JP5140639B2 - Remaining life diagnosis method, remaining life diagnosis device and program - Google Patents

Remaining life diagnosis method, remaining life diagnosis device and program Download PDF

Info

Publication number
JP5140639B2
JP5140639B2 JP2009152069A JP2009152069A JP5140639B2 JP 5140639 B2 JP5140639 B2 JP 5140639B2 JP 2009152069 A JP2009152069 A JP 2009152069A JP 2009152069 A JP2009152069 A JP 2009152069A JP 5140639 B2 JP5140639 B2 JP 5140639B2
Authority
JP
Japan
Prior art keywords
remaining life
reflectance
wavelength
inspection object
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009152069A
Other languages
Japanese (ja)
Other versions
JP2011007662A (en
Inventor
楯身  優
達朗 加藤
高史 浅野
賢一 太田
博勝 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009152069A priority Critical patent/JP5140639B2/en
Publication of JP2011007662A publication Critical patent/JP2011007662A/en
Application granted granted Critical
Publication of JP5140639B2 publication Critical patent/JP5140639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、受変電設備における受電盤の制御配線等の余寿命を非破壊で診断する技術に関する。   The present invention relates to a technique for non-destructively diagnosing the remaining life of a control wiring of a power receiving panel in a power receiving / transforming facility.

従来、高い信頼性で運用する必要のある受変電設備の受電盤には、制御配線が多く利用されている。この制御配線の劣化が進展すると設備の誤動作や不動作に発展する可能性があり、そのような事故を未然に防ぐために、制御配線の健全性を定量化できる余寿命診断技術が望まれている。制御配線を非破壊で診断できる有力な方法として、光を被測定物に当て、その反射率スペクトルから劣化の程度を推定する光診断技術がある。例えば、反射光を三原色に分解して所定の演算式により配線被覆の材色ごとの劣化を検出する技術(特許文献1参照)、反射スペクトルの三波長に対応する反射率の比の経年に対する軌跡を予め求めておき、その比が辿る軌跡から劣化度を評価する技術(特許文献2参照)、及び、二波長の光反射損失差から劣化診断する技術(特許文献3参照)が提案されている。   Conventionally, control wiring is often used for a power receiving panel of a power receiving / transforming facility that needs to be operated with high reliability. If the deterioration of the control wiring progresses, it may lead to malfunction or malfunction of the equipment. In order to prevent such an accident, a remaining life diagnosis technology that can quantify the soundness of the control wiring is desired. . As an effective method for non-destructive diagnosis of control wiring, there is an optical diagnostic technique in which light is applied to an object to be measured and the degree of deterioration is estimated from the reflectance spectrum. For example, a technique for decomposing reflected light into three primary colors and detecting deterioration of each wiring cover material color by a predetermined arithmetic expression (refer to Patent Document 1), a locus of reflectance ratio corresponding to three wavelengths of a reflection spectrum with respect to time. Has been proposed in advance, and a technique for evaluating the degree of deterioration from the trajectory followed by the ratio (see Patent Document 2) and a technique for diagnosing deterioration from the difference in light reflection loss of two wavelengths (see Patent Document 3) have been proposed. .

特開平1−265139号公報JP-A-1-265139 特開2007−285930号公報JP 2007-285930 A 特開平8−15131号公報JP-A-8-15131

しかしながら、特許文献1及び2の技術では、様々な種類の配線の劣化を診断できるが、劣化の有無の判定のみで、余寿命の算出はできなかった。特許文献3の技術では、二波長の光の反射率比から光反射損失を求め、これを劣化時間に換算して余寿命を求めているが、反射率比の複雑な特性を利用しているため余寿命値を容易に算出することができなかった。さらに、特許文献1〜3の技術では、被測定物が設置されている場所(以下、「サイト」という)における劣化の遅速を示す環境性の評価がされていなかった。   However, with the techniques of Patent Documents 1 and 2, it is possible to diagnose deterioration of various types of wiring, but the remaining life cannot be calculated only by determining whether there is deterioration. In the technique of Patent Document 3, the light reflection loss is obtained from the reflectance ratio of light of two wavelengths, and this is converted into a deterioration time to obtain the remaining life, but the complex characteristic of the reflectance ratio is used. Therefore, the remaining life value could not be calculated easily. Furthermore, in the techniques of Patent Documents 1 to 3, environmental evaluation indicating the slowness of deterioration at a place (hereinafter referred to as “site”) where an object to be measured is installed has not been evaluated.

本発明は、前記した従来の課題を解決するものであり、非破壊で受変電設備の制御配線の余寿命を簡易に診断して信頼性を高める余寿命診断方法、余寿命診断装置及びそれに用いるプログラムを提供することを目的とする。   The present invention solves the above-described conventional problems, and is a non-destructive remaining life diagnosis method, a remaining life diagnosis apparatus, and a remaining life diagnosis apparatus for easily diagnosing the remaining life of control wiring of a power receiving / transforming facility and improving reliability. The purpose is to provide a program.

前記課題を解決するために、本発明は、受変電設備に関連した検査対象物の余寿命を診断する余寿命診断装置及びその余寿命診断装置に用いる余寿命診断方法であって、前記余寿命診断装置が、前記検査対象物及び検査参照用材のそれぞれに対して検査光が照射されたとき、そのそれぞれから反射される反射光のうち、あらかじめ定められた第1の波長及び前記第1の波長とは異なる第2の波長についての反射光の強度を、センサを介して取得するステップと、前記第1の波長及び前記第2の波長それぞれについて、前記検査参照用材から反射される反射光の強度に対する前記検査対象物から反射される反射光の強度の比として定義される反射率を算出するとともに、前記第1の波長について算出された前記反射率から前記第2の波長について算出された前記反射率を差し引いて、前記検査対象物の反射率差を算出するステップと、前記算出した検査対象物の反射率差と、前記検査対象物の検査時現在の経年数と、経年数が既知の前記検査対象物と同一品又は同等品について別途取得された反射率差と、前記既知の経年数と、を少なくとも用いて、前記経年数から前記反射率差を予測する予測式を設定するステップと、前記設定した予測式から得られる将来の反射率差の予測値が、前記検査対象物に対して設定された寿命閾値に到達する経年数を前記検査対象物の寿命とし、前記寿命と前記検査時現在の経年数との差から前記検査対象物の余寿命を算出するステップとを備えることを特徴とする。 In order to solve the above problems, the present invention provides a remaining life diagnosis apparatus for diagnosing the remaining life of an inspection object related to a power receiving / transforming facility, and a remaining life diagnosis method used in the remaining life diagnosis apparatus. When the diagnostic apparatus irradiates each of the inspection object and the inspection reference material with inspection light, among the reflected light reflected from each of the inspection object and the inspection reference material, a predetermined first wavelength and the first wavelength A step of acquiring the intensity of reflected light for a second wavelength different from the sensor through a sensor , and the intensity of reflected light reflected from the inspection reference material for each of the first wavelength and the second wavelength. The reflectance defined as the ratio of the intensity of the reflected light reflected from the inspection object with respect to the second wavelength is calculated from the reflectance calculated for the first wavelength. By subtracting the calculated the reflectance calculating the reflectance difference of the test object and the reflectance difference of the test object with the calculated, and age of testing when the current of said inspection object, secular A prediction formula for predicting the reflectance difference from the age using at least the reflectance difference acquired separately for the same or equivalent product as the inspection object whose number is known, and the known age. and setting a predicted value of the reflectance difference of the future Ru obtained from the prediction equation described above set, the age of reaching the set lifetime threshold with respect to the inspection object and the life of the test object, Calculating the remaining life of the inspection object from the difference between the life and the current age at the time of the inspection.

本発明によれば、非破壊で受変電設備の制御配線の余寿命を簡易に診断して信頼性を高める余寿命診断方法、余寿命診断装置及びそれに用いるプログラムを提供することができる。   According to the present invention, it is possible to provide a remaining life diagnosis method, a remaining life diagnosis apparatus, and a program used for the remaining life diagnosis method for easily diagnosing the remaining life of the control wiring of the power receiving / transforming equipment without damage and increasing the reliability.

