JP5081685B2 - Degradation state diagnosis method of insulating oil in oil-filled equipment - Google Patents

Degradation state diagnosis method of insulating oil in oil-filled equipment Download PDF

Info

Publication number
JP5081685B2
JP5081685B2 JP2008082695A JP2008082695A JP5081685B2 JP 5081685 B2 JP5081685 B2 JP 5081685B2 JP 2008082695 A JP2008082695 A JP 2008082695A JP 2008082695 A JP2008082695 A JP 2008082695A JP 5081685 B2 JP5081685 B2 JP 5081685B2
Authority
JP
Japan
Prior art keywords
oil
insulating oil
insulating
filled equipment
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008082695A
Other languages
Japanese (ja)
Other versions
JP2009236665A (en
Inventor
敏文 杉本
一嘉 高橋
極 宮島
良一 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Aichi Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2008082695A priority Critical patent/JP5081685B2/en
Publication of JP2009236665A publication Critical patent/JP2009236665A/en
Application granted granted Critical
Publication of JP5081685B2 publication Critical patent/JP5081685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、油入機器に使用されている絶縁油の劣化状態を判定するための劣化状態診断方法に関する。   The present invention relates to a deterioration state diagnosis method for determining a deterioration state of insulating oil used in oil-filled equipment.

一般に、油入機器は、機器中身を絶縁油とともにケース内に収容することにより構成されている。前記絶縁油は、油入機器の冷却や絶縁等を目的として使用されているが、前記油入機器の長期間にわたる運転中に発生する熱の影響を受けたり、外部から侵入する空気や水分等と接触したりすること等により劣化する。前記絶縁油が劣化すると、油入機器の電気特性が低下する等の弊害が生じ、最悪の場合、油入機器が運転不能となることがあるため、定期的に前記絶縁油を採取して劣化状態を判定することで、油入機器の運転に支障をきたさないようにしている。   Generally, an oil-filled device is configured by housing the contents of a device together with insulating oil in a case. The insulating oil is used for the purpose of cooling or insulating oil-filled equipment, but it is affected by heat generated during long-term operation of the oil-filled equipment, or air or moisture entering from the outside. Deteriorated by contact with the surface. When the insulating oil is deteriorated, adverse effects such as deterioration of the electrical characteristics of the oil-filled equipment occur, and in the worst case, the oil-filled equipment may become inoperable. By judging the state, the operation of the oil-filled equipment is prevented from being hindered.

絶縁油の劣化状態を判定する指標として、例えば、絶縁油中の水分量(以下、油中水分量という)が用いられている。前記油中水分量は、例えば、カールフィッシャー水分計を用いることにより測定することができる(例えば、特許文献1参照)。そして、前記油中水分量の測定値を経年的に比較することにより、絶縁油の劣化の進行状況を判定することができる。   As an index for determining the deterioration state of the insulating oil, for example, the amount of water in the insulating oil (hereinafter referred to as the amount of water in oil) is used. The amount of water in oil can be measured by using, for example, a Karl Fischer moisture meter (see, for example, Patent Document 1). Then, the progress of the deterioration of the insulating oil can be determined by comparing the measured value of the moisture content in the oil over time.

特開2000−88836号公報JP 2000-88836 A

一般に、絶縁油が酸化劣化すると飽和水分量が高くなることが知られているが、前記飽和水分量を用いた絶縁油の劣化状態の判定は行われていなかった。また、前記カールフィッシャー水分計を用いた水分測定によって得られる情報は、あくまでも当該時点での油中水分量だけであり、当該時点で飽和水分量がどの程度高くなっているか等といった飽和水分量に関する情報を得ることはできなかった。このため、当該時点での油中水分量が少ないという情報だけを得て、絶縁油の飽和水分量が高くなっていることを把握せずに使用しつづけた場合、前記絶縁油は累積的に水分を保持することになり、前記絶縁油の温度が低下した際に、飽和水分量を超過した水分が析出し、油入機器内部に発錆等の不具合を引き起こす可能性があった。また、前記のような不具合の発生を事前に把握したり、未然に防いだりすることも困難であった。   In general, it is known that when the insulating oil is oxidized and deteriorated, the saturated water amount is increased, but the deterioration state of the insulating oil using the saturated water amount has not been determined. In addition, the information obtained by the moisture measurement using the Karl Fischer moisture meter is only the moisture content in the oil at the time point, and relates to the saturated moisture amount such as how high the saturated moisture amount is at the time point. Information could not be obtained. For this reason, if only obtaining information that the moisture content in the oil at that time is low and continuing to use without knowing that the saturated moisture content of the insulation oil is high, the insulation oil will accumulate cumulatively. Moisture was retained, and when the temperature of the insulating oil was lowered, moisture exceeding the saturated moisture amount was precipitated, which could cause problems such as rusting inside the oil-filled equipment. In addition, it has been difficult to grasp in advance or prevent the occurrence of the above problems.

