WO2017141793A1 - Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation - Google Patents

Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation Download PDF

Info

Publication number
WO2017141793A1
WO2017141793A1 PCT/JP2017/004619 JP2017004619W WO2017141793A1 WO 2017141793 A1 WO2017141793 A1 WO 2017141793A1 JP 2017004619 W JP2017004619 W JP 2017004619W WO 2017141793 A1 WO2017141793 A1 WO 2017141793A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin mold
stress
electrical
electrical insulation
insulation
Prior art date
Application number
PCT/JP2017/004619
Other languages
French (fr)
Japanese (ja)
Inventor
拓 小野寺
美稀 山崎
竹内 正樹
天兒 洋一
憲一 相馬
浩司 三本
雄大 平野
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016027723A external-priority patent/JP6668101B2/en
Priority claimed from JP2016029472A external-priority patent/JP6670629B2/en
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2017141793A1 publication Critical patent/WO2017141793A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods

Definitions

  • This invention relates to the diagnostic technique of the electric equipment provided with the resin mold for electrical insulation.
  • electrical devices such as transformers, switches, motors, and inverters are provided with a current-carrying part such as a coil and an electrically insulating resin mold surrounding it.
  • a resin mold By forming a resin mold, it is possible to prevent equipment failure due to electric leakage, prevent electric leakage to the surrounding area where electrical equipment is installed, and ensure safety.
  • this resin mold is mainly composed of a resin material such as an epoxy resin. Furthermore, a coloring agent and an inorganic filler may be mix
  • thermal stress is applied to the interface between the energized part such as a coil and the resin mold. This is a heat stress caused by environmental temperature differences, such as heat generation resulting from continuous energization of a current-carrying portion made of a metal material and a large temperature difference between day and night in the day.
  • the interface is peeled off or the resin mold is cracked, resulting in dielectric breakdown, and electrical insulation by the resin mold cannot be guaranteed. As a result of failure.
  • the metal energized portion is not damaged, and the portion that determines the failure of the electric device is a resin mold.
  • diagnosis of electrical equipment has been performed by measuring the deterioration state of an insulator such as a resin mold.
  • the deterioration state of the insulator has been measured by measurement by a general test, measurement by partial discharge, measurement by optical diagnosis, and the like.
  • a general test measure the insulation resistance and dielectric loss of the insulator.
  • partial discharge the amount of discharge charge per insulator is measured.
  • optical diagnosis the reflectance of light is measured for the insulator.
  • Patent Document 1 is an example of a diagnostic method for electrical equipment using such a conventional technique.
  • optical diagnosis is employed. This is to obtain the reflectance spectrum of the resin material that has been thermally deteriorated in advance, two types of single wavelength light that matches the wavelength of the reflection peak of the colorant and the inorganic filler is incident on the resin mold to be diagnosed, It is intended to determine the degree of chemical deterioration of the resin mold to be diagnosed by collating with the reflectance spectrum obtained in advance.
  • the diagnostic method for an electric device described in Patent Document 1 is based on a chemical degradation measurement outside the visible resin mold, and peeling of the interface between the energized part and the resin mold touched above or cracking of the resin mold The establishment of a more accurate diagnostic method is desired.
  • peeling of the interface between the current-carrying site inside the electrical equipment and the resin mold and cracking of the resin mold are due to repeated thermal stress that is naturally applied during the operation of the electrical equipment.
  • the present invention has been made in view of such circumstances, and by quantifying the stress applied to the resin mold at the interface between the energized portion inside the electric device and the resin mold, a highly accurate diagnosis method for the electric device and It is an object to provide a diagnostic system.
  • an electrical equipment diagnosis system including an electrically insulating resin mold, the measuring means for measuring the electrically insulating resin mold;
  • the control means and the display means the measuring means measures the stress applied to the surface layer part of the resin mold for electrical insulation, and the control part performs electrical measurement based on the measured stress applied to the surface layer part. It is converted into stress applied to the interface between the insulating resin mold and the conductive material covered by the electrical insulating resin mold, and the equivalent age of the resin mold for electrical insulation is specified based on the stress applied to the interface.
  • the display means is a diagnostic system for an electrical device that displays the converted equivalent elapsed years.
  • the present invention it is possible to provide a highly accurate diagnosis method and diagnosis system for an electric device based on the stress applied to the resin mold at the interface between the energized portion inside the electric device and the resin mold.
  • FIG. 1 is a flowchart showing in a stepwise manner a diagnostic method for an electrical device including an electrically insulating resin mold according to an embodiment of the present invention.
  • the diagnostic method for an electrical device including the resin mold for electrical insulation includes a first step relating to diagnosis (measurement of stress applied to a surface layer portion of the resin mold), a second Step (Conversion of stress applied to the surface part of the resin mold into stress at the interface with the current-carrying part), and third step (Conversion of stress at the interface with the current-carrying part of the resin mold to equivalent elapsed years) Including.
  • test piece 12 of the resin mold material with which an electric equipment is equipped may be the test piece cut out directly from the electric equipment 11 which actually operate
  • the flow from 11A to 11C shown in FIG. 1 relates to numerical analysis of the electrical equipment 11 by the finite element method, and is performed before actually diagnosing the electrical equipment, and the result is stored in the database.
  • finite element modeling is performed based on the component structure of the electrical device.
  • the material properties of the material that actually configures each part of the electrical device 11, such as a current-carrying part or a resin mold are input.
  • the material physical properties are mechanical physical properties such as Young's modulus and Poisson's ratio, and thermal physical properties such as linear expansion coefficient and thermal conductivity.
  • the thermal stress analysis of the electrical device 11 is performed using the model created in the electrical device modeling 11A.
  • the current value is obtained from Ohm's law using the electrical resistance and voltage at the energization site in the model, and then the heat is generated from Joule's law. Find the amount.
  • ⁇ A thermal stress analysis is performed in consideration of the heat generation at the energized part.
  • the electrical resistance and voltage can be calculated from the total length of the windings constituting the coil and the cross-sectional area of the windings.
  • the thermal stress analysis 11B the distribution of stress applied to the resin mold included in the electrical device 11 can be found.
  • the obtained stress value includes the residual stress resulting from the shape of the resin mold in addition to the thermal stress generated when the heat generated at the energized portion is transferred to the resin mold.
  • the stress distribution is a value of stress at each position from the interface portion 23 between the energized portion 21 and the resin mold 22 for electrical insulation to the surface layer portion 24 of the resin mold. means.
  • FIG. 2 is a schematic diagram of the stress distribution, and the stress S1 applied to the interface 23 and the stress S2 applied to the surface layer 24 are extracted from the distribution.
  • the stress S ⁇ b> 2 applied to the surface layer portion 24 is smaller than the stress S ⁇ b> 1 applied to the interface portion 23, but the stress S ⁇ b> 2 applied to the surface layer portion 24 may be greater than the stress S ⁇ b> 1 applied to the interface portion 23. It doesn't matter if they are equal.
  • the ratio of the stress S ⁇ b> 1 and the stress S ⁇ b> 2 obtained from the thermal stress analysis that is, the value of S ⁇ b> 1 / S ⁇ b> 2 is created as a database.
  • the thermal stress analysis is performed on the electrical device 11 having various dimensions, output, and energized state. Therefore, the stress ratio obtained from the thermal stress analysis is functionalized according to the size, output, usage environment, energized state, etc. of the electrical equipment 11 when creating a database.
  • the usage environment includes information such as the temperature, humidity, and air pollution level of the place where the electric device 11 is operated, and the energized state refers to the average energization time per year and the current peak value in one day. It includes information such as the hold time and what percentage of the maximum output of the electrical equipment is used.
  • the flow from 12A to 12B is also performed before actually diagnosing the electric device, and the result is stored in the database.
  • the flow from 12A to 12B relates to a fatigue life test for the test piece 12 of the resin mold material included in the electric device.
  • a fatigue life test is performed on the test piece 12 of the resin mold material included in the electrical equipment.
  • the fatigue life test is performed by processing a test piece 12 of a resin mold material included in an electrical device into, for example, a strip shape or a dumbbell shape, fixing one end of the processed test piece, and applying a tensile load to the other end. Done.
  • the size of the test piece may be in accordance with, for example, JIS K 7139 standard.
  • the tensile load is repeatedly applied, and the repetition frequency and the maximum value of the load are arbitrary. When a repeated tensile load is applied, the test piece breaks at a certain number of repetitions.
  • a fatigue life curve can be obtained by performing such a test several times while changing the maximum value of the tensile load, and plotting the number of repetitions leading to fracture on the horizontal axis and the maximum value of the tensile load on the vertical axis. .
  • the fatigue life curve obtained as a result of the fatigue life test has a stress value when a logarithmic scale is used for the number of repetitions leading to the fracture on the horizontal axis in accordance with empirical formulas such as the exponential Basquin rule and Coffin-Manson rule. It becomes a decreasing curve.
  • this material fatigue constant is databased as a numerical value unique to the test piece 12 of the resin mold material provided in the electric equipment.
  • the fatigue life test can be performed on the test piece 12 of the resin mold material provided in the electric apparatus having various material compositions. Therefore, the material fatigue constant obtained from the fatigue life test is functionalized according to the material composition of the test piece 12 of the resin mold material included in the electric device when the database is created.
  • the material composition means the types of resin main agent, curing agent, coloring agent, reinforcing agent, and the like and the mixing ratio thereof that constitute the test piece 12 of the resin mold material provided in the electric equipment.
  • the preparation for diagnosing the electrical device 11 is completed by the flow from 11A to 11C and the flow from 12A to 12B shown in FIG. From here, three diagnostic steps will be described.
  • the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electrical device 11 is measured.
  • the stress is measured by a nondestructive inspection method.
  • the electrical device 11 may be in an energized load state or in a power failure state.
  • the obtained stress value includes the residual stress caused by the shape of the resin mold in addition to the thermal stress generated when the heat generated at the energized part is transferred to the resin mold.
  • the nondestructive inspection is performed using a stress measuring device using synchrotron radiation such as X-rays. In this case, the stress is measured from the X-ray diffraction of the inorganic filler compounded with the resin mold.
  • the stress acting on the powdered composite inorganic filler may be regarded as the stress applied to the resin mold itself.
  • the measured stress value reflects the adhesion state between the inorganic filler and the resin base material at the micro level. Specifically, at the time of resin molding, the inorganic filler and the resin base material are firmly adhered at a micro level, and an equivalent and non-zero stress acts on both the inorganic filler and the resin base material. When aged or a thermal load is applied, the adhesion between the inorganic filler and the resin base material becomes weak, and the stress is eventually released.
  • the microstructure of the powder of inorganic filler compounded in the resin mold for electrical insulation may be either crystalline with regular atomic arrangement or amorphous with irregular atomic arrangement, but stress measurement by X-ray In the case of conducting, it is necessary to be crystalline having a clear diffraction pattern.
  • Examples of the crystalline inorganic filler include crystalline silica, aluminum oxide, aluminum hydroxide, calcium carbonate, iron oxide, titanium oxide, zirconium oxide, cesium oxide and the like. Moreover, the compounding quantity of an inorganic filler is arbitrary.
  • the first process described above is a resin internal state inspection process, a surface layer stress inspection process, or an interface stress inspection process.
  • the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electrical device 11 obtained in the ⁇ first step S101> and the stress ratio accumulated in the stress ratio database 11C The product of (S1 / S2) is calculated and converted to the stress S1 applied to the interface 23 with the energized part.
  • the stress ratio is functionalized according to the size, output, and energization state of the electrical device 1, a stress ratio suitable for the status of the electrical device used for diagnosis is input.
  • the stress S1 applied to the interface part 23 between the energized part and the resin mold for electrical insulation obtained in the ⁇ second step S102> is applied to the fatigue life curve, and the number of repeated stress loads is calculated. Convert.
  • the fatigue life curve is created by substituting the two material fatigue constants in the database obtained in 12B into an empirical expression such as an exponential Basquin rule or Coffin-Manson rule. By substituting the stress S1 of the interface 23 for the fatigue life curve, the number of repetitions corresponding to the stress can be obtained.
  • the second step described above is a resin mold stress specifying process, a resin mold internal stress specifying process, a current-carrying part stress specifying process, or an interface stress specifying process.
  • the number of repetitions obtained from the fatigue life curve is converted into the number of years elapsed of the electrical equipment 11. For example, if you continue to use an electrical device at maximum output for a long period of time and the thermal load on the resin mold is repeated, the electrical device has accumulated more years than actually passed from the date of manufacture of the electrical device. It becomes equal to the state of.
  • Equivalent age is the number of years that have elapsed in the use of electrical equipment, taking into account such usage conditions.
  • the equivalent elapsed years are longer than the actual elapsed years.
  • the equivalent elapsed years may be shortened, for example, when the electronic device is stored without being used at all.
  • the conversion of the number of repetitions obtained from the fatigue life curve to the equivalent number of elapsed years is performed using a conversion coefficient. For example, when an electric device is operated continuously regardless of day and night, the thermal stress increases and decreases once due to the temperature difference between day and night.
  • the conversion coefficient is 1 day / time.
  • the third step based on the material fatigue constant obtained from the material fatigue constant database, the relationship between the stress applied to the interface and the corresponding elapsed time is obtained, and this relationship is obtained in the second step.
  • the stress applied to the surface layer portion may be applied to obtain the equivalent elapsed years.
  • the remaining life can be obtained by subtracting the number of elapsed years of the electrical equipment from the design life of the electrical equipment.
  • the remaining life means the remaining number of years that the electrical equipment can be safely used while ensuring electrical insulation.
  • the remaining life shows a negative value, the electric device has already reached the state exceeding the design life.
  • the third process described above is, in other words, equivalent elapsed year identification processing, resin mold equivalent age identification processing, or mold transformer equivalent lifetime identification processing.
  • FIG. 3 is a block configuration diagram showing a diagnostic system for an electrical device including an electrically insulating resin mold according to an embodiment of the present invention.
  • the electrical equipment diagnosis system includes a surface layer stress measurement device 30 and a diagnosis device 40.
  • the surface layer stress measuring device 30 is a device that measures the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electric device 11, and uses, for example, an X-ray stress measuring device that measures stress from X-ray diffraction. be able to.
  • the diagnostic device 40 includes an interface stress calculation unit 42, a resin mold stress ratio database 43, an equivalent elapsed year calculation unit 44, a material fatigue constant database 45, and a display unit 46.
  • the resin mold stress ratio database 43 performs finite element modeling based on the component structure of the electrical equipment, performs thermal stress analysis of the electrical equipment, and obtains the stress ratio S1 / S2 between the surface layer stress and the interface stress, It is a database.
  • the material fatigue constant database 45 is a database in which the fatigue life curve is obtained by conducting a fatigue life test on the test piece of the resin mold material provided in the electric equipment, and the material fatigue constant obtained from the fatigue life curve is made into a database. .
  • the interface stress calculation unit 42 calculates the product of the surface layer stress S2 measured by the surface layer stress measurement device 30 and the stress ratio accumulated in the resin mold stress ratio database 43, and calculates the stress S1 applied to the interface. To do.
  • the equivalent elapsed year calculation unit 44 applies the interface stress obtained by the interface stress calculation unit 42 to a fatigue life curve created based on the material fatigue constants in the material fatigue constant database 45 to obtain the number of stress load repetitions.
  • the display part 46 displays the equivalent elapsed years of the obtained electrical equipment.
  • the display unit 46 may be provided in the diagnostic device 40, or may be a tablet terminal or the like that is separate from the diagnostic device, and a display signal may be transmitted from the diagnostic device thereto.
  • the surface layer stress measuring device 30 and the diagnostic device 40 are described as separate devices, but the two devices may be integrated into one device.
  • the diagnostic method and diagnostic system for an electrical device including the resin mold for electrical insulation described above provides the thermal stress applied to the resin mold at the interface portion 23 between the energized portion inside the electrical device and the resin mold, which regulates the failure of the electrical device. Based on this, it is possible to provide a highly accurate diagnostic technique for obtaining the equivalent age and remaining life of electrical equipment.
  • the electrical device was diagnosed according to the above diagnostic procedure.
  • a mold transformer was chosen as a representative of electrical equipment.
  • the transformer used for diagnosis is equipped with a coil wound with copper wire as a current-carrying part and a resin mold around it for electrical insulation.
  • the resin mold is made of a composite material of epoxy resin and contains crystalline silica as a main filler.
  • the ratio (S1 / S2) of the stress applied to the resin mold at the interface with the coil and the stress on the surface layer of the resin mold was determined.
  • Table 1 shows the analysis results of stress ratios for three transformers with different dimensions, outputs, and energized states. All transformers of No. 1, No. 2 and No. 3 have been used for 10 years since the start of energization. In the dimensions, the height of the coil portion is shown as a representative value.
  • the energization load factor is the ratio of the load factor in actual use that occupies the maximum capacity of the transformer. The larger this value, the greater the heat generation, and the greater the generation of thermal stress. From the comparison between No. 1 and No. 2 in Table 1, it can be seen that the stress ratio increases as the energization load factor increases.
  • Table 1 is an example of a resin mold stress ratio database 11C.
  • FIG. 4 shows a fatigue life curve obtained from the fatigue life test.
  • the fatigue life curve is plotted with an exponential Basquin rule.
  • the No. 1 and No. 2 curves have an intercept of 110 MPa and an exponential coefficient of -0.04, and the No. 3 curve has an intercept of 100 MPa and an exponential coefficient of -0.08.
  • the resin mold material used for transformer No. 3 was obtained from the material fatigue constant, that is, the tensile strength obtained from the section and the index part, compared to the resin mold material used for transformer No. 1, No. 2. Both of the coefficients representing the degree of attenuation of the stress value are small.
  • the resin mold material used for transformer No. 3 has a lower tensile strength than the resin mold material used for transformer No. 1 and No. 2, and the number of repetitions increases. Thus, it can be seen that the amount of decrease in the stress value is large.
  • Table 2 shows an example of the obtained material fatigue constant database 12B.
  • the stress applied to the surface layer portion of the resin mold is calculated by using the stress ratio S1 / S2 stored in the stress ratio database obtained in [1] at the interface stress calculation section. Converted into stress acting on the resin mold at the interface with the coil to be molded.
  • the transformer of this example is operated continuously regardless of day and night, and because the increase and decrease in thermal stress occurs once a day due to the temperature difference between day and night, the conversion coefficient was set to 1 day / time.
  • the relationship between the stress applied to the interface portion prepared in advance and the equivalent elapsed years may be used, and an example is shown in FIG. Table 3 summarizes the diagnostic results for transformers No. 1, No. 2, and No. 3.
  • the No. 1 transformer is diagnosed as having approximately the same age as the actual age.
  • the transformers of No. 2 and No. 3 are diagnosed as having a considerable age exceeding the actual age.
  • all transformers of No. 1, No. 2, and No. 3 are designed with a lifespan of 30 years. By subtracting the number of years elapsed from the life of 30 years, the remaining life of the transformer can be calculated as 19.9 years for No. 1, 15.2 years for No. 2, and 7.4 years for No. 3. From the outside, the signs of internal interface peeling and resin mold cracking, which cause failure, can be digitized and diagnosed appropriately.
  • peeling of the interface between the current-carrying site inside the electrical equipment and the resin mold and cracking of the resin mold are due to repeated thermal stress that is naturally applied during the operation of the electrical equipment.
  • the present invention has been described by taking a transformer as an example.
  • the present invention is not limited to a transformer, and can be used for all electric devices in which energized parts such as a switch, a motor, an inverter, etc. are resin-molded.
  • the three diagnosis steps including the first step S101, the second step S102, and the third step S103 have been described.
  • the second embodiment as in the first embodiment, an example of a display method and a diagnosis method when using S101 to S103 will be described.
  • the deterioration state of conventional resin molds is due to destructive inspection. For example, in a device such as a transformer that requires continuous operation day and night, inspection cannot be performed unless operation is stopped.
  • the life can be diagnosed by the nondestructive inspection of the resin mold as in the first embodiment.
  • FIG. 6 is a diagram illustrating an example of an inspection method.
  • the mold transformer 100 has a resin mold 110. A state in which the resin mold 110 is imaged by the inspection means 120 is shown.
  • the inspection unit 120 is irradiated with optics or X-rays and is reflected from the resin mold 110.
  • the life information of the mold transformer 100 to be described later is displayed on the display means 150, and the display result is observed by the inspector 200.
  • FIG. 7 shows an example of a diagnosis region of the mold transformer 100 having the resin mold 110 to be diagnosed shown in FIG. Diagnosis areas described later may be performed with areas or resolutions, but are described here as areas A111, B112, and C113.
  • the inspection means 120 is used to observe or image the resin mold 110.
  • the inspection unit 120 will be described as an inspection, it may be imaging or photographing, and may be any unit that can observe the surface state of the resin mold 110.
  • the inspection unit 120 will be described later using a detection unit 121 that images the surface of the resin mold 110, a storage unit 122 that stores the captured image of the resin mold, and an image of the resin mold 110 stored in the storage unit 122. It has the control part 123 which calculates the equivalent elapsed years, and the communication part 124.
  • the inspection unit 120 may have a display unit 125 as necessary.
  • the display unit 125 displays the image and data acquired by the detection unit 121 and displays information received from the communication unit 124.
  • the detection unit 121 images the surface of the resin mold 110 formed so as to cover the coil of the mold transformer 100.
  • the storage unit 122 stores temperature distribution information on the surface of the resin mold 110. Further, the method described in Embodiment 1 or Example 1 may be used without using the temperature distribution information.
  • the imaging method uses thermography for observing the surface temperature distribution of the resin mold 110.
  • thermography it is only necessary to observe the surface temperature distribution, and not only thermography but also an imaging method capable of acquiring infrared wavelengths as numerical values from an object to be inspected.
  • thermography it is not essential to measure the surface temperature of the entire resin mold 110 such as thermography in order to specify the surface stress using thermal stress analysis.
  • the surface layer stress can be specified only by measuring a part of the temperature. In this case, for example, it can be carried out if the temperature of the portion irradiated with the laser light can be measured.
  • the method is not limited to laser light, and a method of measuring the temperature of the resin mold 110 by means such as a thermometer may be employed. More accurate thermal stress analysis can be performed by measuring a wider area than pinpoint temperature measurement.
  • the detection unit 121 can acquire the temperature distribution on the surface of the resin mold 110 by performing it while the mold transformer 100 is in operation (also referred to as an operating state). This is because in order to calculate the thermal stress from the surface temperature distribution of the resin mold 110, it is necessary to acquire the temperature distribution during operation.
  • the method of thermal stress analysis is performed using the temperature distribution on the surface of the resin mold 110 in the operating state.
  • the resin mold stress ratio database 11C and the thermal stress analysis 11B shown in FIG. 1 described in the first embodiment may be used.
  • control unit 123 acquires or converts the surface temperature distribution of the image captured by the detection unit 121, and then processes in the order of the first step S101, the second step S102, and the third step S103. .
  • the life or deterioration state of the mold 110 is specified by such processing steps.
  • the first to third steps S101 to S103 may be performed by the control unit 123 of the inspection unit 120 or the control unit 153 of the display unit 150, or may be performed by another computer or the like.
  • the resin mold 110 at the time of shipment of the mold transformer 100 has a shrinkage stress on the coil.
  • the shrinkage stress is generated by shrinkage when the resin mold 110 before solidification covering the coil is solidified. Insulating property can be maintained by covering the coil with the resin mold 110 which is an insulating member.
  • the shrinkage stress decreases with time from the production of the mold transformer 100.
  • the resin mold 110 is heated by the operation of the mold transformer 100, and then the load factor is lowered to cool or dissipate heat. At this time, the resin mold 110 undergoes thermal expansion and contraction, and the load stress (interfacial stress) between the coil and the resin mold 110 changes.
  • the load stress when the load stress is lowered, there may be a gap between the coil and the resin mold 110 and partial discharge may occur.
  • the value of the partial discharge exceeds a predetermined value, the mold transformer 100 needs to be replaced. Further, it is considered that the partial discharge can also be caused by scattering of silica inside the resin mold 110.
  • the control unit 123 calculates the surface stress of the resin mold 110 by performing thermal analysis using the temperature distribution information on the surface of the resin mold 110 stored in the storage unit 122.
  • the void can be specified using the processing method for specifying the interface stress using the stress ratio described in the first embodiment. Also, it is better to specify the gap at the interface between the coil of the same model and the resin mold 110 and the stress at the interface. can do.
  • control unit 123 may also specify the temperature distribution information on the surface of the resin mold 110.
  • the detection unit 121 has a means for detecting the wavelength of infrared rays, calculation and conversion from the wavelength and intensity to temperature distribution information can be performed.
  • Interfacial stress measurement is not limited to those using thermal stress analysis, but is compared with actual data of interfacial stress measured by disassembling the resin mold of a transformer of the same model or model number, and the resin to be measured The mold may be compared and specified.
  • the equivalent elapsed years (also referred to as equivalent use years or substantial transformer age) of the imaged mold transformer 100 may be specified using the surface layer stress and the interface stress. .
  • “equivalent elapsed years” is a concept of a virtual elapsed years considering a use state specified from an actual use environment, unlike the time when the mold transformer 100 is actually used.
  • the service life of the mold transformer 100 is specified assuming a predetermined operating state and a load factor to be used. However, if the use is continued in an environment where the load factor is high with respect to the predetermined operating state, etc., If it is assumed that a large amount of time has passed and the use is continued in an environment where the load factor is low with respect to a predetermined operation state or the like, the number of years elapsed is considered to be small. Note that when the load factor is low with respect to a predetermined operation state or the like, the influence of the deterioration of the resin mold 110 due to thermal stress is small, so that the considerable elapsed time may coincide with the actual use time.
  • the identified equivalent elapsed years are displayed on the display means 150 shown in FIG. You may display on the test
  • the display unit 150 is operated by the communication unit 154 that communicates with the inspection unit 120 and other devices, the control unit 153 that calculates and calculates the communicated information, and the control unit 153.
  • a storage unit 152 that stores the received information
  • a display unit 155 that displays the information stored in the storage unit 152 and the communicated information.
  • You may have input means, such as a touch panel, a keyboard, and a mouse
  • Transformer surface temperature distribution information 500 is displayed in the upper left area of the display unit 155 of the display means 150. Further, a measurement region 501 corresponding to the transformer surface temperature distribution information 500, a surface temperature 502, and a measurement value 503 are displayed on the upper right side of the display unit 155.
  • the model information 511 of the measured mold transformer 100, the size information 512 of the transformer, the stress gradient value information 513, the actual age information 514 (the actual age, the actual age) Equivalent age information 515 (also called real transformer age) is displayed. It is not necessary to display all of these pieces of information, and at least the equivalent elapsed year information 515 can be displayed.
  • the transformer surface temperature distribution information 500 divides the area into large areas, and in this example, three areas A, B, and C are displayed. Each region can be colored or hatched to visualize the surface temperature.
  • the average temperature of the areas A, B, and C of the measurement area 501 and the temperature at the position of the cursor 505 are displayed as the surface temperature 502.
  • the surface portion stress 503 calculated from the surface temperature information is displayed.
  • the cursor 505 moves by operating the touch panel or operating the cursor 505, and appropriately displays the temperature at the position of the cursor 505.
  • the transformer surface temperature distribution information 500 can know not only the rough surface temperature in the region using the color map but also the detailed surface temperature at a specific position.
  • the equivalent elapsed years 515 specified using the information on the surface stress 503 and the interface stress 504 are displayed.
  • the actual number of years 514 (the actual usage time of the transformer) is displayed. This makes it possible to compare the actual usage time with the equivalent elapsed years of the transformer. In this case, it means that the diagnosed mold transformer 100 has been used for four years more than the actual usage time.
  • the stress gradient rate 513 specified based on the amount of change in the surface portion stress 503 may be displayed.
  • the stress gradient rate indicates the amount of change between shipment and measurement.
  • the stress gradient rate 513 may be specified using the interface stress 504. In any case, by displaying the stress gradient rate 513, it is possible to indicate the degree of progress of the assumed usage time with respect to the actual usage time of the mold transformer 100.
  • the actual use time was 25 years, but the elapsed time (actual transformer age) is 29 years. Because there is, it turns out that the exchange time is near. That is, it can be seen that the mold transformer 100 to be measured was used in an environment where the estimated usage time is added to the actual usage time, and can be notified to the user that replacement is necessary. Therefore, it is possible to know the replacement time of the mold transformer using the corresponding elapsed years.
  • the surface portion stress 503 may display the surface portion stress calculated by observing the surface portion of the resin mold 110 using the X-ray of Embodiment 1 in addition to the surface temperature 502.
  • the mold transformer 100 is often operated for a long time in a predetermined load state at a predetermined time zone, the temperature distribution on the surface of the resin mold 110 for one day is observed over time such as time-lapse observation. The thermal stress of the resin mold up to can be estimated more accurately.
  • the relationship between the load factor and the surface temperature distribution can be specified, and the surface stress with higher accuracy can be specified. As a result, a highly accurate life diagnosis can be performed.
  • Example 3 which is an example of the display method will be described with reference to FIG. An example in which the equivalent elapsed years are specified for the types AAA, AAB, AAC, and AAD among the four types of molded transformers 100 will be shown. The difference from the previous display example is that it has replacement year information 516. All mold transformers have a service life (service life) of 30 years.
  • the replacement year information 516 indicates the replacement time of the transformer specified by comparing the service life and the corresponding elapsed time. In the case of the model AAA, it is desirable that the equivalent service life is subtracted from the useful life of 30 years and the replacement time is within one year. This is displayed as replacement year information 516.
  • the replacement year information 516 may have a function of indicating the replacement time with three indicators.
  • yellow and red indications may be used as characters as “Needs Attention” and “Danger” corresponding to the degree of polymerization used as an index of the oil-filled transformer.
  • “Caution” is displayed in yellow and “Danger” is displayed in red.
  • the replacement year information 516 is displayed for the remaining five years.
  • the center yellow is lit.
  • the model AAC shows that the replacement year information 516 is over two years. In this case, it indicates that a replacement is required promptly. At this time, if the indicator is red, it is better to blink. It turns out that the degree of urgency is higher.
  • the replacement time is displayed as red, yellow, or blue with the replacement time passed or 1 year, 5 years, or 10 years as a threshold value, but may be set at a predetermined value. Considering the replacement time of the mold transformer 100, it is convenient for the user to display about three years as yellow until the replacement.
  • the above three indicators are not limited to the three colors of blue, yellow, and red, and may be indicated by colors or color bars for displaying three stages.
  • Fig. 16 shows the case of displaying with a color bar.
  • Model information 511 and replacement year information 516a are shown.
  • the color bar of the replacement year information 516a displays ten bars having different lengths. If the remaining three years, such as model AAI, it is better to light up the three in short order and display the remaining seven as light gray.
  • model AAJ it is only necessary to turn on five and turn off the remaining five (non-lighting state).
  • model AAK all the lights should be lit. If the model is AAL, the replacement time is over one year, so the color bar should be grayed out and turned off or blinking. Alternatively, all the lights may be lit in a color different from the state where there is a margin until the replacement.
  • the color bars are red from the left, 4 yellow from the 5th, and green or blue from the 6th to the 10th, the color bar is easy to recognize.
  • the interfacial stress 517 and the average use energization 518 in the actual use environment are displayed on the upper stage, and the assumed replacement time 520 is displayed on the lower stage.
  • the interface load stress 517 is an interface stress specified from the surface layer stress described in the first embodiment.
  • the display of the stress gradient rate 513 is not essential.
  • the threshold value of the interface stress that is 30 years, which is the service life, is displayed, that is, the interface stress that is determined to have an equivalent elapsed time of 30 years is displayed. Display the current status and the number of years until the recommended replacement time. Thereby, the replacement recommendation time in consideration of the actual usage load ratio of the resin mold 110 can be specified.
  • the actual use load ratio when replaced or the interface stress when replaced is displayed, and the recommended replacement time is also displayed. it can.
  • the replacement time it is possible to know the replacement time visually by adopting the three indicators described in the third embodiment.
  • replacement is recommended before the equivalent age reaches 29 years, and when the equivalent elapsed age diagnosed this time is 26 years, the recommended replacement time is within 3 years.
  • the equivalent elapsed year 28 the user who actually uses the model AAE displays the replacement time corresponding to the equivalent elapsed year, so that the user can easily determine the replacement time.
  • FIG. 12 shows model information 511, transformer size information 512, (predicted) actual elapsed years 514a, equivalent elapsed years information 515a, used energization average information 518, and transformer capacity information 519. Since the actual age 514a is an estimated value, it is also a predicted actual age.
  • the use energization average information 518 is a value in consideration of the use situation of the diagnosed mold transformer 100.
  • the transformer capacity information 519 corresponds to the model information 511 and is information stored in advance in a database or the like.
  • the mold transformer 100 in which the interface stress is specified is of the model AAE, and the actual usage time and the corresponding elapsed years are displayed.
  • the model AAE is replaced (replaced)
  • the equivalent elapsed years are the same years.
  • the models AAF and AAG are displayed as candidate transformers to be replaced.
  • the figure shows a case where the size is close to that of the transformer used and the transformer capacity is replaced with a larger one than the model AAE.
  • the average energization of the models AAF and AAG is 60% and 50%. Based on the average use energization information of the model AAE, the equivalent elapsed years when used in the same manner as the models AAE of the models AAF and AAG are specified and displayed. In other words, since the resin mold 110 or the like is not actually measured for the equivalent elapsed years of the models AAF and AAG, data and the like measured by the other models AAF and AAG are used.
  • the temperature distribution on the transformer surface is the same distribution if there is no disturbance and the same model.
  • the temperature distribution when the models AAF and AAG are operated in the same way as the model AAE by calculating the temperature distribution of the models AAF and AAG from the measurement data of the same model and applying the average usage information of the model AAE to the models AAF and AAG.
  • the state can be specified.
  • the corresponding usage time and the predicted actual usage time can be obtained using the temperature distribution state.
  • the equivalent usage time when the predicted actual usage time is 20 years is displayed as in the model AAE.
  • the model is replaced with the model AAE, the actual use time and the equivalent use time coincide with each other, which is preferable as a replacement target.
  • the accuracy of specifying the predicted actual usage time and the number of years elapsed will be improved.
  • Example 6 will be described with reference to FIG. 13 for a method of displaying the replacement period for each industry.
  • the information which diagnosed the model AAH of the mold transformer 100 is displayed on the upper stage.
  • the actual age 514 is 22 years, while the equivalent age 515a is 23 years.
  • the replacement time for each industry is displayed in the lower part. Specifically, industry information 530a, industry-specific replacement recommended use years 530b, and recommended years 530c until replacement are displayed. As the recommended replacement years for each industry type 530b, the replacement years of transformers for each industry type are stored in advance in the storage unit.
  • the user can easily determine when to replace the transformer. Note that it is possible to determine the replacement time even if only the lower table is displayed.
  • the replacement time information 516 shown in FIG. 11 can be used as the recommended time 530c until the replacement.
  • Example 7 a method of displaying the life prediction information 540 of the mold transformer 100 whose surface temperature is measured will be described with reference to FIG.
  • the life prediction information 540 indicates a state in which the temperature at a specific location in the transformer surface temperature distribution information 500 described with reference to FIG. 9 is observed.
  • the upper graph shows the measured temperature on the vertical axis and the corresponding measurement time on the horizontal axis. That is, it shows a temperature change at a predetermined location on the surface of the mold transformer 100.
  • the lower row is a table in which characteristic temperatures identified from the graph are extracted.
  • a time zone 540a, a temperature 540b, a recommended value 540c, and a recommended load factor 540d are shown.
  • the time zone 540a is a characteristic value extracted.
  • a known method such as determination of the maximum value can be used for extracting the feature amount.
  • the recommended value 540c is shown for the characteristic time zone temperature 540b.
  • the recommended value 540c is a temperature that becomes a recommended value
  • the recommended load factor 540d indicates a recommended value for changing the load factor (use state) of the mold transformer 100 at the time of temperature measurement.
  • the load factor is 2%. Lower it. Moreover, it is good to raise a load factor 8% in the time slot
  • this can extend the life of the mold transformer 100 by suppressing the temperature change of the resin mold 110.
  • Example 7 shows the interfacial stress 517 and the partial discharge converted value 550a corresponding to the measured load stress.
  • the amount of the gap between the coil and the resin mold 110 can be estimated from the internal state of the resin mold 110 and the interface stress. Using these internal states and the amount of voids, the partial discharge value 550a of the mold transformer 100 is converted.
  • a partial discharge value obtained by actually measuring another mold transformer 100 of the same model is prepared in advance as a database.
  • a partial discharge value conversion table corresponding to the interfacial stress or surface layer stress of the resin mold 110 and the internal state is prepared.
  • the partial discharge value can be converted from the interface stress and the internal state using the conversion table.
  • the interface stress 517 at the time of shipment is 39 MPa, and the partial discharge conversion value 550 a at this time is 0.
  • Measured load stresses measured 3 years ago and predicted 3 years later are 38, 37, and 36 MPa, respectively, and partial discharge conversion values are XXX, YYY, and ZZZ.
  • the measurement stress values measured three years ago and the current measurement are actually load stresses specified from the surface temperature distribution of the resin mold 110 and the like.
  • the future internal state of the resin mold 110 and the amount of gap between the coil and the resin mold 110 can be predicted.
  • the measured load stress predicted after three years can be displayed, and the corresponding partial discharge converted value can also be shown.
  • the partial discharge converted value 550a is an index well known in the transformer industry, and can provide an index that is easy for the user to understand.

Abstract

A high-precision method for diagnosing an electrical appliance is provided by quantifying stresses acting on a resin mold at an interface portion between an energized part inside the electrical appliance and the resin mold. This diagnostic system for an electrical appliance provided with a resin mold for electrical insulation comprises: a measuring means for measuring the resin mold for electrical insulation; a control means; and a display means. The measuring means measures stress acting on a surface layer portion of the resin mold for electrical insulation. The control portion converts the measured stress acting on the surface layer portion into a stress acting on the interface portion between the resin mold for electrical insulation and a conductive material covered by the resin mold for electrical insulation, and also identifies an equivalent number of elapsed years for the resin mold for electrical insulation on the basis of the stress acting on the interface portion. The display means displays the identified equivalent number of elapsed years.

