射率比R1は、破断伸度との関係性が成立しなくなる。本例は、この問題に対する対策である。   Further, as shown in FIG. 5, the reflectance ratio R1 normally takes a value in the range of about 1.35 to 1.50, whereas the excessively soiled product has not deteriorated (for example, the elongation at break). (Degree of 255%) shows 1.81 which exceeds the standard nonconformity value (about 1.5). As described above, in the case of the excessively soiled electric wire, the relationship between the reflectance ratio R1 and the breaking elongation is not established. This example is a measure against this problem.

図6に、新品電線で反射率測定を複数回(N=10)実行した場合の反射率スペクトラムを示す。電線劣化の影響を受けない第2波長帯域λ2の720nmの反射率は、再現性よく観測される。このとき、最も低く観測された値は、191%である。また、新品電線の反射率比R1の10回平均値は、1.32である。   FIG. 6 shows a reflectance spectrum when reflectance measurement is performed a plurality of times (N = 10) with a new electric wire. The reflectance at 720 nm in the second wavelength band λ2, which is not affected by the electric wire deterioration, is observed with good reproducibility. At this time, the lowest observed value is 191%. The average value of the reflectance ratio R1 of the new electric wire for ten times is 1.32.

図7は、過汚損電線で反射率測定を複数回(N=10)実行した場合の反射率スペクトラムを示す。過汚損電線の反射率は、新品電線に対して相対的に低い値をとる。また、過汚損電線の750nmの反射率は、最も高く計測された値で176%である。すなわち、過汚損品の場合、劣化の影響を受けない第2波長帯域λ2において反射率は低いままとなる。このように、本例の劣化診断部12は、劣化に影響を受けない第2波長帯域λ2においての新品電線と過汚損電線との反射率の差を利用し、電線2が過汚損であるか否かを判定する。   FIG. 7 shows a reflectance spectrum when the reflectance measurement is performed a plurality of times (N = 10) on the excessively soiled electric wire. The reflectance of the excessively stained electric wire takes a relatively low value with respect to the new electric wire. In addition, the reflectance at 750 nm of the excessively soiled electric wire is 176% at the highest measured value. That is, in the case of the excessively soiled product, the reflectance remains low in the second wavelength band λ2 which is not affected by the deterioration. As described above, the deterioration diagnosis unit 12 of the present example utilizes the difference in the reflectance between the new electric wire and the excessively contaminated electric wire in the second wavelength band λ2 that is not affected by the deterioration, and determines whether the electric wire 2 is excessively contaminated. Determine whether or not.

次に、図2、図3、図6〜図8を用いて、本実施形態の電線被覆劣化検出装置1の作用及び効果を説明する。
図8のステップ101において、計測者は、検査対象の電線2と同一種類の電線を約100℃の恒温槽内で加熱し、加熱時間(熱劣化時間)の異なる複数種類の熱劣化電線(サンプル)を作成する。これにより、熱によって電線が加速劣化されるとともに、互いに異なる破断伸度を有する複数種類のサンプルが作成される。ここで、「電線2と同一種類の電線」とは、電線2と完全に同一の電線だけでなく、電線2と略同一の電線を含む。また、本例の加熱処理は、100℃以外の温度設定としてもよい。
Next, the operation and effect of the electric wire coating deterioration detecting device 1 of the present embodiment will be described with reference to FIGS. 2, 3, and 6 to 8.
In step 101 of FIG. 8, the measurer heats an electric wire of the same type as the electric wire 2 to be inspected in a constant temperature bath at about 100 ° C., and prepares a plurality of types of heat-degraded electric wires (samples having different heating times). ). As a result, the wire is accelerated and degraded by heat, and a plurality of types of samples having different breaking elongations are created. Here, the “electric wire of the same type as the electric wire 2” includes not only an electric wire completely identical to the electric wire 2 but also an electric wire substantially the same as the electric wire 2. Further, the heat treatment in this example may be performed at a temperature setting other than 100 ° C.

本例のサンプルは、新品電線であるサンプル1と、熱劣化20日の処理を経たサンプル2と、熱劣化30日の処理を経たサンプル3と、熱劣化40日の処理を経たサンプル4と、熱劣化60日の処理を経たサンプル5と、熱劣化90日の処理を経たサンプル6と、熱劣化100日の処理を経たサンプル7とがある。これらサンプル1〜7が熱劣化電線である。   The sample of this example includes a sample 1 that is a new electric wire, a sample 2 that has been subjected to a heat deterioration of 20 days, a sample 3 that has been subjected to a heat deterioration of 30 days, and a sample 4 that has been subjected to a heat deterioration of 40 days. There is a sample 5 which has been subjected to a heat deterioration of 60 days, a sample 6 which has been subjected to a heat deterioration of 90 days, and a sample 7 which has been subjected to a heat deterioration of 100 days. These samples 1 to 7 are heat-degraded electric wires.

ステップ102において、電線被覆劣化検出装置1は、各サンプル1〜7の破断伸度及び反射率を測定する。各サンプル1〜7の破断伸度の測定結果は、加熱時間(熱劣化時間)が長いサンプルほど破断伸度が低下する結果が得られる。   In step 102, the wire coating deterioration detecting device 1 measures the elongation at break and the reflectance of each of the samples 1 to 7. As a result of measurement of the elongation at break of each of the samples 1 to 7, the result that the elongation at break decreases as the heating time (thermal deterioration time) increases.