本実施形態の一例になる余寿命診断装置の構成を示す図である。It is a figure which shows the structure of the remaining life diagnostic apparatus which becomes an example of this embodiment. 余寿命診断装置に備えるプローブの先端部の拡大図である。It is an enlarged view of the front-end | tip part of the probe with which a remaining life diagnostic apparatus is equipped. 光の反射率の導出を示す図である。It is a figure which shows derivation | leading-out of the reflectance of light. 配線の新品及び劣化品の反射率スペクトルを示す図である。It is a figure which shows the reflectance spectrum of the new article and deteriorated goods of wiring. 配線の反射率差Rsaの経年特性を示す図である。It is a figure which shows the aged characteristic of the reflectance difference Rsa of wiring. 反射率測定及び余寿命診断方法の処理を示すフローチャートである。It is a flowchart which shows the process of a reflectance measurement and the remaining life diagnostic method. 新品時における反射率差の測定データがある場合の余寿命算出方法を示す図である。It is a figure which shows the remaining life calculation method in case there exists measurement data of the reflectance difference at the time of a new article. 新品時における反射率差の測定データがない場合の余寿命算出方法を示す図である。It is a figure which shows the remaining life calculation method when there is no measurement data of the reflectance difference at the time of a new article. 熱で加速劣化させた配線の被覆の伸びと劣化時間との関係を示す図である。It is a figure which shows the relationship between the extension of the coating | cover of the wiring accelerated-deteriorated with the heat | fever, and deterioration time. 図9で用いた同一サンプルの反射率差と劣化時間との関係を示す図である。It is a figure which shows the relationship between the reflectance difference of the same sample used in FIG. 9, and deterioration time. 絶縁物の表面抵抗率と環境性との関係を示す図である。It is a figure which shows the relationship between the surface resistivity of an insulator, and environmental property. 受電盤内における絶縁物の余寿命算出方法を示す図である。It is a figure which shows the remaining life calculation method of the insulator in a power receiving panel. 絶縁物の余寿命算出方法の処理を示すフローチャートである。It is a flowchart which shows the process of the remaining life calculation method of an insulator. 劣化予測線の傾度と環境性との関係を示す図である。It is a figure which shows the relationship between the inclination of a degradation prediction line, and environmental property.

以下に、本発明の実施形態に係る余寿命診断方法、余寿命診断装置及びプログラムについて図を参照しながら詳細に説明する。   Hereinafter, a remaining life diagnosis method, a remaining life diagnosis apparatus, and a program according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の一例になる余寿命診断装置100の構成を示す図である。図1に示すように余寿命診断装置100は、白色光を発生する光源3と、検査対象物である制御配線(以下、「配線」という)10(図2参照)へ白色光を照射し、配線10から反射光を受光するプローブ1(センサ)と、反射光から反射強度を波長毎にスペクトル分解する分光器(センサ)2と、光を導く光ファイバ5と、白色光を照射し、スペクトル分解した計測データを反射強度記憶部21に記憶するまでの一連の動作を制御する光計測制御部(計測部)6と、反射強度スペクトルから配線10の反射率差を算出する反射率差算出部(特性値算出部)11と、配線10の寿命閾値を算出する寿命閾値算出部12と、配線10の反射率差の経年変化を予測する予測式を設定し、この予測した反射率差と寿命閾値とから余寿命を診断する余寿命診断部(予測式設定部,余寿命算出部)13と、各サイトにおける配線10の劣化を示す環境性を評価する環境性評価部14と、反射強度スペクトルから算出した反射率差を記憶する反射率差記憶部22と、配線10の寿命閾値を記憶する寿命閾値記憶部23と、各サイトの環境性を記憶する環境性記憶部24とを備える。   FIG. 1 is a diagram illustrating a configuration of a remaining life diagnosis apparatus 100 as an example of the present embodiment. As shown in FIG. 1, the remaining life diagnosis apparatus 100 irradiates white light to a light source 3 that generates white light and a control wiring (hereinafter referred to as “wiring”) 10 (see FIG. 2) that is an inspection object, A probe 1 (sensor) that receives reflected light from the wiring 10, a spectroscope (sensor) 2 that spectrally resolves the reflected intensity for each wavelength from the reflected light, an optical fiber 5 that guides the light, and a white light that irradiates the spectrum. An optical measurement control unit (measurement unit) 6 that controls a series of operations until the disassembled measurement data is stored in the reflection intensity storage unit 21, and a reflectance difference calculation unit that calculates the reflectance difference of the wiring 10 from the reflection intensity spectrum (Characteristic value calculation unit) 11, a life threshold value calculation unit 12 that calculates the lifetime threshold value of the wiring 10, and a prediction formula for predicting the secular change of the reflectance difference of the wiring 10 are set, and the predicted reflectance difference and lifetime Surplus life diagnosis based on threshold A life diagnosis unit (prediction formula setting unit, remaining life calculation unit) 13, an environmental evaluation unit 14 that evaluates environmentality indicating the deterioration of the wiring 10 at each site, and a reflectance difference calculated from the reflection intensity spectrum are stored. A reflectance difference storage unit 22, a life threshold storage unit 23 that stores the lifetime threshold of the wiring 10, and an environmental storage unit 24 that stores the environmental properties of each site are provided.

光計測制御部6は、検査対象物である配線10に光を照射し、この反射光をプローブ1を介して分光器2に入射し、スペクトル分解して反射強度スペクトルデータとして反射強度記憶部21に記憶する。   The optical measurement control unit 6 irradiates light to the wiring 10 which is an inspection object, and this reflected light is incident on the spectroscope 2 through the probe 1 and spectrally decomposed to reflect intensity storage data 21 as reflection intensity spectrum data. To remember.

反射率差算出部11は、配線10の線種及び色ごとに、検査対象となる配線10と同一又は同等品の新品、及び、製造後年数が経過した劣化品から取得した反射率スペクトルにおいて指標となる二波長を選定し、この二波長に対応する反射率に基づいて、検査対象となる配線10の所定経年時における反射率差と、検査時の反射率差とを算出する(特性値算出)。   The reflectance difference calculation unit 11 uses an index in a reflectance spectrum acquired from a new article that is the same as or equivalent to the wiring 10 to be inspected and a deteriorated product that has passed the number of years after manufacture, for each line type and color of the wiring 10. Are selected, and based on the reflectance corresponding to these two wavelengths, the reflectance difference at a predetermined age of the wiring 10 to be inspected and the reflectance difference at the time of inspection are calculated (characteristic value calculation) ).

寿命閾値算出部12は、配線10の寿命を決定する因子を寿命因子とし、この寿命因子とこの寿命因子の劣化時間との関係、及び、配線10の反射率差とこの反射率差の劣化時間との関係を求め、この関係に基づいて、寿命因子と反射率差との関係を算出して寿命閾値を決定する。寿命因子の具体例としては、配線10の被覆の伸び、配線10の被覆の引っ張り強さ、含水量、絶縁抵抗などがある。   The life threshold value calculation unit 12 uses a factor that determines the life of the wiring 10 as a life factor, the relationship between the life factor and the deterioration time of the life factor, and the reflectance difference of the wiring 10 and the deterioration time of the reflectance difference. The life threshold value is determined by calculating the relationship between the life factor and the reflectance difference based on this relationship. Specific examples of the life factor include elongation of the coating of the wiring 10, tensile strength of the coating of the wiring 10, moisture content, insulation resistance, and the like.

余寿命診断部13は、検査対象となる配線10又は同等品の所定経年時における反射率差と、この配線10の検査時の経年数(以下、「現在経年数」という)と、この配線10の検査時の反射率差とを用いて、検査対象となる配線10の反射率差の経年変化の予測式を設定し、将来の反射率差の予測値が、検査対象の配線10の寿命閾値により設定された反射率差と同じになる時期をこの配線10の寿命とし、この寿命と現在経年数との差からこの配線10の余寿命を算出する。   The remaining life diagnosis unit 13 compares the reflectance difference of the wiring 10 to be inspected or an equivalent product at a predetermined age, the age at the time of the inspection of the wiring 10 (hereinafter referred to as “current age”), and the wiring 10 The prediction formula of the secular change of the reflectance difference of the wiring 10 to be inspected is set using the reflectance difference at the time of the inspection, and the predicted value of the future reflectance difference is the life threshold value of the wiring 10 to be inspected. The time when the difference in reflectance is set to be the same as the lifetime of the wiring 10 is defined as the lifetime of the wiring 10, and the remaining life of the wiring 10 is calculated from the difference between the lifetime and the current age.

