JP2002005840A - Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus - Google Patents

Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus

Info

Publication number
JP2002005840A
JP2002005840A JP2000183927A JP2000183927A JP2002005840A JP 2002005840 A JP2002005840 A JP 2002005840A JP 2000183927 A JP2000183927 A JP 2000183927A JP 2000183927 A JP2000183927 A JP 2000183927A JP 2002005840 A JP2002005840 A JP 2002005840A
Authority
JP
Japan
Prior art keywords
oil
volatile component
deterioration
insulating
insulating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000183927A
Other languages
Japanese (ja)
Inventor
Kiwamu Miyajima
極 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2000183927A priority Critical patent/JP2002005840A/en
Publication of JP2002005840A publication Critical patent/JP2002005840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To infer the remaining life of an oil-filled electrical apparatus by measuring the generated amount of the degradation product of a sheet of insulating paper dissolved in an insulating oil with a detecting agent. SOLUTION: A volatile component, which is dissolved in the insulating oil of the oil-filed electrical apparatus and which is composed of aldehydes, ketones or the like, is extracted. The extracted volatile component is reacted with a filler, which is reacted specifically with the volatile component. The color value of its color region is correlated with an average degree of polymerization, which expresses the deterioration degree of the sheet of insulating paper which is set in advance. By taking into consideration the average polymerization degree of the sheet of insulating paper in the color value, the deterioration degree of the electrical apparatus is diagnosed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油入電気機器の絶
縁油中に溶存している劣化生成物(例えば、アルデヒ
ド,ケトン類)を簡易な手段により測定し、前記劣化生
成物の含有量に応じて油入電気機器の余寿命を推定する
ようにした、簡易な油入電気機器の劣化診断方法とその
装置の改良に関するものである。
[0001] The present invention relates to a method for measuring the degradation products (eg, aldehydes and ketones) dissolved in insulating oil of oil-filled electrical equipment by simple means, and measuring the content of the degradation products. The present invention relates to a simple method for diagnosing deterioration of an oil-filled electric device and estimating a device thereof for estimating a remaining life of the oil-filled electric device in accordance with the following.

【0002】[0002]

【従来の技術】油入式の変圧器やコンデンサに代表され
る油入電気機器の効率的な使用を考えた場合、最適な時
点でのリプレイスや撤去,補修の要・否を判断するため
に、非破壊で変圧器等油入電気機器の絶縁材料の劣化状
況を評価できる手法を早急に確立する必要が日々高まっ
ている。
2. Description of the Related Art When considering the efficient use of oil-filled electrical equipment typified by oil-filled transformers and condensers, it is necessary to determine whether replacement, removal, or repair is necessary or not at the optimal time. The need to quickly establish a method for non-destructively evaluating the state of deterioration of insulating materials of oil-filled electrical equipment such as transformers is increasing every day.

【0003】油入電気機器の中で、例えば、油入変圧器
のコイルに巻装されている絶縁材料(絶縁紙)において
その劣化が進行すると、落雷による電気的ストレス、あ
るいは、外部短絡時の電磁力による機械的ストレスを受
けた場合、油入変圧器は破壊される危険性が増してく
る。
In oil-filled electrical equipment, for example, when the deterioration of an insulating material (insulating paper) wound on a coil of an oil-filled transformer progresses, an electrical stress due to a lightning strike or an external short circuit occurs. When subjected to mechanical stress due to electromagnetic force, the oil-immersed transformer has an increased risk of being destroyed.

【0004】油入変圧器の寿命を決定づけるコイルの絶
縁紙における経年劣化傾向は、絶縁性能の低下はほとん
ど見られない反面、引張強度は十数年を経過した場合、
初期値の約30%に低下している場合もあり、絶縁紙自
体の機械的強度が機器の劣化判断(寿命予測)を行う上
で大きな問題になると考えられる。この結果、前記絶縁
紙がどの程度機械的強度が低下したら、機器の運転継続
に支障を来すかを知ることは非常に重要なことである。
[0004] The tendency of the coil insulating paper, which determines the service life of the oil-immersed transformer, to deteriorate over time, shows that the insulation performance is hardly deteriorated, but the tensile strength is more than ten years old.
In some cases, it has decreased to about 30% of the initial value, and the mechanical strength of the insulating paper itself is considered to be a major problem in determining the deterioration of the device (life expectancy). As a result, it is very important to know how low the mechanical strength of the insulating paper will be to hinder the continuation of the operation of the equipment.

【0005】前記の問題は、運転中の油入変圧器におい
て絶縁紙の平均重合度を測定すれば容易に把握できる
が、現実問題として運転中の機器から絶縁紙を取り出し
て劣化診断を行うことは物理的に不可能であり、即ち、
どのようにして非破壊方法で絶縁紙の平均重合度を測定
するかが大きな課題となっていた。
The above problem can be easily grasped by measuring the average degree of polymerization of the insulating paper in the oil-immersed transformer during operation. However, as a practical problem, it is necessary to take out the insulating paper from the operating device and perform a deterioration diagnosis. Is physically impossible, ie
A major issue has been how to measure the average degree of polymerization of insulating paper by a non-destructive method.

【0006】このため、従来から絶縁紙が劣化した場
合、その平均重合度の低下によりフルフラールが生成さ
れ、これが絶縁油中に溶存していることは関係者の間で
よく知られている。一方、絶縁紙の引張強度、平均重合
度残率及びフルフラールの生成量には相関関係があるこ
ともよく知られている。従って、絶縁油中に溶存したフ
ルフラールの量を測定すれば、絶縁紙の劣化度、即ち、
油入変圧器の余寿命を推定することができる。しかし、
この絶縁油中に溶有しているフルフラールの量の測定
は、これまで例えば、高速液体クロマトグラフを用いて
実施していた。
[0006] For this reason, it has been well known among concerned persons that, when insulating paper is deteriorated, furfural is generated due to a decrease in the average degree of polymerization, and this is dissolved in insulating oil. On the other hand, it is well known that there is a correlation between the tensile strength of the insulating paper, the average residual polymerization degree, and the amount of furfural produced. Therefore, if the amount of furfural dissolved in the insulating oil is measured, the degree of deterioration of the insulating paper, that is,
The remaining life of the oil-filled transformer can be estimated. But,
The measurement of the amount of furfural dissolved in the insulating oil has hitherto been performed using, for example, a high performance liquid chromatograph.

【0007】[0007]

【発明が解決しようとする課題】前記高速液体クロマト
グラフを用いて絶縁油中のフルフラール濃度及び量を測
定する場合、その取扱いは非常に熟練を要するととも
に、高速液体ガスクロマトグラフ自体が高価であるとい
う問題があった。その上、前記高速液体クロマトグラフ
自体重量物であるため、移動診断車等に車載して利用し
ていたので、例えば、油入変圧器の設置場所によっては
車輛を乗り入れることができないところであると、試料
油を採集したあと、これを車輛が駐車している場所まで
運んで絶縁油中に溶存しているガス成分等の分析を行わ
なければならず、即ち、携帯・可搬に不向であるため、
現地での油入変圧器の寿命診断は、熟練した技術者を必
要とすることと相まって手間と労力を要し、非効率的で
あった。
When the concentration and amount of furfural in insulating oil are measured by using the high performance liquid chromatograph, the handling requires extremely skill and the high performance liquid gas chromatograph itself is expensive. There was a problem. In addition, because the high-performance liquid chromatograph itself is a heavy object, it is used by being mounted on a mobile diagnostic vehicle or the like.For example, depending on the installation location of the oil-immersed transformer, if the vehicle cannot be driven, After collecting the sample oil, it must be transported to the place where the vehicle is parked to analyze the gas components and the like dissolved in the insulating oil, that is, it is not suitable for carrying and carrying. For,
The on-site life assessment of oil-filled transformers, coupled with the need for skilled technicians, was labor intensive and labor intensive, and was inefficient.

【0008】又、油入変圧器に絶縁油を浄油する活性ア
ルミナが油中に浸漬させてある場合、前記フルフラール
は絶縁油中に溶存していたとしても、時間の経過ととも
に活性アルミナに吸着されてしまうため、この種機器の
余寿命の推定に際し、前記フルフラールの濃度を測定し
ても、それが吸着により残存量が低下していたりする
と、果してその測定結果に基づいての余寿命診断が、正
しいものであるかとの疑問が生じるという問題があっ
た。
When activated alumina for purifying insulating oil is immersed in the oil-immersed transformer in the oil, even if the furfural is dissolved in the insulating oil, it is adsorbed on the activated alumina over time. Therefore, when estimating the remaining life of this type of equipment, even if the concentration of the furfural is measured, if the remaining amount is reduced due to adsorption, the remaining life diagnosis based on the measurement result will be performed. However, there is a problem that a question as to whether or not it is correct arises.

【0009】本発明は、前記の課題に鑑み、油入電気機
器の寿命診断を簡易に、しかも、低コストで行うことが
できる油入電気機器の劣化診断方法、及び携行に至便な
診断装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method for diagnosing deterioration of oil-filled electrical equipment, which can be performed easily and at low cost, and a diagnostic apparatus which is easy to carry. To provide.