また、電線被覆劣化検出装置1の劣化診断部12は、反射率測定にあたり、まず光源6から、300〜1200nm程度の波長の白色光を各サンプル1〜7に照射する。サンプル1〜7の反射光は、分光器7に入射され、反射光量に応じた反射率データDaが制御部8に出力される。劣化診断部12は、分光器7によって計測された反射率データDaを取得する。   In measuring the reflectivity, the deterioration diagnosis unit 12 of the electric wire coating deterioration detection device 1 first irradiates the samples 1 to 7 with white light having a wavelength of about 300 to 1200 nm from the light source 6. The reflected lights of the samples 1 to 7 are incident on the spectroscope 7, and the reflectance data Da corresponding to the amount of reflected light is output to the control unit 8. The deterioration diagnosis unit 12 acquires the reflectance data Da measured by the spectroscope 7.

図2に示すように、熱劣化電線被覆の反射率測定結果からは、電線被覆の劣化、すなわち破断伸度の低下に伴い、500〜700nmの波長帯域の反射率が低下することが確認できる。特に、540〜580nmの波長帯域において、反射率が大きく低下することが分かる。   As shown in FIG. 2, it can be confirmed from the measurement results of the reflectance of the thermally deteriorated electric wire coating that the reflectivity in the wavelength band of 500 to 700 nm decreases with the deterioration of the electric wire coating, that is, the decrease in the elongation at break. In particular, it can be seen that the reflectance significantly decreases in the wavelength band of 540 to 580 nm.

図8に戻り、ステップ103において、劣化診断部12は、電線被覆劣化の指標となる第1波長帯域λ1及び第2波長帯域λ2を選定する。ここでは、前述した反射率測定とは別に、各サンプル1〜7に対して、化学分析と、色差計による色彩評価とを行った。これら化学分析及び色彩評価の各結果から、以下のことが明らかとなった。まず、破断伸度の低下は、電線2の被覆部3を構成する可塑剤の減少に起因していることが明らかとなった。また、可塑剤の減少と並行して、被覆部3を構成する顔料(ここでは、アゾ系顔料)にも変化が生じることが明らかになった。さらに、反射率分布、化学分析結果及び色彩評価結果から、アゾ系顔料の変化に伴って、緑色波長(540〜580nmの波長帯域)の反射率の低下と、その緑色と補色関係にある赤色波長(740〜780nmの波長帯域)の反射率の増加とが生じることが明らかとなった。さらに、緑色波長(540〜580nmの波長帯域)の反射率低下の度合いと、赤色波長(740〜780nmの波長帯域)の反射率増加の度合いとの間に相関性があることも明らかとなった。すなわち、電線被覆の劣化によって破断伸度が低くなるほど緑色波長の反射率が低くなる一方で、破断伸度が低くなるほど赤色波長の反射率が高くなる。このことからも、緑色波長の反射率と赤色波長の反射率との比(反射率比)は、破断伸度と相関があることが分かる。   Returning to FIG. 8, in step 103, the deterioration diagnosing unit 12 selects a first wavelength band λ1 and a second wavelength band λ2 which are indicators of wire coating deterioration. Here, apart from the reflectance measurement described above, each sample 1 to 7 was subjected to chemical analysis and color evaluation using a color difference meter. From the results of these chemical analysis and color evaluation, the following became clear. First, it was clarified that the decrease in the breaking elongation was caused by a decrease in the amount of the plasticizer constituting the covering portion 3 of the electric wire 2. In addition, it became clear that the pigment (here, an azo pigment) constituting the coating portion 3 also changed in parallel with the decrease in the plasticizer. Further, based on the reflectance distribution, the chemical analysis result and the color evaluation result, the reflectance of the green wavelength (wavelength band of 540 to 580 nm) decreases with the change of the azo pigment, and the red wavelength which is complementary to the green color. (A wavelength band of 740 to 780 nm) was found to increase. Furthermore, it was also found that there is a correlation between the degree of decrease in reflectance at the green wavelength (wavelength band of 540 to 580 nm) and the degree of increase in reflectance at the red wavelength (wavelength band of 740 to 780 nm). . That is, the lower the elongation at break due to deterioration of the electric wire coating, the lower the reflectance at the green wavelength, while the lower the elongation at break, the higher the reflectance at the red wavelength. This also indicates that the ratio (reflectance ratio) between the reflectance at the green wavelength and the reflectance at the red wavelength has a correlation with the elongation at break.