Description

電気絶縁用樹脂モールドを備えた電気機器の診断方法および診断システムDiagnostic method and diagnostic system for electrical equipment provided with resin mold for electrical insulation
 本発明は、電気絶縁用樹脂モールドを備えた電気機器の診断技術に関する。 This invention relates to the diagnostic technique of the electric equipment provided with the resin mold for electrical insulation.
 例えば、変圧器や開閉器、モーター、インバーターなどの電気機器は、コイルなどの通電部位とそれを取り囲む電気絶縁性の樹脂モールドとを備えている。樹脂モールドを形成することで、漏電による機器の故障を防いだり、電気機器が設置された周囲への漏電を防ぎ、安全を確保できる。 For example, electrical devices such as transformers, switches, motors, and inverters are provided with a current-carrying part such as a coil and an electrically insulating resin mold surrounding it. By forming a resin mold, it is possible to prevent equipment failure due to electric leakage, prevent electric leakage to the surrounding area where electrical equipment is installed, and ensure safety.
 多くの場合、この樹脂モールドは、エポキシ樹脂などの樹脂材料を主成分とする。さらに、着色剤や無機充填材が配合される場合もある。無機充填材は、樹脂材料に分散させることで、機械的な破断強度や弾性率の向上と、耐熱性の向上をもたらす。具体的には、シリカや、アルミナ、ガラスなどの安価な無機充填材が配合される。 In many cases, this resin mold is mainly composed of a resin material such as an epoxy resin. Furthermore, a coloring agent and an inorganic filler may be mix | blended. By dispersing the inorganic filler in the resin material, the mechanical break strength and the elastic modulus are improved and the heat resistance is improved. Specifically, inexpensive inorganic fillers such as silica, alumina, and glass are blended.
 電気機器の運転中、コイルなどの通電部位と樹脂モールドとの界面には、熱応力が印加される。これは、金属材料から成る通電部位への連続的通電に由来する発熱と、また一日の中で昼夜によって温度差が大きいなど、環境温度差に起因する熱応力である。 During operation of electrical equipment, thermal stress is applied to the interface between the energized part such as a coil and the resin mold. This is a heat stress caused by environmental temperature differences, such as heat generation resulting from continuous energization of a current-carrying portion made of a metal material and a large temperature difference between day and night in the day.
 通電部位と樹脂モールドとの界面に対し、熱応力が繰り返し印加されると、当該界面の剥離や樹脂モールドが割れるなどして、絶縁破壊され、樹脂モールドによる電気絶縁の保証ができなくなり、電気機器としての故障に至る。多くの場合には、金属製の通電部位には破壊が及ばないため、電気機器の故障を決定づける部位は、樹脂モールドである。 If thermal stress is repeatedly applied to the interface between the energized part and the resin mold, the interface is peeled off or the resin mold is cracked, resulting in dielectric breakdown, and electrical insulation by the resin mold cannot be guaranteed. As a result of failure. In many cases, the metal energized portion is not damaged, and the portion that determines the failure of the electric device is a resin mold.
 このような界面の剥離や樹脂モールドの割れは、電気機器の内部で起こるものである。従って、電気機器が故障を迎えつつあるかどうかを知り、電気機器の使用継続や取りやめなどを適切に診断するためには、電気機器の外部から、内部界面の剥離や樹脂モールドの割れの前兆を見つけ出す必要がある。 Such peeling of the interface and cracking of the resin mold occur inside the electrical equipment. Therefore, in order to know whether or not an electrical device is about to fail, and to properly diagnose the continuation of use or withdrawal of the electrical device, an indication of internal interface peeling or resin mold cracking from the outside of the electrical device is required. It is necessary to find out.
 従来、電気機器の診断は、樹脂モールドなどの絶縁物の劣化状態を測定することにより行っていた。絶縁物の劣化状態は、一般試験による測定、部分放電による測定、光診断による測定などにより行われてきた。一般試験の場合には、絶縁物の絶縁抵抗や誘電正損を測定する。部分放電による場合には、絶縁物につき放電電荷の量を測定する。光診断の場合には、絶縁物について光の反射率を測定する。 Conventionally, diagnosis of electrical equipment has been performed by measuring the deterioration state of an insulator such as a resin mold. The deterioration state of the insulator has been measured by measurement by a general test, measurement by partial discharge, measurement by optical diagnosis, and the like. In the case of a general test, measure the insulation resistance and dielectric loss of the insulator. In the case of partial discharge, the amount of discharge charge per insulator is measured. In the case of optical diagnosis, the reflectance of light is measured for the insulator.
 このような従来技術を用いた電気機器の診断方法として、特許文献1が挙げられる。特許文献1では、光診断を採用している。これは、予め熱劣化させた樹脂材料の反射率スペクトルを求めておき、着色剤と無機充填材の反射ピークの波長に合致する2種類の単一波長光を診断対象の樹脂モールドに入射し、予め求めた反射率スペクトルと照合することで、診断対象の樹脂モールドの化学劣化の程度を判定しようとするものである。 Patent Document 1 is an example of a diagnostic method for electrical equipment using such a conventional technique. In Patent Document 1, optical diagnosis is employed. This is to obtain the reflectance spectrum of the resin material that has been thermally deteriorated in advance, two types of single wavelength light that matches the wavelength of the reflection peak of the colorant and the inorganic filler is incident on the resin mold to be diagnosed, It is intended to determine the degree of chemical deterioration of the resin mold to be diagnosed by collating with the reflectance spectrum obtained in advance.
 特許文献1に記載の電気機器の診断方法は、目視可能な樹脂モールドの外側における化学的な劣化測定に基づいており、前記で触れた通電部位と樹脂モールドとの界面の剥離や樹脂モールドの割れなどを計測するものではなく、さらに高精度な診断方法の確立が要望されている。 The diagnostic method for an electric device described in Patent Document 1 is based on a chemical degradation measurement outside the visible resin mold, and peeling of the interface between the energized part and the resin mold touched above or cracking of the resin mold The establishment of a more accurate diagnostic method is desired.
特開2007-285930号公報JP 2007-285930 A
 電気機器内部の通電部位と樹脂モールドとの界面の剥離や樹脂モールドの割れは、前記の通り、電気機器の運転中に自ずと印加される繰り返し熱応力による。然るに、電気機器の診断の高精度化のためには、電気機器の外側から目視することができない、通電部位と樹脂モールドとの界面の剥離や樹脂モールドの割れなどの前兆を直接的に知る必要があった。 As described above, peeling of the interface between the current-carrying site inside the electrical equipment and the resin mold and cracking of the resin mold are due to repeated thermal stress that is naturally applied during the operation of the electrical equipment. However, in order to improve the accuracy of diagnosis of electrical equipment, it is necessary to directly know the precursors such as peeling of the interface between the energized part and the resin mold and cracking of the resin mold, which are not visible from the outside of the electrical equipment. was there.
 本発明は、このような事情に鑑みてなされたものであり、電気機器内部の通電部位と樹脂モールドとの界面部における樹脂モールドにかかる応力の定量化により、高精度な電気機器の診断方法および診断システムを提供することを課題とする。 The present invention has been made in view of such circumstances, and by quantifying the stress applied to the resin mold at the interface between the energized portion inside the electric device and the resin mold, a highly accurate diagnosis method for the electric device and It is an object to provide a diagnostic system.
 前記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は前記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電気絶縁用樹脂モールドを備えた電気機器の診断システムであって、電気絶縁用樹脂モールドを測定する測定手段と、制御手段と、表示手段と、を有しており、測定手段は、電気絶縁用樹脂モールドの表層部にかかる応力を測定し、制御部は、測定した表層部にかかる応力を基にして電気絶縁用樹脂モールドと電気絶縁用樹脂モールドが被覆する導電材料との界面部にかかる応力に変換し、さらに、界面部にかかる応力を基にして、電気絶縁用樹脂モールドの相当経過年数を特定し、表示手段は、変換された相当経過年数を表示することを特徴とする電気機器の診断システムである。 The present application includes a plurality of means for solving the above-mentioned problems. To give an example, an electrical equipment diagnosis system including an electrically insulating resin mold, the measuring means for measuring the electrically insulating resin mold; The control means and the display means, the measuring means measures the stress applied to the surface layer part of the resin mold for electrical insulation, and the control part performs electrical measurement based on the measured stress applied to the surface layer part. It is converted into stress applied to the interface between the insulating resin mold and the conductive material covered by the electrical insulating resin mold, and the equivalent age of the resin mold for electrical insulation is specified based on the stress applied to the interface. The display means is a diagnostic system for an electrical device that displays the converted equivalent elapsed years.
 本発明によれば、電気機器内部の通電部位と樹脂モールドとの界面部における樹脂モールドにかかる応力を基に、高精度な電気機器の診断方法および診断システムを提供することができる。 According to the present invention, it is possible to provide a highly accurate diagnosis method and diagnosis system for an electric device based on the stress applied to the resin mold at the interface between the energized portion inside the electric device and the resin mold.
本発明の一実施形態に係る、電気絶縁用樹脂モールドを備える電気機器の診断方法を段階的に表すフローチャートである。It is a flowchart showing stepwise the diagnostic method of an electric equipment provided with the resin mold for electric insulation concerning one embodiment of the present invention. 電気機器における、通電部位と電気絶縁用樹脂モールドとの界面と、電気絶縁用樹脂モールドにかかる熱応力の分布を表す模式図である。It is a schematic diagram showing the distribution of the thermal stress applied to the interface between the energized part and the resin mold for electrical insulation and the resin mold for electrical insulation in the electrical equipment. 本発明の一実施形態に係る、電気絶縁用樹脂モールドを備える電気機器の診断システムを表すブロック構成図である。It is a block block diagram showing the diagnostic system of an electric equipment provided with the resin mold for electrical insulation based on one Embodiment of this invention. 電気絶縁用樹脂モールドの疲労寿命試験から得られた疲労寿命曲線の一例を表す図である。It is a figure showing an example of the fatigue life curve obtained from the fatigue life test of the resin mold for electrical insulation. 疲労寿命曲線を用いて作成された、界面部にかかる応力と相当経過年数との関係の一例を表す図である。It is a figure showing an example of the relationship between the stress concerning an interface part, and equivalent elapsed years created using the fatigue life curve. 本発明の一実施形態に係る、電気絶縁用樹脂モールドを備える電気機器の診断方法を示す図である。It is a figure which shows the diagnostic method of an electric equipment provided with the resin mold for electrical insulation based on one Embodiment of this invention. 電気絶縁用樹脂モールドを有するモールド変圧器の外観を示す図である。It is a figure which shows the external appearance of the mold transformer which has a resin mold for electrical insulation. 本発明の一実施形態に係る、診断システムの検査手段と表示手段のブロック構成図である。It is a block block diagram of the test | inspection means and display means of a diagnostic system based on one Embodiment of this invention. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer. モールド変圧器の診断結果の表示方法の一例である。It is an example of the display method of the diagnostic result of a mold transformer.
実施の形態1 Embodiment 1
 以下、適宜図面を参照して、本発明を実施するための形態(実施の形態1)について詳細に説明する。 Hereinafter, a mode for carrying out the present invention (Embodiment 1) will be described in detail with reference to the drawings as appropriate.
 図1は、本発明の一実施形態に係る電気絶縁用樹脂モールドを備える電気機器の診断方法を段階的に表すフローチャートである。 FIG. 1 is a flowchart showing in a stepwise manner a diagnostic method for an electrical device including an electrically insulating resin mold according to an embodiment of the present invention.
 図1が示すように、本発明の一実施形態に係る電気絶縁用樹脂モールドを備える電気機器の診断方法は、診断に関する第1の工程(樹脂モールドの表層部にかかる応力の測定)、第2の工程(樹脂モールドの表層部にかかる応力の、通電部位との界面における応力への変換)、第3の工程(樹脂モールドの通電部位との界面における応力の、相当経過年数への変換)を含む。 As shown in FIG. 1, the diagnostic method for an electrical device including the resin mold for electrical insulation according to one embodiment of the present invention includes a first step relating to diagnosis (measurement of stress applied to a surface layer portion of the resin mold), a second Step (Conversion of stress applied to the surface part of the resin mold into stress at the interface with the current-carrying part), and third step (Conversion of stress at the interface with the current-carrying part of the resin mold to equivalent elapsed years) Including.
 図1に示されるように、診断結果13を得るために、電気機器11および電気機器が備える樹脂モールド材料の試験片12それぞれに対する解析や試験、測定を行う。なお、電気機器が備える樹脂モールド材料の試験片12は、実際に稼働する電気機器11から直接切り出してきた試験片でも構わないし、これと全く同じ化学成分、複合材組成をもち、別途製造した樹脂材料の試験片であっても構わない。 As shown in FIG. 1, in order to obtain a diagnosis result 13, an analysis, a test, and a measurement are performed on each of the electrical device 11 and the test piece 12 of the resin mold material included in the electrical device. In addition, the test piece 12 of the resin mold material with which an electric equipment is equipped may be the test piece cut out directly from the electric equipment 11 which actually operate | moves, and it has the completely same chemical composition and composite material composition as this, and resin manufactured separately It may be a test piece of material.
 図1に示す11Aから11Cに至るフローは、電気機器11に対する有限要素法による数値解析に関するものであり、実際に電気機器を診断する前に行い、結果をデータベースに格納しておく。具体的に、電気機器のモデル化11Aでは、電気機器の部品構造を基に有限要素モデリングを行う。電気機器のモデル化11Aで作成したモデルの各要素に対して、電気機器11の各部位、例えば通電部位や樹脂モールドなどを実際に構成する材料の材料物性を入力する。ここで、材料物性とは、ヤング率やポアソン比などの力学物性、線膨張係数や熱伝導率などの熱物性である。 The flow from 11A to 11C shown in FIG. 1 relates to numerical analysis of the electrical equipment 11 by the finite element method, and is performed before actually diagnosing the electrical equipment, and the result is stored in the database. Specifically, in the electrical device modeling 11A, finite element modeling is performed based on the component structure of the electrical device. For each element of the model created in the electrical device modeling 11A, the material properties of the material that actually configures each part of the electrical device 11, such as a current-carrying part or a resin mold, are input. Here, the material physical properties are mechanical physical properties such as Young's modulus and Poisson's ratio, and thermal physical properties such as linear expansion coefficient and thermal conductivity.
 熱応力解析11Bでは、電気機器のモデル化11Aで作成したモデルを用いて、電気機器11の熱応力解析を行う。このとき、電気機器11が通電負荷に曝されている状態を再現するため、モデル中の通電部位における電気抵抗と電圧を用いて、オームの法則から電流値を求め、次にジュールの法則から発熱量を求める。 In the thermal stress analysis 11B, the thermal stress analysis of the electrical device 11 is performed using the model created in the electrical device modeling 11A. At this time, in order to reproduce the state in which the electrical device 11 is exposed to the energization load, the current value is obtained from Ohm's law using the electrical resistance and voltage at the energization site in the model, and then the heat is generated from Joule's law. Find the amount.
 この通電部位での発熱を考慮して、熱応力解析を行う。電気抵抗と電圧は、例えば通電部位がコイルの場合、コイルを構成する巻線の全長と、巻線の断面積から計算できる。熱応力解析11Bを実施すると、電気機器11が備える樹脂モールドにかかる応力の分布がわかる。得られた応力値には、通電部位の発熱が樹脂モールドに伝熱した際に生じる熱応力の他、樹脂モールドの形状に起因する残留応力も含まれる。 ¡A thermal stress analysis is performed in consideration of the heat generation at the energized part. For example, when the energization site is a coil, the electrical resistance and voltage can be calculated from the total length of the windings constituting the coil and the cross-sectional area of the windings. When the thermal stress analysis 11B is performed, the distribution of stress applied to the resin mold included in the electrical device 11 can be found. The obtained stress value includes the residual stress resulting from the shape of the resin mold in addition to the thermal stress generated when the heat generated at the energized portion is transferred to the resin mold.
 ここで、応力の分布とは、図2に示すように、通電部位21と電気絶縁用樹脂モールド22との界面部23から、樹脂モールドの表層部24に至るまでの各位置における応力の値を意味する。 Here, as shown in FIG. 2, the stress distribution is a value of stress at each position from the interface portion 23 between the energized portion 21 and the resin mold 22 for electrical insulation to the surface layer portion 24 of the resin mold. means.
 図2は、応力の分布の模式図であり、分布から、界面部23にかかる応力S1と、表層部24にかかる応力S2をそれぞれ抽出する。図2では、表層部24にかかる応力S2が、界面部23にかかる応力S1よりも小さく示してあるが、表層部24にかかる応力S2が、界面部23にかかる応力S1よりも大きくとも構わないし、等しくとも構わない。 FIG. 2 is a schematic diagram of the stress distribution, and the stress S1 applied to the interface 23 and the stress S2 applied to the surface layer 24 are extracted from the distribution. In FIG. 2, the stress S <b> 2 applied to the surface layer portion 24 is smaller than the stress S <b> 1 applied to the interface portion 23, but the stress S <b> 2 applied to the surface layer portion 24 may be greater than the stress S <b> 1 applied to the interface portion 23. It doesn't matter if they are equal.
 樹脂モールド応力比データベース11Cでは、熱応力解析から得られた応力S1と応力S2との比、すなわちS1/S2の値を電気機器1に固有の応力比として、データベース化する。前記の熱応力解析は、様々な寸法や、出力、通電状態などを有する電気機器11に対して、実施する。それ故、熱応力解析から得た応力比は、データベース化に際し、電気機器11の寸法、出力、使用環境、通電状態などによって関数化される。 In the resin mold stress ratio database 11 </ b> C, the ratio of the stress S <b> 1 and the stress S <b> 2 obtained from the thermal stress analysis, that is, the value of S <b> 1 / S <b> 2 is created as a database. The thermal stress analysis is performed on the electrical device 11 having various dimensions, output, and energized state. Therefore, the stress ratio obtained from the thermal stress analysis is functionalized according to the size, output, usage environment, energized state, etc. of the electrical equipment 11 when creating a database.
 ここで、使用環境とは、電気機器11を動作させる場所の温度、湿度、大気汚染度などの情報を含み、通電状態とは、一年あたりの平均通電時間や、一日における電流ピーク値とそのホールド時間、電気機器の最大出力の何%で稼働させたか、などの情報を含む。 Here, the usage environment includes information such as the temperature, humidity, and air pollution level of the place where the electric device 11 is operated, and the energized state refers to the average energization time per year and the current peak value in one day. It includes information such as the hold time and what percentage of the maximum output of the electrical equipment is used.
 図1に示す11Aから11Cに至るフローの他、12Aから12Bに至るフローも、実際に電気機器を診断する前に行い、結果をデータベースに格納しておく。12Aから12Bに至るフローは、電気機器が備える樹脂モールド材料の試験片12に対する疲労寿命試験に関するものである。 1 In addition to the flow from 11A to 11C shown in FIG. 1, the flow from 12A to 12B is also performed before actually diagnosing the electric device, and the result is stored in the database. The flow from 12A to 12B relates to a fatigue life test for the test piece 12 of the resin mold material included in the electric device.
 具体的に、疲労寿命試験12Aでは、電気機器が備える樹脂モールド材料の試験片12に対する疲労寿命試験を行う。疲労寿命試験は、電気機器が備える樹脂モールド材料の試験片12を、例えば短冊状やダンベル状に加工し、加工した試験片の片方の末端を固定し、他方の末端に引っ張り荷重を与えることで行われる。 Specifically, in the fatigue life test 12A, a fatigue life test is performed on the test piece 12 of the resin mold material included in the electrical equipment. The fatigue life test is performed by processing a test piece 12 of a resin mold material included in an electrical device into, for example, a strip shape or a dumbbell shape, fixing one end of the processed test piece, and applying a tensile load to the other end. Done.