【0010】[0010]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、請求項1記載の油入電気機器の劣化診
断方法は、油入電気機器の絶縁油中に溶存しているアル
デヒド,ケトン類等からなる揮発性成分を抽出し、前記
抽出した揮発性成分を、この揮発性成分と特異に反応す
る充填剤と反応させて、その呈色域の呈色値とあらかじ
め設定した絶縁紙の劣化度を表す平均重合度との相関に
より、前記呈色値における絶縁紙の平均重合度を判断し
て、油入電気機器の劣化度を診断するようにしたことを
特徴とする。
According to the present invention, there is provided a method for diagnosing deterioration of an oil-filled electrical device according to the first aspect of the present invention, which is dissolved in insulating oil of the oil-filled electrical device. Volatile components composed of aldehydes, ketones, etc. are extracted, and the extracted volatile components are reacted with a filler that reacts specifically with the volatile components, and the color values in the color gamut are set in advance. The average degree of polymerization of the insulating paper at the color value is determined based on the correlation with the average degree of polymerization indicating the degree of deterioration of the insulating paper, and the degree of deterioration of the oil-filled electrical device is diagnosed.

【0011】請求項2記載の油入電気機器の劣化診断方
法は、請求項1記載の劣化診断方法において、前記揮発
性成分と特異に反応する充填剤は、2,4−ジニトロフ
ェニルヒドラジン等ヒドラジン類を用いたことを特徴と
する。
According to a second aspect of the present invention, there is provided a method for diagnosing deterioration of an oil-filled electric device, wherein the filler which specifically reacts with the volatile component is hydrazine such as 2,4-dinitrophenylhydrazine. It is characterized by using a kind.

【0012】請求項3記載の油入電気機器の劣化診断装
置は、絶縁油から油中に溶存している溶存ガス等の揮発
性成分を抽出する抽出手段と、前記抽出手段と連通して
揮発性成分に含有されているアルデヒド,ケトン類等か
らなる揮発性成分と特異に反応させて呈色させる呈色剤
を充填した検量手段と、検量手段と連通されて抽出手段
内の絶縁油中より揮発性成分を抽出させる抽出駆動手段
とを具備して構成したことを特徴とする。
According to a third aspect of the present invention, there is provided a deterioration diagnosis apparatus for an oil-filled electric device, comprising: extraction means for extracting a volatile component such as a dissolved gas dissolved in oil from insulating oil; Calibration means filled with a colorant that causes a specific reaction with the volatile components such as aldehydes and ketones contained in the volatile component, and a colorant that is communicated with the calibration means to extract the color from the insulating oil in the extraction means. Extraction drive means for extracting volatile components.

【0013】請求項4記載の油入電気機器の劣化診断装
置は、請求項3記載の劣化診断装置において、前記抽出
手段と連通する検量手段は、前記抽出手段に対して複数
本を並列に配管接続して構成したことを特徴とする。
According to a fourth aspect of the present invention, there is provided the deterioration diagnosis apparatus for oil-filled electrical equipment according to the third aspect, wherein a plurality of calibration means communicating with the extraction means are connected in parallel with the extraction means. It is characterized by being connected and configured.

【0014】本発明においては、絶縁油中のアルデヒ
ド,ケトン類等からなる揮発性成分を測定するに当たっ
ては、絶縁油中に溶存する前記揮発性成分とのみ特異に
反応する充填剤を詰めた検量手段に、前記絶縁油中より
抽出した揮発性成分を送出し、揮発性成分を充填剤と反
応させて呈色し、この呈色域の数値を視認(読み取る)
ことにより、揮発性成分の平均重合度を測定し、この測
定値に基づいて油入電気機器の劣化(余寿命を推定す
る)診断を行うようにしたので、これまでの、高速液体
クロマトグラフを用いて劣化診断を行う場合に比べ、操
作が単純で簡易に、かつ、低コスト診断することができ
るという効果を奏する。
In the present invention, when measuring volatile components such as aldehydes and ketones in insulating oil, a calibration method is used in which a filler that specifically reacts with the volatile components dissolved in insulating oil is packed. The volatile component extracted from the insulating oil is sent to the means, and the volatile component reacts with the filler to form a color. The numerical value of the color range is visually recognized (read).
As a result, the average degree of polymerization of volatile components was measured, and the deterioration (estimating the remaining life) of the oil-filled electrical equipment was diagnosed based on the measured value. As compared with the case where the deterioration diagnosis is performed by using the diagnosis, there is an effect that the operation can be performed simply, easily, and at a low cost.

【0015】しかも、絶縁油中から抽出するアルデヒド
類等揮発性成分の測定に際しては、絶縁油中から揮発性
成分を抽出する抽出手段と、前記抽出した揮発性成分の
呈色域を呈示する検量手段とを組合せることにより、容
易に劣化診断装置を構成することができるため、油入電
気機器の設置場所においての劣化診断を行うことが可能
となる結果、即ち、劣化診断装置を携行しての診断を行
うことができるので、これまでのように、高速液体クロ
マトグラフ等高価な測定機器や熟練技術者を特別に必要
とすることなく、簡易に、かつ、経済的に油入電気機器
の劣化診断が行い得、利便である。
Further, when measuring volatile components such as aldehydes extracted from the insulating oil, an extraction means for extracting the volatile components from the insulating oil, and a calibration for presenting the color gamut of the extracted volatile components. By combining the means and the means, it is possible to easily configure the deterioration diagnosis device, so that it is possible to perform the deterioration diagnosis at the installation location of the oil-filled electrical equipment, that is, to carry the deterioration diagnosis device Diagnosis can be performed easily and economically without the need for expensive measuring equipment such as a high-performance liquid chromatograph or skilled technicians. Deterioration diagnosis can be performed, which is convenient.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図1ない
し図5によって説明する。図1は絶縁油を封入した変圧
器等油入電気機器(以下、変圧器という)1の縦断面図
であり、鉄心1aにコイル1bを巻回して形成した変圧
器本体2をケース3に収容し、このケース3に絶縁油4
を注入・密封することにより構成されていた。5はケー
ス3下部に設けた絶縁油4抜取り用の排油コックであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a vertical cross-sectional view of an oil-filled electric device such as a transformer (hereinafter, referred to as a transformer) 1 in which insulating oil is sealed. A transformer main body 2 formed by winding a coil 1b around an iron core 1a is housed in a case 3. Then, the insulating oil 4
Was injected and sealed. Reference numeral 5 denotes an oil drain cock provided at a lower portion of the case 3 for extracting the insulating oil 4.

【0017】図2において、6はケース3内の絶縁油4
を大気に晒すことなく、所定量抜き取ることができるシ
リンジ(採油器)で、このシリンジ6による絶縁油4の
抜き取りは、注射器の操作と同様にシリンジ6の容器6
b内からピストン杆6aを引き抜く方向に移動させるこ
とにより、簡単に絶縁油4をシリンジ6に採油すること
ができる。
In FIG. 2, reference numeral 6 denotes the insulating oil 4 in the case 3.
The syringe 6 can be used to remove a predetermined amount of the insulating oil 4 without exposing the insulating oil 4 to the container 6 in the same manner as the operation of the syringe.
By moving the piston rod 6a in the direction in which the piston rod 6a is pulled out from the inside b, the insulating oil 4 can be easily collected in the syringe 6.

【0018】つづいて、図3により本発明の劣化診断装
置11の構成について説明する。この劣化診断装置11
は大別して、絶縁油4中に溶存している残存ガスや、揮
発性成分(劣化生成物)を抽出するための抽出手段12
と、変圧器1の劣化診断に使用する揮発性成分と反応し
て所定の色に呈色し、その呈色域の数値を読み取ること
により変圧器1の劣化度を診断するための揮発性成分を
測定するための検量手段13と、絶縁油4中から溶存ガ
ス成分等の揮発性成分を抽出させるための抽出駆動手段
14とによって概略構成されている。
Next, the configuration of the deterioration diagnosis apparatus 11 of the present invention will be described with reference to FIG. This degradation diagnostic device 11
Is roughly divided into extraction means 12 for extracting residual gas dissolved in the insulating oil 4 and volatile components (deterioration products).
And a volatile component used for diagnosing the deterioration of the transformer 1 by reacting with the volatile component used for the deterioration diagnosis of the transformer 1 to form a predetermined color and reading the numerical value of the color gamut. And an extraction drive unit 14 for extracting volatile components such as dissolved gas components from the insulating oil 4.