これを踏まえ、劣化診断部12は、破断伸度(劣化度)と相関のある波長帯域(本例は、540〜580nmの波長帯域)を第1波長帯域λ1として選定し、この第1波長帯域λ1と補色関係にある波長帯域(本例は、740〜780nmの波長帯域)を第2波長帯域λ2として選定する。より具体的には、本例の場合、可塑剤減少による破断伸度低下と、アゾ系顔料変化による色味変化(ここでは、緑色の減少)とが相関する波長帯域を第1波長帯域λ1として選定し、第1波長帯域λ1と補色関係にあり、かつ、破断伸度低下に伴って反射率が変化(ここでは、増加)する波長帯域を第2波長帯域λ2として選定する。このように、第1波長帯域λ1及び第2波長帯域λ2は、反射率分布、化学分析結果及び色彩評価結果を基に選定される。劣化診断部12は、選定された第1波長帯域λ1及び第2波長帯域λ2の範囲を示すデータを、メモリ9に格納する。   Based on this, the deterioration diagnosis unit 12 selects a wavelength band (wavelength band of 540 to 580 nm in this example) correlated with the elongation at break (degree of deterioration) as the first wavelength band λ1, and this first wavelength band A wavelength band complementary to λ1 (in this example, a wavelength band of 740 to 780 nm) is selected as the second wavelength band λ2. More specifically, in the case of this example, a wavelength band in which a decrease in elongation at break due to a decrease in the plasticizer and a change in tint (here, a decrease in green color) due to a change in the azo pigment is defined as a first wavelength band λ1. The second wavelength band λ2 is selected as a second wavelength band λ2 which has a complementary color relationship with the first wavelength band λ1 and whose reflectance changes (increases here) as the breaking elongation decreases. As described above, the first wavelength band λ1 and the second wavelength band λ2 are selected based on the reflectance distribution, the chemical analysis result, and the color evaluation result. The deterioration diagnosis unit 12 stores data indicating the range of the selected first wavelength band λ1 and the selected second wavelength band λ2 in the memory 9.

ステップ104において、劣化診断部12は、サンプル1〜7ごとに反射率比R1を算出する。本例の場合、劣化診断部12は、サンプル1〜7ごとに、540〜580nmの第1波長帯域λ1で細分化された波長全部の反射率の平均であるλ1Rと、740〜780nmの第2波長帯域λ2で細分化された波長全部の反射率の平均であるλ2Rとの比である反射率比R1(=λ2R/λ1R)を算出する。   In step 104, the deterioration diagnosis unit 12 calculates the reflectance ratio R1 for each of the samples 1 to 7. In the case of this example, the deterioration diagnosis unit 12 calculates, for each of the samples 1 to 7, λ1R which is the average of the reflectances of all the wavelengths subdivided in the first wavelength band λ1 of 540 to 580 nm, and the second of 740 to 780 nm. A reflectance ratio R1 (= λ2R / λ1R), which is a ratio with respect to λ2R, which is an average of reflectances of all the wavelengths subdivided in the wavelength band λ2, is calculated.

ステップ105において、劣化診断部12は、破断伸度と反射率比R1との相関を示す近似曲線Cを算出する。
図3に示すように、本例の場合、劣化診断部12は、反射率比R1を横軸にとり、破断伸度を縦軸にとったグラフ上に、各サンプル1〜7のデータをプロットする。そして、劣化診断部12は、プロットしたデータから、近似曲線Cの式、すなわち劣化予測式「y=f(x)」を算出する。この劣化予測式では、「y」が破断伸度であり、「x」が反射率比R1である。このように、破断伸度は、反射率比R1の関数として算出することができる。なお、劣化予測式は、例えば最小二乗法により導き出すことができる。劣化診断部12は、算出した劣化予測式をメモリ9に格納する。これにより、電線2の被覆部3の劣化診断を行う前準備が完了する。
In step 105, the deterioration diagnosis unit 12 calculates an approximate curve C indicating a correlation between the breaking elongation and the reflectance ratio R1.
As shown in FIG. 3, in the case of the present example, the deterioration diagnosis unit 12 plots the data of each of the samples 1 to 7 on a graph in which the horizontal axis represents the reflectance ratio R1 and the vertical axis represents the breaking elongation. . Then, the deterioration diagnosis unit 12 calculates the equation of the approximate curve C, that is, the deterioration prediction equation “y = f (x)” from the plotted data. In this deterioration prediction equation, “y” is the elongation at break, and “x” is the reflectance ratio R1. Thus, the breaking elongation can be calculated as a function of the reflectance ratio R1. Note that the deterioration prediction formula can be derived by, for example, the least square method. The deterioration diagnosis unit 12 stores the calculated deterioration prediction formula in the memory 9. As a result, the preparation before performing the deterioration diagnosis of the covering portion 3 of the electric wire 2 is completed.

図8に戻り、ステップ106において、劣化診断部12は、劣化診断の前に、劣化診断の対象としてセットされたサンプル(電線2)について、まずサンプル品が過汚損品か否かを確認する過汚損診断を開始する。本例の過汚損診断は、例えば各サンプルについて、劣化の影響を受けない第2波長帯域λ2の反射率を基に過汚損を検出する処理を複数回(N回)実行する。本例の場合、1つのサンプルについて過汚損診断を「10」回行うものとする(図6及び図7参照)。まず、1回目の測定の場合は、過汚損判定回数のカウンタN=「0」に設定し、ERR=「0」に設定する。   Returning to FIG. 8, in step 106, before the deterioration diagnosis, the deterioration diagnosis unit 12 first checks whether or not the sample product (the electric wire 2) set as the target of the deterioration diagnosis is an excessively contaminated product. Start the contamination diagnosis. In the overfouling diagnosis of the present example, for example, for each sample, a process of detecting overfouling based on the reflectance of the second wavelength band λ2 which is not affected by deterioration is executed a plurality of times (N times). In the case of this example, it is assumed that the excessive contamination diagnosis is performed “10” times for one sample (see FIGS. 6 and 7). First, in the case of the first measurement, the counter N for the number of times of excessive contamination determination is set to “0”, and ERR is set to “0”.