 試験片のサイズは、例えばJIS K 7139規格などに従えばよい。引っ張り荷重は繰り返し与え、繰り返しの周波数や荷重の最大値は任意である。繰り返し引っ張り荷重を与えると、試験片は、ある繰り返し回数で破断する。 The size of the test piece may be in accordance with, for example, JIS K 7139 standard. The tensile load is repeatedly applied, and the repetition frequency and the maximum value of the load are arbitrary. When a repeated tensile load is applied, the test piece breaks at a certain number of repetitions.
 このような試験を、引っ張り荷重の最大値を変えながら複数回実施し、破断に至った繰り返し回数を横軸に、引っ張り荷重の最大値を縦軸にプロットすることで、疲労寿命曲線が得られる。 A fatigue life curve can be obtained by performing such a test several times while changing the maximum value of the tensile load, and plotting the number of repetitions leading to fracture on the horizontal axis and the maximum value of the tensile load on the vertical axis. .
 前記疲労寿命試験の結果得られる疲労寿命曲線は、指数関数形のBasquin則やCoffin-Manson則などの経験式に従い、横軸の破断に至った繰り返し回数を対数スケールにした場合に、応力値が減少する曲線となる。 The fatigue life curve obtained as a result of the fatigue life test has a stress value when a logarithmic scale is used for the number of repetitions leading to the fracture on the horizontal axis in accordance with empirical formulas such as the exponential Basquin rule and Coffin-Manson rule. It becomes a decreasing curve.
 前記経験則で疲労寿命曲線を近似した場合、切片から引っ張り強度が得られ、指数部から応力値の減衰の度合いを表す係数が得られ、すなわち2つの材料疲労定数が得られる。材料疲労定数データベース12Bでは、この材料疲労定数を電気機器が備える樹脂モールド材料の試験片12に固有な数値として、データベース化する。 When the fatigue life curve is approximated by the above empirical rule, the tensile strength is obtained from the intercept, and a coefficient representing the degree of attenuation of the stress value is obtained from the exponent, that is, two material fatigue constants are obtained. In the material fatigue constant database 12B, this material fatigue constant is databased as a numerical value unique to the test piece 12 of the resin mold material provided in the electric equipment.
 前記の疲労寿命試験は、様々な材料組成などを有する電気機器が備える樹脂モールド材料の試験片12に対して、実施することができる。それ故、疲労寿命試験から得た材料疲労定数は、データベース化に際し、電気機器が備える樹脂モールド材料の試験片12の材料組成などによって関数化される。 The fatigue life test can be performed on the test piece 12 of the resin mold material provided in the electric apparatus having various material compositions. Therefore, the material fatigue constant obtained from the fatigue life test is functionalized according to the material composition of the test piece 12 of the resin mold material included in the electric device when the database is created.
 ここで、材料組成とは、電気機器が備える樹脂モールド材料の試験片12を構成する樹脂の主剤、硬化剤、着色剤、補強剤などの種類とその混合割合を意味する。 Here, the material composition means the types of resin main agent, curing agent, coloring agent, reinforcing agent, and the like and the mixing ratio thereof that constitute the test piece 12 of the resin mold material provided in the electric equipment.
 図1に示す11Aから11Cに至るフローおよび12Aから12Bに至るフローにより、電気機器11を診断するための準備が整う。ここから、3つの診断の工程について説明する。 The preparation for diagnosing the electrical device 11 is completed by the flow from 11A to 11C and the flow from 12A to 12B shown in FIG. From here, three diagnostic steps will be described.
 図1における<第1の工程S101>では、電気機器11が備える電気絶縁用樹脂モールドの表層部24にかかる応力S2を測定する。応力の測定は、非破壊検査手法によって行う。このとき、電気機器11は、通電負荷状態にあっても構わないし、停電状態にあっても構わない。 In <first step S101> in FIG. 1, the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electrical device 11 is measured. The stress is measured by a nondestructive inspection method. At this time, the electrical device 11 may be in an energized load state or in a power failure state.
 得られる応力値には、通電部位の発熱が樹脂モールドに伝熱した際に生じる熱応力の他、樹脂モールドの形状に起因する残留応力も含まれる。非破壊検査は、例えばX線など放射光を用いた応力測定装置を用いて行う。この場合には、樹脂モールドに複合化された無機充填材のX線回折から、応力を測定する。粉末状で複合化された無機充填材に作用する応力は、樹脂モールドそのものに負荷される応力とみなして構わない。 The obtained stress value includes the residual stress caused by the shape of the resin mold in addition to the thermal stress generated when the heat generated at the energized part is transferred to the resin mold. The nondestructive inspection is performed using a stress measuring device using synchrotron radiation such as X-rays. In this case, the stress is measured from the X-ray diffraction of the inorganic filler compounded with the resin mold. The stress acting on the powdered composite inorganic filler may be regarded as the stress applied to the resin mold itself.
 なぜならば、測定される応力値は、ミクロレベルでの無機充填材と樹脂母材との密着状態を反映するためである。具体的には、樹脂モールド成型時には、無機充填材と樹脂母材とはミクロレベルで強固に密着し、無機充填材と樹脂母材ともに等価でゼロでない応力が作用している。経年もしくは熱的負荷がかかると、無機充填材と樹脂母材との密着は弱くなり、やがて応力解放される。 This is because the measured stress value reflects the adhesion state between the inorganic filler and the resin base material at the micro level. Specifically, at the time of resin molding, the inorganic filler and the resin base material are firmly adhered at a micro level, and an equivalent and non-zero stress acts on both the inorganic filler and the resin base material. When aged or a thermal load is applied, the adhesion between the inorganic filler and the resin base material becomes weak, and the stress is eventually released.
 従って、無機充填材に作用する応力を測定することにより、経年や熱的負荷によって変化する、電気機器11が備える電気絶縁用樹脂モールドの表層部24にかかる応力S2を測定することができる。 Therefore, by measuring the stress acting on the inorganic filler, it is possible to measure the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electrical device 11 that changes depending on the aging and the thermal load.
 電気絶縁用樹脂モールドに複合化する無機充填材の粉末のミクロ構造は、規則的な原子配列を有する結晶質、原子配列が不規則な非晶質、どちらでも構わないが、X線による応力測定を行う場合には、明確な回折パターンを有する結晶質である必要がある。 The microstructure of the powder of inorganic filler compounded in the resin mold for electrical insulation may be either crystalline with regular atomic arrangement or amorphous with irregular atomic arrangement, but stress measurement by X-ray In the case of conducting, it is necessary to be crystalline having a clear diffraction pattern.
 結晶質の無機充填材としては、例えば、結晶性シリカ、酸化アルミニウム、水酸化アルミニウム、炭酸カルシウム、酸化鉄、酸化チタン、酸化ジルコニウム、酸化セシウムなどが挙げられる。また、無機充填材の配合量は任意である。 Examples of the crystalline inorganic filler include crystalline silica, aluminum oxide, aluminum hydroxide, calcium carbonate, iron oxide, titanium oxide, zirconium oxide, cesium oxide and the like. Moreover, the compounding quantity of an inorganic filler is arbitrary.
 上記説明した第1の工程は、言い換えると、樹脂内部状態検査処理、表層部応力検査処理または界面応力検査処理であるということである。 In other words, the first process described above is a resin internal state inspection process, a surface layer stress inspection process, or an interface stress inspection process.
 <第2の工程S102>では、<第1の工程S101>で得た、電気機器11が備える電気絶縁用樹脂モールドの表層部24にかかる応力S2と、応力比データベース11Cに蓄積された応力比(S1/S2)との積を計算し、通電部位との界面部23にかかる応力S1に変換する。 In the <second step S102>, the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electrical device 11 obtained in the <first step S101> and the stress ratio accumulated in the stress ratio database 11C The product of (S1 / S2) is calculated and converted to the stress S1 applied to the interface 23 with the energized part.
 前記の通り、応力比は、電気機器1の大きさや、出力、通電状態などによって関数化されているため、診断に供する電気機器の状況に見合った応力比を入力する。 As described above, since the stress ratio is functionalized according to the size, output, and energization state of the electrical device 1, a stress ratio suitable for the status of the electrical device used for diagnosis is input.
 <第3の工程S103>では、<第2の工程S102>で得た、通電部位と電気絶縁用樹脂モールドとの界面部23にかかる応力S1を、疲労寿命曲線に当てはめ、応力負荷繰り返し回数に変換する。 In the <third step S103>, the stress S1 applied to the interface part 23 between the energized part and the resin mold for electrical insulation obtained in the <second step S102> is applied to the fatigue life curve, and the number of repeated stress loads is calculated. Convert.
 疲労寿命曲線は、12Bで得たデータベースにある2つの材料疲労定数を、指数関数形のBasquin則やCoffin-Manson則などの経験式に代入することで作成される。疲労寿命曲線に対し、界面部23の応力S1を代入することで、その応力に対応した繰り返し回数が得られる。 The fatigue life curve is created by substituting the two material fatigue constants in the database obtained in 12B into an empirical expression such as an exponential Basquin rule or Coffin-Manson rule. By substituting the stress S1 of the interface 23 for the fatigue life curve, the number of repetitions corresponding to the stress can be obtained.
 前記の通り、電気機器が備える樹脂モールド材料の試験片12の材料組成によって関数化されているため、診断に供する電気機器の状況に見合った材料疲労定数を入力する。 As described above, since it is functionalized by the material composition of the test piece 12 of the resin mold material provided in the electric equipment, a material fatigue constant corresponding to the situation of the electric equipment used for diagnosis is input.
 上記説明した第2の工程は、言い換えると、樹脂モールド応力特定処理、樹脂モールド内部応力特定処理、通電部応力特定処理または界面応力特定処理ということである。 In other words, the second step described above is a resin mold stress specifying process, a resin mold internal stress specifying process, a current-carrying part stress specifying process, or an interface stress specifying process.
 <第3の工程S103>では、疲労寿命曲線から得られた繰り返し回数を、電気機器11の相当経過年数に変換する。例えば、電気機器を最大出力で長期間使用し続け、樹脂モールドへの熱的負荷が繰り返されると、電気機器の製造日からの起算で実際に経過した年数よりも多くの年数を重ねた電気機器の状態と等しくなる。 In the <third step S103>, the number of repetitions obtained from the fatigue life curve is converted into the number of years elapsed of the electrical equipment 11. For example, if you continue to use an electrical device at maximum output for a long period of time and the thermal load on the resin mold is repeated, the electrical device has accumulated more years than actually passed from the date of manufacture of the electrical device. It becomes equal to the state of.
 相当経過年数とは、このような使用状況を加味した上で得られる、電気機器の使用における経過年数である。前記では、相当経過年数が実際の経過年数よりも長くなる例を示したが、例えば、電気機器を全く使用せずに保管した場合など相当経過年数が短くなる場合もある。 Equivalent age is the number of years that have elapsed in the use of electrical equipment, taking into account such usage conditions. In the above, an example in which the equivalent elapsed years are longer than the actual elapsed years has been shown. However, the equivalent elapsed years may be shortened, for example, when the electronic device is stored without being used at all.
 疲労寿命曲線から得られた繰り返し回数の相当経過年数への変換は、変換係数によって行う。例えば、電気機器を昼夜問わず連続運転した場合には、昼と夜との温度差によって熱応力の増減が一回起きる。 The conversion of the number of repetitions obtained from the fatigue life curve to the equivalent number of elapsed years is performed using a conversion coefficient. For example, when an electric device is operated continuously regardless of day and night, the thermal stress increases and decreases once due to the temperature difference between day and night.
 この場合、変換係数は、1日/回となる。疲労寿命曲線から得られた繰り返し回数にこの変換係数を乗じ、年単位とすることで、相当経過年数が得られる。 In this case, the conversion coefficient is 1 day / time. By multiplying the number of repetitions obtained from the fatigue life curve by this conversion coefficient and making it a year unit, an equivalent elapsed time can be obtained.
 なお、第三の工程において、材料疲労定数データベースから得た材料疲労定数に基づいて、界面部にかかる応力と相当経過年数との関係を求めておき、この関係に、第2の工程で得られた表層部にかかる応力を当てはめて、相当経過年数を求めるようにしても良い。 In the third step, based on the material fatigue constant obtained from the material fatigue constant database, the relationship between the stress applied to the interface and the corresponding elapsed time is obtained, and this relationship is obtained in the second step. Alternatively, the stress applied to the surface layer portion may be applied to obtain the equivalent elapsed years.
 また、電気機器の設計寿命から当該電気機器の相当経過年数を差し引くことで、余寿命を求めることができる。
  余寿命とは、電気絶縁性を保証して安全に当該電気機器を使用できる残り年数を意味する。余寿命が負の値を示す場合には、当該電気機器が、既に設計寿命を超える状態に至っている。
In addition, the remaining life can be obtained by subtracting the number of elapsed years of the electrical equipment from the design life of the electrical equipment.
The remaining life means the remaining number of years that the electrical equipment can be safely used while ensuring electrical insulation. When the remaining life shows a negative value, the electric device has already reached the state exceeding the design life.
 上記説明した第3の工程は、言い換えると、相当経過年数特定処理、樹脂モールド相当年齢特定処理またはモールド変圧器の相当寿命特定処理ということである。 The third process described above is, in other words, equivalent elapsed year identification processing, resin mold equivalent age identification processing, or mold transformer equivalent lifetime identification processing.
 図3に、本発明の一実施形態に係る、電気絶縁用樹脂モールドを備える電気機器の診断システムを表すブロック構成図を示す。電気機器の診断システムは、表層部応力測定装置30と診断装置40から構成されている。 FIG. 3 is a block configuration diagram showing a diagnostic system for an electrical device including an electrically insulating resin mold according to an embodiment of the present invention. The electrical equipment diagnosis system includes a surface layer stress measurement device 30 and a diagnosis device 40.
 表層部応力測定装置30は、電気機器11が備える電気絶縁用樹脂モールドの表層部24にかかる応力S2を測定する装置であり、例えばX線回折から応力を測定するX線応力測定装置などを用いることができる。 The surface layer stress measuring device 30 is a device that measures the stress S2 applied to the surface layer portion 24 of the resin mold for electrical insulation provided in the electric device 11, and uses, for example, an X-ray stress measuring device that measures stress from X-ray diffraction. be able to.
 診断装置40は、界面部応力算出部42、樹脂モールド応力比データベース43、相当経過年数算出部44、材料疲労定数データベース45、表示部46を備えている。樹脂モールド応力比データベース43は、電気機器の部品構造を基に有限要素モデリングを行い、電気機器の熱応力解析を行って、表層部応力と界面部応力との応力比S1/S2を求めて、データベース化したものである。 The diagnostic device 40 includes an interface stress calculation unit 42, a resin mold stress ratio database 43, an equivalent elapsed year calculation unit 44, a material fatigue constant database 45, and a display unit 46. The resin mold stress ratio database 43 performs finite element modeling based on the component structure of the electrical equipment, performs thermal stress analysis of the electrical equipment, and obtains the stress ratio S1 / S2 between the surface layer stress and the interface stress, It is a database.
 また、材料疲労定数データベース45は、電気機器が備える樹脂モールド材料の試験片に対して疲労寿命試験を行って疲労寿命曲線を求め、疲労寿命曲線から得られる材料疲労定数をデータベース化したものである。 Further, the material fatigue constant database 45 is a database in which the fatigue life curve is obtained by conducting a fatigue life test on the test piece of the resin mold material provided in the electric equipment, and the material fatigue constant obtained from the fatigue life curve is made into a database. .
 界面部応力算出部42は、表層部応力測定装置30で測定した表層部応力S2と、樹脂モールド応力比データベース43に蓄積された応力比との積を計算し、界面部にかかる応力S1を算出する。 The interface stress calculation unit 42 calculates the product of the surface layer stress S2 measured by the surface layer stress measurement device 30 and the stress ratio accumulated in the resin mold stress ratio database 43, and calculates the stress S1 applied to the interface. To do.
 相当経過年数算出部44は、界面部応力算出部42で求めた界面部応力を、材料疲労定数データベース45の材料疲労定数に基づいて作成した疲労寿命曲線に当てはめて、応力負荷繰り返し回数を求める。 The equivalent elapsed year calculation unit 44 applies the interface stress obtained by the interface stress calculation unit 42 to a fatigue life curve created based on the material fatigue constants in the material fatigue constant database 45 to obtain the number of stress load repetitions.
 そして、応力負荷繰り返し回数を、電気機器の相当経過年数に変換する。表示部46は、得られた電気機器の相当経過年数を表示する。表示部46は、診断装置40内に設けても良いし、診断装置とは別体の例えばタブレット端末などとし、これに診断装置から表示信号を伝送するようにしても良い。なお、図3では、表層部応力測定装置30と診断装置40とを、別の装置として記載したが、両装置を一体として一つの装置としても良い。 Then, the number of repeated stress loads is converted into the equivalent number of years of electrical equipment. The display part 46 displays the equivalent elapsed years of the obtained electrical equipment. The display unit 46 may be provided in the diagnostic device 40, or may be a tablet terminal or the like that is separate from the diagnostic device, and a display signal may be transmitted from the diagnostic device thereto. In FIG. 3, the surface layer stress measuring device 30 and the diagnostic device 40 are described as separate devices, but the two devices may be integrated into one device.
 以上に説明した電気絶縁用樹脂モールドを備える電気機器の診断方法および診断システムは、電気機器の故障を律する、電気機器内部の通電部位と樹脂モールドとの界面部23における樹脂モールドにかかる熱応力を基に、電気機器の相当経過年数や余寿命を求める、高精度な診断技術を提供することができる。 The diagnostic method and diagnostic system for an electrical device including the resin mold for electrical insulation described above provides the thermal stress applied to the resin mold at the interface portion 23 between the energized portion inside the electrical device and the resin mold, which regulates the failure of the electrical device. Based on this, it is possible to provide a highly accurate diagnostic technique for obtaining the equivalent age and remaining life of electrical equipment.
 次に、本発明の所望の効果を奏する実施例により、本発明をより具体的に説明する。 Next, the present invention will be described in more detail with reference to examples that achieve the desired effects of the present invention.
 本実施例では、前記の診断手順に従い、電気機器の診断を行った。電気機器の代表として、モールド変圧器を選んだ。 In this example, the electrical device was diagnosed according to the above diagnostic procedure. A mold transformer was chosen as a representative of electrical equipment.
 診断に供した変圧器は通電部位として銅線を巻いたコイルを、その周りには電気的絶縁のために樹脂モールドを備える。樹脂モールドは、エポキシ樹脂の複合材からなり、主な充填材として結晶性シリカを含む。 The transformer used for diagnosis is equipped with a coil wound with copper wire as a current-carrying part and a resin mold around it for electrical insulation. The resin mold is made of a composite material of epoxy resin and contains crystalline silica as a main filler.
 〔1〕熱応力解析による応力比の導出
  モールド変圧器を有限要素でモデル化し、有限要素法による熱応力解析を行った。試験片を用いて、構成材料の力学物性、熱物性を予め測定しておき、各要素に割り当てた。熱応力解析では、コイルを構成する巻線の全長と、巻線の断面積から通電部位における発熱量を求め、樹脂モールドへの伝熱を考慮した。
[1] Derivation of stress ratio by thermal stress analysis The mold transformer was modeled by a finite element, and thermal stress analysis was performed by the finite element method. Using the test piece, the mechanical and thermal properties of the constituent materials were measured in advance and assigned to each element. In the thermal stress analysis, the amount of heat generated at the energized portion was obtained from the total length of the windings constituting the coil and the cross-sectional area of the winding, and the heat transfer to the resin mold was taken into consideration.