【0019】次に前記各手段の構造について説明する。
最初に、抽出手段12について説明する。この抽出手段
12は、変圧器1から抜き取った絶縁油4を収容する採
油ビン15を備えており、この採油ビン15は絶縁油4
中に塵埃等が侵入するのを防ぐためにカバー体15aが
常時被着されている。そして、前記採油ビン15のカバ
ー体15aには、絶縁油4や外気や圧縮空気を採油ビン
15に注入させるための流入管16と、バブリングによ
り抽出した溶存ガスや揮発性成分を検量手段13に給送
するための給送管17が、それぞれ上下方向に所要の長
さ寸法を備えて気密に配管接続されている。
Next, the structure of each means will be described.
First, the extracting unit 12 will be described. The extracting means 12 includes an oil collecting bin 15 for storing the insulating oil 4 extracted from the transformer 1.
A cover 15a is always attached to prevent dust and the like from entering the inside. The cover 15a of the oil sampling bin 15 has an inflow pipe 16 for injecting the insulating oil 4, the outside air or the compressed air into the oil sampling bin 15, and the dissolved gas and volatile components extracted by bubbling to the calibration means 13. Feed pipes 17 for feeding are provided with required lengths in the vertical direction, and are connected in a gas-tight manner.

【0020】又、18は採油ビン15の加熱装置を示
し、採油ビン15内の絶縁油4を所要温度に加熱するこ
とにより、溶存ガス成分等の抽出を良好に行うもので、
例えば、筐体の内側に電熱ヒータ19を配設する等して
形成されている。なお、前記加熱装置18については、
絶縁油4の採取現場に電源がない場合も想定されるた
め、必ずしも必要とはしないが、この場合、携行可能な
発電機や電池等を持参すれば電源問題は解決可能であ
る。
Reference numeral 18 denotes a heating device for the oil sampling bin 15, which heats the insulating oil 4 in the oil sampling bin 15 to a required temperature so as to satisfactorily extract dissolved gas components and the like.
For example, it is formed by disposing an electric heater 19 inside the housing. In addition, about the said heating apparatus 18,
Although there is no need for a power source at the site where the insulating oil 4 is collected, it is not always necessary, but in this case, the problem of the power source can be solved by bringing a portable generator or battery.

【0021】つづいて、検量手段13の構造について説
明する。前記検量手段13は、内部に絶縁油4のバブリ
ングによって各種の溶存ガス成分等とともに抽出される
アルデヒド類,ケトン類等の揮発性成分と特異に反応し
て所定の色に呈色する充填剤を封入した透明なガラスや
合成樹脂からなる検知管20を具備して構成されてお
り、前記検知管20の一方は、採油ビン15に一端を連
通可能に取付けた給送管17の先端が気密に取付けられ
ている。又、検知管20の他方は、抽出駆動手段14に
連結管21を介して接続されている。
Next, the structure of the calibration means 13 will be described. The calibrating means 13 contains a filler which has a specific color by reacting specifically with volatile components such as aldehydes and ketones extracted together with various dissolved gas components by bubbling of the insulating oil 4 therein. It has a detection tube 20 made of transparent glass or synthetic resin sealed therein. One end of the detection tube 20 is air-tightly connected to the tip of a feed tube 17 having one end connected to the oil sampling bin 15. Installed. The other end of the detection tube 20 is connected to the extraction driving means 14 via a connection tube 21.

【0022】前記検出管20に封入されている充填剤と
しては、絶縁油4中より抽出されるアルデヒド類等と特
異に反応する例えば、2,4−ジニトロフェニルヒドラ
ジン等ヒドラジン類をシリカゲルやアルミナ等の表面に
コーテングしたり、混入させたりして形成した粒状の充
填剤(以下、検知剤という)が定量充填されており、前
記検知剤は測定対象となる気体のみと反応して呈色し、
鮮明な呈色域を示すとともに、その呈色域を長期にわた
り安定して維持できるように形成されている。また、前
記検知管20は呈色域を計量的に正確に測定することが
できるように、所定寸法毎に目盛(図5参照)22が刻
設されている。
As the filler sealed in the detection tube 20, for example, hydrazines such as 2,4-dinitrophenylhydrazine which reacts specifically with aldehydes extracted from the insulating oil 4 may be used such as silica gel or alumina. The surface of the is coated or mixed, and a granular filler (hereinafter, referred to as a detecting agent) formed by being mixed is fixedly filled, and the detecting agent reacts only with a gas to be measured to form a color,
It is formed so as to show a clear color gamut and maintain the color gamut stably for a long period of time. The detection tube 20 is provided with a scale 22 (see FIG. 5) for each predetermined dimension so that the color gamut can be measured quantitatively and accurately.

【0023】前記検知管20は、変圧器1の絶縁油4か
ら抽出されるアルデヒド類等の揮発性成分を測定する毎
に、給送管17と後述する抽出駆動手段14との間にそ
れぞれ気密に挿入接続して使用する。つづいて、前記し
た検知管20と接続する抽出駆動手段14の構造につい
て説明する。この抽出手段14は、図3に示すように、
シリンダ23に手動ピストン24を内蔵して検知管20
に通気を行わせるように構成した吸引ポンプ25からな
り、この吸引ポンプ25先端のシリンダ23と連結管2
1との接続部には、一方の逆止弁26が、シリンダ23
の先端上部には、他方の逆止弁27がそれぞれ設けられ
ている。
Each time a volatile component such as an aldehyde extracted from the insulating oil 4 of the transformer 1 is measured, the detecting tube 20 is airtight between the feeding tube 17 and the extraction driving means 14 described later. Connect to and use. Next, the structure of the extraction driving means 14 connected to the detection tube 20 will be described. This extraction means 14, as shown in FIG.
Built-in manual piston 24 in cylinder 23
A suction pump 25 configured to allow air to flow through the cylinder 23 and the connecting pipe 2
One check valve 26 is connected to the cylinder 23
The other check valve 27 is provided in the upper part of the tip of the other.

【0024】前記連結管21と接続する逆止弁26は、
手動ピストン24を引いて検知管20内を流通する溶存
ガス成分等の揮発性成分をシリンダ23内に流入させる
ときには開き、逆に手動ピストン24をシリンダ23内
に押し戻したときは、シリンダ23内の通気等を検知管
20側に送出しないように閉じる。又、シリンダ23の
先端頂部に取付けた他方の逆止弁27は、前記手動ピス
トン24の操作によって、検知管20内を素通りした検
知剤と反応しない溶存ガス成分等の揮発性成分が、シリ
ンダ23内に流入したときは閉じ、逆に、シリンダ23
内の通気等を排出させるために、手動ピストン24をシ
リンダ23内に押動したときは開き、シリンダ23内の
揮発性成分等をシリンダ23外に排出する。これは、手
動式の吸引ポンプ25を駆動することにより、外気が検
知管20内に逆流して絶縁油4中から抽出した前記揮発
性成分と外気とが混合し、揮発性成分の呈色反応に悪影
響が及ぶのを防止するに他ならない。
The check valve 26 connected to the connecting pipe 21 is
When the manual piston 24 is pulled to open a volatile component such as a dissolved gas component flowing through the detection tube 20 into the cylinder 23, it is opened when the manual piston 24 is pushed back into the cylinder 23. It closes so that ventilation etc. are not sent to the detection tube 20 side. The other check valve 27 attached to the top of the tip of the cylinder 23 causes the volatile component such as a dissolved gas component which does not react with the detection agent passed through the inside of the detection pipe 20 by the operation of the manual piston 24 to become a cylinder 23. When it flows into the cylinder, it closes.
When the manual piston 24 is pushed into the cylinder 23 in order to discharge the air inside the cylinder 23, the manual piston 24 is opened and the volatile components and the like in the cylinder 23 are discharged outside the cylinder 23. This is because, when the manual suction pump 25 is driven, the outside air flows back into the detection tube 20 and the volatile components extracted from the insulating oil 4 and the outside air are mixed with each other. To prevent harm to the environment.

【0025】次に、動作について説明する。最初に、寿
命予測を行う変圧器から所要の溶存ガス成分等の抽出を
行うための試料油(絶縁油4)の抜き取りを行う。この
場合は、例えば、図1,2に示すように、変圧器1のケ
ース3下部に設けた排油コック5のフランジに、絶縁油
拭取り用の小径な排出管7を具備した第2の排油コック
5aを油密に装着する。この後、シリンジ6先端の小径
な噴油筒を排出管7に密に嵌合した状態で、排油コック
5,5aを順次開放する。排油コック5,5aの開放に
よりケース3内の絶縁油4は排出管7に流出するが、排
出管7にはシリンジ6の先端部が密に嵌合しているの
で、絶縁油4は排出管7から外部に漏出することはな
い。
Next, the operation will be described. First, a sample oil (insulating oil 4) for extracting required dissolved gas components and the like is extracted from the transformer for which the life is predicted. In this case, for example, as shown in FIGS. 1 and 2, a second outlet provided with a small-diameter drain pipe 7 for wiping insulating oil is provided on a flange of an oil drain cock 5 provided below the case 3 of the transformer 1. The drain cock 5a is mounted oil-tight. Thereafter, the oil drain cocks 5 and 5a are sequentially opened with the small diameter oil jet cylinder at the tip of the syringe 6 closely fitted to the discharge pipe 7. When the oil drain cocks 5 and 5a are opened, the insulating oil 4 in the case 3 flows out to the discharge pipe 7, but since the distal end of the syringe 6 is tightly fitted to the discharge pipe 7, the insulating oil 4 is discharged. It does not leak out of the pipe 7.