本発明は、前記の課題に鑑み、絶縁油の劣化に伴って油入機器内部に発錆等の不具合が発生するのを事前に把握したり、未然に防いだりすることが可能な油入機器における絶縁油の劣化状態診断方法の提供を目的とする。   In view of the above-mentioned problems, the present invention is an oil-filled device capable of grasping in advance or preventing problems such as rusting inside the oil-filled device due to deterioration of insulating oil. An object of the present invention is to provide a method for diagnosing the deterioration state of insulating oil.

請求項1記載の発明は、油入機器から採取した絶縁油の試料中のカルボニル基の
量を定量分析し、前記カルボニル基の量から絶縁油の飽和水分量を推定して、前記
絶縁油の劣化状態を判定するようにしたことを特徴とする。
According to the first aspect of the present invention, the carbonyl group in the sample of insulating oil collected from the oil-filled equipment
Quantitative analysis of the amount, estimate the saturated moisture content of the insulating oil from the amount of the carbonyl group,
The deterioration state of the insulating oil is determined.

請求項2記載の発明は、油入機器から採取した絶縁油の試料と使用前における絶
縁油との色差を求め、前記色差から絶縁油の飽和水分量を推定して、前記絶縁油の
劣化状態を判定するようにしたことを特徴とする。
The invention described in claim 2 is a sample of insulating oil collected from an oil-filled device and an insulation oil before use.
Obtain the color difference from the edge oil, estimate the saturated moisture content of the insulating oil from the color difference,
The deterioration state is determined.

請求項3記載の発明は、油入機器から採取した絶縁油の試料と使用前における絶縁油との色差を求め、前記色差から絶縁油の飽和水分量を推定して、前記絶縁油の劣化状態を判定するようにしたことを特徴とする。   The invention according to claim 3 determines the color difference between the sample of the insulating oil collected from the oil-filled device and the insulating oil before use, estimates the saturated moisture content of the insulating oil from the color difference, and determines the deterioration state of the insulating oil. It is characterized by determining.

請求項1記載の発明によれば、絶縁油の劣化に伴って増加する親水性を有するカ
ルボニル基の量から、絶縁油の飽和水分量を迅速・容易に推定することができる。
また、前記飽和水分量から絶縁油の劣化状態(水分を保持しやすくなっているか否
か)を判定することにより、絶縁油の交換の要否や交換時期等をあらかじめ把握す
ることができるとともに、必要な時期に絶縁油を交換することで、水分により油入
機器の内部に発錆等の不具合が発生するのを未然に防ぐことができる。
According to the first aspect of the present invention, the saturated moisture content of the insulating oil can be estimated quickly and easily from the amount of the carbonyl group having hydrophilicity that increases with the deterioration of the insulating oil.
In addition, by determining the deterioration state of the insulating oil (whether or not it is easy to retain water) from the saturated water content, it is possible to know in advance whether or not the insulating oil needs to be replaced and when to replace it. By exchanging the insulating oil at an appropriate time, it is possible to prevent problems such as rusting from occurring inside the oil-filled equipment due to moisture.

請求項2記載の発明によれば、絶縁油の劣化に伴って変色した絶縁油と、使用前
における絶縁油との色差から、絶縁油の飽和水分量を迅速・容易に推定することが
できる。また、前記飽和水分量から絶縁油の劣化状態(水分を保持しやすくなって
いるか否か)を判定することにより、絶縁油の交換の要否や交換時期等をあらかじ
め把握することができるとともに、必要な時期に絶縁油を交換することで、水分に
より油入機器の内部に発錆等の不具合が発生するのを未然に防ぐことができる。
According to the second aspect of the present invention, it is possible to quickly and easily estimate the saturated moisture content of the insulating oil from the color difference between the insulating oil discolored with the deterioration of the insulating oil and the insulating oil before use. In addition, by determining the deterioration state of the insulating oil (whether or not it is easy to retain water) from the saturated water content, it is possible to know in advance whether or not the insulating oil needs to be replaced and when to replace it. By exchanging the insulating oil at an appropriate time, it is possible to prevent problems such as rusting from occurring inside the oil-filled equipment due to moisture.