 結果として得られた、樹脂モールドにかかる応力の分布から、コイルとの界面部の樹脂モールドにかかる応力と、樹脂モールドの表層部の応力の比(S1/S2)を求めた。 From the resulting stress distribution on the resin mold, the ratio (S1 / S2) of the stress applied to the resin mold at the interface with the coil and the stress on the surface layer of the resin mold was determined.
 表1には、寸法、出力、通電状態が異なる3つの変圧器に対する応力比の解析結果を記載した。No. 1、No. 2、No. 3全ての変圧器は、通電での使用開始から10年経過したものである。寸法には、コイル部の高さを代表値として示してある。 Table 1 shows the analysis results of stress ratios for three transformers with different dimensions, outputs, and energized states. All transformers of No. 1, No. 2 and No. 3 have been used for 10 years since the start of energization. In the dimensions, the height of the coil portion is shown as a representative value.
 また、通電負荷率とは、変圧器の最大容量に占める、実使用上の負荷率の割合であり、この数値が大きいほど、発熱が大きく、よって熱応力の発生が顕著になる。表1のNo. 1とNo. 2の比較より、通電負荷率が大きいほど応力比が大きくなることがわかる。 Also, the energization load factor is the ratio of the load factor in actual use that occupies the maximum capacity of the transformer. The larger this value, the greater the heat generation, and the greater the generation of thermal stress. From the comparison between No. 1 and No. 2 in Table 1, it can be seen that the stress ratio increases as the energization load factor increases.
 また、No. 2とNo. 3の比較より、寸法が大きい場合に、応力比が大きくなることがわかる。表1は、樹脂モールド応力比データベース11Cの一例である。 Also, it can be seen from the comparison between No. 2 and No. 3 that the stress ratio increases when the dimensions are large. Table 1 is an example of a resin mold stress ratio database 11C.
Figure JPOXMLDOC01-appb-T000001
 〔2〕疲労寿命試験による材料疲労定数の導出
  表1に示した変圧器No. 1、No. 2、No. 3が備える電気絶縁用樹脂モールドと同一の材料組成を有する複合樹脂試験片に対する疲労寿命試験を行った。試験片は、前記の通りプラスチック試験片のJIS規格に従い、ダンベル形状とした。
Figure JPOXMLDOC01-appb-T000001
[2] Derivation of material fatigue constant by fatigue life test Fatigue on composite resin specimens having the same material composition as the resin mold for electrical insulation provided in transformers No. 1, No. 2, and No. 3 shown in Table 1 A life test was conducted. The test piece was dumbbell shaped according to the JIS standard for plastic test pieces as described above.
 疲労寿命試験では、10種類の応力値を設定し、それぞれの応力値において、繰り返し引っ張り試験を行うことで、樹脂試験片が破断に至る繰り返し回数を求めた。 In the fatigue life test, 10 types of stress values were set, and repeated tensile tests were performed at each stress value to determine the number of repetitions until the resin test piece breaks.
 図4には、疲労寿命試験から得た疲労寿命曲線を示す。疲労寿命曲線は、指数関数形のBasquin則でプロットされている。No. 1、No. 2曲線は切片110MPa、指数係数-0.04であり、No. 3曲線は切片100MPa、指数係数-0.08である。 FIG. 4 shows a fatigue life curve obtained from the fatigue life test. The fatigue life curve is plotted with an exponential Basquin rule. The No. 1 and No. 2 curves have an intercept of 110 MPa and an exponential coefficient of -0.04, and the No. 3 curve has an intercept of 100 MPa and an exponential coefficient of -0.08.
 変圧器No. 3に用いられる樹脂モールド材料は、変圧器No. 1、No. 2に用いられる樹脂モールド材料に比べ、材料疲労定数、すなわち、切片から得られる引っ張り強度と、指数部から得た応力値の減衰の度合いを表す係数ともに小さい。 The resin mold material used for transformer No. 3 was obtained from the material fatigue constant, that is, the tensile strength obtained from the section and the index part, compared to the resin mold material used for transformer No. 1, No. 2. Both of the coefficients representing the degree of attenuation of the stress value are small.
 これより、変圧器No. 3に用いられる樹脂モールド材料は、変圧器No. 1、No. 2に用いられる樹脂モールド材料に比べ、元々の引っ張り強度が小さいことに加え、繰り返し回数の増加に伴って、応力値の減少量が大きいことがわかる。表2に、得られた材料疲労定数データベース12Bの一例を示す。 As a result, the resin mold material used for transformer No. 3 has a lower tensile strength than the resin mold material used for transformer No. 1 and No. 2, and the number of repetitions increases. Thus, it can be seen that the amount of decrease in the stress value is large. Table 2 shows an example of the obtained material fatigue constant database 12B.
Figure JPOXMLDOC01-appb-T000002
 〔3〕モールド変圧器の診断
  前記の〔1〕で得た応力比S1/S2と、〔2〕で得た材料疲労定数とを用いて、実際にモールド変圧器の診断を行った。
Figure JPOXMLDOC01-appb-T000002
[3] Diagnosis of Mold Transformer Using the stress ratio S1 / S2 obtained in [1] and the material fatigue constant obtained in [2], the mold transformer was actually diagnosed.
 <第1の工程>まず、表層部応力測定装置で、変圧器No. 1、No. 2、No. 3それぞれの電気絶縁用樹脂モールドの表層部に作用する応力を測定した。これらの樹脂モールドには、充填材として結晶性シリカが配合されている。そこで、X線回折応力測定法により、樹脂モールドの表層部に作用する応力を測定した。 <First Step> First, the stress acting on the surface layer portion of the resin mold for electrical insulation of each of transformer No. 1, No. 2, and No. 3 was measured with a surface layer stress measuring device. In these resin molds, crystalline silica is blended as a filler. Therefore, the stress acting on the surface layer portion of the resin mold was measured by the X-ray diffraction stress measurement method.
 <第2の工程>次に、界面部応力算出部で、〔1〕で得た応力比データベースに格納した応力比S1/S2を用いて、樹脂モールドの表層部に作用する応力を、樹脂モールドがモールドするコイルとの界面部の樹脂モールドに作用する応力に変換した。 <Second Step> Next, the stress applied to the surface layer portion of the resin mold is calculated by using the stress ratio S1 / S2 stored in the stress ratio database obtained in [1] at the interface stress calculation section. Converted into stress acting on the resin mold at the interface with the coil to be molded.
 <第3の工程>最後に、相当経過年数算出部で、〔2〕で得た材料疲労定数データベースに格納した材料疲労定数を用いて、樹脂モールドがモールドするコイルとの界面部の樹脂モールドに作用する応力を、疲労寿命曲線における繰り返し回数に変換した後、変換係数を用いて相当経過年数に変換した。 <Third Step> Finally, in the equivalent elapsed years calculation unit, using the material fatigue constant stored in the material fatigue constant database obtained in [2], the resin mold at the interface with the coil molded by the resin mold is used. The acting stress was converted into the number of repetitions in the fatigue life curve, and then converted into an equivalent number of years using a conversion coefficient.
 本実施例の変圧器は昼夜問わず連続運転しており、昼と夜との温度差によって熱応力の増減が1日に一回起きるため変換係数は、1日/回とした。相当経過年数を求めるには、予め作成した界面部にかかる応力と相当経過年数との関係を用いても良く、図5にその一例を示す。表3には、変圧器No. 1、No. 2、No. 3それぞれに対する診断結果をまとめた。 The transformer of this example is operated continuously regardless of day and night, and because the increase and decrease in thermal stress occurs once a day due to the temperature difference between day and night, the conversion coefficient was set to 1 day / time. In order to obtain the equivalent elapsed years, the relationship between the stress applied to the interface portion prepared in advance and the equivalent elapsed years may be used, and an example is shown in FIG. Table 3 summarizes the diagnostic results for transformers No. 1, No. 2, and No. 3.
Figure JPOXMLDOC01-appb-T000003
 No. 1とNo. 2の比較より、同一の変圧器であっても、通電負荷率が大きいほど、樹脂モールドの界面部にかかる熱応力が大きくなるため、相当経過年数が大きくなることがわかる。また、No. 2とNo. 3の比較より、同一の通電負荷率であっても、変圧器の寸法が大きい場合に、樹脂モールドの界面部にかかる残留応力や熱応力が大きくなるため、相当経過年数が大きくなることがわかる。
Figure JPOXMLDOC01-appb-T000003
Comparison of No. 1 and No. 2 shows that even with the same transformer, the greater the energization load factor, the greater the thermal stress applied to the interface part of the resin mold, and the greater the number of years elapsed. . Compared with No. 2 and No. 3, even if the current load factor is the same, if the transformer dimensions are large, the residual stress and thermal stress applied to the interface part of the resin mold will increase. It can be seen that the number of years elapsed increases.
 前記の通り、No. 1、No. 2、No. 3全ての変圧器は、通電での使用開始から10年経過したものである。No. 1の変圧器は実際の経過年数と相当経過年数はほぼ等しいと診断される。一方、No. 2とNo. 3の変圧器は、相当経過年数が実際の経過年数を超過していると診断される。 As mentioned above, all transformers of No. 1, No. 2, and No. 3 have been used for 10 years from the start of energization. The No. 1 transformer is diagnosed as having approximately the same age as the actual age. On the other hand, the transformers of No. 2 and No. 3 are diagnosed as having a considerable age exceeding the actual age.
 また、No. 1、No. 2、No. 3全ての変圧器は、寿命30年で設計してある。寿命30年から相当経過年数を減算することにより、変圧器の余寿命は、No. 1について、19.9年、No. 2について15.2年、No. 3について7.4年と計算することができ、変圧器の外部から、故障の要因となる内部界面の剥離や樹脂モールドの割れの前兆を数値化して、適切に診断することができる。 Also, all transformers of No. 1, No. 2, and No. 3 are designed with a lifespan of 30 years. By subtracting the number of years elapsed from the life of 30 years, the remaining life of the transformer can be calculated as 19.9 years for No. 1, 15.2 years for No. 2, and 7.4 years for No. 3. From the outside, the signs of internal interface peeling and resin mold cracking, which cause failure, can be digitized and diagnosed appropriately.
 電気機器内部の通電部位と樹脂モールドとの界面の剥離や樹脂モールドの割れは、前記の通り、電気機器の運転中に自ずと印加される繰り返し熱応力による。上記の実施例は、電気機器の外側から目視することができない、通電部位と樹脂モールドとの界面の剥離や樹脂モールドの割れなどの前兆を直接的に知ることができ、電気機器の診断の高精度化が可能であることが示された。 As described above, peeling of the interface between the current-carrying site inside the electrical equipment and the resin mold and cracking of the resin mold are due to repeated thermal stress that is naturally applied during the operation of the electrical equipment. In the above embodiment, it is possible to directly know precursors such as peeling of the interface between the energized portion and the resin mold and cracking of the resin mold, which cannot be visually observed from the outside of the electric device. It was shown that accuracy can be achieved.
 本実施例では、変圧器を例に本発明を説明したが、本発明は、変圧器に限らず開閉器、モーター、インバーターなどの通電部位を樹脂モールドした電気機器全般に用いることができる。 In the present embodiment, the present invention has been described by taking a transformer as an example. However, the present invention is not limited to a transformer, and can be used for all electric devices in which energized parts such as a switch, a motor, an inverter, etc. are resin-molded.
実施の形態2 Embodiment 2
 先に説明した実施の形態1では、第1の工程S101と、第2の工程S102と、第3の工程S103を有する3つの診断の工程について説明した。実施の形態2では実施の形態1と同様にS101からS103を用いた際の表示方法と診断方法の一例について説明する。 In the first embodiment described above, the three diagnosis steps including the first step S101, the second step S102, and the third step S103 have been described. In the second embodiment, as in the first embodiment, an example of a display method and a diagnosis method when using S101 to S103 will be described.
 従来の樹脂モールドの劣化状態は、破壊検査によるものがあり、例えば、変圧器のような昼夜の連続稼動が求められる装置においては、運転を停止しなければ検査ができなかった。 The deterioration state of conventional resin molds is due to destructive inspection. For example, in a device such as a transformer that requires continuous operation day and night, inspection cannot be performed unless operation is stopped.
 また、破壊検査であるため、樹脂モールドを破壊した場合には、破壊された樹脂モールドが使用できないため、検査対象である変圧器を検査後に使用することができなかった。 Also, because it is a destructive inspection, when the resin mold is destroyed, the destroyed resin mold cannot be used, so the transformer to be inspected cannot be used after the inspection.
 これに対して、本実施の形態2では、実施の形態1同様に樹脂モールドの非破壊検査によって、寿命を診断することができる。 On the other hand, in the second embodiment, the life can be diagnosed by the nondestructive inspection of the resin mold as in the first embodiment.
 図6は、検査方法の一例を示す図である。モールド変圧器100は樹脂モールド110を有する。この樹脂モールド110を検査手段120によって撮像する様子が示されている。検査手段120からは光学またはX線が照射され、樹脂モールド110から反射されている様子を示す。後述するモールド変圧器100の寿命情報等が表示手段150に表示され、その表示結果を検査員200が観察している。 FIG. 6 is a diagram illustrating an example of an inspection method. The mold transformer 100 has a resin mold 110. A state in which the resin mold 110 is imaged by the inspection means 120 is shown. The inspection unit 120 is irradiated with optics or X-rays and is reflected from the resin mold 110. The life information of the mold transformer 100 to be described later is displayed on the display means 150, and the display result is observed by the inspector 200.
 図7には、図6に示す診断対象である樹脂モールド110を有するモールド変圧器100の診断領域の一例を示す。後述する診断領域については、領域や分解能で行ってもよいが、ここでは、領域A111と、領域B112と、領域C113として説明する。 FIG. 7 shows an example of a diagnosis region of the mold transformer 100 having the resin mold 110 to be diagnosed shown in FIG. Diagnosis areas described later may be performed with areas or resolutions, but are described here as areas A111, B112, and C113.
 図6に示す検査手段120と表示手段150の構成の一例を図8を用いて説明する。検査手段120を用いて樹脂モールド110の観察または撮像をする。検査手段120は検査として説明するが、撮像または撮影であってもよく、樹脂モールド110の表面状態を観察できる手段であればよい。 An example of the configuration of the inspection unit 120 and the display unit 150 shown in FIG. 6 will be described with reference to FIG. The inspection means 120 is used to observe or image the resin mold 110. Although the inspection unit 120 will be described as an inspection, it may be imaging or photographing, and may be any unit that can observe the surface state of the resin mold 110.
 検査手段120は、樹脂モールド110の表面を撮像する検出部121と、撮像された樹脂モールドの画像を記憶する記憶部122と、記憶部122に記憶された樹脂モールド110の画像を用いて後述する相当経過年数を計算する制御部123と、通信部124を有している。 The inspection unit 120 will be described later using a detection unit 121 that images the surface of the resin mold 110, a storage unit 122 that stores the captured image of the resin mold, and an image of the resin mold 110 stored in the storage unit 122. It has the control part 123 which calculates the equivalent elapsed years, and the communication part 124.
 また、必要に応じて、検査手段120に表示部125を有していてもよい。表示部125は検出部121によって取得した画像やデータを表示することや、通信部124から受信した情報を表示する。 In addition, the inspection unit 120 may have a display unit 125 as necessary. The display unit 125 displays the image and data acquired by the detection unit 121 and displays information received from the communication unit 124.
 検出部121は、モールド変圧器100のコイルを覆うように形成された樹脂モールド110の表面を撮像する。記憶部122は、樹脂モールド110の表面の温度分布情報を記憶する。また、温度分布情報を用いずとも実施の形態1または実施例1で説明した方法を用いてもよい。 The detection unit 121 images the surface of the resin mold 110 formed so as to cover the coil of the mold transformer 100. The storage unit 122 stores temperature distribution information on the surface of the resin mold 110. Further, the method described in Embodiment 1 or Example 1 may be used without using the temperature distribution information.
 本実施の形態では、撮像の方式は、樹脂モールド110の表面温度分布を観察するサーモグラフィを用いる。なお、本実施の形態においては、表面温度分布が観察できればよく、サーモグラフィに限らず、被検査対象物から赤外線の波長を数値として取得することが可能な撮像方式であっても実施できる。 In this embodiment, the imaging method uses thermography for observing the surface temperature distribution of the resin mold 110. In the present embodiment, it is only necessary to observe the surface temperature distribution, and not only thermography but also an imaging method capable of acquiring infrared wavelengths as numerical values from an object to be inspected.
 また、熱応力解析を用いた表面部応力の特定には、サーモグラフィのような樹脂モールド110全体の表面温度を測定することは必須でない。一部の温度を測定するだけでも、表層部応力を特定することができる。この場合は、例えば、レーザ光を照射した部分の温度が測定できれば実施できる。レーザ光に限られず、温度計等の手段で樹脂モールド110の温度を測定する方法を採用してもよい。このようなピンポイントの温度測定よりも広い面積を測定した方が、より精度の高い熱応力解析ができる。 Also, it is not essential to measure the surface temperature of the entire resin mold 110 such as thermography in order to specify the surface stress using thermal stress analysis. The surface layer stress can be specified only by measuring a part of the temperature. In this case, for example, it can be carried out if the temperature of the portion irradiated with the laser light can be measured. The method is not limited to laser light, and a method of measuring the temperature of the resin mold 110 by means such as a thermometer may be employed. More accurate thermal stress analysis can be performed by measuring a wider area than pinpoint temperature measurement.
 ここで、検出部121は、モールド変圧器100の運転中(稼動状態とも呼ぶ)に行うことで、樹脂モールド110の表面の温度分布を取得することができる。樹脂モールド110の表面温度分布から熱応力を算出するため、稼動時の温度分布を取得する必要があるからである。 Here, the detection unit 121 can acquire the temperature distribution on the surface of the resin mold 110 by performing it while the mold transformer 100 is in operation (also referred to as an operating state). This is because in order to calculate the thermal stress from the surface temperature distribution of the resin mold 110, it is necessary to acquire the temperature distribution during operation.
 熱応力解析の方法は、運転状態の樹脂モールド110の表面の温度分布用いて行う。実施の形態1で説明した図1に示される樹脂モールド応力比データベース11Cや熱応力解析11Bを用いるとよい。 The method of thermal stress analysis is performed using the temperature distribution on the surface of the resin mold 110 in the operating state. The resin mold stress ratio database 11C and the thermal stress analysis 11B shown in FIG. 1 described in the first embodiment may be used.
 具体的には、検出部121が撮像した画像を、制御部123が表面温度分布を取得または変換し、その後、第1の工程S101、第2の工程S102、第3の工程S103の順に処理する。このような処理工程によりモールド110の寿命または劣化状態を特定する。 Specifically, the control unit 123 acquires or converts the surface temperature distribution of the image captured by the detection unit 121, and then processes in the order of the first step S101, the second step S102, and the third step S103. . The life or deterioration state of the mold 110 is specified by such processing steps.
 上記第1の工程S101から第3の工程S103は、検査手段120の制御部123または表示手段150の制御部153で行ってもよく、他の計算機等で行ってもよい。 The first to third steps S101 to S103 may be performed by the control unit 123 of the inspection unit 120 or the control unit 153 of the display unit 150, or may be performed by another computer or the like.
 表層部応力と界面部応力とを用いた余寿命または劣化状態を特定する原理を簡単に説明する。モールド変圧器100の出荷時の樹脂モールド110は、コイルに対して収縮応力が生じている。この収縮応力は、コイルを覆った固化前の樹脂モールド110が固化する際に、収縮することにより生じる。コイルが絶縁部材である樹脂モールド110で覆われることで、絶縁性を維持することができる。 A brief description will be given of the principle for identifying the remaining life or deterioration state using the surface layer stress and the interface stress. The resin mold 110 at the time of shipment of the mold transformer 100 has a shrinkage stress on the coil. The shrinkage stress is generated by shrinkage when the resin mold 110 before solidification covering the coil is solidified. Insulating property can be maintained by covering the coil with the resin mold 110 which is an insulating member.
 樹脂モールド110は、使用時間に合わせて樹脂が劣化するため、モールド変圧器100の製造時から時間とともに収縮応力が減少していくこととなる。 In the resin mold 110, since the resin deteriorates with the use time, the shrinkage stress decreases with time from the production of the mold transformer 100.
 また、モールド変圧器100の稼動により樹脂モールド110が加熱され、その後、負荷率が下がることで冷却または放熱される。この際に、樹脂モールド110は、熱膨張と熱収縮とが生じ、コイルと樹脂モールド110との間の負荷応力(界面部応力)が変化することとなる。 Also, the resin mold 110 is heated by the operation of the mold transformer 100, and then the load factor is lowered to cool or dissipate heat. At this time, the resin mold 110 undergoes thermal expansion and contraction, and the load stress (interfacial stress) between the coil and the resin mold 110 changes.