【0026】この状態で、シリンジ6を注射器の要領で
そのピストン杆6aを徐々に後退させて、シリンジ6の
容器6b内に絶縁油4をほとんど大気と接触させること
なく、例えば、5〜50ml注入させる。絶縁油4をシ
リンジ6に注油したら排油コック5,5aを閉じ、排出
管7よりシリンジ6の先端の噴油筒を抜き取ることによ
って、絶縁油4の採油を終える。次に、前記シリンジ6
により絶縁油4を所定量採油したら、前記シリンジ6の
噴油筒を流入管16に差込み、シリンジ6のピストン杆
6aを押動して容器6b内の絶縁油4を採油ビン15に
注入する。この際、給送管17の採油ビン15から突出
する先端は、検知管20と接続されていないので、大気
中に開放されているので、絶縁油4の採油ビン15への
移し替えは容易に行うことができる。
In this state, the piston 6a of the syringe 6 is gradually retracted in the same manner as a syringe, and the insulating oil 4 is injected into the container 6b of the syringe 6 almost without contacting the atmosphere with, for example, 5 to 50 ml. Let it. When the insulating oil 4 is injected into the syringe 6, the oil drain cocks 5 and 5 a are closed, and the oil jet cylinder at the tip of the syringe 6 is pulled out from the discharge pipe 7, thereby completing the oiling of the insulating oil 4. Next, the syringe 6
After a predetermined amount of the insulating oil 4 is collected, the oil cylinder of the syringe 6 is inserted into the inflow pipe 16, and the piston rod 6 a of the syringe 6 is pushed to inject the insulating oil 4 in the container 6 b into the oil collecting bottle 15. At this time, since the leading end of the feed pipe 17 protruding from the oil sampling bin 15 is not connected to the detection pipe 20 and is open to the atmosphere, the transfer of the insulating oil 4 to the oil sampling bin 15 can be easily performed. It can be carried out.

【0027】なお、前記絶縁油4を採油ビン15に注入
する場合、流入管16からでなく、カバー体15aを外
してシリンジ6の噴油筒から容器6b内の絶縁油4を採
油ビン15内に注入したり、あるいは、流入管16から
注入する場合、給送管17の先端を前記のように、開放
することなく、事前に検知管20を接続させた状態で絶
縁油4を採油ビン15に注入してもよい。この場合、検
知管20の給送管17と接続しない反対側を開放してお
くか、その部位に吸引ポンプ25を取付けた状態でも、
良好に絶縁油4を採油ビン15に注入することができ
る。
When the insulating oil 4 is injected into the oil sampling bottle 15, the insulating oil 4 in the container 6b is removed from the injection cylinder of the syringe 6 by removing the cover 15a and not from the inflow pipe 16. When injecting the oil from the inflow pipe 16 or the inflow pipe 16, as described above, the insulating oil 4 is not connected to the detection pipe 20 without opening the tip of the feed pipe 17, and the insulating oil 4 is supplied to the oil sampling bottle 15. May be injected. In this case, even if the opposite side of the detection tube 20 that is not connected to the feed tube 17 is left open or the suction pump 25 is attached to that portion,
The insulating oil 4 can be well injected into the oil sampling bin 15.

【0028】前記のように、採油ビン15に変圧器1の
寿命予測を推定するための試料油として採油した絶縁油
4を注入した後、この絶縁油4を加熱装置18により約
55〜60℃の温度に加熱する。又、この間に検知管2
0を給送管17と吸引ポンプ25との間に配管接続す
る。つづいて、採油ビン15に注入した絶縁油4からバ
ブリングにより所要の溶存ガス成分等を含む揮発性成分
を抽出する場合について説明する。前記溶存ガス成分等
の抽出に当っては、吸引ポンプ25の手動ピストン24
を手前に引くと(図3の右側)、流入管16の開口端
(カバー体15aより採油ビン15の上方に突出してい
る流入管16の先端部分)から外気が流入し、この外気
は絶縁油4中に没入している流入管16の下方端より絶
縁油4中に気泡となって噴出される。
As described above, after the insulating oil 4 sampled as a sample oil for estimating the life expectancy of the transformer 1 is injected into the oil sampling bin 15, the insulating oil 4 is heated to about 55 to 60 ° C. by the heating device 18. Heat to a temperature of During this time, the detector tube 2
0 is connected between the feeding pipe 17 and the suction pump 25 by piping. Next, a case where a volatile component including a required dissolved gas component and the like is extracted from the insulating oil 4 injected into the oil sampling bin 15 by bubbling will be described. In extracting the dissolved gas component and the like, the manual piston 24 of the suction pump 25 is used.
3 (right side in FIG. 3), outside air flows in from the open end of the inflow pipe 16 (the end of the inflow pipe 16 protruding above the oil sampling bin 15 from the cover body 15a), and this outside air is insulated Air bubbles are ejected from the lower end of the inflow pipe 16 immersed in the insulating oil 4 into the insulating oil 4.

【0029】前記外気を油中に噴出させることにより、
即ち、バブリング現象により採油ビン15内の絶縁油4
中に溶存している劣化生成物からなる揮発性成分が抽出
され、給送管17を通って検知管20内に導入される。
前記揮発性成分は、一酸化炭素(CO),二酸化炭素
(CO2 ),メタン(CH4 ),水素(H2 ),エタン
(C2 6 ),エチレン(C2 4 ),アセチレン(C
2 2 )をはじめ、ホルムアルデヒド(HCHO),ア
セトアルデヒド(CH3 CHO),アクロレイン(CH
2 :CHCHO)等のアルデヒド類やアセトン(CH3
COCH),メチルエチルケトン(CH3 CH2 COC
3 )等からなるケトン類,更には、フルフラール(C
4 3 OCHO)等が揮発性成分として抽出される。
By blowing the outside air into the oil,
That is, the insulating oil 4 in the oil sampling bin 15 is caused by the bubbling phenomenon.
Volatile components consisting of degradation products dissolved therein are extracted and introduced into the detection tube 20 through the feed tube 17.
The volatile components include carbon monoxide (CO), carbon dioxide (CO 2 ), methane (CH 4 ), hydrogen (H 2 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene ( C
2 H 2 ), formaldehyde (HCHO), acetaldehyde (CH 3 CHO), acrolein (CH
2 : aldehydes such as CHCHO) and acetone (CH 3
COCH), methyl ethyl ketone (CH 3 CH 2 COC)
Ketones such as H 3 ) and furfural (C
4 H 3 OCHO) and the like are extracted as volatile components.

【0030】そして、変圧器1の経年劣化を判断する手
段としては、これまで絶縁油中に含まれている劣化生成
物に着目していた。特に、変圧器の経年劣化を把握する
には、使用されている絶縁油や紙材料等の特性が大いに
影響し、その中でも、絶縁紙においては、熱的に劣化す
ると、即ち、酸化するとセルロース分子の鎖が切断さ
れ、セルロース分子量が減少する。このセルロース分子
の鎖の長さが平均重合度であり、絶縁物の機械的劣化度
合の指標として用いられている。
As a means for judging the aging of the transformer 1, attention has been focused on the degradation products contained in the insulating oil. In particular, in order to grasp the aging of the transformer, the properties of the used insulating oil and paper material have a great effect. Is cut off, and the molecular weight of cellulose decreases. The chain length of the cellulose molecule is the average degree of polymerization and is used as an index of the degree of mechanical deterioration of the insulator.

【0031】前記平均重合度は、引張強さと相関性があ
り、機械的強度の劣化状態は前記の平均重合度によって
診断することが可能となる。一般に、平均重合度を測定
する場合は、絶縁油4中に溶存している絶縁紙の劣化生
成物といわれているCO,CO2 やフルフラール量を測
定することによって劣化診断を行い、変圧器の寿命予測
を推定するための根拠としている。
The average degree of polymerization has a correlation with the tensile strength, and the deterioration state of the mechanical strength can be diagnosed by the average degree of polymerization. In general, when measuring the average degree of polymerization, a deterioration diagnosis is performed by measuring the amount of CO, CO 2 or furfural, which is said to be a degradation product of the insulating paper dissolved in the insulating oil 4, and diagnoses the transformer. This is the basis for estimating the life expectancy.

【0032】しかし、CO,CO2 については気体(ガ
ス)であるが故、柱上変圧器のような開放形変圧器にお
いては、一部が大気中に散逸する等比較的小容量の変圧
器では、絶縁油の封入方式や製造過程における乾燥処理
方法によって、測定値に比較的大きなバラツキが生じ、
測定値をそのまま適用した場合、劣化診断に大きな誤差
が生じるおそれがあった。このため、前記バラツキを是
正するために、事前にバラツキを想定して設定した補正
値と測定値とを演算処理して寿命予測を行っていたの
で、適正な寿命予測を行うことは難しかった。
However, since CO and CO 2 are gases (gas), in an open-type transformer such as a pole transformer, a relatively small-capacity transformer such as partly dissipating into the atmosphere is used. In the case, the measured value varies relatively depending on the method of filling the insulating oil and the drying method in the manufacturing process.
If the measured values are used as they are, a large error may occur in the deterioration diagnosis. For this reason, in order to correct the above-mentioned variation, the life has been predicted by calculating and processing the correction value and the measured value which are set in advance assuming the variation, and it has been difficult to perform an appropriate life prediction.