ステップ107において、劣化診断部12は、検査対象の電線2の反射率を測定する。すなわち、劣化診断部12は、光源6から白色光を電線2に照射して光を反射させ、その反射光を入力した分光器7から反射率データDaを取得する。   In step 107, the deterioration diagnosis unit 12 measures the reflectance of the inspection target electric wire 2. That is, the deterioration diagnosis unit 12 irradiates the electric wire 2 with white light from the light source 6 to reflect the light, and acquires the reflectance data Da from the spectroscope 7 to which the reflected light is input.

ステップ108において、劣化診断部12は、過汚損の判定に使用する波長帯域(本例λ2)の反射率を基に、過汚損品であるか否かの判定を実行する。本例の場合、劣化の影響を受けない第2波長帯域λ2の一値(750nm)の反射率が、規定値(例えば180%)以下であるか否かを判定する。第2波長帯域λ2の一値(750nm)の反射率が規定値以下でなければステップ109に移行し、第2波長帯域λ2の一値(750nm)の反射率が規定値を超えればステップ114に移行する。   In step 108, the deterioration diagnosis unit 12 determines whether or not the product is excessively contaminated based on the reflectance of the wavelength band (λ2 in this example) used for the determination of excessive contamination. In the case of this example, it is determined whether the reflectance of one value (750 nm) of the second wavelength band λ2 that is not affected by the deterioration is equal to or less than a specified value (for example, 180%). If the reflectance of one value (750 nm) of the second wavelength band λ2 is not less than the specified value, the process proceeds to step 109, and if the reflectance of one value (750nm) of the second wavelength band λ2 exceeds the specified value, the process proceeds to step 114. Transition.

ステップ109において、劣化診断部12は、第2波長帯域λ2の一値(750nm)の反射率が規定値以下でなければ、カウンタNを「N+1」にカウントアップする。
ステップ110において、劣化診断部12は、測定した反射率データDaをメモリに保存する。
In step 109, the deterioration diagnosing unit 12 counts up the counter N to “N + 1” unless the reflectance of one value (750 nm) of the second wavelength band λ2 is equal to or less than the specified value.
In step 110, the deterioration diagnosis unit 12 stores the measured reflectance data Da in a memory.

ステップ111において、劣化診断部12は、反射率データDaの保存後、過汚損判定回数のカウンタNが「10」に到達したか否かを判定する。すなわち、過汚損判定の回数が10回実施されたか否かを判定する。過汚損判定回数が10回未満であれば、ステップ107に戻り、過汚損品か否かの判定を再度行う。一方、過汚損判定の回数が10回に到達すれば、検査対象の電線2が過汚損品ではなく、ステップ112に移行する。   In step 111, after storing the reflectance data Da, the deterioration diagnosis unit 12 determines whether or not the counter N for the number of times of excessive contamination determination has reached “10”. That is, it is determined whether or not the number of times of excessive soil determination has been performed ten times. If the number of times of excessive soiling determination is less than 10, the process returns to step 107, and the determination as to whether the product is excessively soiled is performed again. On the other hand, when the number of times of the determination of excessive contamination reaches 10, the electric wire 2 to be inspected is not an excessively dirty product, and the process proceeds to step 112.

ステップ112において、劣化診断部12は、過汚損品ではないと診断された電線2において、反射率比R1を算出する。
ステップ113において、劣化診断部12は、算出した反射率比R1を基に、検査対象の電線2の劣化度を検出する。本例の劣化診断部12は、算出した反射率比R1が、メモリ9に保存された判定データDb(近似曲線C)のどの位置にあるかを確認することにより、電線2の破断伸度を算出する。そして、劣化診断部12は、算出した破断伸度を基に電線2の劣化度を検出(推測)し、その劣化度を、表示装置等を用いて計測者に通知する。
In step 112, the deterioration diagnosing unit 12 calculates the reflectance ratio R1 for the electric wire 2 that has been diagnosed as not excessively soiled.
In step 113, the deterioration diagnosis unit 12 detects the degree of deterioration of the inspection target electric wire 2 based on the calculated reflectance ratio R1. The deterioration diagnosis unit 12 of the present example checks the position of the calculated reflectance ratio R1 in the determination data Db (approximate curve C) stored in the memory 9 to determine the breaking elongation of the electric wire 2. calculate. Then, the deterioration diagnosis unit 12 detects (estimates) the degree of deterioration of the electric wire 2 based on the calculated elongation at break, and notifies the measurer of the degree of deterioration using a display device or the like.