以下、本発明を実施するための最良の形態について、図1ないし図4を参照しながら説明する。本発明は、油入機器の定期点検等に際して、前記油入機器から採取した絶縁油の試料(以下、試料油という)の飽和水分量を測定(推定)し、前記飽和水分量から絶縁油の劣化状態を判定しようとするものであり、以下に前記飽和水分量を簡易に測定(推定)し、絶縁油の劣化状態を判定するための方法を示す。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. The present invention measures (estimates) the saturated water content of an insulating oil sample (hereinafter referred to as sample oil) collected from the oil-filled equipment during periodic inspection of the oil-filled equipment, and determines the insulating oil from the saturated water content. The deterioration state is to be determined, and a method for determining the deterioration state of the insulating oil by simply measuring (estimating) the saturated water content will be described below.

まず、図1ないし図3を参照しながら本発明の第1実施例について説明する。本件発明者は、絶縁油の劣化に伴って飽和水分量が変化(増大)する原因が、カルボニル基の発生にあることを研究により見出した。即ち、油入機器の運転中に絶縁油が熱を受けたり酸化したりすることによって劣化すると、前記絶縁油中には、図1で示すカルボニル基(炭素と酸素の二重結合を有する)や前記カルボニル基を含むアルデヒド基(カルボニル基に水素が結合したもの),カルボキシル基(カルボニル基に水酸基が結合したもの),エステル基(カルボキシル基にアルコールが結合したもの)等の基が発生する。このため、劣化した絶縁油中には、カルボニル基が多量に含まれていると考えられる。前記カルボニル基は親水性を有しているため、該カルボニル基が多く含まれる絶縁油(即ち、劣化した絶縁油)は、使用前(あるいは使用初期)における絶縁油に比べて、飽和水分量が高くなっていると考えられる。本発明の第1実施例においては、この点に着目し、前記絶縁油中に含まれる(存在する)カルボニル基の量から絶縁油の飽和水分量を推定し、前記絶縁油の劣化状態を判定しようとするものである。   First, a first embodiment of the present invention will be described with reference to FIGS. The inventor of the present invention has found through research that the cause of the change (increase) of the saturated water content accompanying the deterioration of the insulating oil is the generation of carbonyl groups. That is, when the insulating oil is deteriorated by receiving heat or oxidizing during operation of the oil-filled equipment, the insulating oil contains a carbonyl group (having a double bond of carbon and oxygen), Groups such as an aldehyde group containing carbonyl group (hydrogen bonded to carbonyl group), carboxyl group (carbonyl group bonded to hydroxyl group), ester group (carboxyl group bonded to alcohol) and the like are generated. For this reason, it is considered that the deteriorated insulating oil contains a large amount of carbonyl groups. Since the carbonyl group has hydrophilicity, an insulating oil containing a large amount of the carbonyl group (that is, a deteriorated insulating oil) has a saturated moisture content as compared with the insulating oil before (or at the initial use). It seems that it is getting higher. In the first embodiment of the present invention, paying attention to this point, the saturated moisture content of the insulating oil is estimated from the amount of carbonyl groups contained (present) in the insulating oil, and the deterioration state of the insulating oil is determined. It is something to try.

なお、本発明の第1実施例においては、例えば、フーリエ変換赤外分光光度計(以下、単に分光光度計という)を用いて、絶縁油中に含まれるカルボニル基を定量的に分析する場合を一例として説明する。前記分光光度計を使用することで、絶縁油中のカルボニル基の存在をスペクトルにより特徴的に示すことができる。   In the first embodiment of the present invention, for example, a case where a carbonyl group contained in insulating oil is quantitatively analyzed using a Fourier transform infrared spectrophotometer (hereinafter simply referred to as a spectrophotometer). This will be described as an example. By using the spectrophotometer, the presence of the carbonyl group in the insulating oil can be characterized by the spectrum.