【0033】一方、フルフラールにおいては、沸点が1
60℃の液体で、絶縁油に対しては高い溶解性を有して
いるため、CO,CO2 のような問題点がない反面、前
述したように、絶縁油を浄油する活性アルミナを内蔵し
た変圧器においては、前記フルフラールは時間が経過す
るにつれて活性アルミナに次第に吸着され、正確な生成
量を把握することが困難になるという問題があった。従
って、フルフラールを用いて寿命予測をする場合も、前
記CO,CO2 と同様に補正値を使用してフルフラール
の測定値を演算処理していたので、この場合も、正しい
寿命予測を行うには種々の問題があった。
On the other hand, the boiling point of furfural is 1
As it is a liquid at 60 ° C and has high solubility in insulating oil, it has no problems such as CO and CO 2 , but as mentioned above, it has a built-in activated alumina that purifies insulating oil. In such a transformer, there was a problem that the furfural was gradually adsorbed on the activated alumina with the passage of time, and it was difficult to accurately determine the amount of the produced furfural. Therefore, even if the life prediction using furfural, the CO, so it was processing the measured values of furfural using similar correction value and CO 2, even in this case, in order to perform the correct lifetime prediction There were various problems.

【0034】又、前記したように、セルロースはCO,
CO2 やフルフラールと同様に、劣化の過程でアルデヒ
ド類やケトン類も劣化生成物として生成し、その上、絶
縁油自体は酸化劣化が促進されると、アセトン(ケトン
類)を生成することは今日よく知られている。しかも、
前記アルデヒド類やケトン類においては、前記フルフラ
ールと異なり、活性アルミナに吸着されることも少な
く、かつ、CO,CO2のように、ガス化して大気中に
放散するということもほとんどなく、絶縁油中に液体の
状態で溶存されている。
As described above, cellulose is CO,
As with CO 2 and furfural, aldehydes and ketones are also produced as degradation products in the course of degradation, and furthermore, when oxidative degradation of the insulating oil itself is accelerated, acetone (ketones) cannot be produced. Well known today. Moreover,
Unlike the furfural, the aldehydes and ketones are less likely to be adsorbed by activated alumina, and hardly gasify and dissipate into the atmosphere like CO and CO 2. It is dissolved in a liquid state.

【0035】このように、本発明においては、変圧器の
劣化診断を行うに当っては、絶縁紙や絶縁油の劣化が進
展するにつれて順次生成されて絶縁油中に溶存する劣化
生成物であるアルデヒド類,ケトン類を測定することに
より、変圧器の寿命予測を簡易に行うようにしたもので
ある。
As described above, in the present invention, when performing the deterioration diagnosis of the transformer, the deterioration products are sequentially generated as the deterioration of the insulating paper or the insulating oil progresses and dissolved in the insulating oil. By measuring aldehydes and ketones, the life expectancy of the transformer is easily predicted.

【0036】前記の絶縁油4中に溶存しているアルデヒ
ド類とかケトン類の抽出は、他の溶存ガスを抽出する場
合と同様に、吸引ポンプ25の手動ピストン24を駆動
することによって行われる。即ち、段落番号〔002
8〕にて説明したように、ピストン24をシリンダ23
から引出す方向(図3の右側)に引くことにより、外気
が流入管16から吸引されて絶縁油4中に噴出し気泡を
発生させるという、所謂バブリング作用によって絶縁油
4中に溶存しているガス等の劣化生成物を気体化(揮
発)させて抽出する。
The extraction of the aldehydes and ketones dissolved in the insulating oil 4 is performed by driving the manual piston 24 of the suction pump 25 as in the case of extracting other dissolved gases. That is, the paragraph number [002
8], the piston 24 is connected to the cylinder 23
The gas dissolved in the insulating oil 4 by a so-called bubbling action, in which the outside air is sucked from the inflow pipe 16 to generate bubbles in the insulating oil 4 by drawing in the direction (right side in FIG. 3). Decomposition products such as are gasified (volatilized) and extracted.

【0037】抽出された溶存ガス成分等の揮発性成分
は、採油ビン15内の上部から給送管17を通って検知
管20内に流入する。そして、検知管20内に封入され
ている充填剤としての検知剤と特異に反応する揮発性成
分が存在すれば、その揮発性成分は、原色から特異反応
によって所要の色に呈色することとなる。一方、検知剤
と反応する揮発性成分が抽出されない場合は、前記検知
剤は何等反応せず、又、抽出された溶存ガス成分等の揮
発性成分は、そのまま検出管20内を素通りして吸引ポ
ンプ25の逆止弁26を開弁してシリンダ23内に流入
する。シリンダ23内に流入した揮発性成分は、手動ピ
ストン24を次のバブリングに備えてシリンダ23内に
押し戻したとき、逆止弁27が開き外部に排出される。
The volatile components such as the extracted dissolved gas components flow into the detection pipe 20 from the upper portion of the oil collecting bottle 15 through the feed pipe 17. If there is a volatile component that specifically reacts with the detection agent as a filler enclosed in the detection tube 20, the volatile component is changed from the primary color to a required color by a specific reaction. Become. On the other hand, when the volatile component that reacts with the detecting agent is not extracted, the detecting agent does not react at all, and the volatile component such as the dissolved gas component that is extracted is sucked through the detection tube 20 as it is. The check valve 26 of the pump 25 is opened to flow into the cylinder 23. When the manual piston 24 is pushed back into the cylinder 23 in preparation for the next bubbling, the volatile component that has flowed into the cylinder 23 opens the check valve 27 and is discharged to the outside.

【0038】なお、前記シリンダ23の内容積は、約1
00ml程度の大きさによって形成されており、手動ピ
ストン24を1回操作する(引張る)毎に、抽出された
溶存ガス成分等の揮発性成分を受け入れることができ、
一方、手動ピストン24をシリンダ23内に押し戻した
ときは、逆に、シリンダ23内に滞留する揮発性成分等
を検知管20内に逆流させることなく、逆止弁27を介
して全部外部に排出できるように設けられている。
The internal volume of the cylinder 23 is about 1
It is formed by a size of about 00 ml, and each time the manual piston 24 is operated (pulled) once, it can receive a volatile component such as an extracted dissolved gas component,
On the other hand, when the manual piston 24 is pushed back into the cylinder 23, on the other hand, all the volatile components and the like staying in the cylinder 23 are discharged to the outside via the check valve 27 without flowing back into the detection pipe 20. It is provided to be able to.

【0039】前記手動ピストン24はシリンダ23から
引出した後、次の抽出に備えシリンダ23内に押し戻
す。この際、シリンダ23内の空気等は、逆止弁26の
閉弁により検知管20内に逆流することなく、逆止弁2
7から容易に外部に排出することができるので、手動ピ
ストン24の操作は簡易に行うことができる。手動ピス
トン24を原位置に戻したら、再び手動ピストン24を
引出す方向に駆動して次のバブリングを実施し、絶縁油
4中に溶存している各種ガス成分等の劣化生成物からな
る揮発性成分の抽出を行う。抽出された揮発性成分は順
次検知管20に流入する。
After the manual piston 24 is pulled out of the cylinder 23, it is pushed back into the cylinder 23 in preparation for the next extraction. At this time, the air or the like in the cylinder 23 does not flow back into the detection pipe 20 by closing the check valve 26,
7, the operation of the manual piston 24 can be easily performed. When the manual piston 24 is returned to the original position, the manual piston 24 is driven again in the pulling-out direction to perform the next bubbling, and volatile components composed of degradation products such as various gas components dissolved in the insulating oil 4. Is extracted. The extracted volatile components sequentially flow into the detection tube 20.

【0040】そして、前記バブリング作用によって絶縁
油4中から抽出した劣化生成物の中に、アルデヒド類や
ケトン類からなる揮発性成分が包含されていると、これ
ら揮発性成分は検知管20内に封入されている検知剤と
接触して反応すると、即ち、検知剤に含有されているヒ
ドラジン類と特異に反応して呈色する。
When the volatile components such as aldehydes and ketones are contained in the degradation products extracted from the insulating oil 4 by the bubbling action, these volatile components are contained in the detection tube 20. When it comes into contact with and reacts with the enclosed detection agent, that is, it reacts specifically with hydrazines contained in the detection agent to give a color.