環境性評価部14は、配線10の所定経年時における反射率差と寿命における反射率差とから反射率差の差を求め、この差を所定経年時から寿命までの年数で除した値から劣化予測線の傾度を求め、この傾度を配線10の劣化の遅速を示す環境性として各サイトの環境性を評価する。   The environmental evaluation unit 14 obtains the difference in reflectance from the reflectance difference at a predetermined age of the wiring 10 and the reflectance difference at the lifetime, and deteriorates from the value obtained by dividing this difference by the number of years from the predetermined age to the lifetime. The inclination of the prediction line is obtained, and the environmentality of each site is evaluated using this inclination as the environmentality indicating the slowness of the deterioration of the wiring 10.

光計測制御部6、反射率差算出部11、寿命閾値算出部12、余寿命診断部13及び環境性評価部14は、余寿命診断装置100に備えるCPU(Central Processing Unit)によるプログラム処理や専用回路により実現される。さらに、前記反射強度記憶部21、反射率差記憶部22、寿命閾値記憶部23、環境性記憶部24、及び、余寿命診断装置100の機能を実現するためのプログラムを格納する記憶部(不図示)は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等の記憶媒体から構成される。   The optical measurement control unit 6, the reflectance difference calculation unit 11, the life threshold value calculation unit 12, the remaining life diagnosis unit 13, and the environmental evaluation unit 14 are dedicated to program processing or dedicated processing by a CPU (Central Processing Unit) included in the remaining life diagnosis device 100. Realized by a circuit. Furthermore, the reflection intensity storage unit 21, the reflectance difference storage unit 22, the life threshold storage unit 23, the environmental property storage unit 24, and a storage unit (non-storage unit) that stores programs for realizing the functions of the remaining life diagnosis apparatus 100. The figure is composed of storage media such as RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), and flash memory.

光計測制御部6の指示により、光源3から出射された白色光は、光ファイバ5を通りプローブ1に導かれる。プローブ1は検査対象である配線10に光を照射する。図2は、プローブ1の先端部の拡大図である。プローブ1の先端部には、配線10を収容して照射した光の反射光を的確に捉えるための溝部1aが設けられている。配線10からの反射光は、プローブ1によって受光され、光ファイバ5を介して、分光器2に導かれる。分光器2により、反射光はスペクトル分解され、反射強度スペクトルとして反射強度記憶部21に記憶される。   White light emitted from the light source 3 is guided to the probe 1 through the optical fiber 5 according to an instruction from the optical measurement control unit 6. The probe 1 irradiates light to the wiring 10 to be inspected. FIG. 2 is an enlarged view of the distal end portion of the probe 1. At the tip of the probe 1, a groove 1 a is provided for accurately capturing the reflected light of the light that is received by irradiating the wiring 10. The reflected light from the wiring 10 is received by the probe 1 and guided to the spectroscope 2 through the optical fiber 5. The reflected light is spectrally resolved by the spectroscope 2 and stored in the reflection intensity storage unit 21 as a reflection intensity spectrum.

本実施形態では、光の反射率差の経年変化を用いて余寿命を算出している。そこで、電気機器用ビニル絶縁電線を配線10とし、余寿命診断装置100を用いることにより、配線10の余寿命の算出について説明する。なお、配線10は、通電のための導体部と、この導体部を覆って保護する被覆部とを含んで構成される。本実施形態においては、光を照射する部分はこの被覆部である。   In the present embodiment, the remaining lifetime is calculated using the secular change of the light reflectance difference. Therefore, calculation of the remaining life of the wiring 10 will be described by using the vinyl insulated wire for electric equipment as the wiring 10 and using the remaining life diagnosis apparatus 100. In addition, the wiring 10 is comprised including the conductor part for electricity supply, and the coating | coated part which covers and protects this conductor part. In the present embodiment, the portion to be irradiated with light is this covering portion.

図3は、光の反射率の導出を示す図である。光源3を点灯して、配線10の太さと同程度の棒状の白色材をプローブ1の先端部の溝部1aに収容し、かつ、光源3以外の外部からの光を遮るために、プローブ1の先端部に暗幕を被せて光の反射強度を計測する。   FIG. 3 is a diagram showing the derivation of the reflectance of light. In order to turn on the light source 3, accommodate a rod-shaped white material having the same thickness as the wiring 10 in the groove 1 a at the tip of the probe 1, and block light from the outside other than the light source 3. Cover the tip with a dark curtain and measure the light reflection intensity.

この反射強度の計測により、図3(a)に示すように、横軸を波長λ、縦軸を反射強度とした場合の白色材の反射強度スペクトルRw(λ)が測定できる。次に、光源3を消灯して、暗幕中で測定すると、図3(b)に示すように、バックグラウンドのノイズに相当する反射強度スペクトルD(λ)が測定できる。次に、被測定物である配線10をプローブ1の先端部の溝部1aに収容し、暗幕を被せて光源3を点灯して、図3(c)に示すような配線10の反射強度スペクトルS(λ)を測定する。これらの反射強度スペクトルRw(λ)、D(λ)、S(λ)の測定データは、各測定時に反射強度記憶部21に保存される。   By measuring the reflection intensity, as shown in FIG. 3A, the reflection intensity spectrum Rw (λ) of the white material when the horizontal axis is the wavelength λ and the vertical axis is the reflection intensity can be measured. Next, when the light source 3 is turned off and measurement is performed in a dark screen, a reflection intensity spectrum D (λ) corresponding to background noise can be measured as shown in FIG. Next, the wiring 10 which is the object to be measured is accommodated in the groove 1a at the tip of the probe 1, and the light source 3 is turned on with a dark screen, and the reflection intensity spectrum S of the wiring 10 as shown in FIG. Measure (λ). Measurement data of these reflection intensity spectra Rw (λ), D (λ), and S (λ) is stored in the reflection intensity storage unit 21 at each measurement.

反射率差算出部11は、反射強度スペクトルRw(λ)、D(λ)、S(λ)を用いることにより、(式1)から配線10の反射率スペクトルR(λ)を算出する。
R(λ)(%)=(S(λ)-D(λ))/(Rw(λ)-D(λ))×100 (式1)
(式1)に示すように、ノイズ分である反射強度スペクトルD(λ)を差し引いた配線10からの反射強度を、白色材の反射強度に対する百分率(%)としてR(λ)で表すことにより、光源3の劣化で光の強さが弱まった場合でも、測定結果に影響が及ばないようにしている。光源の光の強さが安定している場合には、反射率差を求める際に利用した白色材やノイズ分の反射強度は、測定日の測定前に1度だけしか測定しなくても構わない。
The reflectance difference calculation unit 11 calculates the reflectance spectrum R (λ) of the wiring 10 from (Equation 1) by using the reflection intensity spectra Rw (λ), D (λ), and S (λ).
R (λ) (%) = (S (λ) −D (λ)) / (Rw (λ) −D (λ)) × 100 (Equation 1)
As shown in (Expression 1), by expressing the reflection intensity from the wiring 10 minus the reflection intensity spectrum D (λ), which is a noise component, as R (λ) as a percentage (%) with respect to the reflection intensity of the white material. Even when the light intensity is weakened due to deterioration of the light source 3, the measurement result is not affected. When the light intensity of the light source is stable, the reflection intensity of the white material or noise used for obtaining the reflectance difference need only be measured once before the measurement date. Absent.