以下、本発明の第1実施例における絶縁油の劣化状態診断方法について説明する。まず、油入機器の定期点検等に際して、前記油入機器から採取した試料油を、分光光度計を用いて分析する。図2(a)は分光光度計を用いて分析した使用前における絶縁油(以下、新油という)のスペクトルの一例を、図2(b)は分光光度計を用いて分析した試料油のスペクトルの一例をそれぞれ示しており、新油においては、例えば、波数1,700cm-1近傍に吸光度のピークが発生していないのに対し、試料油においては、例えば、波数1,700cm-1近傍に吸光度のピークが発生していることがわかる(図2(b)において点線で囲んだ部分参照)。この波数1,700cm-1近傍における吸光度のピークはカルボニル基の存在を示しており、前記ピークの大きさ(以下、検出強度という)が絶縁油中に存在するカルボニル基の量に相当する。なお、前記カルボニル基の存在を示すピークが発生する波数は、絶縁油の種類によって若干異なる。 Hereinafter, a method for diagnosing the deterioration state of insulating oil in the first embodiment of the present invention will be described. First, sample oil collected from the oil-filled equipment is analyzed using a spectrophotometer during periodic inspection of the oil-filled equipment. FIG. 2 (a) shows an example of the spectrum of insulating oil (hereinafter referred to as new oil) before use analyzed using a spectrophotometer, and FIG. 2 (b) shows the spectrum of sample oil analyzed using a spectrophotometer. shows an example of each, in the fresh oil, for example, while the peak of absorbance in the vicinity of wave number 1,700Cm -1 has not occurred, in the sample oil, for example, in the vicinity of wave number 1,700Cm -1 It can be seen that an absorbance peak occurs (see the portion surrounded by a dotted line in FIG. 2B). The absorbance peak near the wave number of 1,700 cm −1 indicates the presence of a carbonyl group, and the magnitude of the peak (hereinafter referred to as detection intensity) corresponds to the amount of carbonyl group present in the insulating oil. The wave number at which the peak indicating the presence of the carbonyl group is generated varies slightly depending on the type of insulating oil.

つづいて、前記カルボニル基の検出強度から、絶縁油の飽和水分量を推定する。前記カルボニル基の検出強度と飽和水分量との間には、図3で示すような相関関係があることが本件発明者によって確認されており、図3で示す検量線を利用して、あらかじめ分析により得られているカルボニル基の検出強度から、絶縁油の飽和水分量を推定することができる(例えば、カルボニル基の検出強度が200であるとき、飽和水分量は305ppm程度であると推定できる)。なお、図3では、温度60℃、湿度100%という条件下でのカルボニル基の検出強度と飽和水分量との相関関係を示している。   Subsequently, the saturated water content of the insulating oil is estimated from the detected intensity of the carbonyl group. It has been confirmed by the present inventor that there is a correlation as shown in FIG. 3 between the detected intensity of the carbonyl group and the saturated water content, and analysis is performed in advance using the calibration curve shown in FIG. The saturated water content of the insulating oil can be estimated from the detected intensity of the carbonyl group obtained by (for example, when the detected intensity of the carbonyl group is 200, the saturated water content can be estimated to be about 305 ppm). . FIG. 3 shows the correlation between the detected intensity of the carbonyl group and the saturated water content under the conditions of a temperature of 60 ° C. and a humidity of 100%.

そして、前記のように推定した飽和水分量と、新油の飽和水分量との比較から、絶縁油の劣化状態を判定する。即ち、推定した飽和水分量が、新油の飽和水分量とほとんど変わらなければ、絶縁油の劣化はまだ進んでいないと判定することができ、また、推定した飽和水分量が、新油の飽和水分量より高いほど、絶縁油の劣化が進んでカルボニル基が増加し、水分を保持しやすくなっていると判定することができる。従って、水分を保持しやすくなっていると判定された絶縁油を交換することにより、油入機器の内部に錆が発生する等という問題の発生を未然に防ぐことができる。   Then, the deterioration state of the insulating oil is determined from the comparison between the saturated water amount estimated as described above and the saturated water amount of the new oil. In other words, if the estimated saturated moisture content is not substantially different from the saturated oil content of the new oil, it can be determined that the deterioration of the insulating oil has not yet progressed. It can be determined that the higher the moisture content is, the more the deterioration of the insulating oil proceeds and the carbonyl groups increase, making it easier to retain moisture. Therefore, it is possible to prevent the occurrence of problems such as the occurrence of rust in the oil-filled equipment by replacing the insulating oil that has been determined to easily retain moisture.