ところで、電線2の破断伸度は、電線2の劣化度と相関がある。このため、電線2の判断伸度から電線2の劣化度を容易に推測することができる。劣化診断部12は、算出した判断伸度が100%未満である場合には、検査対象の電線2が規格不適合品であることを通知する。なお、劣化診断部12は、電線2の劣化度の推測を行わず、劣化予測式に基づいて算出した電線2の破断伸度を劣化度としてそのまま通知してもよい。   Incidentally, the breaking elongation of the electric wire 2 has a correlation with the deterioration degree of the electric wire 2. Therefore, the degree of deterioration of the electric wire 2 can be easily estimated from the determined elongation of the electric wire 2. If the calculated elongation is less than 100%, the deterioration diagnosis unit 12 notifies that the electric wire 2 to be inspected is a non-compliant product. In addition, the deterioration diagnosis unit 12 may not directly estimate the breaking elongation of the electric wire 2 calculated based on the deterioration prediction formula as the deterioration degree without estimating the deterioration degree of the electric wire 2.

ステップ114において、劣化診断部12は、第2波長帯域λ2の一値(750nm)の反射率が規定値を超える場合、エラー回数のカウンタERRを「ERR+1」にカウントアップする。   In step 114, when the reflectance of one value (750 nm) of the second wavelength band λ2 exceeds the specified value, the deterioration diagnosis unit 12 counts up the error counter ERR to “ERR + 1”.

ステップ115において、劣化診断部12は、カウンタERRをカウントアップした後、エラーとなった測定データ(反射率データDa)を破棄する。すなわち、劣化診断部12は、過汚損診断でエラーとなった反射率データDaを、劣化診断判定のデータとして使用しない。   In step 115, the deterioration diagnosis unit 12 discards the measurement data (reflectance data Da) in which an error has occurred after counting up the counter ERR. That is, the deterioration diagnosing unit 12 does not use the reflectance data Da having an error in the excessive contamination diagnosis as the data of the deterioration diagnosis determination.

ステップ116において、劣化診断部12は、エラー計測のカウンタERRが「5」に到達したか否かを判定する。このとき、エラー計測のカウンタERRが「5」に到達していなければ、ステップ111に移行して、過汚損判定回数の確認を実施する。一方、エラー計測のカウンタERRが「5」に到達していれば、ステップ117に移行する。   In step 116, the deterioration diagnosis unit 12 determines whether or not the error measurement counter ERR has reached “5”. At this time, if the error measurement counter ERR has not reached “5”, the process proceeds to step 111 to check the number of times of excessive contamination determination. On the other hand, if the error measurement counter ERR has reached “5”, the process proceeds to step 117.

ステップ117において、劣化診断部12は、検査対象の電線2を過汚損サンプルと判定する。このとき、劣化診断部12は、劣化診断時にメモリ9に蓄積した測定データ(反射率データDa)を破棄する。劣化診断部12は、検査対象の電線2が過汚損サンプルと判定した場合、その旨を、表示装置等を用いて計測者に通知する。よって、過汚損品の電線2を排除することが可能となる。   In step 117, the deterioration diagnosis unit 12 determines that the inspection target electric wire 2 is an excessively soiled sample. At this time, the deterioration diagnosis unit 12 discards the measurement data (reflectance data Da) stored in the memory 9 at the time of the deterioration diagnosis. When the deterioration diagnosis unit 12 determines that the inspection target electric wire 2 is an excessively soiled sample, the deterioration diagnosis unit 12 notifies the measurement person using a display device or the like. Therefore, it is possible to eliminate the excessively stained electric wire 2.

さて、本例の場合、電線被覆劣化検出装置1には、検査対象である電線2に光を当てた際の反射光の反射率(第1波長帯域λ1の反射率と第2波長帯域λ2の反射率との反射率比)を基に劣化度を診断可能な劣化診断部12が設けられている。そして、この劣化診断部12は、劣化度の判定時、劣化の影響を受けない第2波長帯域λ2の反射率を基に、検査対象の電線2の過汚損の検出を行う。このように、本例では、検査対象である電線2の劣化度の検出のみならず、過汚損の検出も可能とした。よって、検査対象である電線2の過汚損を含む劣化度の診断精度を確保することができる。   By the way, in the case of the present example, the electric wire coating deterioration detecting device 1 includes the reflectance of the reflected light (the reflectance of the first wavelength band λ1 and the reflectance of the second wavelength band λ2) when light is applied to the electric wire 2 to be inspected. A deterioration diagnosis unit 12 capable of diagnosing the degree of deterioration based on a reflectance ratio (reflectance to reflectance) is provided. When determining the degree of deterioration, the deterioration diagnosis unit 12 detects excessive contamination of the inspection target electric wire 2 based on the reflectance of the second wavelength band λ2 which is not affected by the deterioration. As described above, in the present embodiment, not only the degree of deterioration of the electric wire 2 to be inspected but also the detection of excessive contamination can be detected. Therefore, it is possible to ensure the accuracy of diagnosing the degree of deterioration including excessive contamination of the electric wire 2 to be inspected.