図4は、配線10の新品及び劣化品の反射率スペクトルR(λ)を示す図である。新品は製造後1年以内のものであり、劣化品は製造から27年経過したものである。図4に示すように、1000nm以上の波長領域では反射率は変わらないが、560〜800nmの波長領域では劣化品の反射率は大きく低下していることが分かる。したがって、560〜800nmの波長領域においては、縦軸を反射率(%)、横軸を波長(nm)とする座標における「傾き」は新品と劣化品とで大きく異なる。ここで「傾き」とは、新品同士、又は、劣化品同士の波長560nmの反射率R(λ)と波長800nmの反射率R(λ)とを結んだ直線の傾きをいう。この新品と劣化品とで「傾き」に顕著な差が現れる二波長λ及びλを指標として選定する。 FIG. 4 is a diagram showing the reflectance spectrum R (λ) of new and deteriorated wiring 10. New products are those within one year of manufacture, and deteriorated products are those that have been manufactured for 27 years. As shown in FIG. 4, the reflectance does not change in the wavelength region of 1000 nm or more, but it can be seen that the reflectance of the deteriorated product greatly decreases in the wavelength region of 560 to 800 nm. Therefore, in the wavelength region of 560 to 800 nm, the “tilt” in the coordinate with the vertical axis representing the reflectance (%) and the horizontal axis representing the wavelength (nm) differs greatly between the new product and the deteriorated product. Here, the "inclination" is new to each other, or refers to the slope of the line that connects the reflectance R (λ 2) of the reflectance R (λ 1) and wavelength 800nm wavelength 560nm degradation products together. Two wavelengths λ 1 and λ 2 at which a significant difference in “tilt” appears between the new and deteriorated products are selected as indices.

反射率差算出部11は、この「傾き」を定量的に算出して反射率差記憶部22に保存する。「傾き」に相当する量は、560nmの波長λにおける反射率R(560)から800nmの波長λにおける反射率R(800)を差し引いた値(以下、「反射率差:Rsa」という)として次式で表せる。
Rsa = R(λ) − R(λ) (式2)
ここで、この例の場合、λは560nmであり、λは800nmである。この二つの波長、即ち、560nmと800nmとが、反射率スペクトル上の2点を結ぶ直線の「傾き」が新品と劣化品とで顕著に異なる二つの波長を示している。
The reflectance difference calculation unit 11 quantitatively calculates this “inclination” and stores it in the reflectance difference storage unit 22. The amount corresponding to “slope” is a value obtained by subtracting the reflectance R (800) at the wavelength λ 2 of 800 nm from the reflectance R (560) at the wavelength λ 1 of 560 nm (hereinafter referred to as “reflectance difference: Rsa”). Can be expressed by the following equation.
Rsa = R (λ 1 ) −R (λ 2 ) (Formula 2)
Here, in this example, λ 1 is 560 nm and λ 2 is 800 nm. These two wavelengths, that is, 560 nm and 800 nm, indicate two wavelengths in which the “slope” of the straight line connecting two points on the reflectance spectrum is remarkably different between a new product and a deteriorated product.

図5は、反射率差Rsaの経年特性を示す図である。図4に示す新品と劣化品の反射率スペクトルから求めた反射率差Rsaを経年特性として示した図である。反射率差Rsaは、製造から年数が経過するほど低くなっている。なお、着目する波長は配線10の材質や色で異なる。   FIG. 5 is a diagram illustrating the aged characteristic of the reflectance difference Rsa. It is the figure which showed the reflectance difference Rsa calculated | required from the reflectance spectrum of the new article and deteriorated article shown in FIG. 4 as aged characteristics. The reflectance difference Rsa becomes lower as the years have passed since the manufacture. Note that the wavelength of interest differs depending on the material and color of the wiring 10.

次に、図6乃至図8を用いて、反射率測定及び余寿命診断方法を説明する。図6は、反射率測定及び余寿命診断方法の処理を示すフローチャートである。図7は、配線10の新品時における反射率差Rsaの測定データがある場合の余寿命算出方法を示す図である。図8は、配線10の新品時における反射率差Rsaの測定データがない場合の余寿命算出方法を示す図である。   Next, the reflectance measurement and the remaining life diagnosis method will be described with reference to FIGS. FIG. 6 is a flowchart showing processing of the reflectance measurement and remaining life diagnosis method. FIG. 7 is a diagram illustrating a remaining life calculation method when there is measurement data of the reflectance difference Rsa when the wiring 10 is new. FIG. 8 is a diagram showing a remaining life calculation method when there is no measurement data of the reflectance difference Rsa when the wiring 10 is new.

図6に示すように、まず、反射率の校正のために、光源3を点灯し、配線10と同程度の太さの白色材の反射強度Rw(λ)を測定する。この際、測定のばらつきを抑えるため、プローブ1を暗幕で覆い太陽光や蛍光灯など外部の光の影響を排除する。次に、光源3を消灯して、プローブ1を暗幕で覆い、そのときの反射強度D(λ)を測定して反射強度記憶部21に保存する。以下、特に断らない限り、測定時には必ず暗幕を被せるものとする(ステップS1)。   As shown in FIG. 6, first, the light source 3 is turned on for the calibration of the reflectance, and the reflection intensity Rw (λ) of the white material having the same thickness as the wiring 10 is measured. At this time, in order to suppress measurement variations, the probe 1 is covered with a dark screen to eliminate the influence of external light such as sunlight and fluorescent lamps. Next, the light source 3 is turned off, the probe 1 is covered with a dark screen, the reflection intensity D (λ) at that time is measured and stored in the reflection intensity storage unit 21. Hereinafter, unless otherwise specified, it is assumed that a black curtain is put on at the time of measurement (step S1).

次に、測定のばらつきを抑えるために、受電盤内における配線10の測定部位の汚れをアルコールまたは水により除去する。清掃することにより、配線10の塵埃による光の反射や吸収に影響されずにプローブ1からの照射光が配線10の被覆に到達するため、被覆からの反射率を精度よく測定できる(ステップS2)。   Next, in order to suppress variation in measurement, dirt on the measurement site of the wiring 10 in the power receiving panel is removed with alcohol or water. By cleaning, the irradiation light from the probe 1 reaches the coating of the wiring 10 without being affected by the reflection and absorption of light due to dust on the wiring 10, so that the reflectance from the coating can be accurately measured (step S2). .

次に、被測定物である配線10にプローブ1の先端を当て、光源3を点灯し、光を照射して反射強度を測定する。1回目の測定が終わったら、配線10の被覆上でプローブ1の先を前回の測定位置より少しずらして、再度測定する。これを繰り返し、測定する1本の配線10について、5〜10個程度の複数の反射強度スペクトルを測定して反射強度記憶部21に保存する。複数の反射強度を測定することにより、配線10の被覆で比較的劣化が進んでいる部分を評価できる(ステップS3)。   Next, the tip of the probe 1 is applied to the wiring 10 that is the object to be measured, the light source 3 is turned on, the light is irradiated, and the reflection intensity is measured. When the first measurement is completed, the tip of the probe 1 is slightly shifted from the previous measurement position on the coating of the wiring 10 and the measurement is performed again. By repeating this, a plurality of 5 to 10 reflection intensity spectra are measured and stored in the reflection intensity storage unit 21 for one wiring 10 to be measured. By measuring a plurality of reflection intensities, it is possible to evaluate a portion where deterioration is relatively advanced due to the covering of the wiring 10 (step S3).

次に、反射率差算出部11は、反射強度スペクトルから波長λおよびλ時の反射率差Rsaを算出する。算出には式2を用いる。測定した複数の反射強度スペクトルの数だけ反射率差Rsaを算出し、反射率差記憶部22に保存する(ステップS4)。 Next, the reflectance difference calculation unit 11 calculates the reflectance difference Rsa at the wavelengths λ 1 and λ 2 from the reflection intensity spectrum. Formula 2 is used for the calculation. The reflectance difference Rsa is calculated by the number of the measured reflection intensity spectra, and stored in the reflectance difference storage unit 22 (step S4).

次に、余寿命診断部13は、配線10の余寿命を算出する。余寿命の算出は、測定する配線10の新品時における反射率差Rsaの測定データが存在する場合と、存在しない場合とで異なる。図7は、新品時における反射率差Rsaの測定データが存在する場合の余寿命算出方法を示す図である。配線10の新品時における反射率差Rsaは、同じ線種で同じ色を有する新品を測定に用いることで代用できる。   Next, the remaining life diagnosis unit 13 calculates the remaining life of the wiring 10. The calculation of the remaining life differs depending on whether the measurement data of the reflectance difference Rsa when the wiring 10 to be measured is new exists or not. FIG. 7 is a diagram showing a remaining life calculation method when there is measurement data of the reflectance difference Rsa when new. The reflectance difference Rsa when the wiring 10 is new can be substituted by using a new wire having the same color and the same color for measurement.