 これを繰り返すことで、樹脂モールド110のコイルを保持する力が弱くなり、樹脂モールド110の負荷応力は、製造時から徐々に下がっていくこととなる。 By repeating this, the force for holding the coil of the resin mold 110 is weakened, and the load stress of the resin mold 110 gradually decreases from the time of manufacture.
 また、負荷応力が下がっていくとコイルと樹脂モールド110との間には、空隙ができ部分放電が生じる場合がある。部分放電の値が所定値を超えた場合には、モールド変圧器100の交換が必要となる。また、部分放電は、樹脂モールド110内部のシリカが散乱等することによっても生じ得ると考えられる。 In addition, when the load stress is lowered, there may be a gap between the coil and the resin mold 110 and partial discharge may occur. When the value of the partial discharge exceeds a predetermined value, the mold transformer 100 needs to be replaced. Further, it is considered that the partial discharge can also be caused by scattering of silica inside the resin mold 110.
 上記より、出荷時の樹脂モールド110の負荷応力と、変圧器の稼動状態、すなわち、樹脂モールドの熱収縮と熱膨張の状態を特定することによって、樹脂モールドとコイルとの空隙の値を換算し特定することができる。 From the above, by specifying the load stress of the resin mold 110 at the time of shipment and the operating state of the transformer, that is, the state of thermal contraction and thermal expansion of the resin mold, the value of the gap between the resin mold and the coil is converted. Can be identified.
 制御部123は、記憶部122に記憶された樹脂モールド110の表面の温度分布情報を用いて、熱解析を行うことにより樹脂モールド110の表面部応力を算出する。実施の形態1で説明した応力比を用いた界面部応力を特定する処理方法等を用いて、空隙を特定することができる。また、同一機種のコイルと樹脂モールド110との界面の空隙と界面部の応力を用いて特定するとよく、可能であれば過去に分解した際のデータと突き合わせるとより精確に空隙の量を特定することができる。 The control unit 123 calculates the surface stress of the resin mold 110 by performing thermal analysis using the temperature distribution information on the surface of the resin mold 110 stored in the storage unit 122. The void can be specified using the processing method for specifying the interface stress using the stress ratio described in the first embodiment. Also, it is better to specify the gap at the interface between the coil of the same model and the resin mold 110 and the stress at the interface. can do.
 ここで、制御部123は、樹脂モールド110の表面の温度分布情報の特定も行ってもよい。例えば、検出部121が赤外線の波長を検出する手段を有している場合には、その波長と強度から温度分布情報へ計算や変換を行うことができる。 Here, the control unit 123 may also specify the temperature distribution information on the surface of the resin mold 110. For example, when the detection unit 121 has a means for detecting the wavelength of infrared rays, calculation and conversion from the wavelength and intensity to temperature distribution information can be performed.
 温度分布情報を用いて界面部応力を算出する方法の一例について説明する。まず、測定される変圧器について出荷時の界面部応力を特定する。界面部応力の測定は、熱応力解析を用いたものに限らず、同じ機種や型番の変圧器の樹脂モールドを解体して測定した界面部応力の実データとを比較して、測定対象の樹脂モールドとを比較し特定してもよい。 An example of a method for calculating the interface stress using the temperature distribution information will be described. First, the interface stress at the time of shipment is specified for the transformer to be measured. Interfacial stress measurement is not limited to those using thermal stress analysis, but is compared with actual data of interfacial stress measured by disassembling the resin mold of a transformer of the same model or model number, and the resin to be measured The mold may be compared and specified.
 また、実施の形態1と同様に、表層部応力と界面部応力を用いて、撮像されたモールド変圧器100の相当経過年数(相当使用年数または実質変圧器年齢とも呼ぶ)を特定してもよい。 Further, as in the first embodiment, the equivalent elapsed years (also referred to as equivalent use years or substantial transformer age) of the imaged mold transformer 100 may be specified using the surface layer stress and the interface stress. .
 ここで、相当経過年数とは、実際にモールド変圧器100が現実に使用された時間とは異なり、実使用環境から特定される使用状態を考慮した仮想の経過年数の概念である。 Here, “equivalent elapsed years” is a concept of a virtual elapsed years considering a use state specified from an actual use environment, unlike the time when the mold transformer 100 is actually used.
 すなわち、モールド変圧器100の耐用年数は所定の運転状態や使用負荷率を想定し特定されるが、所定の運転状態等に対して高い負荷率となる環境で使用を継続すると、相当経過年数を多く経過したものとし、所定の運転状態等に対して低い負荷率となる環境で使用を継続すると、相当経過年数は少ないとされる。
  なお、所定の運転状態等に対して低い負荷率である場合には、熱応力による樹脂モールド110の劣化の影響が小さいことにより、相当経過年数が、実際の使用時間と一致する場合がある。
In other words, the service life of the mold transformer 100 is specified assuming a predetermined operating state and a load factor to be used. However, if the use is continued in an environment where the load factor is high with respect to the predetermined operating state, etc., If it is assumed that a large amount of time has passed and the use is continued in an environment where the load factor is low with respect to a predetermined operation state or the like, the number of years elapsed is considered to be small.
Note that when the load factor is low with respect to a predetermined operation state or the like, the influence of the deterioration of the resin mold 110 due to thermal stress is small, so that the considerable elapsed time may coincide with the actual use time.
 相当経過年数の概念を説明する一例として、変圧器の寿命を計算する際に用いられる負荷率に対して使用負荷率を120%で継続使用すると、相当経過年数も120%として経過されたと判断するということである。つまり、使用負荷率120%で10年使用した変圧器は相当経過年数12年ということである。 As an example to explain the concept of equivalent elapsed years, if the usage load factor is continuously used at 120% with respect to the load factor used when calculating the life of the transformer, it is determined that the equivalent elapsed year has also passed as 120%. That's what it means. In other words, a transformer that has been used for 10 years with a load factor of 120% is equivalent to 12 years.
 ここで、特定された相当経過年数は、図6に示される表示手段150に表示する。必要に応じて検査手段120に表示してもよい。 Here, the identified equivalent elapsed years are displayed on the display means 150 shown in FIG. You may display on the test | inspection means 120 as needed.
 表示手段150は、図8に示すように、検査手段120や他の機器と通信する通信部154と、通信された情報を計算や演算等を行う制御部153と、制御部153で演算等された情報を記憶する記憶部152と、記憶部152に記憶された情報や通信された情報を表示する表示部155と、を有している。タッチパネルやキーボードやマウス等の入力手段を有していてもよい。 As shown in FIG. 8, the display unit 150 is operated by the communication unit 154 that communicates with the inspection unit 120 and other devices, the control unit 153 that calculates and calculates the communicated information, and the control unit 153. A storage unit 152 that stores the received information, and a display unit 155 that displays the information stored in the storage unit 152 and the communicated information. You may have input means, such as a touch panel, a keyboard, and a mouse | mouth.
  実施例2として相当経過年数等の表示方法を図9を用いて説明する。
  表示手段150の表示部155の上段左側の領域に、変圧器表面温度分布情報500を表示している。また、表示部155の上段右側に、変圧器表面温度分布情報500に対応する測定領域501と、表面温度502と、測定値503と、を表示する。
As a second embodiment, a method of displaying the equivalent elapsed years and the like will be described with reference to FIG.
Transformer surface temperature distribution information 500 is displayed in the upper left area of the display unit 155 of the display means 150. Further, a measurement region 501 corresponding to the transformer surface temperature distribution information 500, a surface temperature 502, and a measurement value 503 are displayed on the upper right side of the display unit 155.
 また、表示部155の下段には、測定したモールド変圧器100の機種情報511と、変圧器のサイズ情報512と、応力勾配値情報513、実際の経過年数情報514(現実の経過年齢、現実の変圧器年齢とも呼ぶ)、相当経過年数情報515(実質変圧器年齢とも呼ぶ)が表示されている。これらの情報は全てを表示する必要はなく、少なくとも相当経過年数情報515が表示されていれば、実施できる。 Further, in the lower part of the display unit 155, the model information 511 of the measured mold transformer 100, the size information 512 of the transformer, the stress gradient value information 513, the actual age information 514 (the actual age, the actual age) Equivalent age information 515 (also called real transformer age) is displayed. It is not necessary to display all of these pieces of information, and at least the equivalent elapsed year information 515 can be displayed.
 また、変圧器表面温度分布情報500は領域を大きく分割し、この例では3つの領域A,B,Cを表示している。領域ごとに色やハッチング等を付し、表面温度を可視化することができる。 Further, the transformer surface temperature distribution information 500 divides the area into large areas, and in this example, three areas A, B, and C are displayed. Each region can be colored or hatched to visualize the surface temperature.
 また、上段右側には、測定領域501の領域A,B,Cの平均温度と、カーソル505の位置の温度と、を表面温度502に表示する。これらの表面温度情報から算出された表面部応力503を表示する。 Further, on the upper right side, the average temperature of the areas A, B, and C of the measurement area 501 and the temperature at the position of the cursor 505 are displayed as the surface temperature 502. The surface portion stress 503 calculated from the surface temperature information is displayed.
 カーソル505はタッチパネルの操作やカーソル505を操作することによって、移動し、カーソル505の位置の温度を適宜表示する。これによって変圧器表面温度分布情報500がカラーマップを用いた領域内の大まかな表面温度だけでなく、特定位置の詳細な表面温度を知ることができる。 The cursor 505 moves by operating the touch panel or operating the cursor 505, and appropriately displays the temperature at the position of the cursor 505. Thereby, the transformer surface temperature distribution information 500 can know not only the rough surface temperature in the region using the color map but also the detailed surface temperature at a specific position.
 下段には、表面部応力503と界面部応力504の情報を用いて特定された相当経過年数515を表示する。併せて、実際の経過年数514(変圧器の現実の使用時間)を表示する。これにより、現実の使用時間と変圧器の相当経過年数とを比較することができる。この場合は、診断したモールド変圧器100が現実の使用時間よりも4年多く使用している状態であることを意味する。 In the lower part, the equivalent elapsed years 515 specified using the information on the surface stress 503 and the interface stress 504 are displayed. In addition, the actual number of years 514 (the actual usage time of the transformer) is displayed. This makes it possible to compare the actual usage time with the equivalent elapsed years of the transformer. In this case, it means that the diagnosed mold transformer 100 has been used for four years more than the actual usage time.
 また、表面部応力503の変化量を基にして特定された応力勾配率513を表示してもよい。応力勾配率は出荷時と測定時の変化量を示す。また、応力勾配率513は、界面部応力504を用いて特定してもよい。いずれの場合も応力勾配率513を表示することで、モールド変圧器100の現実の使用時間に対する想定使用時間が進行する度合いを示すことができる。 Also, the stress gradient rate 513 specified based on the amount of change in the surface portion stress 503 may be displayed. The stress gradient rate indicates the amount of change between shipment and measurement. The stress gradient rate 513 may be specified using the interface stress 504. In any case, by displaying the stress gradient rate 513, it is possible to indicate the degree of progress of the assumed usage time with respect to the actual usage time of the mold transformer 100.
 この例では、耐用年数が30年のモールド変圧器であった場合に、現実の使用時間が25年であった際の測定であるが、その相当経過年数(実質変圧器年齢)は29年であるため、交換時期が近いことがわかる。すなわち、測定対象のモールド変圧器100は、現実の使用時間よりも想定使用時間が加算される環境下で使用されていたことがわかり、交換が必要なことをユーザに伝えることができる。よって、相当経過年数を用いてモールド変圧器の交換時期を知ることができる。 In this example, in the case of a molded transformer with a service life of 30 years, the actual use time was 25 years, but the elapsed time (actual transformer age) is 29 years. Because there is, it turns out that the exchange time is near. That is, it can be seen that the mold transformer 100 to be measured was used in an environment where the estimated usage time is added to the actual usage time, and can be notified to the user that replacement is necessary. Therefore, it is possible to know the replacement time of the mold transformer using the corresponding elapsed years.
 また、表面部応力503は表面温度502以外にも実施の形態1のX線を用いた樹脂モールド110の表面部を観察することによって算出した表面部応力を表示してもよい。 Further, the surface portion stress 503 may display the surface portion stress calculated by observing the surface portion of the resin mold 110 using the X-ray of Embodiment 1 in addition to the surface temperature 502.
 さらに、変圧器温度分布情報500と表面温度502とから測定領域内で温度の高い部分についてX線を用いて検査をすることで、より高精度の相当経過年数を特定することが可能となる。 Furthermore, it is possible to specify the equivalent elapsed years with higher accuracy by inspecting the portion having a high temperature in the measurement region using the X-ray from the transformer temperature distribution information 500 and the surface temperature 502.
 さらに、モールド変圧器100は所定の時間帯に所定の負荷状態で長期運用される場合が多いため、一日の樹脂モールド110の表面の温度分布をタイムラプス観察等の経時観察をすることで、これまでの樹脂モールドの熱応力をより精確な推定をすることができる。 Furthermore, since the mold transformer 100 is often operated for a long time in a predetermined load state at a predetermined time zone, the temperature distribution on the surface of the resin mold 110 for one day is observed over time such as time-lapse observation. The thermal stress of the resin mold up to can be estimated more accurately.
 また、モールド変圧器100の負荷率(負荷状態)に応じた樹脂モールド110の表面の温度分布を取得すると、負荷率と表面温度分布との関係を特定でき、より精度の高い表面部応力を特定でき、ひいては精度の高い寿命診断を行うことができる。 Moreover, if the temperature distribution of the surface of the resin mold 110 according to the load factor (load state) of the mold transformer 100 is acquired, the relationship between the load factor and the surface temperature distribution can be specified, and the surface stress with higher accuracy can be specified. As a result, a highly accurate life diagnosis can be performed.
 また、検出部121の撮像と併せて外気温と比較することも可能である。この場合は、外気温と樹脂モールド110の表面温度分布との関係を求めることができ、精度の高い寿命診断に寄与することができる。 Also, it is possible to compare with the outside air temperature together with the imaging of the detection unit 121. In this case, the relationship between the outside air temperature and the surface temperature distribution of the resin mold 110 can be obtained, which can contribute to highly accurate life diagnosis.
  表示方法の一例である実施例3を図10を用いて説明する。
  4種類のモールド変圧器100のうち機種AAA,AAB,AAC,AADについて相当経過年数を特定した例を示す。先の表示例との違いは、交換年数情報516を有する点である。いずれのモールド変圧器も耐用年数(耐用時間)は30年である。
Example 3 which is an example of the display method will be described with reference to FIG.
An example in which the equivalent elapsed years are specified for the types AAA, AAB, AAC, and AAD among the four types of molded transformers 100 will be shown. The difference from the previous display example is that it has replacement year information 516. All mold transformers have a service life (service life) of 30 years.
 交換年数情報516は、耐用年数と相当経過年数を比較することにより特定される変圧器の交換時期を示すものである。機種AAAであれば、耐用年数30年から相当経過年数29年を引き、交換時期は1年以内であることが望ましい。これを表示したものが交換年数情報516である。 The replacement year information 516 indicates the replacement time of the transformer specified by comparing the service life and the corresponding elapsed time. In the case of the model AAA, it is desirable that the equivalent service life is subtracted from the useful life of 30 years and the replacement time is within one year. This is displayed as replacement year information 516.
 さらに、交換年数情報516には、3つのインジケータにより交換時期を示す機能を有していてもよい。ここでは、左から青色、黄色、赤色の3種類の表示部があり、機種AAAは交換年数情報が残り1年であるため、赤色が表示される。 Furthermore, the replacement year information 516 may have a function of indicating the replacement time with three indicators. Here, there are three types of display units, blue, yellow, and red, from the left, and the model AAA is displayed in red because the replacement year information is one year remaining.
 これにより、ユーザや検査員等に対して変圧器の交換時期を視覚的に認知させることができる。また、3つのインジケータについては、黄色、赤色の表示を油入変圧器の指標として用いられる重合度に対応させて「要注意」「危険」として文字として表現を用いてもよい。合わせて、「注意」を黄色、「危険」を赤色で表示するとなおわかりやすい。 This makes it possible to visually recognize the time for replacement of the transformer for users, inspectors, and the like. For the three indicators, yellow and red indications may be used as characters as “Needs Attention” and “Danger” corresponding to the degree of polymerization used as an index of the oil-filled transformer. In addition, it is easier to understand if “Caution” is displayed in yellow and “Danger” is displayed in red.
 次に、機種AABについて説明する。この場合は、交換年数情報516の表示は残り5年である。この場合、3つの表示部のうち、中央の黄色が点灯している。 Next, the model AAB will be described. In this case, the replacement year information 516 is displayed for the remaining five years. In this case, among the three display units, the center yellow is lit.
 次に、機種AACは、交換年数情報516が、2年オーバーと示されている。この場合は、速やかに交換が必要であることを示す。このとき、インジケータは赤色であれば点滅させるとよりよい。より緊急度が高いことがわかる。 Next, the model AAC shows that the replacement year information 516 is over two years. In this case, it indicates that a replacement is required promptly. At this time, if the indicator is red, it is better to blink. It turns out that the degree of urgency is higher.
 最後に、機種AADについて説明する。交換年数情報516には、残り10年と表示され、インジケータは左側の青色が点灯する。 Finally, the model AAD will be described. In the replacement year information 516, the remaining 10 years are displayed, and the indicator lights up in blue on the left side.
 交換年数情報516に、残り年数だけでなく3つのインジケータを用いた表示をすることで、より視覚的に変圧器の交換時期を知ることができる。例えば、交換時期について、交換時期が過ぎたものまたは1年、5年、10年をしきい値として赤色、黄色、青色として表示しているが、所定の値で設定するとよい。モールド変圧器100の交換時期を考慮すると交換まで3年程度を黄色として表示するとユーザにとって便利である。 By displaying not only the remaining years but also three indicators in the replacement year information 516, it is possible to know the replacement time of the transformer more visually. For example, the replacement time is displayed as red, yellow, or blue with the replacement time passed or 1 year, 5 years, or 10 years as a threshold value, but may be set at a predetermined value. Considering the replacement time of the mold transformer 100, it is convenient for the user to display about three years as yellow until the replacement.
 上記した3つのインジケータは、青色、黄色、赤色の3色に限定されることはなく、3段階の状態を表示する色やカラーバーで示してもよい。 The above three indicators are not limited to the three colors of blue, yellow, and red, and may be indicated by colors or color bars for displaying three stages.
 カラーバーで表示する場合を図16に示す。機種情報511と、交換年数情報516aとが示されている。交換年数情報516aのカラーバーは、10本の長さの異なるバーを表示する。機種AAIのように残り3年であれば、短い順に3本を点灯させ、残り7本を薄いグレーとして表示するとよい。 Fig. 16 shows the case of displaying with a color bar. Model information 511 and replacement year information 516a are shown. The color bar of the replacement year information 516a displays ten bars having different lengths. If the remaining three years, such as model AAI, it is better to light up the three in short order and display the remaining seven as light gray.