【0041】前記の呈色はアルデヒド類の場合、例え
ば、黄色から赤褐色に呈色し、又、ケトン類において
は、例えば、黄褐色に呈色する。本発明の場合はアルデ
ヒド類及びケトン類が抽出されると、検知剤が呈色する
ように形成されている関係上、呈色する色は比較的抽出
量の多い揮発性成分に対応した色で呈色する。例えば、
アルデヒド類とケトン類とが半々であれば、両揮発性成
分の量に応じて所定の呈色域において所要の色で呈色
し、一方の揮発性成分が他方の揮発性成分より多い場合
は、常識的に抽出量の多い揮発性成分に近い色で呈色す
る。
In the case of aldehydes, the above-mentioned color changes from yellow to reddish brown, and in the case of ketones, the color changes to yellow-brown, for example. In the case of the present invention, when the aldehydes and ketones are extracted, the color to be formed is a color corresponding to the volatile component with a relatively large extraction amount because the detection agent is formed so as to be colored. Color. For example,
If the aldehydes and ketones are evenly divided, the desired color is displayed in a predetermined color gamut according to the amount of both volatile components, and when one volatile component is larger than the other volatile component, In general, it is colored with a color close to a volatile component with a large amount of extraction.

【0042】いづれにしても、絶縁油4から抽出された
揮発性成分が検知剤と反応する成分であれば検知剤は、
原色から揮発性成分に対応した所要の色に呈色する。前
記揮発性成分の抽出は、吸引ポンプ25を複数回(例え
ば、5回程)駆動し、バブリング作用を実施することに
より、検知管20に溶存ガス等の劣化生成物を給送し、
前記検知剤(ヒドラジン類)と特異に反応する揮発性成
分(アルデヒド類,ケトン類)が抽出されれば、前記揮
発性成分は検知剤のみと反応し呈色する。
In any case, if the volatile component extracted from the insulating oil 4 is a component that reacts with the detecting agent, the detecting agent is:
The primary color changes to a required color corresponding to the volatile component. The extraction of the volatile components is performed by driving the suction pump 25 a plurality of times (for example, about five times) and performing a bubbling operation, thereby feeding a degradation product such as a dissolved gas to the detection tube 20.
If volatile components (aldehydes, ketones) that specifically react with the detection agent (hydrazines) are extracted, the volatile component reacts with only the detection agent and changes color.

【0043】そして、抽出された揮発性成分によって検
知剤が反応して呈色し、その呈色域(揮発性成分の生成
量)が図5に示すように、検知管20に刻設した所要の
目盛22位置付近まで呈色した場合、その呈色した範囲
を呈色域22aとなし、前記呈色した範囲の目盛22を
読み取ることにより、揮発性成分の平均重合度を把握す
る。
The detection agent reacts with the extracted volatile components to produce a color, and the coloration range (the amount of the volatile components generated) is set in the detection tube 20 as shown in FIG. When the color is displayed up to the vicinity of the scale 22, the range in which the color is formed is defined as a color range 22a, and by reading the scale 22 in the range where the color is displayed, the average degree of polymerization of the volatile component is grasped.

【0044】即ち、検知管20の呈色域22a位置を示
す指示目盛を読み取り、その読み取り数値(検出値、例
えば、揮発性成分の濃度)を、図示しない事前に作成し
ておいた平均重合値に換算する換算表にて、前記揮発性
成分の平均重合度(油中濃度)に換算し、前記換算した
平均重合度の数値を、図7に示すように、平均重合度と
油中揮発性成分濃度との関係を示すグラフに転記し、試
料油を採油した変圧器1の寿命予測を行う。
That is, an indication scale indicating the position of the color gamut 22a of the detector tube 20 is read, and the read numerical value (detected value, for example, the concentration of the volatile component) is calculated by an average polymerization value (not shown) created in advance. In the conversion table, the average degree of polymerization (concentration in oil) of the volatile component was converted, and the numerical value of the converted average degree of polymerization was converted into the average degree of polymerization and the volatility in oil as shown in FIG. The graph is transcribed to a graph showing the relationship with the component concentration, and the life expectancy of the transformer 1 in which the sample oil is sampled is estimated.

【0045】前記揮発性成分の平均重合度が図7におい
て、例えば、寿命レベル(平均重合度450)以下で、
かつ、揮発性成分の濃度が1.42ppm以上であれ
ば、この揮発性成分を含有している絶縁油4を充填した
変圧器1は、その絶縁紙の劣化度が寿命の限界(寿命レ
ベル)に達していると判断(診断)するものである。
In FIG. 7, the average degree of polymerization of the volatile component is, for example, not more than the life level (average degree of polymerization: 450).
If the concentration of the volatile component is 1.42 ppm or more, the degree of deterioration of the insulating paper of the transformer 1 filled with the insulating oil 4 containing the volatile component is limited to the life (life level). Is determined (diagnosed).

【0046】又、図7において、平均重合度が250以
下で、かつ、揮発性成分の濃度が2.21ppm以上に
あれば、測定した試料油を使用している変圧器1は、使
用の継続が困難(危険レベル)と判断(診断)を下すこ
とになる。前記限界レベル,危険レベルにおける平均重
合度の数値450,250は、JEM1463「変圧器
用絶縁紙の平均重合度評価基準」(社団法人:日本電機
工業会制定の日本電機工業会規格)に基づいて設定した
各レベルの目安としての数値である。
In FIG. 7, if the average degree of polymerization is 250 or less and the concentration of the volatile component is 2.21 ppm or more, the transformer 1 using the measured sample oil can be used continuously. Is difficult (risk level) and judged (diagnosis). The values 450 and 250 of the average degree of polymerization at the limit level and the danger level are set based on JEM1463 "Evaluation criteria for average degree of polymerization of insulating paper for transformers" (Japan Electrical Manufacturers 'Association standard established by the Japan Electrical Manufacturers' Association). It is a numerical value as a standard of each level.

【0047】なお、前記平均重合度の算出については、
検知管20に表れる呈色域の数値を換算表により油中濃
度に換算して把握する代りに、あらかじめ、検知管20
に呈色域22aを示す目盛22そのものを平均重合度を
表す数値として設け、その数値を読み取ることによって
揮発性成分の平均重合度を検出するようにしてもよい。
この場合、検知管20に形成する目盛22は、事前に揮
発性成分がどれだけの呈色域22aに達したら平均重合
度の数値が、例えば、250とか450であると読みと
ることができるように、呈色範囲と平均重合度との関係
をテスト等にて検証して、前記平均重合度を読み取るこ
とのできる目盛を設けるようにすればよい。
The average degree of polymerization was calculated as follows.
Instead of converting the numerical value of the color gamut appearing in the detection tube 20 into the oil concentration using a conversion table and grasping it, the detection tube 20
The scale 22 itself indicating the color gamut 22a may be provided as a numerical value representing the average degree of polymerization, and the numerical value may be read to detect the average degree of polymerization of the volatile component.
In this case, the scale 22 formed on the detection tube 20 can be read so that the numerical value of the average polymerization degree is, for example, 250 or 450 when the volatile component reaches the coloring range 22a in advance. The relationship between the coloration range and the average degree of polymerization may be verified by a test or the like, and a scale capable of reading the average degree of polymerization may be provided.

【0048】次に、本発明の第2実施例について説明す
る。図6において、この第2実施例は2本の検知管20
a,20bを、給送管17と電動式の吸引ポンプ25a
との間に並列に配管接続し、上方の検知管20aにはア
ルデヒド類からなる揮発性成分と特異に反応する検知剤
のみを充填し、下方の検知管20bにはケトン類からな
る揮発性成分と反応する検知剤のみを充填して構成した
もので、検知管20a,20bを並列に配置することに
より、絶縁油4から抽出される揮発性成分の生成量を個
別に確認することが可能となる。
Next, a second embodiment of the present invention will be described. In FIG. 6, the second embodiment has two detector tubes 20.
a and 20b are connected to the feed pipe 17 and the electric suction pump 25a.
The upper detection tube 20a is filled with only a detection agent that specifically reacts with a volatile component composed of aldehydes, and the lower detection tube 20b is filled with a volatile component composed of ketones. It is configured by filling only a detection agent that reacts with the gas, and by arranging the detection tubes 20a and 20b in parallel, it is possible to individually confirm the generation amount of volatile components extracted from the insulating oil 4. Become.

【0049】即ち、揮発性成分のうち、例えば、アルデ
ヒド類の生成量が多いのか、ケトン類の生成量が多いの
かが、一目で比べることが可能となるため、どちらの生
成量が多いか、少ないかにより、変圧器1の劣化診断が
より精度を高めて行うことができる。これは、第1実施
例における平均重合度算出は、アルデヒド類とケトン類
とを加算した値によって変圧器1の劣化度の診断を行っ
ていたので、寿命レベルや危険レベルを判断する平均重
合度の数値が、必然的に緩いものとなりがちになる。し
かし、本第2実施例においては、平均重合度の算出を呈
色域の多い数値から少ない数値を減算して算出した数値
によって平均重合度を把握することができるので、この
点において変圧器1の劣化診断をより確実に行うことが
できるものである。
That is, among the volatile components, for example, it is possible to compare at a glance whether the production amount of aldehydes or the production amount of ketones is large. Depending on whether the number is small, the deterioration diagnosis of the transformer 1 can be performed with higher accuracy. This is because the average degree of polymerization in the first embodiment is based on the diagnosis of the degree of deterioration of the transformer 1 based on the sum of aldehydes and ketones. Inevitably tends to be loose. However, in the second embodiment, the average degree of polymerization can be calculated by subtracting a small number from a large value of the color gamut to calculate the average degree of polymerization. Thus, it is possible to more reliably perform the deterioration diagnosis.