余寿命診断部13は、新品時における配線10の反射率差RsaのデータをD4とし、劣化した配線10(劣化品)の反射率差RsaのデータをD6としたときに、D4の平均値とD6の最低値とを直線で結び、この直線を延長して劣化を経年tで予測した線(以下、「劣化予測線」という)から次式で表す予測式を設定する。
Rsa=m(t) (式3)
そして、余寿命診断部13は、この予測式から算出する反射率差Rsaと、後述する方法で求まる寿命閾値Rtとが同じになる時期を寿命と判断し、この寿命とこの配線10の現在経年数との差を余寿命と診断する。なお、配線10の新品時における反射率差Rsaは反射率差記憶部22に保存され、寿命閾値Rtの値は寿命閾値記憶部23に保存されている。
The remaining life diagnosis unit 13 uses the average value of D4 when the data of the reflectance difference Rsa of the wiring 10 when new is D4 and the data of the reflectance difference Rsa of the deteriorated wiring 10 (deteriorated product) is D6. A prediction formula expressed by the following equation is set from a line (hereinafter referred to as “deterioration prediction line”) in which the minimum value of D6 is connected with a straight line, and this straight line is extended to predict deterioration over time t.
Rsa = m (t) (Formula 3)
Then, the remaining life diagnosis unit 13 determines the time when the reflectance difference Rsa calculated from this prediction formula and the life threshold value Rt obtained by the method described later are the same as the life, and this life and the current aging of the wiring 10. The difference from the number is diagnosed as the remaining life. The reflectance difference Rsa when the wiring 10 is new is stored in the reflectance difference storage unit 22, and the value of the life threshold value Rt is stored in the life threshold value storage unit 23.

図8は、測定する配線10の新品時における反射率差Rsaの測定データが存在しない場合の余寿命算出方法を示す図である。ここで、測定データが存在しないということは、測定する配線10の新品が製造中止等により入手することができないことを意味する。したがって、図8による余寿命算出方法は、予め新品の反射率差Rsaを測定できない場合、即ち、測定する配線10の新品時における反射率差Rsaの測定データが反射率差記憶部22に保存されていない場合である。   FIG. 8 is a diagram showing a remaining life calculation method when there is no measurement data of the reflectance difference Rsa when the wiring 10 to be measured is new. Here, the absence of measurement data means that a new wire 10 to be measured cannot be obtained due to production stoppage or the like. Therefore, in the remaining life calculation method shown in FIG. 8, when the new reflectance difference Rsa cannot be measured in advance, that is, measurement data of the reflectance difference Rsa when the wiring 10 to be measured is new is stored in the reflectance difference storage unit 22. If not.

余寿命診断部13は、この場合には、検査対象の配線10の1回目における反射率差RsaのデータD5の平均値と、1回目から数年から数十年経過した後の2回目における同一の配線10のデータD6の最低値とを直線で結び、この直線を延長した劣化予測線から次式で表す予測式を設定する。
Rsa=n(t) (式4)
そして、余寿命診断部13は、この予測式から算出する反射率差と、後述する方法で求まる寿命閾値Rtとが同じになる時期を寿命と判断し、この寿命とこの配線10の現在経年数との差を余寿命と診断する。
In this case, the remaining life diagnosis unit 13 is the same as the average value of the data D5 of the reflectance difference Rsa for the first time of the wiring 10 to be inspected, the second time after several years to several decades from the first time. The line 10 is connected to the minimum value of the data D6 of the wiring 10 by a straight line, and a prediction formula expressed by the following formula is set from a deterioration prediction line obtained by extending the straight line.
Rsa = n (t) (Formula 4)
Then, the remaining life diagnosis unit 13 determines the time when the reflectance difference calculated from the prediction formula and the life threshold Rt obtained by the method described later are the same as the life, and this life and the current age of the wiring 10 The difference between and is diagnosed as remaining life.

余寿命を算出したい配線10と同種のものであって、製造年代が数年から数十年異なる配線10が同一受電盤内又は同一環境にある場合には、製造年が新しい配線10の反射率差RsaのデータをD5、古いほうのデータをD6として、劣化予測式を求め、図8に示した方法と同様に配線10の余寿命を算出できる。この場合、それぞれの配線10の余寿命は、それぞれの配線10の現在経年数から寿命までの時間である。このように、異なる製造年代の配線10が同一環境にある場合で、製造年代差が小さい場合には余寿命の算出精度が落ちるが、測定に数年から数十年の時間間隔をあけることなく寿命を算出できる(ステップS5)。   If the wiring 10 that is the same type as the wiring 10 whose remaining life is to be calculated and has a different manufacturing age from several years to several decades is in the same power receiving panel or in the same environment, the reflectance of the wiring 10 with a new manufacturing year The deterioration prediction formula is obtained by setting the difference Rsa data as D5 and the older data as D6, and the remaining life of the wiring 10 can be calculated in the same manner as the method shown in FIG. In this case, the remaining life of each wiring 10 is the time from the current age of each wiring 10 to the life. As described above, when the wirings 10 of different manufacturing ages are in the same environment and the manufacturing age difference is small, the accuracy of calculating the remaining life is lowered, but without measuring a time interval of several years to several tens of years. The lifetime can be calculated (step S5).

図7、図8に示すように、測定した配線10における劣化予測線の傾きの(絶対値の)大きさθは、大きければ短い寿命となり、小さければ長い寿命となる。したがって、傾きの大きさθは劣化の進行の遅速を示す環境性に対応する。測定した配線10の劣化予測線の傾きの大きさθの平均値と、これまでに測定した同一又は異なるサイトの配線10の傾きの大きさθの平均値とを比較することにより、測定した配線10を収納している受電盤の相対的な環境性を評価できる。   As shown in FIGS. 7 and 8, the magnitude (absolute value) of the inclination of the degradation prediction line in the measured wiring 10 is short, and if it is small, the lifetime is short. Therefore, the magnitude θ of the inclination corresponds to the environmental property indicating the slowness of the progress of deterioration. By comparing the measured average value of the inclination θ of the degradation prediction line of the wiring 10 with the average value of the inclination magnitude θ of the wiring 10 of the same or different site measured so far, the measured wiring 10 can evaluate the relative environmental characteristics of the power receiving panel in which 10 is accommodated.

極端に環境性が低い場合には、即ち、劣化の進行が速い場合には、その原因を追求して、原因を取り除き環境性を向上させれば、配線10の延命化を図ることができる。環境性が通常よりも高くなる場合には、即ち、劣化の進行が遅い場合には、その要因を特定し、それを他の場所へ応用して環境性を向上させることにより、延命化を図ることができる。このように環境性の評価を実施することで、劣化の進行を遅くすることができる(ステップS6)。   When the environmentality is extremely low, that is, when the deterioration progresses rapidly, the life of the wiring 10 can be extended by pursuing the cause, removing the cause, and improving the environmentality. If the environmental performance is higher than usual, that is, if the progress of degradation is slow, the cause is identified and applied to other places to improve the environmental performance, thereby prolonging the life. be able to. Thus, by performing environmental evaluation, progress of deterioration can be slowed down (step S6).

なお、環境性を定量的に評価するときは、劣化予測線の傾きの大きさθの年平均値である傾度θy(%/年)を用いる。図14は、劣化予測線の傾度と環境性pとの関係を示す図である。ここで、劣化予測線の傾度θy(%/年)とは、図7に示す場合は、配線10の新品時の反射率差Rsaから寿命の反射率差Rsaを引いた値を新品が有する余寿命で除した値をいう。図8に示す場合は、1回目における反射率差Rsaから寿命の反射率差Rsaを引いた値を1回目の測定時から寿命までの余寿命で除した値をいう。この劣化予測線の傾度θyと環境性pとの関係は各サイトの環境性pとして環境性記憶部24に記憶されている。図14に示すように、傾度θyと環境性pとは、互いにp=h(θy)という関係で結びついている。   In addition, when the environmental property is quantitatively evaluated, a gradient θy (% / year), which is an annual average value of the gradient θ of the deterioration prediction line, is used. FIG. 14 is a diagram illustrating the relationship between the slope of the deterioration prediction line and the environmental property p. Here, the inclination θy (% / year) of the deterioration prediction line means that the new product has a value obtained by subtracting the reflectance difference Rsa of the lifetime from the reflectance difference Rsa of the wiring 10 when the wiring 10 is new. The value divided by the life. In the case shown in FIG. 8, the value obtained by subtracting the reflectance difference Rsa of the lifetime from the reflectance difference Rsa at the first time is divided by the remaining lifetime from the time of the first measurement to the lifetime. The relationship between the gradient θy of the deterioration prediction line and the environmental property p is stored in the environmental property storage unit 24 as the environmental property p of each site. As shown in FIG. 14, the gradient θy and the environmental property p are linked to each other by the relationship p = h (θy).