劣化診断部12は、第2波長帯域λ2の反射率を基に、過汚損の検出を実行する。よって、検査対象の電線2の劣化度を検出する際に用いる第2波長帯域λ2の反射率を利用して、電線2の過汚損の検出も行うことができる。   The deterioration diagnosis unit 12 detects excessive contamination based on the reflectance of the second wavelength band λ2. Therefore, it is possible to detect excessive contamination of the electric wire 2 by using the reflectance of the second wavelength band λ2 used when detecting the degree of deterioration of the electric wire 2 to be inspected.

劣化診断部12は、検査対象とした電線2の1サンプルに対し、劣化の影響の受けない第2波長帯域λ2の反射率を基に過汚損を検出する処理を複数回(本例はN=10回)実行し、過汚損を検出した回数が規定値(ERR=5回)を超えた場合に、そのサンプルを過汚損ありと判定する。この場合、劣化の影響を受けない波長帯域(λ2:750nm)の反射率が過汚損と判定可能な値(180%以下)となる結果が複数回発生する場合に限り、そのサンプルを過汚損品と判定する。よって、検出対象である電線2が過汚損品であるか否かの判定結果を精度よく得ることができる。   The deterioration diagnosing unit 12 performs a plurality of times of processing for detecting over-contamination on one sample of the electric wire 2 to be inspected based on the reflectance of the second wavelength band λ2 which is not affected by the deterioration (in this example, N = 10), and when the number of times of detection of excess contamination exceeds a specified value (ERR = 5 times), the sample is determined to be excessively dirty. In this case, the sample is regarded as an excessively contaminated product only when the result that the reflectance in the wavelength band (λ2: 750 nm) not affected by the deterioration becomes a value (180% or less) that can be determined to be excessively contaminated multiple times. Is determined. Therefore, it is possible to accurately obtain a determination result as to whether or not the electric wire 2 to be detected is excessively soiled.

劣化診断部12は、検査対象とした電線2のサンプルに対して過汚損がないと判定できた場合に、そのサンプルについての劣化度の判定を実行する。よって、過汚損が検出されなかったサンプルのみ劣化度の判定を実施するので、劣化度の判定を無駄に実施せずに済む。   When it is determined that the sample of the electric wire 2 to be inspected is not excessively contaminated, the deterioration diagnosis unit 12 determines the degree of deterioration of the sample. Therefore, the determination of the degree of deterioration is performed only on the sample for which no excessive contamination has been detected, so that the determination of the degree of deterioration does not need to be performed wastefully.

なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・過汚損診断で診断対象とする光の波長は、750nmに限定されず、検査対象とする電線2に応じて、他の波長に変更してもよい。
This embodiment can be implemented with the following modifications. The present embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
The wavelength of the light to be diagnosed in the excessive contamination diagnosis is not limited to 750 nm, and may be changed to another wavelength according to the electric wire 2 to be inspected.

・過汚損診断は、例えば複数の波長の反射率を用いて診断されてもよい。
・過汚損診断の診断対象の波長は、750nmに限定されず、例えば新品の値を基に割合で規定されてもよい。
-The overfouling diagnosis may be performed using, for example, the reflectance of a plurality of wavelengths.
The wavelength to be diagnosed in the excessive contamination diagnosis is not limited to 750 nm, and may be defined in a ratio based on, for example, a new value.

・過汚損診断は、750nmの1点の値で実施されることに限定されない。例えば、前後の波長数点の平均値や加重平均としてもよい。
・過汚損診断は、劣化診断の処理のように、例えば反射率スペクトラムの全体の傾き(近似曲線(近似式))を基に判定する処理としてもよい。
-The overfouling diagnosis is not limited to being performed at one point value of 750 nm. For example, the average value or the weighted average of several wavelength points before and after may be used.
The excessive contamination diagnosis may be a process of determining based on, for example, the entire slope of the reflectance spectrum (approximate curve (approximate expression)), like the process of the deterioration diagnosis.

・過汚損診断及び劣化診断は、1つの処理工程で連続して実施されることに限定されず、これらを異なる工程で実施するようにしてもよい。
・反射率比R1は、反射率の平均値から求めた値に限定されない。例えば波長帯域内の反射率の最大値や最小値から求めた値でもよい。また、波長帯域内の所定番目の波長の反射率を用いて求めた値でもよい。さらに、異常な反射率を除いて値から反射率比R1を算出してもよい。
The over-fouling diagnosis and the deterioration diagnosis are not limited to being performed continuously in one processing step, and may be performed in different steps.
-The reflectance ratio R1 is not limited to the value obtained from the average value of the reflectance. For example, a value obtained from the maximum value or the minimum value of the reflectance in the wavelength band may be used. Alternatively, it may be a value obtained by using the reflectance of a predetermined wavelength in the wavelength band. Further, the reflectance ratio R1 may be calculated from the value excluding the abnormal reflectance.

・光源6は、白色光源に限定されない。例えば、第1波長帯域λ1が540〜580nmの帯域に設定され、第2波長帯域λ2が740〜780nmに設定される場合には、光源6は、これら波長帯域の光を照射できるものであればよい。   The light source 6 is not limited to a white light source. For example, when the first wavelength band λ1 is set to a band of 540 to 580 nm and the second wavelength band λ2 is set to 740 to 780 nm, the light source 6 can emit light of these wavelength bands. Good.