【0050】なお、本発明においては、吸引ポンプ25
は第1実施例において、手動式で操作するものについて
説明したが、図4,6に示すように、電動式の吸引ポン
プ25aを使用してもよく、又、圧縮空気を充填したボ
ンベを流入管16に取付け、圧縮空気の噴射力を利用し
て揮発性成分の抽出を行う場合は、前記吸引ポンプ2
5,25aを使用することなく、抽出作業を行うように
した場合でも、本発明が成立することは勿論である。更
に、呈色剤としてアルデヒド,ケトン類と特異に反応す
るヒドラジン類の他に、例えば、ヒドロキシルアミン類
(リン酸ヒドロキシルアミン等)やアミン類(p−メチ
ルアニリン等)を用いてもよい。
In the present invention, the suction pump 25
In the first embodiment, the manual operation is described. However, as shown in FIGS. 4 and 6, an electric suction pump 25a may be used, or a cylinder filled with compressed air may be supplied. In the case where a volatile component is extracted by using a compressed air jet force attached to the pipe 16, the suction pump 2 is used.
Of course, the present invention can be realized even when the extraction work is performed without using the 5, 25a. Further, in addition to hydrazines that specifically react with aldehydes and ketones as the colorant, for example, hydroxylamines (such as hydroxylamine phosphate) and amines (such as p-methylaniline) may be used.

【0051】[0051]

【発明の効果】本発明においては、絶縁油中のアルデヒ
ド,ケトン類等からなる揮発性成分の生成量を検出する
場合は、絶縁油中に溶存する前記揮発性成分とのみ特異
に反応する充填剤を詰めた検量手段に、絶縁油中より抽
出した前記揮発性成分を送出し、揮発性成分を充填剤と
反応させて呈色し、この呈色域の数値を視認することに
より、揮発性成分の生成量に基づく平均重合度を測定
し、この測定値に基づいて油入電気機器の劣化(余寿
命)を推定する診断を行うようにしたので、従前の絶縁
油中のフルフラール濃度及び量を測定する高速液体クロ
マトグラフやCO,CO2 を測定するガスクロマトグラ
フを用いて劣化診断を行う場合に比べ、機器の取扱い操
作が簡易に行い得、かつ、低コストで余寿命が診断でき
ることができ、利便である。
According to the present invention, when the amount of volatile components formed of aldehydes, ketones, etc. in insulating oil is detected, the amount of the volatile components dissolved in the insulating oil only reacts specifically. The volatile component extracted from the insulating oil is sent to the calibration means packed with the agent, and the volatile component is reacted with the filler to form a color. The average degree of polymerization based on the amount of components produced was measured, and a diagnosis was performed to estimate the deterioration (remaining life) of oil-filled electrical equipment based on the measured values. compared with the case of performing degradation diagnosis using a gas chromatograph to measure high-speed liquid chromatography and CO, and CO 2 to measure, resulting performs handling operations of devices simply and can remaining life at low cost it can be diagnosed At the convenience That.

【0052】又、絶縁油中から抽出するアルデヒド類等
揮発性成分の生成量を測定するに際しては、絶縁油中か
ら揮発性成分を抽出するためのポンプ等の抽出手段と、
前記抽出した揮発性成分の呈色域を呈示する検量手段と
を組合せることにより、簡易に油入電気機器の余寿命を
診断する装置を構成することができ携行に至便であるた
め、油入電気機器の設置場所等の現場においての劣化診
断が容易に行うことができるので、これまでのように、
高速液体クロマトグラフ等高価な測定機器や熟練技術者
を全く必要とすることなく、迅速・容易に、しかも、経
済的に油入電気機器の劣化診断を行うことができる。
When measuring the amount of volatile components such as aldehydes extracted from the insulating oil, extraction means such as a pump for extracting the volatile components from the insulating oil may be used.
By combining with the calibration means for presenting the color gamut of the extracted volatile component, an apparatus for easily diagnosing the remaining life of the oil-filled electric device can be easily configured, which is convenient for carrying. Deterioration diagnosis at the site such as the installation location of electrical equipment can be easily performed.
Degradation diagnosis of oil-filled electrical equipment can be performed quickly, easily, and economically without any need for expensive measuring equipment such as a high-performance liquid chromatograph or a skilled technician.

【0053】更に、揮発性成分の生成量検出に際して
は、揮発性成分を個別に検出することができるように、
検出管を溶存ガスの給送管と吸引ポンプとの間に複数本
配管接続し、揮発性成分の生成量の最大値から最小値を
減算するか、生成量の平均値を算出することにより、そ
の算出値に基づいて揮発性成分による油入電気機器の劣
化診断の基準値を高精度に算出することが可能となり、
これにより、油入電気機器の余寿命診断の精度を著しく
高めることができる。
Further, when detecting the generation amount of the volatile component, the volatile component can be individually detected.
By connecting a plurality of detection pipes between the supply pipe of the dissolved gas and the suction pump and subtracting the minimum value from the maximum value of the generation amount of the volatile component, or calculating the average value of the generation amount, Based on the calculated value, it becomes possible to calculate a reference value for the deterioration diagnosis of the oil-filled electric device due to the volatile component with high accuracy,
Thereby, the accuracy of the remaining life diagnosis of the oil-filled electric device can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】油入電気機器の要部を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a main part of an oil-filled electric device.

【図2】試料油を採取する状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state in which a sample oil is collected.

【図3】本発明の油入電気機器の劣化診断を行うに必要
な絶縁油中の劣化生成物を検出する装置の概略説明図で
ある。
FIG. 3 is a schematic explanatory view of an apparatus for detecting a degradation product in insulating oil necessary for performing a degradation diagnosis of an oil-filled electric device of the present invention.

【図4】同じく本発明において、抽出駆動手段を変更し
て劣化生成物を検出する装置の概略説明図である。
FIG. 4 is a schematic explanatory view of an apparatus for detecting a degradation product by changing the extraction driving means in the present invention.

【図5】検知管の正面図である。FIG. 5 is a front view of a detection tube.

【図6】本発明の第2実施例を概略的に示す説明図であ
る。
FIG. 6 is an explanatory view schematically showing a second embodiment of the present invention.

【図7】平均重合度と揮発性成分濃度との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the average degree of polymerization and the concentration of volatile components.

【符号の説明】[Explanation of symbols]

1 変圧器 4 絶縁油 11 劣化診断装置 12 抽出手段 13 検量手段 14 抽出駆動手段 15 採油ビン 16 流入管 17 給送管 20,20a,20b 検知管 25,25a 吸引ポンプ DESCRIPTION OF SYMBOLS 1 Transformer 4 Insulating oil 11 Deterioration diagnosis device 12 Extraction means 13 Calibration means 14 Extraction drive means 15 Oil sampling bottle 16 Inflow pipe 17 Feed pipe 20, 20, a, 20b Detection pipe 25, 25a Suction pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 油入電気機器の絶縁油中に溶存している
アルデヒド,ケトン類等からなる揮発性成分を抽出し、
前記抽出した揮発性成分を、この揮発性成分と特異に反
応する充填剤と反応させて、その呈色域の呈色値とあら
かじめ設定した絶縁紙の劣化度を表す平均重合度との相
関により、前記呈色値における絶縁紙の平均重合度を判
断して、油入電気機器の劣化度を診断するようにしたこ
とを特徴とする油入電気機器の劣化診断方法。
1. Extraction of volatile components such as aldehydes and ketones dissolved in insulating oil of oil-filled electric equipment,
The volatile component thus extracted is reacted with a filler that reacts specifically with this volatile component, and the correlation between the coloration value of the coloration region and a predetermined average degree of polymerization that indicates the degree of deterioration of the insulating paper is obtained. A method of diagnosing the deterioration of oil-filled electrical equipment by judging the average degree of polymerization of the insulating paper at the coloration value to diagnose the degree of deterioration of the oil-filled electrical equipment.
【請求項2】 前記揮発性成分と特異に反応する充填剤
は、2,4−ジニトロフェニルヒドラジン等のヒドラジ
ン類,リン酸ヒドロキシルアミン等のヒドロキシルアミ
ン類等からなることを特徴とする請求項1記載の油入電
気機器の劣化診断方法。
2. The filler which specifically reacts with the volatile component comprises hydrazines such as 2,4-dinitrophenylhydrazine and hydroxylamines such as hydroxylamine phosphate. The method for diagnosing deterioration of an oil-filled electrical device described in the above.
【請求項3】 絶縁油から油中に溶存している溶存ガス
成分等の揮発性成分を抽出する抽出手段と、前記抽出手
段と連通して揮発性成分に含有されているアルデヒド,
ケトン類等からなる揮発性成分と特異に反応して呈色す
る充填剤を充填した検量手段と、前記検量手段と連通さ
れて抽出手段内の絶縁油中より揮発性成分を抽出させる
抽出駆動手段とを具備して構成した油入電気機器の劣化
診断装置。
3. Extraction means for extracting a volatile component such as a dissolved gas component dissolved in oil from insulating oil, and aldehyde contained in the volatile component in communication with the extraction means.
Calibration means filled with a filler that reacts and develops a color with a volatile component composed of ketones and the like, and extraction drive means connected to the calibration means for extracting volatile components from the insulating oil in the extraction means A degradation diagnostic device for oil-filled electrical equipment comprising:
【請求項4】 前記抽出手段と連通する検量手段は、前
記抽出手段に対して複数本を並列に配管接続して構成し
たことを特徴とする請求項3記載の油入電気機器の劣化
診断装置。
4. The apparatus for diagnosing deterioration of an oil-filled electrical device according to claim 3, wherein a plurality of calibration means communicating with the extraction means are constructed by connecting a plurality of pipes to the extraction means in parallel. .
JP2000183927A 2000-06-20 2000-06-20 Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus Pending JP2002005840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183927A JP2002005840A (en) 2000-06-20 2000-06-20 Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183927A JP2002005840A (en) 2000-06-20 2000-06-20 Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus

Publications (1)

Publication Number Publication Date
JP2002005840A true JP2002005840A (en) 2002-01-09

Family

ID=18684430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183927A Pending JP2002005840A (en) 2000-06-20 2000-06-20 Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus

Country Status (1)

Country Link
JP (1) JP2002005840A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207440A (en) * 2002-01-11 2003-07-25 Chubu Electric Power Co Inc Method of measuring degree of degradation of electric insulating paper
JP2005274524A (en) * 2004-03-26 2005-10-06 Chubu Denki Hoan Kyokai Method and kit for diagnosing deterioration of oil transformer
JP2006060134A (en) * 2004-08-23 2006-03-02 Tohoku Electric Power Co Inc Apparatus and method for assessing the remaining life of transformer for power supply
KR100591959B1 (en) * 2003-11-25 2006-06-20 한상옥 3-terminal type capacitive sensor for the degradation diagnosis of electrical insulating oil for transformer
JP2006250872A (en) * 2005-03-14 2006-09-21 Chugoku Electric Power Co Inc:The Method for diagnosing degradation in oil transformer
JP2009236665A (en) * 2008-03-27 2009-10-15 Aichi Electric Co Ltd Method of diagnosing degradation state of insulation oil in oil-filled equipment
JP2018063166A (en) * 2016-10-13 2018-04-19 株式会社日立製作所 Ester oil-filled electric apparatus, ester oil-filled transformer and analysis method of aldehyde compound contained in ester oil
CN108594089A (en) * 2018-04-28 2018-09-28 广东电网有限责任公司电力科学研究院 The degree of polymerization detection method and device of insulating paper in a kind of transformer
JP2019102717A (en) * 2017-12-06 2019-06-24 北海道電力株式会社 Oil collection tool and oil collection method
CN109991225A (en) * 2017-12-30 2019-07-09 光力科技股份有限公司 Transformer dissolved gas analysis device
JP2019194522A (en) * 2018-04-30 2019-11-07 愛知電機株式会社 Manufacturing method of color sample/color difference criteria and deterioration diagnosis method for oil-filled electrical equipment using color difference criteria
JP2020085817A (en) * 2018-11-30 2020-06-04 株式会社かんでんエンジニアリング Deterioration estimation method of heat-proof insulation paper
CN115184837A (en) * 2022-07-20 2022-10-14 云南电网有限责任公司电力科学研究院 Equivalent test device and method for transformer coil

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207440A (en) * 2002-01-11 2003-07-25 Chubu Electric Power Co Inc Method of measuring degree of degradation of electric insulating paper
KR100591959B1 (en) * 2003-11-25 2006-06-20 한상옥 3-terminal type capacitive sensor for the degradation diagnosis of electrical insulating oil for transformer
JP2005274524A (en) * 2004-03-26 2005-10-06 Chubu Denki Hoan Kyokai Method and kit for diagnosing deterioration of oil transformer
JP2006060134A (en) * 2004-08-23 2006-03-02 Tohoku Electric Power Co Inc Apparatus and method for assessing the remaining life of transformer for power supply
JP2006250872A (en) * 2005-03-14 2006-09-21 Chugoku Electric Power Co Inc:The Method for diagnosing degradation in oil transformer
JP4703223B2 (en) * 2005-03-14 2011-06-15 中国電力株式会社 Degradation diagnosis method for oil-filled transformers
JP2009236665A (en) * 2008-03-27 2009-10-15 Aichi Electric Co Ltd Method of diagnosing degradation state of insulation oil in oil-filled equipment
WO2018070091A1 (en) * 2016-10-13 2018-04-19 株式会社日立製作所 Ester oil-filled electric apparatus, ester oil-filled transformer, and method for analyzing aldehyde compound contained in ester oil
JP2018063166A (en) * 2016-10-13 2018-04-19 株式会社日立製作所 Ester oil-filled electric apparatus, ester oil-filled transformer and analysis method of aldehyde compound contained in ester oil
JP2019102717A (en) * 2017-12-06 2019-06-24 北海道電力株式会社 Oil collection tool and oil collection method
CN109991225A (en) * 2017-12-30 2019-07-09 光力科技股份有限公司 Transformer dissolved gas analysis device
CN108594089A (en) * 2018-04-28 2018-09-28 广东电网有限责任公司电力科学研究院 The degree of polymerization detection method and device of insulating paper in a kind of transformer
CN108594089B (en) * 2018-04-28 2020-09-01 广东电网有限责任公司电力科学研究院 Method and device for detecting polymerization degree of insulating paper in transformer
JP2019194522A (en) * 2018-04-30 2019-11-07 愛知電機株式会社 Manufacturing method of color sample/color difference criteria and deterioration diagnosis method for oil-filled electrical equipment using color difference criteria
JP7152178B2 (en) 2018-04-30 2022-10-12 愛知電機株式会社 Deterioration diagnosis method for oil-filled electrical equipment
JP2020085817A (en) * 2018-11-30 2020-06-04 株式会社かんでんエンジニアリング Deterioration estimation method of heat-proof insulation paper
JP7144739B2 (en) 2018-11-30 2022-09-30 株式会社かんでんエンジニアリング Deterioration Estimation Method of Heat Resistant Insulating Paper
CN115184837A (en) * 2022-07-20 2022-10-14 云南电网有限责任公司电力科学研究院 Equivalent test device and method for transformer coil

Similar Documents

Publication Publication Date Title
JP2002005840A (en) Method and apparatus for diagnosis of deterioration of oil-filled electrical apparatus
CN111220759B (en) Multifunctional gas analysis device for insulating oil and sealing defect diagnosis method
US8408043B2 (en) Method and device for measuring the amount of a gas in a sealed liquid container
JPS60501331A (en) Measuring device and method for measuring pore size characteristics
US20140233034A1 (en) Apparatus and method for on-line, real-time analysis of chemical gasses dissolved in transformer oil
CN106872613A (en) A kind of standard transformer oil sample device for formulating and its operating method
EP3245503B1 (en) Method for determining a property of a fluid component of a fluid present in a compartment of an electrical apparatus and a measurement device for carrying out the method and the use of the device
CN101701930A (en) Fast measurement method for exhaust gas components and concentration and test instrument
EP3188201B1 (en) Method for inspecting oil-filled electrical apparatus
CN105158356A (en) Method for separating helium and hydrogen in oil chromatography of converter transformer
CN105467284A (en) A switchgear air discharge analogue device and an experiment method
JP3343524B2 (en) Gas analyzer in electrical insulating oil
CN111982425A (en) Lithium ion battery air tightness detection method and device
CN115060818A (en) Method for rapidly detecting content of low-molecular volatile organic compounds in insulating oil
US5258310A (en) Method of diagnosing aged degradation of oil-filled electrical equipments
US7563022B2 (en) Methods and apparatus for inspecting reactor pressure tubes
JP2010256208A (en) Method for diagnosing secular deterioration of insulating oil in electric device
Wang et al. Dissolved gas analysis (DGA) of mineral oil under thermal faults with tube heating method
JP4391682B2 (en) Leakage gas measuring device and leak gas measuring device evaluation device
CN106198130A (en) VOC volatilization sampling apparatus and the method for sampling in a kind of synthetic leather
JP2011007534A (en) Gas analyzing device, and method for controlling pressure or flow rate of gas cell using the same
CN213715134U (en) Automatic detection system for combustible gas of gas relay
JP5806475B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for oil-filled electrical equipment
CN112539798A (en) Method for detecting thermal runaway released gas of battery
JP4253971B2 (en) Odor identification device