次に、寿命閾値算出部12における寿命閾値Rtの算出について説明する。ここでは、寿命閾値Rtを決定する寿命因子の一例として配線10の被覆の伸び率E(%)を用いる。被覆の伸び率E(%)を用いたのは、被覆が劣化すると被覆の分子構造である架橋構造が形成されて被覆が硬化して伸びが低下し、被覆が脆くなるために、振動などのショックでひび割れなどの不具合を起こすからである。   Next, calculation of the life threshold value Rt in the life threshold value calculation unit 12 will be described. Here, as an example of the life factor for determining the life threshold value Rt, the elongation percentage E (%) of the coating of the wiring 10 is used. The coating elongation rate E (%) was used because, when the coating deteriorates, a crosslinked structure, which is the molecular structure of the coating, is formed, the coating is cured and the elongation decreases, and the coating becomes brittle. This is because the shock causes problems such as cracks.

図9は、熱で加速劣化させた配線10の被覆の伸び率と劣化時間との関係を示す図である。図9に示すように、熱による加速劣化で時間の経過と共に被覆の伸び率E(%)が低下する傾向にあることが分かる。伸び率E(%)は、制御配線10の導体部を除去した被覆を断線するまで引っ張ったときの値である。伸び率E(%)は次式で定義される。
E(%)=ΔL/L×100 (式5)
ここで、Lは新品時の被覆の長さであり、ΔLは破断時までに伸びた長さである。図9の伸びE(%)は加速劣化時間をtとして、次式で表せる。
E(%)=f(t) (式6)
FIG. 9 is a diagram showing the relationship between the coating elongation of the wiring 10 accelerated by heat and the deterioration time. As shown in FIG. 9, it can be seen that the elongation percentage E (%) of the coating tends to decrease with time due to accelerated deterioration due to heat. The elongation rate E (%) is a value obtained when the coating from which the conductor portion of the control wiring 10 is removed is pulled until it is disconnected. The elongation rate E (%) is defined by the following equation.
E (%) = ΔL / L × 100 (Formula 5)
Here, L is the length of the coating when it is new, and ΔL is the length stretched until the break. The elongation E (%) in FIG. 9 can be expressed by the following equation where t is the accelerated deterioration time.
E (%) = f (t) (Formula 6)

図10は、図9で用いた同一サンプルの反射率差Rsaと劣化時間との関係を示す図である。同図の特性は加速劣化時間をtとして、次式で表せる。
Rsa = g(t) (式7)
したがて、式6と式7とからtを消去することにより、伸び率E(%)と反射率差Rsaの関係が求まる。
Rsa = g(f−1(E)) (式8)
ここで、f−1はfの逆関数である。式8を用いることで、寿命として定める所定の伸び率E(%)に対する反射率差Rsa、即ち、寿命閾値Rtを決定できる。この寿命閾値Rtは、配線10の線種や色毎に寿命閾値記憶部23に記憶される。なお、寿命となる伸び率E(%)としては、例えば、100%以下を用いる。なお、本実施例では、伸び率E(%)を寿命閾値Rtを決定する寿命因子として取り上げたが、同様の方法で配線被覆の引っ張り強さ、含水量、絶縁抵抗などに基づき寿命閾値Rtを算出してもよい。
FIG. 10 is a diagram showing the relationship between the reflectance difference Rsa and the deterioration time of the same sample used in FIG. The characteristic of the figure can be expressed by the following equation where the acceleration deterioration time is t.
Rsa = g (t) (Formula 7)
Therefore, the relationship between the elongation rate E (%) and the reflectance difference Rsa is obtained by eliminating t from Equations 6 and 7.
Rsa = g (f −1 (E)) (Equation 8)
Here, f− 1 is an inverse function of f. By using Expression 8, the reflectance difference Rsa with respect to a predetermined elongation rate E (%) determined as the lifetime, that is, the lifetime threshold value Rt can be determined. The life threshold value Rt is stored in the life threshold value storage unit 23 for each line type and color of the wiring 10. Note that, for example, 100% or less is used as the elongation rate E (%) that becomes the lifetime. In this example, the elongation rate E (%) was taken as a life factor for determining the life threshold value Rt, but the life threshold value Rt was determined based on the tensile strength, moisture content, insulation resistance, etc. of the wiring coating in the same manner. It may be calculated.

本実施形態によれば、配線10の余寿命を診断することにより、受変電設備を安全に使用できる限界を把握でき,計画的に最適な更新時期の立案が可能となる。更に、劣化の遅速を示す環境性pを定量化できるため、各サイト毎に環境性pの相対比較が可能となり、環境性pが悪い場合には、そのサイトの使用環境から原因を推定し、対策を施すなどして受変電設備の信頼性を高めることが可能になる。   According to the present embodiment, by diagnosing the remaining life of the wiring 10, it is possible to grasp the limit of safe use of the power receiving / transforming equipment, and it is possible to plan an optimal update time in a planned manner. Furthermore, since the environmentality p indicating the slowness of deterioration can be quantified, it is possible to make a relative comparison of the environmentality p for each site. If the environmentality p is poor, the cause is estimated from the usage environment of the site, It becomes possible to improve the reliability of the substation equipment by taking measures.

次に、配線10の余寿命算出の過程で求まる劣化予測線の傾度θyから算出した環境性pを利用して、配線10が収納されている同一サイトの受電盤内に設置されている絶縁物の余寿命算出方法について図11乃至図14を用いて説明する。   Next, using the environmental property p calculated from the inclination θy of the deterioration prediction line obtained in the process of calculating the remaining life of the wiring 10, the insulator installed in the power receiving panel at the same site where the wiring 10 is stored The remaining life calculation method will be described with reference to FIGS.

図11は、絶縁物の表面抵抗率ZRと環境性pとの関係を示す図である。表面抵抗率ZRは、湿度80%RH(Relative Humidity)時における各経年(10年、20年、30年)の絶縁物の表面抵抗率ZR(Ω/□)である。図11に示す関係は、予め、絶縁物及び配線10を同一環境で熱劣化や酸化劣化試験を実施することにより得られる。この環境性pと表面抵抗率ZRとの関係をデータベースD10(図13参照)に記憶する。図12は、受電盤内における絶縁物の余寿命算出方法を示す図である。湿度80%RH時における絶縁物の表面抵抗率ZRと、この絶縁物の経年との関係を示したものである。図13は、絶縁物の余寿命算出方法の処理を示すフローチャートである。   FIG. 11 is a diagram showing the relationship between the surface resistivity ZR of the insulator and the environmental property p. The surface resistivity ZR is the surface resistivity ZR (Ω / □) of the insulator at each age (10 years, 20 years, 30 years) when the humidity is 80% RH (Relative Humidity). The relationship shown in FIG. 11 is obtained in advance by conducting a thermal deterioration or oxidation deterioration test on the insulator and the wiring 10 in the same environment. The relationship between the environmental property p and the surface resistivity ZR is stored in the database D10 (see FIG. 13). FIG. 12 is a diagram illustrating a method for calculating the remaining life of an insulator in the power receiving panel. The relationship between the surface resistivity ZR of the insulator at a humidity of 80% RH and the aging of the insulator is shown. FIG. 13 is a flowchart showing processing of a remaining life calculation method for an insulator.