・光源6の光は、白色光以外でもよい。
・電線2の被覆部3は、ビニル系絶縁材料以外の材料を用いてもよい。このとき、被覆部3の材料に添加される着色剤は、アゾ系顔料以外でもよい。このように、被覆部3の絶縁材質や電線色が変更される場合には、その変更に合わせて第1波長帯域λ1及び第2波長帯域λ2が変更され、劣化予測式も変更される。
-The light of the light source 6 may be other than white light.
-The covering part 3 of the electric wire 2 may use a material other than the vinyl-based insulating material. At this time, the colorant added to the material of the coating portion 3 may be other than the azo pigment. As described above, when the insulating material and the wire color of the covering portion 3 are changed, the first wavelength band λ1 and the second wavelength band λ2 are changed in accordance with the change, and the deterioration prediction formula is also changed.

・判定データDbは、近似曲線C(劣化予測式)に限定されない。例えば、破断伸度及び反射率比R1の実測値データをそのままメモリ9に格納し、これらデータ群を用いて、劣化診断を実施してもよい。   The determination data Db is not limited to the approximate curve C (deterioration prediction formula). For example, the actual measurement value data of the elongation at break and the reflectance ratio R1 may be stored in the memory 9 as it is, and the deterioration diagnosis may be performed using the data group.

・劣化及び過汚損のサンプルは、熱劣化電線に限定されず、その作成手法を変更して生成した電線でもよい。
・劣化を表すパラメータは、破断伸度に限定されず、例えば破断強度(引張強さ)、被覆部3の含水量、被覆部3の絶縁抵抗など、他のパラメータに変更してもよい。
-The sample of deterioration and over-contamination is not limited to the heat-deteriorated electric wire, but may be an electric wire generated by changing the preparation method.
The parameter representing the deterioration is not limited to the elongation at break, but may be changed to other parameters such as, for example, the breaking strength (tensile strength), the water content of the coating 3, and the insulation resistance of the coating 3.

・電線2の用途は、受変電設備の制御盤に配策される制御配線以外でもよい。   -The use of the electric wire 2 may be other than the control wiring arranged on the control panel of the substation equipment.

1…電線被覆劣化検出装置、2…電線、3…被覆部、6…光源、7…分光器、12…劣化診断部、λ1…第1波長帯域、λ2…第2波長帯域。   DESCRIPTION OF SYMBOLS 1 ... Electric wire coating deterioration detection apparatus, 2 ... Electric wire, 3 ... Coating part, 6 ... Light source, 7 ... Spectroscope, 12 ... Deterioration diagnosis part, λ1: First wavelength band, λ2: Second wavelength band.

Claims (5)

検査対象の電線に光を照射して、その反射光を分光器によって分光し、分光後の各波長の反射率に基づき、前記検査対象の電線の劣化度の検出を行う電線被覆劣化検出装置であって、
前記検査対象の電線の劣化度と相関のある第1波長帯域の反射率と、当該第1波長帯域と補色関係にある第2波長帯域の反射率との反射率比を求め、当該反射率比を基に前記検査対象の電線の劣化度を検出する劣化診断部を備え、
当該劣化診断部は、前記劣化度の判定時、劣化の影響を受けない波長帯域の反射率を基に、前記検査対象の電線の過汚損の検出を行う電線被覆劣化検出装置。
By irradiating the inspection target wire with light, the reflected light is separated by a spectroscope, and based on the reflectance of each wavelength after the splitting, based on the wire coating deterioration detection device that detects the degree of deterioration of the inspection target wire. So,
A reflectance ratio between a reflectance of a first wavelength band correlated with the degree of deterioration of the inspection target wire and a reflectance of a second wavelength band complementary to the first wavelength band is obtained. A deterioration diagnostic unit for detecting the degree of deterioration of the inspection target wire based on the
The degradation diagnosis unit is a wire coating degradation detection device that, when determining the degradation degree, detects excessive contamination of the wire to be inspected based on reflectance in a wavelength band that is not affected by degradation.
前記劣化診断部は、前記第2波長帯域の反射率を基に、前記過汚損の検出を実行する
請求項1に記載の電線被覆劣化検出装置。
2. The wire covering deterioration detecting device according to claim 1, wherein the deterioration diagnosis unit detects the excessive contamination based on the reflectance in the second wavelength band. 3.
前記劣化診断部は、検査対象とした電線の1サンプルに対し、劣化の影響を受けない波長帯域の反射率を基に過汚損を検出する処理を複数回実行し、過汚損を検出した回数が規定値を超えた場合に、そのサンプルを過汚損ありと判定する
請求項1又は2に記載の電線被覆劣化検出装置。
The deterioration diagnosis unit executes a process of detecting excessive contamination multiple times on one sample of the wire to be inspected based on the reflectance in a wavelength band not affected by the degradation, and the number of times of detecting excessive contamination is reduced. The wire covering deterioration detecting device according to claim 1 or 2, wherein the sample is judged to be excessively stained when the value exceeds a specified value.
前記劣化診断部は、検査対象とした電線のサンプルに対して過汚損がないと判定できた場合に、当該サンプルについての前記劣化度の判定を実行する
請求項1〜3のうちいずれか一項に記載の電線被覆劣化検出装置。
The degradation diagnosis unit, when it is determined that there is no excessive contamination on a sample of the electric wire as an inspection target, performs the determination of the degree of degradation on the sample. 2. The wire covering deterioration detecting device according to claim 1.
検査対象の電線に光を照射して、その反射光を分光器によって分光し、分光後の各波長の反射率に基づき、前記検査対象の電線の劣化度の検出を行う電線被覆劣化検出方法であって、
前記検査対象の電線の劣化度と相関のある第1波長帯域の反射率と、当該第1波長帯域と補色関係にある第2波長帯域の反射率との反射率比を求め、当該反射率比を基に前記検査対象の電線の劣化度を検出し、前記劣化度の判定時、劣化の影響を受けない波長帯域の反射率を基に、前記検査対象の電線の過汚損の検出を行う電線被覆劣化検出方法。
By irradiating the inspection target wire with light, the reflected light is separated by a spectroscope, and based on the reflectance of each wavelength after the splitting, based on the wire coating deterioration detection method for detecting the degree of deterioration of the inspection target wire. So,
A reflectance ratio between a reflectance of a first wavelength band correlated with the degree of deterioration of the inspection target wire and a reflectance of a second wavelength band complementary to the first wavelength band is obtained. The wire for detecting the degree of deterioration of the wire to be inspected based on the reflectance of a wavelength band not affected by the deterioration when detecting the degree of deterioration of the wire to be inspected based on the reflectance. Coating deterioration detection method.
JP2018112109A 2018-06-12 2018-06-12 Electric wire coating deterioration detector and electric wire coating deterioration detection method Pending JP2019215230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112109A JP2019215230A (en) 2018-06-12 2018-06-12 Electric wire coating deterioration detector and electric wire coating deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112109A JP2019215230A (en) 2018-06-12 2018-06-12 Electric wire coating deterioration detector and electric wire coating deterioration detection method