 機種AAJであれば、5本を点灯させ、残り5本を非点灯状態(消灯状態)とすればよい。機種AAKであれば、全点灯するとよい。機種AALであれば、交換時期が1年オーバーしているため、カラーバーをグレーアウトし消灯状態または点滅するとよい。または、上記の交換まで余裕のある状態と異なる色で全点灯してもよい。 In the case of model AAJ, it is only necessary to turn on five and turn off the remaining five (non-lighting state). In the case of the model AAK, all the lights should be lit. If the model is AAL, the replacement time is over one year, so the color bar should be grayed out and turned off or blinking. Alternatively, all the lights may be lit in a color different from the state where there is a margin until the replacement.
 また、カラーバーは、左から3本を赤色、4,5本目を黄色、6から10本目を緑または青とすると、交換時期を認識しやすい。 Also, if the color bars are red from the left, 4 yellow from the 5th, and green or blue from the 6th to the 10th, the color bar is easy to recognize.
  次に、他の表示方法について図11を用いて説明する。本実施例では、上段に界面部応力517と、実際の使用環境での使用通電平均518と、を表示し、下段に、想定交換時期520を表示する。界面部負荷応力517は、実施の形態1で説明した表層部応力より特定される界面部応力である。なお、応力勾配率513の表示は必須でない。 Next, another display method will be described with reference to FIG. In the present embodiment, the interfacial stress 517 and the average use energization 518 in the actual use environment are displayed on the upper stage, and the assumed replacement time 520 is displayed on the lower stage. The interface load stress 517 is an interface stress specified from the surface layer stress described in the first embodiment. The display of the stress gradient rate 513 is not essential.
 表層部応力または特定された界面部応力517と、実際に使用される負荷率の平均値である使用通電平均518と、を基にして測定対象樹脂モールド110の将来の界面部応力を求めることができる。これを想定交換時期520の縦軸とし、横軸には、相当経過年数を表示する。なお、測定値を表示したい場合には、界面部応力517の代わりに、表層部応力を表示してもよい。 Obtaining the future interface stress of the resin mold 110 to be measured based on the surface layer stress or the specified interface stress 517 and the use energization average 518 that is the average value of the load factor actually used. it can. This is the vertical axis of the assumed replacement time 520, and the horizontal axis indicates the number of years that have elapsed. In addition, when displaying a measured value, you may display a surface layer part stress instead of the interface part stress 517. FIG.
 この想定交換時期520には、耐用年数である30年となる界面部応力の閾値を表示し、すなわち、相当経過年数が30年と判断される界面部応力を表示する。現在の状態と推奨交換時期までの年数を表示する。これにより、樹脂モールド110の現実の使用通電負荷率を考慮した交換推奨時期を特定できる。 In the assumed replacement period 520, the threshold value of the interface stress that is 30 years, which is the service life, is displayed, that is, the interface stress that is determined to have an equivalent elapsed time of 30 years is displayed. Display the current status and the number of years until the recommended replacement time. Thereby, the replacement recommendation time in consideration of the actual usage load ratio of the resin mold 110 can be specified.
 また、当該測定した変圧器と同じ機種または型番の変圧器について、交換した際の現実の使用通電負荷率または交換した際の界面部応力を表示し、望ましい交換推奨時期を併せて表示することもできる。 In addition, for the transformer of the same model or model number as the measured transformer, the actual use load ratio when replaced or the interface stress when replaced is displayed, and the recommended replacement time is also displayed. it can.
 表示には、実施例3で説明した3つのインジケータを採用することで視覚的に交換時期を知ることができる。ここでは、相当経過年数が29年になる前の交換を推奨し、今回診断した相当経過年数が26年の時点において、交換時期を3年以内が推奨値であると表示している。また、相当経過年数が28年の値では、機種AAEを実際に使っているユーザが相当経過年数に対応した交換時期として表示することで、ユーザは交換時期を判断しやすくなる。 For the display, it is possible to know the replacement time visually by adopting the three indicators described in the third embodiment. Here, replacement is recommended before the equivalent age reaches 29 years, and when the equivalent elapsed age diagnosed this time is 26 years, the recommended replacement time is within 3 years. When the equivalent elapsed year is 28, the user who actually uses the model AAE displays the replacement time corresponding to the equivalent elapsed year, so that the user can easily determine the replacement time.
 実施例5では、図12を用いて測定したモールド変圧器100の情報から使用状況を考慮し他の容量変圧器に交換した場合の交換後の変圧器寿命を予測し、表示する方法について説明する。 In the fifth embodiment, a method for predicting and displaying the life of the transformer after the replacement when the other transformer is replaced in consideration of the use situation from the information of the molded transformer 100 measured using FIG. 12 will be described. .
 図12には、機種情報511、変圧器のサイズ情報512、(予測)実経過年数514a、相当経過年数情報515a、使用通電平均情報518、変圧器容量情報519が表示されている。実経過年数514aは、推定値であるため、予測実経過年数でもある。 FIG. 12 shows model information 511, transformer size information 512, (predicted) actual elapsed years 514a, equivalent elapsed years information 515a, used energization average information 518, and transformer capacity information 519. Since the actual age 514a is an estimated value, it is also a predicted actual age.
 使用通電平均情報518は、診断したモールド変圧器100の使用状況を考慮した値である。また、変圧器容量情報519は、機種情報511に対応するものであり、予めデータベース等に保存された情報である。 The use energization average information 518 is a value in consideration of the use situation of the diagnosed mold transformer 100. The transformer capacity information 519 corresponds to the model information 511 and is information stored in advance in a database or the like.
 界面部応力が特定されたモールド変圧器100は機種AAEのものであり、現実の使用時間と相当経過年数が表示されている。機種AAEに交換(リプレース)した場合に、交換前と同様の環境下で使用されれば、相当経過年数は、同じ年数となる。
  例えば、機種AAEに交換した場合であれば、相当経過年数が残り3年となるくらいで交換することを考慮し、実使用時間が21から23年程度で交換することが望ましい。
The mold transformer 100 in which the interface stress is specified is of the model AAE, and the actual usage time and the corresponding elapsed years are displayed. When the model AAE is replaced (replaced), if it is used in the same environment as before the replacement, the equivalent elapsed years are the same years.
For example, in the case of replacement with the model AAE, it is desirable to replace it with an actual usage time of about 21 to 23 years in consideration of replacement with the remaining three years remaining.
 ここで、交換する変圧器の候補として機種AAFとAAGを表示する。使用されている変圧器に近いサイズであり、変圧器容量が機種AAEよりも大きいものに交換した場合を示している。 Here, the models AAF and AAG are displayed as candidate transformers to be replaced. The figure shows a case where the size is close to that of the transformer used and the transformer capacity is replaced with a larger one than the model AAE.
 機種AAFとAAGの使用通電平均が60%と50%である。機種AAEの使用通電平均情報を基にして、機種AAFとAAGの機種AAEと同様に使用した場合の相当経過年数を特定し表示する。つまり、機種AAFとAAGの相当経過年数は、樹脂モールド110等を実際に測定していないため、他の機種AAFとAAGで測定したデータ等を用いる。 The average energization of the models AAF and AAG is 60% and 50%. Based on the average use energization information of the model AAE, the equivalent elapsed years when used in the same manner as the models AAE of the models AAF and AAG are specified and displayed. In other words, since the resin mold 110 or the like is not actually measured for the equivalent elapsed years of the models AAF and AAG, data and the like measured by the other models AAF and AAG are used.
 例えば、変圧器表面の温度分布は、外乱がなければ同一の機種であれば同じような分布となる。同一機種の測定データから機種AAFとAAGの温度分布を求め、機種AAEの使用通電平均情報を機種AAFとAAGに適用することで、機種AAFとAAGを機種AAEと同様に運用した場合の温度分布状態を特定することができる。温度分布状態を用いて相当使用時間と予測実使用時間を求めることができる。 For example, the temperature distribution on the transformer surface is the same distribution if there is no disturbance and the same model. The temperature distribution when the models AAF and AAG are operated in the same way as the model AAE by calculating the temperature distribution of the models AAF and AAG from the measurement data of the same model and applying the average usage information of the model AAE to the models AAF and AAG. The state can be specified. The corresponding usage time and the predicted actual usage time can be obtained using the temperature distribution state.
 ここでは、機種AAFとAAGについては、機種AAE同様に予測実使用時間が20年の場合の相当使用時間を表示している。機種AAEに交換した場合には、実使用時間と相当使用時間が一致するため、交換対象として望ましいということである。また、過去に測定した他の変圧器に類似のデータを用いると予測実使用時間と相当経過年数の特定精度が上がる。 Here, for the models AAF and AAG, the equivalent usage time when the predicted actual usage time is 20 years is displayed as in the model AAE. When the model is replaced with the model AAE, the actual use time and the equivalent use time coincide with each other, which is preferable as a replacement target. Moreover, if similar data is used for other transformers measured in the past, the accuracy of specifying the predicted actual usage time and the number of years elapsed will be improved.
 実施例6は、図13を用いて、業種別交換時期の表示方法について説明する。図13には、上段に、モールド変圧器100の機種AAHを診断した情報を表示する。現実の経過年数514が22年に対して、相当経過年数515aが23年である。 Example 6 will be described with reference to FIG. 13 for a method of displaying the replacement period for each industry. In FIG. 13, the information which diagnosed the model AAH of the mold transformer 100 is displayed on the upper stage. The actual age 514 is 22 years, while the equivalent age 515a is 23 years.
 このときに、交換時期の判断を支援するため、下段に、業種別の交換時期等を表示する。具体的には、業種情報530aと、業種別交換推奨使用年数530bと、交換までの推奨年数530cと、を表示する。この業種別交換推奨使用年数530bは予め業種ごとの変圧器の交換年数を記憶部に記憶させておく。 At this time, in order to support the judgment of the replacement time, the replacement time for each industry is displayed in the lower part. Specifically, industry information 530a, industry-specific replacement recommended use years 530b, and recommended years 530c until replacement are displayed. As the recommended replacement years for each industry type 530b, the replacement years of transformers for each industry type are stored in advance in the storage unit.
 業種ごとに求められる業種別交換推奨使用年数530bと、相当経過年数515aと、を併せて表示し比較することで、ユーザは変圧器を交換する時期を判断しやすくなる。
  なお、下段の表だけ表示しても交換時期の判断が可能である。また、交換までの推奨時間530cは、図11で示した交換年数情報516を用いることもできる。
By displaying and comparing the recommended replacement years for each type of industry 530b required for each type of industry and the equivalent elapsed years 515a, the user can easily determine when to replace the transformer.
Note that it is possible to determine the replacement time even if only the lower table is displayed. In addition, the replacement time information 516 shown in FIG. 11 can be used as the recommended time 530c until the replacement.
 実施例7では、図14を用いて、表面温度を測定したモールド変圧器100の寿命予測情報540を表示する方法について説明する。寿命予測情報540は、図9で説明した変圧器表面温度分布情報500の特定箇所の温度を観察した様子を示している。 In Example 7, a method of displaying the life prediction information 540 of the mold transformer 100 whose surface temperature is measured will be described with reference to FIG. The life prediction information 540 indicates a state in which the temperature at a specific location in the transformer surface temperature distribution information 500 described with reference to FIG. 9 is observed.
 上段のグラフは、測定した温度を縦軸とし、対応する測定時間を横軸としたものである。つまり、モールド変圧器100表面の所定の箇所の温度変化を示すものである。 The upper graph shows the measured temperature on the vertical axis and the corresponding measurement time on the horizontal axis. That is, it shows a temperature change at a predetermined location on the surface of the mold transformer 100.
 下段は、グラフから特定された特徴的な温度を抽出した表である。時間帯540aと、温度540bと、推奨値540cと、推奨負荷率540dと、を示す。時間帯540aは、特徴的な値を抽出したものである。特徴量の抽出には、極大値の判定等の既知の方法を用いることができる。 The lower row is a table in which characteristic temperatures identified from the graph are extracted. A time zone 540a, a temperature 540b, a recommended value 540c, and a recommended load factor 540d are shown. The time zone 540a is a characteristic value extracted. A known method such as determination of the maximum value can be used for extracting the feature amount.
 特徴的な時間帯の温度540bに対して、推奨値540cを示す。推奨値540cは、推奨値となる温度であり、推奨負荷率540dは、温度測定時のモールド変圧器100の負荷率(使用状況)を変更する推奨値を示す。 The recommended value 540c is shown for the characteristic time zone temperature 540b. The recommended value 540c is a temperature that becomes a recommended value, and the recommended load factor 540d indicates a recommended value for changing the load factor (use state) of the mold transformer 100 at the time of temperature measurement.
 この例では、06:00から08:00の時間帯は、モールド変圧器100の温度を56℃から54℃となるように2℃下げた方がよく、具体的には、負荷率を2%下げるとよい。また、23:00から03:00の時間帯は、負荷率を8%上昇させるとよい。 In this example, in the time zone from 06:00 to 08:00, it is better to lower the temperature of the mold transformer 100 by 2 ° C. so as to be from 56 ° C. to 54 ° C. Specifically, the load factor is 2%. Lower it. Moreover, it is good to raise a load factor 8% in the time slot | zone from 23:00 to 03:00.
 これは、先に説明したように、樹脂モールド110の温度変化を抑制することで、モールド変圧器100の寿命を延ばすことができる。 As described above, this can extend the life of the mold transformer 100 by suppressing the temperature change of the resin mold 110.
 併せて、モールド変圧器100の負荷率に推奨値を採用した場合の相当経過年数の変化を表示すると具体的な数値で示されるためなおよい。 In addition, it is even better if the change in the number of years elapsed when the recommended value is adopted for the load factor of the molded transformer 100 is displayed as a specific numerical value.
 実施例7では、図15を用いて、モールド変圧器100の寿命診断方法の他の例について説明する。図15には、界面部応力517と、測定負荷応力に対応する部分放電換算値550aが示されている。 In Example 7, another example of the method for diagnosing the lifetime of the molded transformer 100 will be described with reference to FIG. FIG. 15 shows the interfacial stress 517 and the partial discharge converted value 550a corresponding to the measured load stress.
 界面部応力517が特定できると、樹脂モールド110の内部状態と、界面部応力と、からコイルと樹脂モールド110との空隙の量と、を推定できる。これらの内部状態と空隙の量とを用いて、モールド変圧器100の部分放電値550aに換算する。 If the interface stress 517 can be specified, the amount of the gap between the coil and the resin mold 110 can be estimated from the internal state of the resin mold 110 and the interface stress. Using these internal states and the amount of voids, the partial discharge value 550a of the mold transformer 100 is converted.
 換算方法の一例として、他の同機種のモールド変圧器100を実際に測定した部分放電値とを予めデータベースとして用意する。樹脂モールド110の界面部応力または表層部応力と内部状態とに対応する部分放電値の変換テーブルを用意する。 As an example of the conversion method, a partial discharge value obtained by actually measuring another mold transformer 100 of the same model is prepared in advance as a database. A partial discharge value conversion table corresponding to the interfacial stress or surface layer stress of the resin mold 110 and the internal state is prepared.
 これにより、同機種または類似機種のモールド変圧器100であれば、変換テーブルを用いて、界面部応力と内部状態とから部分放電値の換算ができる。 Thus, if the molded transformer 100 is of the same model or a similar model, the partial discharge value can be converted from the interface stress and the internal state using the conversion table.
 図15に示されるように界面部応力517の出荷時の値は39MPaであるが、このときの部分放電換算値550aは、0である。 As shown in FIG. 15, the interface stress 517 at the time of shipment is 39 MPa, and the partial discharge conversion value 550 a at this time is 0.
 3年前測定、今回、3年後予測の測定負荷応力はそれぞれ38,37,36MPaであり、部分放電換算値は、XXX、YYY、ZZZである。3年前測定と、今回の測定負荷応力値は、実際に樹脂モールド110の表面温度分布等から負荷応力を特定したものである。 Measured load stresses measured 3 years ago and predicted 3 years later are 38, 37, and 36 MPa, respectively, and partial discharge conversion values are XXX, YYY, and ZZZ. The measurement stress values measured three years ago and the current measurement are actually load stresses specified from the surface temperature distribution of the resin mold 110 and the like.
 これまでの実施例同様に、使用通電状態や表面温度のタイムラプス観察等を用いると、将来の樹脂モールド110の内部状態とコイルと樹脂モールド110との空隙の量が予測することができるため、上記のような3年後予測の測定負荷応力を表示でき、対応する部分放電換算値も示すことができる。 As in the previous examples, when the current-use state and time-lapse observation of the surface temperature are used, the future internal state of the resin mold 110 and the amount of gap between the coil and the resin mold 110 can be predicted. The measured load stress predicted after three years can be displayed, and the corresponding partial discharge converted value can also be shown.
 このように部分放電換算値550aを表示することによって、モールド変圧器100の定量的な状態をユーザに知らせることができる。また、部分放電換算値550aは、変圧器業界ではよく知られた指標であり、ユーザにとって分かりやすい指標を提供することができる。 Thus, by displaying the partial discharge converted value 550a, the quantitative state of the mold transformer 100 can be notified to the user. The partial discharge converted value 550a is an index well known in the transformer industry, and can provide an index that is easy for the user to understand.
 上記した実施形態または実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成に一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above-described embodiments or examples have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
11 電気機器、11A 電気機器のモデル化、11B 熱応力解析、11C 樹脂モールド応力比データベース
12 試験片、12A 疲労寿命試験、12B 材料疲労定数データベース、13 診断結果
21 通電部位、22 電気絶縁用樹脂モールド、23 界面部、24 表層部
30 表層部応力測定装置
40 診断装置、42 界面部応力算出部、43 樹脂モールド応力比データベース
44 相当経過年数算出部、45 材料疲労定数データベース、46 表示部
S101 第1の工程、S102 第2の工程、S103 第3の工程
S1 界面部の応力、S2 表層部の応力
100 モールド変圧器、110 樹脂モールド
111 領域A、112 領域B、113 領域C
120 検査手段、121 検出部、150 表示手段、155 表示部、200 検査員
500 変圧器温度分布情報、501 測定領域、502 表面温度、503 表面部応力、504 界面部応力、511 機種情報、512 サイズ情報、514 現実の経過年数、514a 実経過年数、515 相当経過年数、516 交換年数情報、517 界面部応力、518 使用通電平均、519 変圧器容量情報、520 想定交換時期、530a 業種情報、530b 業種別交換推奨使用年数、540 寿命予測情報、540a 時間帯、540b 温度、540c 推奨値、550a 部分放電換算値
DESCRIPTION OF SYMBOLS 11 Electrical equipment, 11A Modeling of electrical equipment, 11B Thermal stress analysis, 11C Resin mold stress ratio database 12 Test piece, 12A Fatigue life test, 12B Material fatigue constant database, 13 Diagnostic result 21 Current-carrying part, 22 Resin mold for electrical insulation , 23 interface portion, 24 surface layer portion 30 surface layer portion stress measurement device 40 diagnostic device, 42 interface portion stress calculation portion, 43 resin mold stress ratio database 44 equivalent elapsed year calculation portion, 45 material fatigue constant database, 46 display portion S101 first Step S102 Second step S103 Third step S1 Interface stress, S2 Surface stress 100 Mold transformer, 110 Resin mold 111 Region A, 112 Region B, 113 Region C
120 inspection means, 121 detection part, 150 display means, 155 display part, 200 inspector 500 transformer temperature distribution information, 501 measurement area, 502 surface temperature, 503 surface part stress, 504 interface part stress, 511 model information, 512 size Information, 514 Actual elapsed years, 514a Actual elapsed years, 515 Equivalent elapsed years, 516 Replacement years information, 517 Interfacial stress, 518 Current average used, 519 Transformer capacity information, 520 Expected replacement period, 530a Industry information, 530b Industry Recommended replacement years, 540 Life prediction information, 540a Time zone, 540b Temperature, 540c Recommended value, 550a Partial discharge conversion value