このように、本発明の第1実施例においては、分光光度計を用いて試料油を分析することにより得られたカルボニル基の検出強度から絶縁油の飽和水分量を推定し、前記飽和水分量から絶縁油の劣化状態(水分を保持しやすくなっているか否か)を判定するようにしたので、前記絶縁油の飽和水分量を迅速・容易に推定することができるとともに、劣化により水分を保持しやすくなっている(飽和水分量が高くなっている)絶縁油を容易に発見することができる。また、前記絶縁油の交換の要否や交換時期等をあらかじめ把握することができるとともに、水分を保持しやすくなっていると判定された絶縁油を必要な時期に交換することで、前記水分により油入機器の内部に発錆等の不具合が発生するのを未然に防ぐことができる。   Thus, in the first embodiment of the present invention, the saturated moisture content of the insulating oil is estimated from the detected intensity of the carbonyl group obtained by analyzing the sample oil using a spectrophotometer, and the saturated moisture content is calculated. From this, the deterioration state of the insulating oil (whether or not it is easy to retain moisture) is determined, so the saturated moisture content of the insulating oil can be estimated quickly and easily, and the moisture is retained by the deterioration. It is possible to easily find an insulating oil that is easily processed (high saturated water content). In addition, it is possible to grasp in advance whether or not the insulating oil needs to be replaced, the replacement timing, and the like, and by replacing the insulating oil that has been determined to easily retain moisture at a necessary time, It is possible to prevent problems such as rusting from occurring inside the input device.

次に、本発明の第2実施例について説明する。油入機器の運転に伴って絶縁油の劣化が進展し、絶縁油中のカルボニル基が増加すると、前記絶縁油の色は赤黄色に変色する。これは、前記カルボニル基が炭素と酸素の二重結合を有しており、この二重結合部分が赤黄色の発色団を形成しているためである。本発明の第2実施例においては、この点に着目し、油入機器から採取した試料油の色と使用前における絶縁油(以下、新油という)の色との差(以下、色差という)を求め、前記色差から絶縁油の飽和水分量を推定して、前記絶縁油の劣化状態を判定しようとするものである。   Next, a second embodiment of the present invention will be described. When the deterioration of the insulating oil progresses with the operation of the oil-filled equipment and the carbonyl group in the insulating oil increases, the color of the insulating oil changes to red yellow. This is because the carbonyl group has a carbon-oxygen double bond, and this double bond portion forms a red-yellow chromophore. In the second embodiment of the present invention, paying attention to this point, the difference between the color of the sample oil collected from the oil-filled equipment and the color of the insulating oil (hereinafter referred to as new oil) before use (hereinafter referred to as color difference). The saturated water content of the insulating oil is estimated from the color difference, and the deterioration state of the insulating oil is determined.

なお、本発明の第2実施例においては、前記絶縁油の色を測定する手段(以下、測色手段という)として、一般に広く使用されている表色系、例えば、L***表色系等により色を表すことが可能な測色計や色差計を用いるものとする。また、本発明の第2実施例においては、前記測色手段を使用して測定した絶縁油の色を、L***表色系により表す場合を一例として説明する。 In the second embodiment of the present invention, a color system commonly used as a means for measuring the color of the insulating oil (hereinafter referred to as color measuring means), such as an L * a * b * table, is widely used. It is assumed that a colorimeter or a color difference meter capable of expressing colors by a color system or the like is used. In the second embodiment of the present invention, the case where the color of the insulating oil measured using the colorimetric means is represented by an L * a * b * color system will be described as an example.