Publications (1)

Publication Number Publication Date
JP2019215230A true JP2019215230A (en) 2019-12-19

Family

ID=68919096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112109A Pending JP2019215230A (en) 2018-06-12 2018-06-12 Electric wire coating deterioration detector and electric wire coating deterioration detection method

Country Status (1)

Country Link
JP (1) JP2019215230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025642A (en) * 2008-07-16 2010-02-04 Furukawa Electric Co Ltd:The Streak surface inspection device
JP2016166813A (en) * 2015-03-10 2016-09-15 オムロン株式会社 Sheet inspection apparatus
JP2016183914A (en) * 2015-03-26 2016-10-20 日新電機株式会社 Wire coating deterioration detection device and wire coating deterioration detection method
US20160349167A1 (en) * 2014-05-23 2016-12-01 7108789 Manitoba Inc. Coulter Mounted soil Constituent Sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025642A (en) * 2008-07-16 2010-02-04 Furukawa Electric Co Ltd:The Streak surface inspection device
US20160349167A1 (en) * 2014-05-23 2016-12-01 7108789 Manitoba Inc. Coulter Mounted soil Constituent Sensor
JP2016166813A (en) * 2015-03-10 2016-09-15 オムロン株式会社 Sheet inspection apparatus
JP2016183914A (en) * 2015-03-26 2016-10-20 日新電機株式会社 Wire coating deterioration detection device and wire coating deterioration detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation
KR102655984B1 (en) * 2021-11-15 2024-04-11 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Similar Documents

Publication Publication Date Title
JP4710701B2 (en) Deterioration diagnosis method and apparatus for polymer material
JP6191643B2 (en) Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
KR100822506B1 (en) Turbine blade bucket health monitoring and prognosis using neural network based diagnostic techniques in conjunction with pyrometer signals
CN101943656A (en) Detection optical is measured the method for the pollutant of test tube
JP2009133848A (en) Colorimetry unit
US10578550B2 (en) Identifying presence of substrates
US10359411B2 (en) Diagnosis method for internal fault of oil-immersed electric apparatus
JP5374445B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP2019215230A (en) Electric wire coating deterioration detector and electric wire coating deterioration detection method
JP5140639B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP2017110916A (en) Deterioration diagnostic device and deterioration diagnostic method
CN113155170A (en) Brillouin frequency shift error estimation method
JP5081685B2 (en) Degradation state diagnosis method of insulating oil in oil-filled equipment
Supian et al. Qualitative Assessment of Cooking Oil using Diffuse Reflectance Spectroscopy Technique
JP7237516B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP2010230412A (en) Monitoring apparatus of deterioration of lubricating oil
JP6917668B1 (en) Energy dispersive X-ray fluorescence analyzer, evaluation method and evaluation program
JP2000241351A (en) Method for diagnosing deterioration of crosslinked polyethylene using fluorescent analyzer
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
JP2014010057A (en) Contraction diagnosis method
JP2022041186A (en) Temperature measurement method by raman scattered light and raman scattered light analyzer
JP6400355B2 (en) Lubricant deterioration diagnosis method
WO2020158033A1 (en) Optical pulse testing device and optical pulse testing method
JP2005337885A (en) Deterioration diagnosis method and diagnosis device by fluorescence measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004