Claims (18)

  1.  電気絶縁用樹脂モールドを備えた電気機器の診断方法であって、
     前記電気機器の通電による熱的負荷で生じる、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定する第1の工程と、
     前記第1の工程で得た表層部にかかる応力の測定結果を、前記電気絶縁用樹脂モールドと前記絶縁用樹脂モールドが被覆する導電材料との界面部にかかる応力に変換する第2の工程と、
     前記第2の工程で得た界面部にかかる応力を、前記電気絶縁用樹脂モールドの相当経過年数に変換する第3の工程と、
    を備える電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    A method for diagnosing an electrical device provided with a resin mold for electrical insulation,
    A first step of measuring a stress applied to a surface layer portion of the resin mold for electrical insulation, which is caused by a thermal load caused by energization of the electrical equipment;
    A second step of converting the measurement result of the stress applied to the surface layer portion obtained in the first step into the stress applied to the interface portion between the electrically insulating resin mold and the conductive material covered by the insulating resin mold; ,
    A third step of converting the stress applied to the interface portion obtained in the second step into an equivalent age of the resin mold for electrical insulation;
    A diagnostic method for an electrical device comprising a resin mold for electrical insulation comprising:
  2.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記第1の工程で行う、前記電気絶縁用樹脂モールドの表層部にかかる応力の測定は、通電による熱負荷状態にある前記電気機器に対し、非破壊で、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定することを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The measurement of the stress applied to the surface layer portion of the electrical insulating resin mold performed in the first step is nondestructive with respect to the electrical device in a thermal load state by energization, and the surface layer portion of the electrical insulating resin mold. A method for diagnosing an electrical device provided with a resin mold for electrical insulation, characterized by measuring a stress applied to the wire.
  3.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記電気絶縁用樹脂モールドは、無機充填材料を配合する複合樹脂材料であり、前記無機充填材料は、結晶構造を有する粉末材料であることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The electrical insulating resin mold is a composite resin material containing an inorganic filler, and the inorganic filler is a powder material having a crystal structure. Diagnosis method.
  4.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記第2の工程は、表層部にかかる応力と界面部に係る応力との応力比をデータベース化した応力比データベースを参照して、前記電気絶縁用樹脂モールドと導電材料との界面部にかかる応力を求めることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The second step refers to a stress ratio database in which the stress ratio between the stress applied to the surface layer portion and the stress applied to the interface portion is made into a database, and the stress applied to the interface portion between the resin mold for electrical insulation and the conductive material. A method for diagnosing an electrical device provided with a resin mold for electrical insulation, characterized by:
  5.  請求項4に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記表層部にかかる応力と界面部に係る応力との応力比は、有限要素法の熱応力解析によって得た、前記電気絶縁用樹脂モールドの表層部から界面部にかけての応力分布から求めることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 4,
    The stress ratio between the stress applied to the surface layer portion and the stress applied to the interface portion is obtained from the stress distribution from the surface layer portion to the interface portion of the resin mold for electrical insulation obtained by thermal stress analysis of a finite element method. The diagnostic method of the electric equipment provided with the resin mold for electrical insulation.
  6.  請求項4に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記応力比は、前記電気機器の寸法、出力、通電状態で関数化されていることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 4,
    The method of diagnosing an electric device having an electrically insulating resin mold, wherein the stress ratio is functionalized according to the size, output, and energized state of the electric device.
  7.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記第3の工程は、電気絶縁用樹脂モールドから切り出した複合樹脂材料の試験片に対する、繰り返し引っ張り応力による疲労寿命試験から求めた材料疲労定数によるものであり、該材料疲労定数をデータベース化した材料疲労定数データベースを参照して、前記電気絶縁用樹脂モールドの相当経過年数を求めることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The third step is based on a material fatigue constant obtained from a fatigue life test by repeated tensile stress on a test piece of a composite resin material cut out from a resin mold for electrical insulation, and a material in which the material fatigue constant is databased A method for diagnosing an electrical device equipped with an electrically insulating resin mold, wherein an equivalent age of the electrically insulating resin mold is obtained by referring to a fatigue constant database.
  8.  請求項7に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記材料疲労定数は、前記電気絶縁用樹脂モールドの材料組成によって関数化されていることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 7,
    The method for diagnosing an electric device provided with the resin mold for electrical insulation, wherein the material fatigue constant is functionalized by a material composition of the resin mold for electrical insulation.
  9.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記第3の工程で得られる、前記電気絶縁用樹脂モールドの相当経過年数と、前記電気機器の設計寿命との差分をとることで、前記電気機器の余寿命を求めることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The electrical insulation characterized in that the remaining life of the electrical device is obtained by taking the difference between the equivalent elapsed years of the resin mold for electrical insulation obtained in the third step and the design life of the electrical device. Method for electrical equipment with resin molds for use.
  10.  請求項1に記載の電気絶縁用樹脂モールドを備えた電気機器の診断方法において、
     前記電気機器は、変圧器、開閉器、モーターまたはインバーターであることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断方法。
    In the diagnostic method of the electric equipment provided with the resin mold for electric insulation according to claim 1,
    The electrical device is a transformer, a switch, a motor, or an inverter, and is a diagnostic method for an electrical device including an electrically insulating resin mold.
  11.  電気絶縁用樹脂モールドを備えた電気機器の診断システムであって、
     前記電気機器の通電による熱的負荷で生じる、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定する表層部応力測定装置と、
     電気絶縁用樹脂モールドの表層部にかかる応力と、電気絶縁用樹脂モールドと前記電気絶縁用樹脂モールドが被覆する導電材料との界面部に係る応力との応力比をデータベース化した応力比データベースと、
     電気絶縁用樹脂モールドから切り出した複合樹脂材料の試験片に対する、繰り返し引っ張り応力による疲労寿命試験から求めた材料疲労定数をデータベース化した材料疲労定数データベースと、
     前記表層部応力測定装置で得た表層部にかかる応力の測定結果を、前記応力比データベースを参照して、界面部にかかる応力に変換する界面部応力算出部と、
     前記界面部応力算出部で得た界面部にかかる応力を、前記材料疲労定数データベースを参照して、前記電気絶縁用樹脂モールドの相当経過年数に変換する相当経過年数算出部と、
    を備える電気絶縁用樹脂モールドを備えた電気機器の診断システム。
    A diagnostic system for an electrical device equipped with a resin mold for electrical insulation,
    A surface layer part stress measuring device for measuring a stress applied to a surface layer part of the resin mold for electrical insulation, which is caused by a thermal load caused by energization of the electrical device;
    A stress ratio database in which the stress ratio between the stress applied to the surface layer portion of the resin mold for electrical insulation and the stress applied to the interface portion between the electrically insulating resin mold and the conductive material covered by the electrical insulation resin mold is databased;
    A material fatigue constant database in which a material fatigue constant obtained from a fatigue life test by repeated tensile stress is made into a database for a test piece of a composite resin material cut out from a resin mold for electrical insulation,
    An interface stress calculation unit that converts a stress measurement result applied to the surface layer obtained by the surface layer stress measuring device into stress applied to the interface with reference to the stress ratio database;
    A stress applied to the interface obtained by the interface stress calculator, referring to the material fatigue constant database, and an equivalent elapsed time calculator that converts the elapsed time of the resin mold for electrical insulation;
    A diagnostic system for electrical equipment comprising a resin mold for electrical insulation.
  12.  請求項11に記載の電気絶縁用樹脂モールドを備えた電気機器の診断システムにおいて、
     前記表層部応力測定装置は、通電による熱負荷状態にある前記電気機器に対し、非破壊で、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定するものであることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断システム。
    In the diagnostic system of the electric equipment provided with the resin mold for electric insulation according to claim 11,
    The surface layer stress measuring device measures the stress applied to the surface layer of the resin mold for electrical insulation in a non-destructive manner with respect to the electrical equipment in a heat load state due to energization. System for electrical equipment with resin molds for use.
  13.  請求項11に記載の電気絶縁用樹脂モールドを備えた電気機器の診断システムにおいて、
     前記応力比は、電気機器の寸法、出力、通電状態で関数化されていることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断システム。
    In the diagnostic system of the electric equipment provided with the resin mold for electric insulation according to claim 11,
    The electrical stress diagnosis system comprising an electrically insulating resin mold, wherein the stress ratio is functionalized according to dimensions, output, and energized state of the electrical equipment.
  14.  請求項11に記載の電気絶縁用樹脂モールドを備えた電気機器の診断システムにおいて、
     前記材料疲労定数は、電気絶縁用樹脂モールドから切り出した複合樹脂材料の試験片に対する、繰り返し引っ張り応力による疲労寿命試験の結果得られる疲労寿命曲線から求めたものであることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断システム。
    In the diagnostic system of the electric equipment provided with the resin mold for electric insulation according to claim 11,
    The material fatigue constant is obtained from a fatigue life curve obtained as a result of a fatigue life test by repeated tensile stress on a test piece of a composite resin material cut out from a resin mold for electrical insulation. A diagnostic system for electrical equipment with a resin mold.
  15.  請求項11に記載の電気絶縁用樹脂モールドを備えた電気機器の診断システムにおいて、
     前記材料疲労定数は、電気絶縁用樹脂モールドの材料組成によって関数化されていることを特徴とする電気絶縁用樹脂モールドを備えた電気機器の診断システム。
    In the diagnostic system of the electric equipment provided with the resin mold for electric insulation according to claim 11,
    The material fatigue constant is functionalized according to the material composition of the resin mold for electrical insulation, and the diagnostic system for an electrical device provided with the resin mold for electrical insulation.
  16.  電気絶縁用樹脂モールドを備えた電気機器の診断システムであって、
     前記電気絶縁用樹脂モールドを測定する測定手段と、制御手段と、表示手段と、を有しており、
     前記測定手段は、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定し、
     前記制御部は、測定した前記表層部にかかる応力を基にして前記電気絶縁用樹脂モールドと前記電気絶縁用樹脂モールドが被覆する導電材料との界面部にかかる応力に変換し、さらに、前記界面部にかかる応力を基にして、前記電気絶縁用樹脂モールドの相当経過年数を特定し、
     前記表示手段は、特定された前記相当経過年数を表示する
    ことを特徴とする電気機器の診断システム。
    A diagnostic system for an electrical device equipped with a resin mold for electrical insulation,
    Measuring means for measuring the resin mold for electrical insulation, control means, and display means,
    The measuring means measures the stress applied to the surface layer portion of the resin mold for electrical insulation,
    The control unit converts the stress applied to the interface between the resin mold for electrical insulation and the conductive material covered by the resin mold for electrical insulation based on the measured stress applied to the surface layer, and further converts the interface Based on the stress applied to the part, specify the considerable age of the resin mold for electrical insulation,
    The electrical device diagnosis system, wherein the display means displays the identified equivalent elapsed years.
  17.  請求項16に記載の電気機器の診断システムであって、
     前記電気絶縁用樹脂モールドの表層部にかかる応力の測定は、通電による熱負荷状態にある前記電気機器に対し、非破壊で、前記電気絶縁用樹脂モールドの表層部にかかる応力を測定する
    ことを特徴とする電気機器の診断システム。
    The electrical system diagnosis system according to claim 16,
    The measurement of the stress applied to the surface layer portion of the resin mold for electrical insulation is to measure the stress applied to the surface layer portion of the resin mold for electrical insulation in a non-destructive manner with respect to the electrical equipment in a heat load state due to energization. A diagnostic system for electrical equipment.
  18.  請求項16に記載の電気機器の診断システムであって、
     前記電気絶縁用樹脂モールドは、無機充填材料を配合する複合樹脂材料であり、前記無機充填材料は、結晶構造を有する粉末材料である
    ことを特徴とする電気機器の診断システム。
    The electrical system diagnosis system according to claim 16,
    The electrical insulating diagnostic system is characterized in that the resin mold for electrical insulation is a composite resin material containing an inorganic filler, and the inorganic filler is a powder material having a crystal structure.
PCT/JP2017/004619 2016-02-17 2017-02-08 Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation WO2017141793A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-027723 2016-02-17
JP2016027723A JP6668101B2 (en) 2016-02-17 2016-02-17 Diagnostic method and diagnostic system for electrical equipment provided with resin mold for electrical insulation
JP2016029472A JP6670629B2 (en) 2016-02-19 2016-02-19 Diagnostic system for electrical equipment
JP2016-029472 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017141793A1 true WO2017141793A1 (en) 2017-08-24