ここで、L***表色系について簡単に説明する。前記L***表色系は、直交するa*軸,b*軸(クロマティクネス指数を示す)と、前記a*軸,b*軸の交点と垂直に交差するL*軸(明度指数を示す)とを有する色空間立体イメージにより表される。前記明度指数L*は、黒−白方向の色の変化を表し、数値が大きくなるほど明度は高くなり、数値が小さくなる(0に近づく)ほど明度は低くなる。また、前記クロマティクネス指数a*は赤−緑方向の色の変化を、前記クロマティクネス指数b*は黄−青方向の色の変化をそれぞれ表し、数値が大きくなるほど鮮やかな色となり、数値が小さくなる(0(交点)に近づく)ほどくすんだ色となる。 Here, the L * a * b * color system will be briefly described. The L * a * b * color system includes an a * axis and a b * axis (indicating a chromaticness index) orthogonal to each other, and an L * axis (lightness) perpendicular to the intersection of the a * axis and b * axis. Represented by a color space stereoscopic image having an index). The lightness index L * represents a change in color in the black-white direction, and the lightness increases as the numerical value increases, and the lightness decreases as the numerical value decreases (closes to 0). The chromaticness index a * represents a change in color in the red-green direction, and the chromaticness index b * represents a change in color in the yellow-blue direction. The larger the value, the brighter the color, and the smaller the value. The color becomes dull as it becomes (closer to 0 (intersection)).

以下、本発明の第2実施例における絶縁油の劣化状態診断方法について説明する。まず、油入機器の定期点検等に際して、前記油入機器から採取した試料油の色を、測色計や色差計からなる測色手段を用いて測定する。つづいて、前記測定した試料油の明度指数L1 *及びクロマティクネス指数a1 *,b1 *と、新油の明度指数L0 *及びクロマティクネス指数a0 *,b0 *とを用いて、色差ΔEを求める。色差ΔEは、以下の式により求められる。
ΔE=〔(L0 *−L1 *2+(a0 *−a1 *2+(b0 *−b1 *21/2 ・・・(1)
Hereinafter, a method for diagnosing the deterioration state of insulating oil in the second embodiment of the present invention will be described. First, in the regular inspection of the oil-filled equipment, the color of the sample oil collected from the oil-filled equipment is measured using a colorimetric means comprising a colorimeter and a color difference meter. Subsequently, the lightness index L 1 * and chromaticness index a 1 * , b 1 * of the measured sample oil, and the lightness index L 0 * and chromaticness index a 0 * , b 0 * of the new oil were used. The color difference ΔE is obtained. The color difference ΔE is obtained by the following equation.
ΔE = [(L 0 * −L 1 * ) 2 + (a 0 * −a 1 * ) 2 + (b 0 * −b 1 * ) 2 ] 1/2 (1)

ここで、前記(1)式に具体的な数値を入れて色差ΔEを求めてみる。例えば、測定した試料油の明度指数L1 *が+33.08,クロマティクネス指数a1 *が+8.38,クロマティクネス指数b1 *が+42.04,新油の明度指数L0 *が+43.97,クロマティクネス指数a0 *が−2.41,クロマティクネス指数b0 *が+5.26であるとき、色差ΔEは、
ΔE=〔(33.08−43.97)2+(8.38−(−2.41))2
(42.04−5.26)21/2
=〔(−10.89)2+(10.79)2+(36.78)21/2
=39.85
となる。
Here, a specific numerical value is put into the equation (1) to find the color difference ΔE. For example, the lightness index L 1 * of the measured sample oil is +33.08, the chromaticness index a 1 * is +8.38, the chromaticness index b 1 * is +42.04, and the lightness index L 0 * of the new oil is +43. 97, when the chromaticness index a 0 * is −2.41 and the chromaticness index b 0 * is +5.26, the color difference ΔE is
ΔE = [(33.08−43.97) 2 + (8.38 − (− 2.41)) 2 +
(42.04-5.26) 2 ] 1/2
= [(-10.89) 2 + (10.79) 2 + (36.78) 2 ] 1/2
= 39.85
It becomes.

つづいて、前記色差ΔEから、絶縁油の飽和水分量を推定する。前記色差ΔEと飽和水分量との間には、図4で示すような相関関係があることが本件発明者によって確認されており、図4で示す検量線から、色差ΔE=39.85のときの飽和水分量は、270ppm程度であると推定することができる。なお、図4では、温度が60℃、湿度が100%という条件下での色差ΔEと飽和水分量との相関関係を示している。   Subsequently, the saturated water content of the insulating oil is estimated from the color difference ΔE. It has been confirmed by the present inventors that there is a correlation as shown in FIG. 4 between the color difference ΔE and the saturated water content. From the calibration curve shown in FIG. 4, the color difference ΔE = 39.85. It can be estimated that the saturated water content of is about 270 ppm. FIG. 4 shows the correlation between the color difference ΔE and the saturated moisture content under the conditions of a temperature of 60 ° C. and a humidity of 100%.