まず、図14より、劣化予測線の傾度θyを求め、この傾度θyに対応する環境性pを求める。図14では、傾度θyが0.75%/年のときに、環境性pを1としている(ステップS10)。次に、データベースD10に記憶している受電盤の環境性pと経年における絶縁物の表面抵抗率ZRとの関係を参照する。この関係を利用して環境性pから受電盤内の絶縁物の表面抵抗率ZRを算出する。例として、図11では、環境性pが1であるサイトの受電盤における経年20年の絶縁物の表面抵抗率ZRを矢印で示している。この場合、表面抵抗率ZRは1010Ω/□と算出できる(ステップS11)。 First, from FIG. 14, the inclination θy of the deterioration prediction line is obtained, and the environmental property p corresponding to this inclination θy is obtained. In FIG. 14, when the gradient θy is 0.75% / year, the environmental property p is set to 1 (step S10). Next, the relationship between the environmental property p of the power receiving panel stored in the database D10 and the surface resistivity ZR of the insulator over time is referred to. Using this relationship, the surface resistivity ZR of the insulator in the power receiving panel is calculated from the environmental property p. As an example, in FIG. 11, the surface resistivity ZR of an insulator over 20 years in a power receiving panel at a site where environmentality p is 1 is indicated by an arrow. In this case, the surface resistivity ZR can be calculated as 10 10 Ω / □ (step S11).

次に、データベースD11(図13参照)に記憶している絶縁物の新品時における表面抵抗率ZRと寿命閾値ZRtとを参照する。そして、図12に示すように、新品時における表面抵抗率を示す点と、S11で求めた経年20年における表面抵抗率ZRを示す点とを結んだ直線を延長して劣化予測線から経年変化の予測式を設定する。そして、この予測式から求まる表面抵抗率ZRの将来の予測値と、後述する余寿命閾値ZRtとが同じになる時期を寿命とし、現在経年数(経年20年)から寿命までの時間を余寿命と算出する。   Next, the surface resistivity ZR and the life threshold value ZRt when the insulator is new stored in the database D11 (see FIG. 13) are referred to. Then, as shown in FIG. 12, the straight line connecting the point indicating the surface resistivity at the time of a new article and the point indicating the surface resistivity ZR obtained in S11 at 20 years is extended to change over time from the deterioration prediction line. Set the prediction formula. And, the time when the future predicted value of the surface resistivity ZR obtained from this prediction formula and the remaining life threshold value ZRt, which will be described later, become the same is defined as the life, and the time from the current age (20 years) to the life is the remaining life. And calculate.

図12に示す例では、経年0年である絶縁抵抗の新品時における表面抵抗率ZRが1015Ω/□を示す点と、経年20年の検査時における表面抵抗率ZRが1011Ω/□を示す点とを結ぶ劣化予測線から経年変化の予測式を設定する。そして、この予測式から求まる表面抵抗率ZRの将来の予測値と、表面抵抗率ZRが10Ω/□である余寿命閾値ZRtとが同じになる時期が経年で30年であるため、寿命は30年となり、検査時の経年20年から寿命の経年30年までの10年を余寿命として算出している(ステップS12)。なお、図12の縦軸である表面抵抗率は対数値である。 In the example shown in FIG. 12, the surface resistivity ZR when the insulation resistance is 0 years old is 10 15 Ω / □ when it is new, and the surface resistivity ZR is 10 11 Ω / □ when the inspection is 20 years old. A prediction formula for secular change is set from a deterioration prediction line connecting the points indicating. Since the future predicted value of the surface resistivity ZR obtained from this prediction formula and the remaining life threshold value ZRt at which the surface resistivity ZR is 10 9 Ω / □ are the same, the lifetime is 30 years. Is 30 years, and 10 years from the age of 20 years at the time of inspection to the age of 30 years is calculated as the remaining life (step S12). In addition, the surface resistivity which is a vertical axis | shaft of FIG. 12 is a logarithmic value.

ここで、絶縁物の余寿命算出時に用いた寿命閾値ZRtの決定方法について述べる。基本的な考え方は、前記配線10の寿命閾値Rtの決定方法と同じである。寿命閾値ZRtを決定する寿命因子の一例として絶縁物の水分含有率H(%)を用いる。水分含有率H(%)を用いたのは、絶縁物の水分含有量が増加すると絶縁抵抗が低下して受電盤に不具合を起こすからである。   Here, a method of determining the life threshold value ZRt used when calculating the remaining life of the insulator will be described. The basic idea is the same as the method for determining the life threshold value Rt of the wiring 10. As an example of the life factor for determining the life threshold value ZRt, the moisture content H (%) of the insulator is used. The reason why the moisture content H (%) is used is that when the moisture content of the insulator is increased, the insulation resistance is lowered, causing a problem in the power receiving panel.

絶縁物を環境試験室内で加速劣化させ、時間の経過と共に抵抗値が低下する傾向にある性質を用いる。水分含有率H(%)は加速劣化時間tとして、次式で表せる。
H(%)=f(t) (式9)
同一サンプルの表面抵抗率ZRと劣化時間tとの関係は、次式で表せる。
ZR=g(t) (式10)
したがって、式9と式10とからtを消去することにより、水分含有率Hと表面抵抗率ZRの関係が求まる。
ZR=g(f−1(H)) (式11)
ここで、f−1はfの逆関数である。式11を用いることで、寿命として定める所定の水分含有率H(%)に対応する表面抵抗率ZR、即ち、寿命閾値ZRtを決定できる。
An insulator is acceleratedly deteriorated in an environmental test chamber, and the property that the resistance value tends to decrease with the passage of time is used. The moisture content H (%) can be expressed by the following equation as the accelerated deterioration time t.
H (%) = f (t) (Formula 9)
The relationship between the surface resistivity ZR and the degradation time t of the same sample can be expressed by the following equation.
ZR = g (t) (Formula 10)
Therefore, the relationship between the moisture content H and the surface resistivity ZR can be obtained by eliminating t from Equation 9 and Equation 10.
ZR = g (f −1 (H)) (Equation 11)
Here, f− 1 is an inverse function of f. By using Equation 11, the surface resistivity ZR corresponding to the predetermined moisture content H (%) determined as the lifetime, that is, the lifetime threshold ZRt can be determined.

本実施形態によれば、配線10の光の反射率差を用いた余寿命診断方法で算出される環境性pに基づいて、同一サイトの受電盤内における絶縁物の余寿命を算出できる。したがって、本発明では配線10のみならず絶縁物の余寿命も算出できるため、従来よりも総合的に受電盤の信頼性を定量的に診断できる。   According to the present embodiment, the remaining life of the insulator in the power receiving panel at the same site can be calculated based on the environmental property p calculated by the remaining life diagnosis method using the light reflectance difference of the wiring 10. Therefore, in the present invention, not only the wiring 10 but also the remaining life of the insulator can be calculated, so that the reliability of the power receiving panel can be quantitatively diagnosed more comprehensively than before.

1 プローブ(センサ)
1a 溝部
2 分光器(センサ)
3 光源
5 光ファイバ
6 光計測制御部(計測部)
10 配線(検査対象物)
11 反射率差算出部(特性値算出部)
12 寿命閾値算出部
13 余寿命診断部(予測式設定部,余寿命算出部)
14 環境性評価部
21 反射強度記憶部
22 反射率差記憶部
23 寿命閾値記憶部
24 環境性記憶部
100 余寿命診断装置
1 Probe (sensor)
1a Groove part 2 Spectrometer (sensor)
3 Light source 5 Optical fiber 6 Optical measurement control unit (measurement unit)
10 Wiring (inspection object)
11 Reflectance difference calculator (characteristic value calculator)
12 life threshold value calculation unit 13 remaining life diagnosis unit (prediction formula setting unit, remaining life calculation unit)
DESCRIPTION OF SYMBOLS 14 Environmental evaluation part 21 Reflection intensity memory | storage part 22 Reflectance difference memory | storage part 23 Life threshold value memory | storage part 24 Environmentality memory | storage part 100 Remaining life diagnostic apparatus

Claims (3)