Family

ID=59625133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004619 WO2017141793A1 (en) 2016-02-17 2017-02-08 Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation

Country Status (2)

Country Link
TW (1) TW201730553A (en)
WO (1) WO2017141793A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012270A (en) * 2002-06-06 2004-01-15 Meidensha Corp Method of measuring internal strain of molded article
JP2006267089A (en) * 2005-02-28 2006-10-05 Kobe Steel Ltd Method for estimating stress of structural member
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
JP2014092512A (en) * 2012-11-06 2014-05-19 Hitachi Metals Ltd Cable bending and cutting life prediction method and device
WO2015132838A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Method and device for displaying material fatigue of machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012270A (en) * 2002-06-06 2004-01-15 Meidensha Corp Method of measuring internal strain of molded article
JP2006267089A (en) * 2005-02-28 2006-10-05 Kobe Steel Ltd Method for estimating stress of structural member
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
JP2014092512A (en) * 2012-11-06 2014-05-19 Hitachi Metals Ltd Cable bending and cutting life prediction method and device
WO2015132838A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Method and device for displaying material fatigue of machine

Also Published As

Publication number Publication date
TW201730553A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
CN105203879B (en) A kind of disc insulator lifetime estimation method based on artificial accelerated aging test
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
Ueta et al. Insulation characteristics of epoxy insulator with internal delamination-shaped micro-defects
JP2008066435A (en) Remaining life assessment apparatus for power transformer
Madonna et al. Evaluation of strand‐to‐strand capacitance and dissipation factor in thermally aged enamelled coils for low‐voltage electrical machines
Khan et al. Condition monitoring tool for electrical equipment—Thermography
Ueta et al. Insulation characteristics of epoxy insulator with internal void-shaped micro-defects
WO2017141793A1 (en) Diagnostic method and diagnostic system for electrical appliance provided with resin mold for electrical insulation
JP6670629B2 (en) Diagnostic system for electrical equipment
CN117113044A (en) Intelligent prediction analysis method and system for power grid line loss
KR101617414B1 (en) The crack Monitoring Device and Crack Monitoring System using The same
JP6946072B2 (en) Diagnostic system and method for electrical equipment
JP6668101B2 (en) Diagnostic method and diagnostic system for electrical equipment provided with resin mold for electrical insulation
JP2018166164A (en) Molded transformer
Ji et al. Partial discharge investigation under humidity conditions via dissipation factor and insulation capacitance tip-up test
JP6354042B1 (en) Transformer degradation status display device
JPH0619323B2 (en) Insulation deterioration diagnosis method
JP2012202695A (en) Deteriorated insulation diagnosing method and deteriorated insulation diagnosing device
JPH08124751A (en) Method for diagnosing service life and abnormality of oil-immersed electric equipment
CN108375537A (en) Cable for ship insulation life detection method based on biggest quality minimizing speed
JP7237516B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP2006098349A (en) Remaining insulation life duration estimating system and estimating method of high pressure rotary machine
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
Ostendorp Assessing the integrity and remaining service life of vintage high voltage ceramic insulators
Carreira et al. Guidelines for establishing diagnostic procedures for live-line working of nonceramic insulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753051

Country of ref document: EP

Kind code of ref document: A1