そして、前記のように推定した飽和水分量と、新油の飽和水分量との比較から、絶縁油の劣化状態を判定する。即ち、推定した飽和水分量が、新油の飽和水分量とほとんど変わらなければ、絶縁油の劣化はまだ進んでいないと判定することができ、また、推定した飽和水分量が、新油の飽和水分量より高いほど、絶縁油の劣化が進んでカルボニル基が増加し、水分を保持しやすくなっていると判定することができる。従って、水分を保持しやすくなっていると判定された絶縁油を交換することにより、油入機器の内部に錆が発生する等という問題の発生を未然に防ぐことができる。   Then, the deterioration state of the insulating oil is determined from the comparison between the saturated water amount estimated as described above and the saturated water amount of the new oil. In other words, if the estimated saturated moisture content is not substantially different from the saturated oil content of the new oil, it can be determined that the deterioration of the insulating oil has not yet progressed. It can be determined that the higher the moisture content is, the more the deterioration of the insulating oil proceeds and the carbonyl groups increase, making it easier to retain moisture. Therefore, it is possible to prevent the occurrence of problems such as the occurrence of rust in the oil-filled equipment by replacing the insulating oil that has been determined to easily retain moisture.

このように、本発明の第2実施例によれば、油入機器から採取した試料油と新油との色差から絶縁油の飽和水分量を推定し、前記飽和水分量から絶縁油の劣化状態(水分を保持しやすくなっているか否か)を判定するようにしたので、前記絶縁油の飽和水分量を迅速・容易に推定することができるとともに、劣化により水分を保持しやすくなっている(飽和水分量が高くなっている)絶縁油を容易に発見することができる。また、前記絶縁油の交換の要否や交換時期等をあらかじめ把握することができるとともに、水分を保持しやすくなっていると判定された絶縁油を必要な時期に交換することで、前記水分により油入機器の内部に発錆等の不具合が発生するのを未然に防ぐことができる。   Thus, according to the second embodiment of the present invention, the saturated water content of the insulating oil is estimated from the color difference between the sample oil and the new oil collected from the oil-filled device, and the deterioration state of the insulating oil is determined from the saturated water content. Since it is determined (whether or not it is easy to retain moisture), the saturated moisture content of the insulating oil can be estimated quickly and easily, and moisture is easily retained due to deterioration ( Insulating oils with high saturated water content can be easily found. In addition, it is possible to grasp in advance whether or not the insulating oil needs to be replaced, the replacement timing, and the like, and by replacing the insulating oil that has been determined to easily retain moisture at a necessary time, It is possible to prevent problems such as rusting from occurring inside the input device.

また、本発明の別の実施の形態として、加熱試験により絶縁油の飽和水分量を測定する等、適宜の方法により絶縁油の飽和水分量を測定するようにしてもよい。   Further, as another embodiment of the present invention, the saturated moisture content of the insulating oil may be measured by an appropriate method such as measuring the saturated moisture content of the insulating oil by a heating test.

カルボニル基及びカルボニル基を含む主な基(アルデヒド基、カルボキシル基、エステル基)の構造式を示す図である。It is a figure which shows structural formula of the main groups (aldehyde group, carboxyl group, ester group) containing a carbonyl group and a carbonyl group. (a)は使用前の絶縁油(新油)を分光光度計により分析した結果の一例を示すスペクトル、(b)は試料油(劣化した絶縁油)を分光光度計により分析した結果の一例を示すスペクトルである。(A) is a spectrum showing an example of the result of analyzing the insulating oil (new oil) before use with a spectrophotometer, (b) is an example of the result of analyzing the sample oil (deteriorated insulating oil) with a spectrophotometer. It is a spectrum to show. カルボニル基の検出強度と飽和水分量との相関関係を示す図である。It is a figure which shows the correlation with the detection intensity | strength of a carbonyl group, and saturated water content. 色差と飽和水分量との相関関係を示す図である。It is a figure which shows the correlation of a color difference and saturated water content.

Claims (2)

油入機器から採取した絶縁油の試料中のカルボニル基の量を定量分析し、前記カThe amount of carbonyl groups in the sample of insulating oil collected from the oil-filled equipment is quantitatively analyzed and the
ルボニル基の量から絶縁油の飽和水分量を推定して、前記絶縁油の劣化状態を判定Estimate the saturated moisture content of the insulating oil from the amount of rubonyl groups, and judge the deterioration state of the insulating oil.
するようにしたことを特徴とする油入機器における絶縁油の劣化状態診断方法。A method for diagnosing the deterioration state of insulating oil in oil-filled equipment.
油入機器から採取した絶縁油の試料と使用前における絶縁油との色差を求め、前Obtain the color difference between the insulation oil sample collected from the oil-filled equipment and the insulation oil before use.
記色差から絶縁油の飽和水分量を推定して、前記絶縁油の劣化状態を判定するようEstimating the saturated moisture content of the insulating oil from the color difference and determining the deterioration state of the insulating oil
にしたことを特徴とする油入機器における絶縁油の劣化状態診断方法。A method for diagnosing the deterioration state of insulating oil in oil-filled equipment.
JP2008082695A 2008-03-27 2008-03-27 Degradation state diagnosis method of insulating oil in oil-filled equipment Active JP5081685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082695A JP5081685B2 (en) 2008-03-27 2008-03-27 Degradation state diagnosis method of insulating oil in oil-filled equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082695A JP5081685B2 (en) 2008-03-27 2008-03-27 Degradation state diagnosis method of insulating oil in oil-filled equipment

Publications (2)

Publication Number Publication Date
JP2009236665A JP2009236665A (en) 2009-10-15
JP5081685B2 true JP5081685B2 (en) 2012-11-28

Family

ID=41250803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082695A Active JP5081685B2 (en) 2008-03-27 2008-03-27 Degradation state diagnosis method of insulating oil in oil-filled equipment

Country Status (1)

Country Link
JP (1) JP5081685B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156170A (en) * 2012-01-30 2013-08-15 Nabtesco Corp Detection method of moisture content in oil and detection device thereof
KR101494382B1 (en) * 2013-05-20 2015-02-24 한국 전기안전공사 Diagnosis method and apparatus of transformer oil
JP6952091B2 (en) * 2019-10-28 2021-10-20 株式会社トーエネック Oil deterioration diagnosis device and oil deterioration diagnosis method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005840A (en) * 2000-06-20 2002-01-09 Aichi Electric Co Ltd Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus

Also Published As

Publication number Publication date
JP2009236665A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
US7612874B2 (en) Method and apparatus for monitoring oil deterioration in real time
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
DK2615444T3 (en) Method and apparatus for determining the degradation state of a lubricating oil
JP4703519B2 (en) Remaining life diagnosis device for power transformers
JP2012173183A (en) Service life inspection method of cable coating material
KR20120115527A (en) Diagnostic method and apparatus for assessing the insulation condition of electrical equipment insulated with oil
KR20120123385A (en) Method and device for deriving the concentration of a gas dissolved in an electrical insulation oil
RU2329502C1 (en) Method of on-line oil performance monitoring and associated intrument
JP5081685B2 (en) Degradation state diagnosis method of insulating oil in oil-filled equipment
EP3327736B1 (en) Method for determining abnormality in oil-filled electric apparatus
JP4703223B2 (en) Degradation diagnosis method for oil-filled transformers
JP6191643B2 (en) Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
JP6419406B1 (en) Diagnostic method for oil-filled electrical equipment
Gumilang Hydrolysis process in PLN P3BJB transformers as an effect of oil insulation oxidation
JPH04241407A (en) Deterioration diagnosing method for insulating paper of oil-immersed electric apparatus
JP2010256208A (en) Method for diagnosing secular deterioration of insulating oil in electric device
Schwarz et al. Diagnostic methods for transformers
JP5337303B2 (en) Diagnostic method and apparatus for oil-filled electrical equipment
JP5673731B2 (en) Life test method for cable coating materials
JP2010230412A (en) Monitoring apparatus of deterioration of lubricating oil
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
Bernard et al. Compatibility of mineral insulating oil with transformer construction materials
JP5550034B2 (en) Degradation diagnosis method for polymer materials
JP3923257B2 (en) Insulation deterioration diagnosis method
KR101438158B1 (en) Method and apparatus for predicting life time of transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250