受変電設備に関連した検査対象物の余寿命を診断する余寿命診断装置に用いる余寿命診断方法であって、
前記余寿命診断装置は、
前記検査対象物及び検査参照用材のそれぞれに対して検査光が照射されたとき、そのそれぞれから反射される反射光のうち、あらかじめ定められた第1の波長及び前記第1の波長とは異なる第2の波長についての反射光の強度を、センサを介して取得するステップと、
前記第1の波長及び前記第2の波長それぞれについて、前記検査参照用材から反射される反射光の強度に対する前記検査対象物から反射される反射光の強度の比として定義される反射率を算出するとともに、前記第1の波長について算出された前記反射率から前記第2の波長について算出された前記反射率を差し引いて、前記検査対象物の反射率差を算出するステップと、
前記算出した検査対象物の反射率差と、前記検査対象物の検査時現在の経年数と、経年数が既知の前記検査対象物と同一品又は同等品について別途取得された反射率差と、前記既知の経年数と、を少なくとも用いて、前記経年数から前記反射率差を予測する予測式を設定するステップと、
前記設定した予測式から得られる将来の反射率差の予測値が、前記検査対象物に対して設定された寿命閾値に到達する経年数を前記検査対象物の寿命とし、前記寿命と前記検査時現在の経年数との差から前記検査対象物の余寿命を算出するステップと
を備えることを特徴とする余寿命診断方法。
A remaining life diagnosis method used for a remaining life diagnosis device for diagnosing the remaining life of an inspection object related to a power receiving / transforming facility,
The remaining life diagnosis device is:
When the inspection light is irradiated to each of the inspection object and the inspection reference material, the first wavelength different from the first wavelength and the first wavelength that are different from the reflected light reflected from each of the inspection object and the inspection reference material. the intensity of the reflected light of the second wavelength, comprising: retrieve via the sensor,
For each of the first wavelength and the second wavelength, a reflectance defined as a ratio of the intensity of the reflected light reflected from the inspection object to the intensity of the reflected light reflected from the inspection reference material is calculated. And subtracting the reflectance calculated for the second wavelength from the reflectance calculated for the first wavelength to calculate a reflectance difference of the inspection object ;
The calculated reflectance difference of the inspection object, the age at the time of inspection of the inspection object, and the reflectance difference separately acquired for the same or equivalent product as the inspection object whose age is known , Using at least the known aging, and setting a prediction formula for predicting the reflectance difference from the aging ;
Predicted value of the reflectance difference of future Ru obtained from the prediction equation described above settings, the age of reaching the set lifetime threshold with respect to the inspection object and the life of the test object, the test and the life A remaining life diagnosis method comprising: calculating a remaining life of the inspection object from a difference from the current age .
受変電設備に関連した検査対象物の余寿命を診断する余寿命診断装置であって、
前記検査対象物及び検査参照用材のそれぞれに対して検査光が照射されたとき、そのそれぞれから反射される反射光のうち、あらかじめ定められた第1の波長及び前記第1の波長とは異なる第2の波長についての反射光の強度を、センサを介して取得する計測部と、
前記第1の波長及び前記第2の波長それぞれについて、前記検査参照用材から反射される反射光の強度に対する前記検査対象物から反射される反射光の強度の比として定義される反射率を算出するとともに、前記第1の波長について算出された前記反射率から前記第2の波長について算出された前記反射率を差し引いて、前記検査対象物の反射率差を算出する反射率差算出部と、
前記算出した検査対象物の反射率差と、前記検査対象物の検査時現在の経年数と、経年数が既知の前記検査対象物と同一品又は同等品について別途取得された反射率差と、前記既知の経年数と、を少なくとも用いて、前記経年数から前記反射率差を予測する予測式を設定する予測式設定部と、
前記設定した予測式から得られる将来の反射率差の予測値が、前記検査対象物に対して設定された寿命閾値に到達する経年数を前記検査対象物の寿命とし、前記寿命と前記検査時現在の経年数との差から前記検査対象物の余寿命を算出する余寿命算出部と
を備えることを特徴とする余寿命診断装置。
A remaining life diagnosis device for diagnosing the remaining life of an inspection object related to a power receiving / transforming facility,
When the inspection light is irradiated to each of the inspection object and the inspection reference material, the first wavelength different from the first wavelength and the first wavelength that are different from the reflected light reflected from each of the inspection object and the inspection reference material. the intensity of the reflected light of the second wavelength, and a measurement unit retrieve via the sensor,
For each of the first wavelength and the second wavelength, a reflectance defined as a ratio of the intensity of the reflected light reflected from the inspection object to the intensity of the reflected light reflected from the inspection reference material is calculated. And a reflectance difference calculation unit for subtracting the reflectance calculated for the second wavelength from the reflectance calculated for the first wavelength to calculate a reflectance difference of the inspection object ;
The calculated reflectance difference of the inspection object, the age at the time of inspection of the inspection object, and the reflectance difference separately acquired for the same or equivalent product as the inspection object whose age is known , A prediction formula setting unit that sets a prediction formula for predicting the reflectance difference from the age, using at least the known age , and
Predicted value of the reflectance difference of future Ru obtained from the prediction equation described above settings, the age of reaching the set lifetime threshold with respect to the inspection object and the life of the test object, the test and the life A remaining life diagnostic apparatus comprising: a remaining life calculating unit that calculates a remaining life of the inspection object from a difference from the current age .
請求項に記載の余寿命診断方法をコンピュータに実行させることを特徴とするプログラム。 A program for causing a computer to execute the remaining life diagnosis method according to claim 1 .
JP2009152069A 2009-06-26 2009-06-26 Remaining life diagnosis method, remaining life diagnosis device and program Expired - Fee Related JP5140639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152069A JP5140639B2 (en) 2009-06-26 2009-06-26 Remaining life diagnosis method, remaining life diagnosis device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152069A JP5140639B2 (en) 2009-06-26 2009-06-26 Remaining life diagnosis method, remaining life diagnosis device and program

Publications (2)

Publication Number Publication Date
JP2011007662A JP2011007662A (en) 2011-01-13
JP5140639B2 true JP5140639B2 (en) 2013-02-06

Family

ID=43564503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152069A Expired - Fee Related JP5140639B2 (en) 2009-06-26 2009-06-26 Remaining life diagnosis method, remaining life diagnosis device and program

Country Status (1)

Country Link
JP (1) JP5140639B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374445B2 (en) * 2010-06-03 2013-12-25 株式会社日立製作所 Remaining life diagnosis method, remaining life diagnosis device and program
JP5360082B2 (en) * 2011-01-28 2013-12-04 三菱電機株式会社 Deterioration diagnosis device
JP6191643B2 (en) * 2015-03-26 2017-09-06 日新電機株式会社 Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
JP7237516B2 (en) * 2018-10-24 2023-03-13 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP7263129B2 (en) * 2019-06-06 2023-04-24 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077469A (en) * 1994-02-25 2004-03-11 Hitachi Ltd Degradation level measurement system and measurement device for material

Also Published As

Publication number Publication date
JP2011007662A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5374445B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP5140639B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
Wu et al. The use of partial discharges as an online monitoring system for underground cable joints
Baird et al. Non-destructive measurement of the degradation of transformer insulating paper
JP2005061901A (en) Insulation diagnostic method for electric equipment
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
Azis et al. Operational condition assessment of in-service distribution transformers
JP6191643B2 (en) Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
EP3327736B1 (en) Method for determining abnormality in oil-filled electric apparatus
JP3794290B2 (en) Article deterioration diagnosis method, quality inspection method, material judgment method and diagnostic device, article deterioration management method
CN111999259A (en) Composite insulator aging degree evaluation method based on infrared spectrum
Baird et al. On-site analysis of transformer paper insulation using portable spectroscopy for chemometric prediction of aged condition
Onn et al. Fiber Bragg grating sensor for detecting ageing transformer oil
JP2014085193A (en) Life expectancy estimation method for grease and optical diagnostic device
JP2019095291A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device
Schwarz et al. Diagnostic methods for transformers
KR102350946B1 (en) Method for quantifying of furan concentration, method and apparatus for diagnosing transformer deterioration using the same
JP2017110916A (en) Deterioration diagnostic device and deterioration diagnostic method
JP3759144B2 (en) Tunnel reinforcing material peeling detection method and apparatus
JPS6159242A (en) Method for diagnosing deterioration of insulating material
Gagliani et al. Capacitance measurements for nondestructive testing of aged nuclear power plant cable
JP2005337885A (en) Deterioration diagnosis method and diagnosis device by fluorescence measurement
JP2019215230A (en) Electric wire coating deterioration detector and electric wire coating deterioration detection method
TW201905437A (en) Diagnostic system for electrical apparatus and method
JP5252500B2 (en) Internal diagnostic method and diagnostic device for insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees