JP2006024800A - Oil-immersed transformer remaining life/anomaly diagnostic system - Google Patents

Oil-immersed transformer remaining life/anomaly diagnostic system Download PDF

Info

Publication number
JP2006024800A
JP2006024800A JP2004202511A JP2004202511A JP2006024800A JP 2006024800 A JP2006024800 A JP 2006024800A JP 2004202511 A JP2004202511 A JP 2004202511A JP 2004202511 A JP2004202511 A JP 2004202511A JP 2006024800 A JP2006024800 A JP 2006024800A
Authority
JP
Japan
Prior art keywords
oil
temperature
filled transformer
transformer
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202511A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Tomohiro Kanetani
知宏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2004202511A priority Critical patent/JP2006024800A/en
Publication of JP2006024800A publication Critical patent/JP2006024800A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil-immersed transformer remaining lifetime/anomaly diagnostic system for precisely, speedily, and reliably performing the diagnosis. <P>SOLUTION: The oil-immersed transformer remaining life/anomaly diagnostic system comprises a calculation means of calculating the temperature rise during operation of the object oil-immersed transformer, based on a temperature rise calculation formula worked out, by using data accumulated in an actually measured data compilation means; a simulation means for simulating a life loss/anomaly occurrence in the object oil-immersed transformer, based on the temperature rise value during operation worked out by the calculation means; a displaying means for displaying the data simulated by the simulation means; and an output means for outputting the data of the simulation displayed by the simulation means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、油入変圧器の余寿命・異常診断に寄与する部位の温度を、当該温度を実測した実測値を基に案出した算定式により算定することにより、当該変圧器の余寿命・異常診断を高精度で迅速・確実に行うことを可能とした、油入変圧器の余寿命・異常診断システムの改良に関するものである。   The present invention calculates the remaining life of the transformer by calculating the remaining part life of the oil-filled transformer and the temperature of the part that contributes to the abnormality diagnosis by a calculation formula devised based on the actual measurement value of the temperature. The present invention relates to an improvement of the remaining life / abnormality diagnosis system for oil-filled transformers, which makes it possible to perform abnormality diagnosis quickly and reliably with high accuracy.

一般に、油入変圧器はその運転中の温度、酸素等によって絶縁物が次第に劣化し、その進行が進むに従って外雷、内雷等の異常電圧をはじめ、外部短絡時の電磁機械力等の電気的、機械的異常ストレスを受けた場合、破壊する危険が増長されてくる。そして、前記油入変圧器が運転を開始してから、前記の危険度が非常に高まった時点までを通常油入変圧器の寿命と云われているが、この時点を正確に検知することは非常に困難で、現在のところ前記検知に関して具体的な方法は確立されていないのが現状である。   In general, an oil-filled transformer gradually deteriorates its insulation due to its operating temperature, oxygen, etc., and as its progress proceeds, abnormal voltage such as external lightning, internal lightning, etc. When subjected to mechanical and mechanical abnormal stress, the risk of destruction increases. And, it is said that the life of the oil-filled transformer is normally from the start of operation of the oil-filled transformer to the time when the degree of risk is very high. At present, it is very difficult and no specific method has been established for the detection.

一般に、油入変圧器の寿命は巻線の最高点温度によって最も大きな影響を受けるため、例えば、変圧器規格JEC−204(1978)制定に際しては、巻線の最高点温度と寿命との関係について十分な検討が加えられた。その検討結果によると、油入変圧器の運転時における温度上昇に関する規定においては、
(1)周囲温度が25℃で一定
(2)定格負荷で連続使用
(3)油温の最高点温度が95℃
の場合に、30年程度の正規寿命が期待できるものとして定められている。
In general, the life of an oil-filled transformer is most affected by the highest point temperature of the winding. For example, when establishing the transformer standard JEC-204 (1978), the relationship between the highest point temperature of the winding and the life Thorough consideration was added. According to the results of the study, in the regulations regarding temperature rise during operation of oil-filled transformers,
(1) Ambient temperature is constant at 25 ° C (2) Continuous use at rated load (3) Maximum oil temperature is 95 ° C
In this case, it is determined that a normal life of about 30 years can be expected.

しかし、油入変圧器の実際の運転に際しては、
(1)周囲温度の変動
(2)負荷の変動
(3)温度試験値と規定値との差
(4)冷却条件の変化
等、諸条件が前記の規格設定時の条件とは異なるのが普通である。また、場合によっては、油入変圧器の寿命を若干犠牲にしてでも短時間の間に過負荷運転を行うこともある。
However, in actual operation of the oil-filled transformer,
(1) Ambient temperature fluctuation (2) Load fluctuation (3) Difference between temperature test value and specified value (4) Changes in cooling conditions, etc. It is. In some cases, overload operation may be performed in a short time even at the expense of the life of the oil-filled transformer.

このように、油入変圧器の過負荷運転において、油入変圧器自体の寿命を損なわないようにするにはどのようにすべきかについては、電気学会技術報告(1部)143号(油入変圧器運転指針:昭和61年)に示されており、従来はそれに従って対処していた(例えば、非特許文献1参照)。   As described above, in the overload operation of oil-filled transformers, the technical report (Part 1) 143 (oil-filled oil) Transformer operation guideline: Showa 61), which has been dealt with in the past (see Non-Patent Document 1, for example).

また、前記に基づき今日では、油入変圧器の過負荷運転時における信頼性運転を行う上で、変圧器の運転監視、異常予測システム等種々の運転支援システムが提案されている。例えば、特開平3−274473号公報に示されている油入変圧器余寿命診断装置においては、絶縁油温度と周囲温度、あるいは、油入変圧器の二次負荷電流と周囲温度とから当該油入変圧器の巻線最高点温度を算出し、それをもとに当該油入変圧器の余寿命を算出するようにしていた(例えば、特許文献1参照)。   Based on the above, today, various operation support systems such as transformer operation monitoring and abnormality prediction systems have been proposed for reliable operation during overload operation of oil-filled transformers. For example, in the oil-filled transformer remaining life diagnosis device disclosed in Japanese Patent Laid-Open No. 3-274473, the oil is calculated from the insulation oil temperature and the ambient temperature, or the secondary load current and the ambient temperature of the oil-filled transformer. The maximum winding temperature of the input transformer is calculated, and the remaining life of the oil-filled transformer is calculated based on the calculated temperature (see, for example, Patent Document 1).

変圧器信頼性調査専門委員会「油入変圧器運転指針」社団法人電気学会電気学会技術報告(1部)第143号昭61年11月P.1−2Transformer Reliability Investigation Technical Committee “Oil-filled Transformer Operation Guidelines” The Institute of Electrical Engineers of Japan Technical Report (Part 1) No. 143 November 1986 1-2 特開平3−274473号公報JP-A-3-274473

然るに前著[非特許文献1]の油入変圧器運転指針(以下、運転指針という)においては、汎用性を持たせるため定格容量と絶縁階級と冷却方式によってのみ油入変圧器が分類され、その時定数は油入変圧器の定格容量および冷却方式を基にして設定されている関係上、変圧器個々の特性の違いによる個別データが採用されていないので、油入変圧器個々の特性に対応することができなかった。   However, in the oil-filled transformer operation guideline (hereinafter referred to as the operation guideline) of the previous book [Non-Patent Document 1], oil-filled transformers are classified only by rated capacity, insulation class, and cooling method in order to have versatility. Because the time constant is set based on the rated capacity of the oil-filled transformer and the cooling method, individual data due to differences in the characteristics of each transformer is not adopted, so it corresponds to the characteristics of each oil-filled transformer. I couldn't.

また、油入変圧器の巻線温度上昇値(油温の上昇値も含む)と、負荷との関係においても、油入変圧器個々の特性により変化するため、本来ならば変圧器個々の特性に基づいて運転指針を定めるべきであると考えられるが、前記運転指針においては、変圧器個々の特性に基づく指針作りは非常に煩雑であり、かつ、現実的でないとの観点から一定の基準特性が温度的に安全となるように定められている。例えば、油強制循環方式で時定数が2.5Hの場合における油入変圧器の許容負荷は、油入変圧器個々の特性に関係なく一律に設定されている。   In addition, the relationship between the winding temperature rise value (including the oil temperature rise value) of the oil-filled transformer and the load also varies depending on the characteristics of each oil-filled transformer. However, in the above operation guidelines, it is very complicated to create guidelines based on individual characteristics of transformers, and certain standard characteristics are considered to be impractical. Is set to be safe in terms of temperature. For example, the allowable load of the oil-filled transformer when the time constant is 2.5H in the oil forced circulation system is set uniformly regardless of the characteristics of each oil-filled transformer.

この設定によれば、重負荷以外の軽負荷により、過負荷許容限度値と過負荷時間が判別できるようになっている。例えば、油入変圧器を定格容量の150%で運転したい場合、軽負荷が50%の場合で1時間8分、70%の場合で49分、90%で27分、100%では15分であることが読み取れるものの、実際に絶縁油の温度とか巻線の温度が具体的に何度になるかは全く分らない。その上、重負荷以外の軽負荷においても、前記と同様の時間算出には手間がかかり、面倒であった。   According to this setting, the overload allowable limit value and the overload time can be discriminated by a light load other than a heavy load. For example, if you want to operate an oil-filled transformer at 150% of the rated capacity, 1 hour 8 minutes when the light load is 50%, 49 minutes when the load is 70%, 27 minutes at 90%, and 15 minutes at 100%. Although it can be read, there is no telling what the actual temperature of the insulating oil or the actual temperature of the winding will be. In addition, even for light loads other than heavy loads, time calculation similar to the above is time-consuming and troublesome.

更に、前記運転指針においては、等価周囲温度を採用しているが、これは全国の主要地域における、年間、あるいは、月間の平均温度を統計的に算出しているため、油入変圧器の具体的な設置案件(屋内、屋外等)が加味されておらず、また、油入変圧器設置場所の環境が考慮されていない。   Furthermore, although the equivalent ambient temperature is adopted in the above operation guidelines, this is a statistical calculation of the annual temperature or monthly average temperature in major regions throughout the country. Installation projects (indoors, outdoors, etc.) are not taken into consideration, and the environment of the oil-filled transformer installation site is not considered.

また、経時的に変化する負荷電流と周囲温度に対応して油入変圧器の油温が算出されていないので、例えば、1日のうちで何時に最高温度となり、その温度が何度であるかは全く分らず、これにより、現時刻以降の余寿命とか異常判断を予測することが難しい等の問題があった。   Also, since the oil temperature of the oil-filled transformer is not calculated corresponding to the load current and the ambient temperature that change over time, for example, what time is the maximum temperature in one day, and how many times the temperature is However, there is a problem that it is difficult to predict the remaining life after the current time or abnormality determination.

次に、後著[特許文献1]においては、当該油入変圧器の巻線最高点温度を算出し、その温度をベースにして当該油入変圧器の余寿命を算出するようにしたもので、前記余寿命は、100%負荷運転した場合の正規寿命から、実測により求めた損失寿命を100%負荷換算した値を差し引くだけのものであるため、今後経時的に変化する負荷を考慮しての余寿命等を算出することができないという問題があった。   Next, in the later work [Patent Document 1], the maximum winding temperature of the oil-filled transformer is calculated, and the remaining life of the oil-filled transformer is calculated based on the temperature. The remaining life is simply a value obtained by subtracting the value obtained by converting the loss life obtained by actual measurement into 100% load from the normal life when operated at 100% load. There is a problem that the remaining life of the battery cannot be calculated.

本発明は前記の種々の問題点に鑑み、事前にプロトタイプの油入変圧器にて経時的に実測した巻線温度等の実測値をベースとして案出した温度上昇値の算定式を用いて、被診断油入変圧器の各部位における温度上昇値を算出し、前記算出した温度上昇値をベースとして被診断油入変圧器の余寿命・異常発生を経時的にシミュレーションすることによって、被診断油入変圧器の余寿命・異常診断を迅速・確実に、かつ、簡易に行うようにした油入変圧器の余寿命・異常診断システムを提供することにある。   In view of the various problems described above, the present invention uses a formula for calculating a temperature rise value based on an actual measurement value such as a winding temperature actually measured over time in a prototype oil-filled transformer in advance. By calculating the temperature rise value at each part of the diagnosed oil-filled transformer and simulating the remaining life and abnormality occurrence of the diagnosed oil-filled transformer over time based on the calculated temperature rise value, It is an object of the present invention to provide an oil-immersed transformer remaining life / abnormality diagnosis system that allows quick, reliable and simple diagnosis of remaining life / abnormality of an input transformer.

請求項1記載の発明は巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転状態を示す油温と負荷電流とからなる運転データを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする。   According to the first aspect of the present invention, the remaining life of the oil-filled transformer, such as the temperature of the insulating cylinder surrounding the winding switch, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device, and the temperature of the part where the abnormality is diagnosed are operated. The oil-filled transformer of the oil-filled transformer that actually measures data over time according to a predetermined load factor and creates a data file, and the oil temperature that indicates the operating condition of the oil-filled transformer to be diagnosed The operation status detection means of the oil-filled transformer to be diagnosed that detects the operation data consisting of the load current and the load current over time, and the actual measurement data creation of the oil-filled transformer based on the operation status detected by the operation status detection means An arithmetic processing means for calculating a temperature rise value at the time of operation of the diagnostic oil-filled transformer based on a temperature rise value calculation formula devised based on data accumulated in the means, and calculated by the arithmetic processing means Leave when driving Simulation means for simulating life loss / abnormality generation of a diagnostic oil-filled transformer based on a temperature rise value, display means for displaying information simulated by the simulation means, and simulation information displayed by the display means are output Output means.

請求項2記載の発明は、請求項1記載の油入変圧器の余寿命・異常診断システムにおいて、前記実測データ作成手段により運転中の実測データを取得するために用いるプロトタイプの油入変圧器は、被診断油入変圧器と同一および/または該被診断油入変圧器とほぼ同一の設計にて製造されていることを特徴とする 。   The invention described in claim 2 is the oil-immersed transformer remaining life / abnormality diagnosis system according to claim 1, wherein the prototype oil-filled transformer used for acquiring the actual measurement data during operation by the actual measurement data creating means is It is characterized in that it is manufactured in the same design and / or substantially the same design as the diagnosed oil-filled transformer.

請求項3記載の発明は、請求項1記載の油入変圧器の余寿命・異常診断システムにおいて、前記油入変圧器における余寿命を診断する部位は、巻線であり、異常診断部位は前記巻線、タンク内の絶縁油、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒であることを特徴とする。   According to a third aspect of the present invention, in the remaining life / abnormality diagnosis system for an oil-filled transformer according to the first aspect, the part for diagnosing the remaining life in the oil-filled transformer is a winding, and the abnormality diagnosis part is the It is an insulating cylinder surrounding the winding, the insulating oil in the tank, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device.

請求項4記載の発明は、巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常診断を行う部位の温度上昇値を時間および負荷率による関数として当該部位の運転データを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする。   The invention according to claim 4 operates the temperature of the part that performs the remaining life and abnormality diagnosis of the oil-filled transformer, such as the temperature of the insulating cylinder surrounding the winding switch, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device. Measured data creation means of oil-filled transformer that creates data file by actually measuring over time according to predetermined load factor with prototype prototype oil-filled transformer, and remaining life during operation of diagnosed oil-filled transformer Operating condition detection means for the oil-filled transformer to be diagnosed that detects the operation data of the part over time as a function of time and load factor as the temperature rise value of the part that contributes to the abnormality and the part that performs abnormality diagnosis, and the operating condition detection Based on the operation status detected by the means, based on the calculation formula for the temperature rise value based on the data accumulated in the actual data creation means of the oil-filled transformer, An arithmetic processing means for calculating a temperature rise value, a simulation means for simulating a life loss / abnormality occurrence of a diagnostic oil-filled transformer based on the temperature rise value during operation calculated by the arithmetic processing means, and the simulation means A display means for displaying simulated information and an output means for outputting simulation information displayed on the display means are provided.

請求項5記載の発明は、巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転状態を示す負荷電流と冷却媒体温度、もしくは、負荷電流と周囲温度のいずれかを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする。   The invention according to claim 5 operates the remaining life of the oil-filled transformer and the temperature of the part that performs abnormality diagnosis, such as the temperature of the insulating cylinder surrounding the winding switch, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device. The actual data creation means of the oil-filled transformer that creates data files by measuring over time according to a predetermined load factor with the prototype oil-filled transformer in the state, and the load that indicates the operating state of the oil-filled transformer to be diagnosed Based on the operation status detection means of the oil-in-transformer to be diagnosed that detects either current and cooling medium temperature or load current and ambient temperature over time, and the operation status detected by the operation status detection means, Arithmetic processing means for calculating a temperature rise value during operation of the diagnosed oil-filled transformer based on a formula for calculating the temperature rise value based on the data accumulated in the actual data creation means of the oil-filled transformer; Said arithmetic processing A simulation means for simulating life loss / abnormality generation of the diagnostic oil-filled transformer based on a temperature rise value during operation calculated by the means, a display means for displaying information simulated by the simulation means, and a display means Output means for outputting the displayed simulation information.

請求項6記載の発明は、請求項1記載の油入変圧器の余寿命・異常診断システムにおいて、前記負荷電流は、被診断油入変圧器の2次側の電流、もしくは、1次側の電流および接続タップ情報であることを特徴とする。   According to a sixth aspect of the present invention, in the system for diagnosing the remaining life / abnormality of the oil-filled transformer according to the first aspect, the load current is a current on the secondary side of the oil-filled transformer to be diagnosed or a current on the primary side. It is current and connection tap information.

請求項7記載の発明は、巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常判断を行う部位の温度を、現時刻における温度として経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする。   According to the seventh aspect of the present invention, the remaining life of the oil-filled transformer and the temperature of the part that performs abnormality diagnosis, such as the temperature of the insulating cylinder surrounding the winding switch, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device, are operated. Measured data creation means of oil-filled transformer that creates data file by actually measuring over time according to predetermined load factor with prototype prototype oil-filled transformer, and remaining life during operation of diagnosed oil-filled transformer Based on the operating condition detection means for the oil-in-transformer to be diagnosed that detects the temperature of the part that contributes to the part and the part that performs abnormality determination as the temperature at the current time, and the operating condition detected by the operating condition detection means An arithmetic processing means for calculating a temperature rise value during operation of the diagnosed oil-filled transformer based on a formula for calculating a temperature rise value based on data accumulated in the actual measurement data creating means of the oil-filled transformer Simulating means for simulating life loss / abnormality generation of the diagnostic oil-filled transformer based on the temperature rise value during operation calculated by the arithmetic processing means, and display means for displaying information simulated by the simulation means, Output means for outputting simulation information displayed by the display means.

請求項8記載の発明は、巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常判断を行う部位の温度を、負荷変動および周囲温度が変動した場合を想定してシミュレートする機能を具備した被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする。   According to the eighth aspect of the present invention, the remaining life of the oil-filled transformer, such as the temperature of the insulating cylinder surrounding the winding switch, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device is operated. Measured data creation means of oil-filled transformer that creates data file by actually measuring over time according to predetermined load factor with prototype prototype oil-filled transformer, and remaining life during operation of diagnosed oil-filled transformer Operating condition detecting means for the oil-immersed transformer to be diagnosed having a function of simulating the temperature of the part contributing to the condition and the part where the abnormality is judged assuming that the load fluctuation and the ambient temperature fluctuate, and the operating condition Based on the operation status detected by the detection means, based on the calculation formula of the temperature rise value based on the data accumulated in the actual data creation means of the oil-filled transformer, during operation of the diagnostic oil-filled transformer Oh Arithmetic processing means for calculating a temperature rise value, simulation means for simulating life loss / abnormality of the oil-in-transformer to be diagnosed based on the temperature rise value during operation calculated by the arithmetic processing means, and the simulation means Display means for displaying information simulated by the above and output means for outputting simulation information displayed on the display means.

請求項9記載の発明は、請求項1,4,5,7,8記載の油入変圧器の余寿命・異常診断システムにおいて、前記演算処理手段により演算処理されて算出される被診断油入変圧器の各部位における温度上昇値の算定式は、プロトタイプの油入変圧器にて実測した実測データをベースにして案出した以下の算定式であることを特徴とする。
[数10]
Tc=(Tm−Tn)×exp(-t/τ2)+Tn−(Tm×exp(-t/τ1)
但し、
Tm:定格電流を通電した直後の被診断油入変圧器の最高油温からの各部位の最大温度上昇値(℃)。
Tn:定格電流連続通電時における被診断油入変圧器の最高油温からの各部位の温度上昇値(℃)。
t:通電時間(計算開始時点を0としてそれからどれだけの時間が経過しているかを示す値)。
τ1:定格電流を通電した直後に被診断油入変圧器の各部位において最高油温からの温度が急激に上昇する際の時定数。
τ2:定格電流を通電した直後に被診断油入変圧器の各部位において最高油温からの温度が最高値を示した時点から一定値に落ち着くまでの時定数。
The ninth aspect of the invention is the oil-filled transformer remaining life / abnormality diagnosis system according to any one of the first, fourth, fifth, eighth, and eighth aspects of the invention. The calculation formula of the temperature rise value at each part of the transformer is characterized by the following calculation formula based on the actual measurement data actually measured by the prototype oil-filled transformer.
[Equation 10]
Tc = (Tm−Tn) × exp (−t / τ 2) + Tn− (Tm × exp (−t / τ 1) )
However,
Tm: Maximum temperature increase value (° C.) of each part from the maximum oil temperature of the diagnostic oil-filled transformer immediately after the rated current is applied.
Tn: Temperature rise value (° C.) of each part from the maximum oil temperature of the oil-in-transformer to be diagnosed during continuous energization of the rated current.
t: energization time (a value indicating how much time has passed since the calculation start time is 0).
τ1: Time constant when the temperature from the maximum oil temperature suddenly increases at each part of the oil-filled transformer to be diagnosed immediately after the rated current is applied.
τ2: Time constant from when the temperature from the maximum oil temperature reaches the maximum value at each part of the oil-filled transformer to be diagnosed immediately after the rated current is applied until the value reaches a constant value.

請求項1記載の発明においては、プロトタイプの油入変圧器を用いてその運転中における定格負荷および負荷率を種々変更して実測した実測値をベースにして被診断油入変圧器の所定部位の温度上昇値を演算処理する算定式を案出し、この案出した算定式に基づき被診断油入変圧器の運転中において、当該変圧器の所定部位の温度上昇値を適確に演算処理して算出(シミュレート)し、その算出値をベースとして当該変圧器の異常診断と寿命損失とを正確にシミュレーションすることができるようにしたので、被診断油入変圧器の寿命損失とか異常発生を簡易な方式で高精度に把握することが可能となり、この結果、被診断油入変圧器を効率よく使用できるという優れた利点を備えた油入変圧器の余寿命・異常診断システムの提供が可能となる。   In the first aspect of the invention, a predetermined part of the oil-filled transformer to be diagnosed is based on actually measured values obtained by variously changing the rated load and load factor during operation using the prototype oil-filled transformer. A calculation formula for calculating the temperature rise value is devised. Based on the calculated formula, the temperature rise value at a predetermined part of the transformer is appropriately calculated and processed during operation of the oil-filled transformer to be diagnosed. Calculated (simulated), and based on the calculated value, it is now possible to accurately simulate the abnormality diagnosis and life loss of the transformer concerned, simplifying the life loss or abnormality occurrence of the oil-immersed transformer to be diagnosed As a result, it is possible to provide an oil-immersed transformer remaining life / abnormality diagnosis system with the excellent advantage of being able to use the oil-injected transformer to be diagnosed efficiently. Na .

請求項2記載の発明においては、被診断油入変圧器の温度上昇値を算出する算定式は、前記被診断油入変圧器と同一、または、ほぼ同一設計のプロトタイプの油入変圧器を種々の負荷率に基づいて運転させることにより、所定部位の温度を実測し、その実測値をベースとして温度上昇値の算定式を案出するようにしたので、被診断油入変圧器における余寿命損失に用いる温度上昇値の計算はプロトタイプの油入変圧器の実測値とほぼ同様に計算することができるので、被診断油入変圧器の寿命損失の算定が、現実的に、かつ、高精度で行うことができるという優れた利点を備えている。   In the invention of claim 2, the calculation formula for calculating the temperature rise value of the diagnosed oil-filled transformer is various for the prototype oil-filled transformer having the same or substantially the same design as the diagnosed oil-filled transformer. By operating based on the load factor, we measured the temperature of the specified part and devised a formula for calculating the temperature rise based on the measured value. The temperature rise value used in the calculation can be calculated almost the same as the actual measured value of the prototype oil-filled transformer, so the life loss of the diagnosed oil-filled transformer can be calculated realistically and with high accuracy. It has the great advantage that it can be done.

請求項3記載の発明においては、プロトタイプの油入変圧器において余寿命等に関係する温度を検出する部位は、巻線であり、また、異常に関係する温度を測定する部位は、絶縁油をはじめ、巻線、低圧側の引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒等、被診断油入変圧器の主要構成部を網羅すべく実測値を検出するように設定されているので、被診断油入変圧器の寿命損失や異常診断算定の根拠をなす、即ち、前記各部位の温度を実測して温度上昇値を算定する算定式を案出するためのベースとなっているため、前記算定式を現実的に案出することが可能となり、この結果、被診断油入変圧器の寿命損失や異常発生を正確に、かつ、精度よく算定することができる。   In the invention of claim 3, the part for detecting the temperature related to the remaining life in the prototype oil-filled transformer is a winding, and the part for measuring the temperature related to the abnormality is insulating oil. First, the measured values should be detected to cover the main components of the oil-immersed transformer to be diagnosed, such as the winding, the low-voltage lead conductor, and the insulation cylinder surrounding the switching switch operating mechanism of the on-load tap switching device. Since it is set, it is the basis for calculating the life loss and abnormality diagnosis of the oil-immersed transformer to be diagnosed, that is, calculating the temperature rise value by actually measuring the temperature of each part. Therefore, it is possible to devise the calculation formula realistically, and as a result, it is possible to accurately and accurately calculate the life loss and abnormality occurrence of the diagnostic oil-filled transformer.

請求項4記載の発明においては、プロトタイプの油入変圧器において実測値のデータを巻線温度をはじめ、絶縁油の温度、低圧側引出導体等被診断油入変圧器の寿命損失や異常発生を算出する算定式を案出するためのすべてのデータが、実測値により作成されているので、被診断油入変圧器の運転状況を把握する検出データが時間の経過とともに負荷率が例え変化したとしても、その負荷率を温度上昇値を算出する算定式に代入することにより、容易に運転中の被診断油入変圧器においてその寿命損失や異常発生のシミュレーションが容易に行い得るため、被診断油入変圧器を効率よく使用できるという優れた利点を備えた油入変圧器の余寿命・異常診断システムの提供が可能となる。   In the invention described in claim 4, in the prototype oil-filled transformer, the measured value data includes the winding temperature, the insulation oil temperature, the low-voltage lead conductor, etc. Since all the data for devising the calculation formula to be calculated has been created based on actual measurement values, it is assumed that the load factor has changed over time as the detection data to grasp the operating status of the oil-filled transformer to be diagnosed However, by substituting the load factor into the calculation formula for calculating the temperature rise value, it is easy to simulate the life loss and abnormality occurrence in the operating oil-in-transformer under diagnosis. It is possible to provide a system for diagnosing the remaining life and abnormality of oil-filled transformers, which has the excellent advantage that the transformer can be used efficiently.

請求項5記載の発明においては、プロトタイプの油入変圧器において実測値のデータを巻線温度をはじめ、絶縁油の温度、低圧側引出導体等被診断油入変圧器の寿命損失や異常発生を算出する算定式を案出するためのすべてのデータが、実測値により作成されているので、被診断油入変圧器の運転状況を把握する検出データが負荷電流と冷却媒体油(絶縁油)、もしくは、負荷電流と周囲温度のいづれかであったとしても、その検出値を温度上昇値を算出する算定式に代入することにより、運転中の被診断油入変圧器においてその寿命損失や異常発生のシミュレーションが容易に、かつ、高精度に行い得るため、被診断油入変圧器を効率よく使用できるという優れた利点を備えた油入変圧器の余寿命・異常診断システムの提供が可能となる。   In the invention described in claim 5, in the prototype oil-filled transformer, the measured value data includes the winding temperature, the insulation oil temperature, the low-voltage side lead conductor, etc. Since all data for devising the calculation formula to be calculated are created by actual measurement values, the detection data for grasping the operation status of the oil-injected transformer to be diagnosed are load current, cooling medium oil (insulating oil), Or, even if it is either load current or ambient temperature, by substituting the detected value into the calculation formula for calculating the temperature rise value, the life loss or abnormal occurrence of the oil-immersed transformer under operation can be obtained. Since the simulation can be performed easily and with high accuracy, it is possible to provide a system for diagnosing the remaining life / abnormality of an oil-filled transformer having an excellent advantage that the diagnosed oil-filled transformer can be used efficiently.

請求項6記載の発明においては、負荷電流を検出することによって、その負荷率をベースにして前記油入変圧器の各部位における温度上昇値を所定の算定式により迅速・確実に算出して推定することができるため、被診断油入変圧器の寿命損失・異常発生を高精度に算定することができる。   In the invention of claim 6, by detecting the load current, the temperature rise value at each part of the oil-filled transformer is quickly and reliably calculated and estimated based on the load factor. Therefore, the life loss / abnormality of the oil-filled transformer to be diagnosed can be calculated with high accuracy.

請求項7記載の発明においては、プロトタイプの油入変圧器において実測値のデータを巻線温度をはじめ、絶縁油の温度、低圧側引出導体等被診断油入変圧器の寿命損失や異常発生を算出する算出式を案出するためのすべてのデータが実測値により作成されているので、被診断油入変圧器の運転状況を把握する検出データが現時刻の温度として経時的に検出した場合、その検出値を温度上昇値を算出する算定式に代入することにより、運転中の被診断油入変圧器においてその寿命損失や異常発生のシミュレーションを高精度で、かつ、容易に行い得るため、被診断油入変圧器を効率よく使用できるという優れた利点を備えた油入変圧器の余寿命・異常診断システムの提供が可能となる。   In the invention described in claim 7, in the prototype oil-filled transformer, the measured value data including the winding temperature, the insulation oil temperature, the low-voltage lead conductor, etc. Since all data for devising the calculation formula to be calculated has been created by actual measurement values, when the detection data that grasps the operating status of the oil-in-transformer being diagnosed is detected over time as the current temperature, By substituting the detected value into the calculation formula for calculating the temperature rise value, it is possible to simulate the loss of life and occurrence of abnormality in the oil-immersed transformer under diagnosis with high accuracy and easily. It is possible to provide an oil-immersed transformer remaining life / abnormality diagnosis system having an excellent advantage that the diagnostic oil-filled transformer can be used efficiently.

請求項8記載の発明においては、プロトタイプの油入変圧器において実測値のデータを巻線温度をはじめ、絶縁油の温度、低圧側引出導体等被診断油入変圧器の寿命損失や異常発生を算出する算定式を案出するためのすべてのデータが、実測値により作成されているので、被診断油入変圧器の運転状況を把握する検出データが負荷変動や周囲温度が変動した場合を想定して入力した場合においても、その検出値を温度上昇値を算出する算定式に代入することにより、運転中の被診断油入変圧器においてその寿命損失や異常発生のシミュレーションが容易に、かつ、高精度で行い得るため、被診断油入変圧器を効率よく使用できるという優れた利点を備えた油入変圧器の余寿命・異常診断システムの提供が可能となる。   In the invention described in claim 8, in the prototype oil-filled transformer, the measured value data includes the winding temperature, the insulation oil temperature, the low-voltage lead conductor, etc. Since all data for devising the calculation formula to be calculated are created by actual measurement values, it is assumed that the detection data for grasping the operation status of the oil-injected transformer to be diagnosed changes in load fluctuation or ambient temperature Even if it is input as a result, by substituting the detected value into the calculation formula for calculating the temperature rise value, it is easy to simulate the life loss or abnormality occurrence in the oil-in-transformed transformer under operation, and Since it can be performed with high accuracy, it is possible to provide a system for diagnosing the remaining life and abnormality of an oil-filled transformer having an excellent advantage that the oil-filled transformer to be diagnosed can be used efficiently.

請求項9記載の発明においては、被診断油入変圧器の巻線等の温度上昇値を算定するために案出した算定式は、すべてプロトタイプの油入変圧器を運転し、被診断油入変圧器の余寿命等に関係する温度を検出する部位は、巻線であり、また、異常に関係する温度を測定する部位は、絶縁油をはじめ、巻線、低圧側の引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒等、被診断油入変圧器の主要構成部を網羅して実測した実測データをベースにして算出されているので、被診断油入変圧器の寿命損失算定の根拠をなす、前記各部位の温度を実測して温度上昇値を算定する算定式案出のベースとなっているため、前記算定式を即実的に案出することが可能となり、この結果、被診断油入変圧器の寿命損失を正確に、かつ、精度よく算定することができる。   In the invention according to claim 9, all the calculation formulas devised for calculating the temperature rise value of the winding of the diagnosis oil-filled transformer, etc. operate the prototype oil-fill transformer, The part that detects the temperature related to the remaining life of the transformer is the winding, and the part that measures the temperature related to the abnormality is the insulation oil, the winding, the lead conductor on the low voltage side, under load It is calculated on the basis of actual measurement data that covers the main components of the oil-filled transformer to be diagnosed, such as an insulating cylinder surrounding the switching switch operating mechanism of the tap switching device. As the basis for calculating the temperature rise value by actually measuring the temperature of each part, which is the basis for calculating the life loss, it is possible to devise the formula immediately As a result, the life loss of the oil-immersed transformer to be diagnosed accurately and It can be calculated well every time.

以下、本発明の実施例を図1ないし図26によって説明する。最初に、油入電気機器の余寿命・異常診断を行う運転中の被診断油入変圧器と同種、即ち、同じ定格容量(例えば、20MVA)のプロトタイプ(試作機)の油入変圧器(以下、単に油入変圧器という)1の概略構成について説明する。前記油入変圧器1は図1,3に示すように、タンク2の外側にタンク2内の絶縁油を油強制循環方式にて冷却する冷却装置3が、油導管4を介して付設されている。そして、前記冷却装置3は、油導管4の配管途中に取り付けた油ポンプ5にて絶縁油をタンク2内と冷却装置3との間で強制循環させることにより絶縁油を冷却する。   Embodiments of the present invention will be described below with reference to FIGS. First, an oil-filled transformer of the same type as that of an oil-filled transformer to be diagnosed that performs the remaining life / abnormality diagnosis of oil-filled electrical equipment, that is, the same rated capacity (for example, 20 MVA) (They are simply referred to as oil-filled transformers). As shown in FIGS. 1 and 3, the oil-filled transformer 1 is provided with a cooling device 3 for cooling the insulating oil in the tank 2 by an oil forced circulation system outside the tank 2 through an oil conduit 4. Yes. The cooling device 3 cools the insulating oil by forcibly circulating the insulating oil between the tank 2 and the cooling device 3 with an oil pump 5 attached in the middle of the piping of the oil conduit 4.

次に、前記油入変圧器1には、図1に示すように、所定部位の温度を検出するための熱電対等からなる温度センサa〜eが取付けられている。図1に示すaは、鉄心6aに巻装した巻線6複数の部位の温度を検出するために取付けた巻線温度検出用の温度センサ。bは巻線6から導出した低圧側の引出し導体と接続した低圧側引出導体7の温度を検出する温度センサ。cはタンク2内の上部において絶縁油の温度を検出するために油中に没入させて設置した温度センサ。dは負荷時タップ切換装置9の切換開閉器操作機構10の外周に設けた絶縁筒に設置した温度センサ。eは油入変圧器1の周縁に設置した周囲温度検出用の温度センサである。   Next, as shown in FIG. 1, the oil-filled transformer 1 is provided with temperature sensors a to e including thermocouples or the like for detecting the temperature of a predetermined part. A shown in FIG. 1 is a temperature sensor for detecting a winding temperature, which is attached to detect temperatures of a plurality of portions of the winding 6 wound around the iron core 6a. b is a temperature sensor for detecting the temperature of the low-voltage side lead conductor 7 connected to the low-voltage side lead conductor derived from the winding 6. c is a temperature sensor installed in the upper part of the tank 2 so as to be immersed in the oil in order to detect the temperature of the insulating oil. d is a temperature sensor installed in an insulating cylinder provided on the outer periphery of the switching switch operating mechanism 10 of the on-load tap switching device 9; e is a temperature sensor for detecting the ambient temperature installed at the periphery of the oil-filled transformer 1.

そして、前記各温度センサa〜eは、それぞれ油入変圧器1の所定部位で検出した温度検出信号(電圧)を個別に検出温度選択器(マルチプレクサ)12に送出する。前記検出温度選択器12は、各温度センサa〜e毎に、かつ、巻線6の温度を検出する温度センサaの如く、同一部材において複数の温度センサaを取付けている場合は、その温度センサの入力される温度検出信号を個別整理して順次出力するように構成されている。そして、A/D変換器13に入力される温度検出信号は、デジタル信号に変換されて表示・記憶手段等とを具備したコンピュータ14に送出される。   Each of the temperature sensors a to e individually sends a temperature detection signal (voltage) detected at a predetermined portion of the oil-filled transformer 1 to a detection temperature selector (multiplexer) 12. If the temperature sensor a is attached to a plurality of temperature sensors a in the same member, such as the temperature sensor a that detects the temperature of the winding 6 for each temperature sensor a to e, the detected temperature selector 12 is the temperature of the temperature sensor a. The temperature detection signals input to the sensor are arranged individually and sequentially output. The temperature detection signal input to the A / D converter 13 is converted into a digital signal and sent to a computer 14 having display / storage means and the like.

前記コンピュータ14に送出された温度検出信号は、コンピュータ14に内蔵されている電圧(V)を温度(℃)に変換するプログラムにより、各温度センサa〜e毎に、例えば、巻線6や低圧側引出導体7等の現時点における測定温度をコンピュータ14のディスプレイに表示するとともに、図示しない記憶装置に経時的に記憶される。そして、前記検出温度選択器12とA/D変換器13とコンピュータ14とによって油入変圧器1の実測データ作成手段15を構成する。   The temperature detection signal sent to the computer 14 is, for example, a winding 6 or a low voltage for each temperature sensor a to e by a program for converting a voltage (V) built in the computer 14 into a temperature (° C.). The currently measured temperature of the side lead conductor 7 or the like is displayed on the display of the computer 14 and is stored over time in a storage device (not shown). The detected temperature selector 12, the A / D converter 13, and the computer 14 constitute actual measurement data creating means 15 for the oil-filled transformer 1.

前記プロトタイプの油入変圧器1によって事前に所定部位を温度センサa〜eによって温度を検出して実測データを作成することは、現在運転中のプロトタイプの油入変圧器1と同一、あるいは、ほぼ同一設計の図2に示す油入変圧器21の巻線最高点温度を直接測定(検出)することができないためである。即ち、油入変圧器運転指針(電気学会技術報告(1部)第143号)において、図4に示すε(巻線最高点温度と巻線最上部コイル平均温度の差)、εm(巻線最高点温度と巻線平均温度の差)は、実際に設置して運用する油入変圧器においては、直接計測することができないものである。なお、図4において、θ0(最高油温上昇)、θw(巻線平均温度上昇)、σR(油冷却器上下油温度差)は直接測定することができる。 The prototype oil-filled transformer 1 detects the temperature of the predetermined portion in advance by the temperature sensors a to e and creates the actual measurement data, which is the same as or substantially the same as the prototype oil-filled transformer 1 that is currently in operation. This is because the highest winding point temperature of the oil-filled transformer 21 shown in FIG. 2 of the same design cannot be directly measured (detected). That is, in the oil-filled transformer operation guideline (The Institute of Electrical Engineers of Japan Technical Report (Part 1) No. 143), ε (the difference between the highest winding point temperature and the average coil top temperature), εm (winding) The difference between the maximum point temperature and the winding average temperature) cannot be directly measured in an oil-filled transformer that is actually installed and operated. In FIG. 4, θ 0 (maximum oil temperature rise), θw (winding average temperature rise), and σR (oil cooler upper and lower oil temperature difference) can be directly measured.

前記図4に示す温度分布図は、実際に運転している油入変圧器の温度分布は複雑であるため、前記運転指針の基本的な考え方を説明するための便宜上、次の仮定を設けて作成したものである。即ち、
仮定1.油温上昇は、巻線高さに沿って直線的に増加する。即ち、巻線の発生損失が高さ方向に沿って一様に分布し、また油が巻線高さ方向の冷却油道に沿って一様に上昇するとすれば、前記の仮定が成立つ。この場合、上下の油温度差(NB−OA)は巻線の発生損失と冷却油道を通る油の流量から定まる。
仮定2.巻線の温度上昇は、巻線の高さに沿って油温と平行して直線的に増加する。即ち、巻線温度を表す直線CMDと油温を表す直線ARBとの差gは、巻線を構成する各コイルの隣接油温に対する平均温度上昇を表す。実際には、一つの巻線を構成するコイルの発生損失、冷却条件がすべて同じとは限らないが、個々では便宜上全て等しく、したがって最上部がコイル最高温度になるとした。点Eは巻線最高点温度を表す。DEは最上部のコイルの平均温度と最高温度の差であり、これはコイルの形状、コイル支持スペーサの形状配置、コイル内各導体のうず電流損の差などにより定まる。
In the temperature distribution diagram shown in FIG. 4, since the temperature distribution of the oil-filled transformer that is actually operated is complicated, the following assumptions are provided for convenience in explaining the basic concept of the operation guideline. It was created. That is,
Assumption 1. The oil temperature rise increases linearly along the winding height. That is, if the generated loss of the winding is uniformly distributed along the height direction, and the oil rises uniformly along the cooling oil passage in the winding height direction, the above assumption is established. In this case, the oil temperature difference (NB-OA) between the upper and lower sides is determined from the generation loss of the windings and the oil flow rate through the cooling oil passage.
Assumption 2. The temperature rise of the winding increases linearly along the height of the winding in parallel with the oil temperature. That is, the difference g between the straight line CMD representing the winding temperature and the straight line ARB representing the oil temperature represents an average temperature increase with respect to the adjacent oil temperature of each coil constituting the winding. Actually, the generated loss and cooling conditions of the coils constituting one winding are not all the same, but for the sake of convenience, all of them are equal for the sake of convenience. Point E represents the highest winding point temperature. DE is the difference between the average temperature and the maximum temperature of the uppermost coil, which is determined by the shape of the coil, the shape arrangement of the coil support spacer, the difference in eddy current loss of each conductor in the coil, and the like.

そして、図4に示す記号は次の意味を表す。
θH:巻線最高点温度上昇(℃)
θ0:最高油温上昇(℃)
θ0m:平均油温上昇(℃)
θw:巻線平均温度上昇(℃)
g:巻線平均温度と油平均温度の差(℃)
εm:巻線最高点温度と巻線平均温度と差(℃)
ε:巻線最高点温度と巻線最上部コイル平均温度の差(℃)
And the symbol shown in FIG. 4 represents the following meaning.
θ H : Winding maximum point temperature rise (° C)
θ 0 : Maximum oil temperature rise (° C)
θ 0 m: Average oil temperature rise (° C)
θw: Winding average temperature rise (℃)
g: Difference between winding average temperature and oil average temperature (℃)
εm: Difference between winding maximum point temperature and winding average temperature (℃)
ε: Difference between winding maximum point temperature and winding top coil average temperature (℃)

前記において、温度試験によって直接実測できるのは、θ0,θwである。また、θ0mは次に示す[数1]の式から求めることができる。 In the above, θ 0 and θw can be directly measured by the temperature test. Further, θ 0 m can be obtained from the following [Equation 1].

Figure 2006024800
Figure 2006024800

前記θ0mを求めることによって、更にgを次式の[数2]によって求めることができる。 By obtaining the above θ 0 m, g can be further obtained by the following [Formula 2].

Figure 2006024800
Figure 2006024800

ここで問題となるのは、εおよびεmが前記のように実測することができないことである。このため、通常はJEC−2200(1995)においては、定格負荷時のεmを、油自然循環の場合15(℃)、油強制循環の場合10(℃)と推定していることにより、これをベースとして定格負荷時のθgは次式の[数3]によって求めることができる。   The problem here is that ε and εm cannot be measured as described above. For this reason, JEC-2200 (1995) normally estimates that εm at the rated load is 15 (° C) for natural oil circulation and 10 (° C) for oil forced circulation. As a base, θg at the rated load can be obtained by [Equation 3] of the following equation.

Figure 2006024800
Figure 2006024800

前記のεm、または、εの値は、実際の油入変圧器において、個別の設計条件に異なるものの、一般には前記[数3]の式を用いている。そして、油入変圧器に一定負荷をかけた場合の定常状態における巻線最高点温度上昇θHは次式[数4]によって与えられる。 Although the value of εm or ε differs depending on individual design conditions in an actual oil-filled transformer, generally, the equation [Equation 3] is used. And winding maximum point temperature rise (theta) H in the steady state at the time of applying a fixed load to an oil-filled transformer is given by following Formula [Formula 4].

Figure 2006024800
Figure 2006024800

しかし、前記[数4]に示す巻線最高点温度上昇θHの算出(計算)に際しては、前述したεm,εの値が油入変圧器個々の設計条件より異なるため、運転中の油入変圧器の巻線最高点温度上昇θHの算出は、巻線最高点温度と最高油温との差θg(℃)を求める場合、前記温度変化の時定数が通常数分ないし十数分と短いため、実測値に比べて多少の差異が生じ、これが油入変圧器の余寿命や異常診断の時期等に際し、微妙なズレが生じる場合があった。 However, when calculating (calculating) the maximum winding temperature rise θ H shown in [Equation 4], the values of εm and ε described above differ from the design conditions of the individual oil-filled transformers. The maximum winding temperature rise θ H of the transformer is calculated by calculating the difference θg (° C.) between the maximum winding temperature and the maximum oil temperature. Since it is short, there is a slight difference compared to the actual measurement value, which may cause subtle deviations in the remaining life of the oil-filled transformer, the timing of abnormality diagnosis, and the like.

そこで、本願発明者は正確な巻線最高点温度上昇θHを算出するための計算精度を向上させる上で必要な定数を、例えば、プロトタイプの20MVA油入変圧器1を定格運転させて実測した数値を基に算出したもので、前記実測により導出した数値(温度・定数)は次のものである。 Accordingly, the inventors of the present application have actually measured constants necessary for improving the calculation accuracy for calculating the accurate winding maximum point temperature rise θ H by, for example, operating the prototype 20 MVA oil-filled transformer 1 at rated operation. The numerical values (temperatures and constants) derived from the actual measurements are as follows.

Tm’: 定格電流を通電した直後の最高油温からの巻線の最高温度上昇値(℃)
Tn’: 定格電流連続通電したときの最高油温からの定常時における巻線温度上昇値(℃)
τ1:定格電流を通電した直後に巻線温度が急激に上昇する際の時定数
τ2:定格電流を通電した直後に巻線温度が最高値を示した時点から一定値に落ちつくまでの時定数
n:巻線温度上昇と負荷率との関係を表わす値
m:油温度上昇と負荷率との関係を表わす値
Tm ': Maximum winding temperature rise from the maximum oil temperature immediately after applying the rated current (℃)
Tn ': Winding temperature rise value in steady state from the maximum oil temperature when the rated current is continuously applied (℃)
τ1: Time constant when the winding temperature suddenly rises immediately after applying the rated current τ2: Time constant n until the winding temperature drops to a constant value immediately after the rated current is supplied : Value representing the relationship between winding temperature rise and load factor m: Value representing the relationship between oil temperature rise and load factor

次に、前記Tm’,Tn’,τ1,τ2,n,mの数値を導出するために、油入変圧器1の運転は、例えば、負荷率75%で所定時間連続運転した場合において各部位の温度を実測するようにしたものである。   Next, in order to derive the numerical values of Tm ′, Tn ′, τ1, τ2, n, m, the operation of the oil-filled transformer 1 is, for example, when each part is operated continuously for a predetermined time at a load factor of 75%. The temperature of was measured.

図6は油入変圧器1を定格負荷により運転して実測した巻線6の温度上昇特性図である。同図で判るように、巻線6は通電直後(時定数:約6.5分)に温度が急上昇し、数十分の間に温度上昇値がピークとなる。この後、巻線温度は徐々に降下し数時間後(約4時間強経過後)には、ほぼ一定となる。そして、前記図6に示す巻線温度上昇特性を詳細に分析して、巻線6の温度上昇値Tcを求めるための実測値としての前記Tm’,Tn’,τ1,τ2を前記図6に示す巻線温度上昇特性図(グラフ)から求めるものである(図5のステップS1,S2参照)。 FIG. 6 is a temperature rise characteristic diagram of the winding 6 measured by operating the oil-filled transformer 1 with a rated load. As can be seen from the figure, the temperature of the winding 6 rapidly increases immediately after energization (time constant: about 6.5 minutes), and the temperature increase value reaches a peak within several tens of minutes. Thereafter, the winding temperature gradually decreases and becomes substantially constant after several hours (after about 4 hours have elapsed). The winding temperature rise characteristics shown in FIG. 6 are analyzed in detail, and the Tm ′, Tn ′, τ1, and τ2 as measured values for obtaining the temperature rise value Tc of the winding 6 are shown in FIG. It is obtained from the winding temperature rise characteristic diagram (graph) shown (see steps S1 and S2 in FIG. 5).

また、前記n、mの値の算出については、油入変圧器1を所定の負荷率(例えば,100%連続運転、77%連続、50%連続、90%連続等任意の負荷率)に基づいて連続運転することにより求めることができる。即ち、前記各負荷率における巻線温度、油温をベースとして、負荷率と温度上昇値(一定負荷時における飽和値)との関係を示す前記n,mの値を算出するものである。   For calculating the values of n and m, the oil-filled transformer 1 is based on a predetermined load factor (for example, an arbitrary load factor such as 100% continuous operation, 77% continuous, 50% continuous, 90% continuous). Can be obtained by continuous operation. That is, based on the winding temperature and oil temperature at each load factor, the values of n and m indicating the relationship between the load factor and the temperature rise value (saturation value at a constant load) are calculated.

n値(巻線温度と負荷率との関係を示す値)は一般に次に示す[数5]の式によって求めることができる。   The n value (value indicating the relationship between the winding temperature and the load factor) can be generally obtained by the following equation [5].

Figure 2006024800
Figure 2006024800

ここで
θg:負荷率Kにおける巻線最高点温度と最高油温の差(℃)
θgn:定格負荷時の巻線最高点温度と最高油温の差(℃)
K:現在通電している電流(実負荷)の定格電流(定格負荷)に対する比(負荷率を示す値)
n:冷却方式によって定まる定数(巻線温度と負荷率との関係を表わす値)
Where θg: difference between maximum winding temperature and maximum oil temperature at load factor K (° C)
θgn: Difference between winding maximum point temperature and maximum oil temperature at rated load (℃)
K: Ratio of current (current load) that is currently energized to the rated current (rated load) (value indicating the load factor)
n: Constant determined by the cooling method (value representing the relationship between winding temperature and load factor)

また、m値(油温度と負荷率との関係を示す値)については、前記n値と同様に次に示す[数6]の式によって求めることができる。   Further, the m value (value indicating the relationship between the oil temperature and the load factor) can be obtained by the following equation [Equation 6] as in the case of the n value.

Figure 2006024800
Figure 2006024800

ここで、
θ0:最高油温上昇(℃)
θ0n:定格負荷時の最高油温上昇値(℃)
K:現在通電している電流(実負荷)の定格電流(定格負荷)に対する比(負荷率)
R:定格負荷時の負荷損と無負荷損との比
m:冷却方式によって定まる定数(油温度と負荷率との関係を表わす値)
here,
θ 0 : Maximum oil temperature rise (° C)
θ 0 n: Maximum oil temperature rise at rated load (° C)
K: Ratio of current (current load) that is currently energized to rated current (rated load) (load factor)
R: Ratio of load loss at rated load to no-load loss m: Constant determined by the cooling method (value representing the relationship between oil temperature and load factor)

つづいて、低圧側引出導体7の温度上昇値Tcを求める場合の実測値としてTm’,Tn’,τ1,τ2を導出する場合について説明する。この場合も、前記巻線温度を実測したときと同様に、油入変圧器1の運転により低圧側引出導体7の温度を実測し、その温度上昇特性図(図10参照)に基づいて前記Tm’,Tn’,τ1,τ2を求める。   Next, a case will be described in which Tm ′, Tn ′, τ1, and τ2 are derived as actual measurement values when the temperature rise value Tc of the low-voltage-side lead conductor 7 is obtained. In this case as well, the temperature of the low-voltage side lead conductor 7 is measured by the operation of the oil-filled transformer 1 in the same manner as when the winding temperature is actually measured, and the Tm based on the temperature rise characteristic diagram (see FIG. 10). ', Tn', τ1, τ2 are obtained.

Tm’: 定格電流を通電した直後の最高油温からの低圧側引出導体の最高温度上昇値(℃)
Tn’: 定格電流連続通電した直後の最高油温からの定常時における低圧側引出導体温度上昇値(℃)
τ1:定格電流を通電した直後に低圧側引出導体温度が急激に上昇する際の時定数
τ2:定格電流を通電した直後に低圧側引出導体温度が最高値を示した時点から一定値に落ちつくまでの時定数
n:低圧側引出導体温度上昇と負荷率との関係を表わす値
m:油温度上昇と負荷率との関係を表わす値
Tm ': Maximum temperature rise value of the low pressure side lead conductor (° C) from the maximum oil temperature immediately after applying the rated current
Tn ': Increased temperature of the low-pressure side lead conductor (° C) from the maximum oil temperature immediately after the rated current is continuously energized
τ1: Time constant when the low-voltage-side lead conductor temperature rapidly increases immediately after applying the rated current τ2: From the time when the low-voltage-side extraction conductor temperature reaches the maximum value immediately after applying the rated current Time constant n: Value representing the relationship between the low temperature side lead conductor temperature rise and the load factor m: Value representing the relationship between the oil temperature rise and the load factor

前記において、n,m値の算出においては、油入変圧器1を前記巻線6におけるn,m値を求めた場合と同様に、所定の負荷率毎に運転し、前記各負荷率に応じて算出するようにしたもので、算出する数式は前記した巻線6の場合に用いた[数5],[数6]と同様であるので、説明は割愛する。但し、[数5]において巻線6の最高点温度は、低圧側引出導体7の最高点温度上昇と読み替えるものとする。   In the above, in the calculation of the n and m values, the oil-filled transformer 1 is operated for each predetermined load factor in the same manner as when the n and m values in the winding 6 are obtained, and according to each load factor. Since the mathematical formula to be calculated is the same as [Formula 5] and [Formula 6] used in the case of the winding 6, the description is omitted. However, in [Equation 5], the highest point temperature of the winding 6 is read as the highest point temperature rise of the low-voltage side lead conductor 7.

更に、負荷時タップ切換装置9の切換開閉器操作機構10を囲繞する絶縁筒の温度上昇値Tcを求める場合の実測値として、Tm’,Tn’,τ1,τ2を導出する場合も、前記巻線6、低圧側引出導体7の温度を実測したときと同様にして、油入変圧器1を運転して実測した前記絶縁筒の温度上昇特性図(図14参照)から求めるものである。また、n,m値の算出については、油入変圧器1を前記巻線6や低圧側引出導体7のn,m値を算出した場合と同様に、油入変圧器1を所定の負荷率毎に運転し、各負荷率に応じて算出するものであり、この場合の算出式は[数5]と同様であるため、その説明は省略する。その際、巻線6の最高点温度、低圧側引出導体7の最高点温度上昇は、絶縁筒の最高点温度と読み替えるものとする。
Tm’: 定格電流を通電した直後の最高油温からの絶縁筒の最高温度上昇値(℃)
Tn’: 定格電流連続通電した直後の最高油温からの定常時における絶縁筒温度上昇値(℃)
τ1:定格電流を通電した直後に絶縁筒温度が急激に上昇する際の時定数
τ2:定格電流を通電した直後に絶縁筒温度が最高値を示した時点から一定値に落ちつくまでの時定数
n:絶縁筒温度と負荷率との関係を表わす値
m:油温度上昇と負荷率との関係を表わす値
Further, when Tm ′, Tn ′, τ1, and τ2 are derived as actual measured values when the temperature rise value Tc of the insulating cylinder surrounding the switching switch operating mechanism 10 of the on-load tap switching device 9 is derived, It is obtained from the temperature rise characteristic diagram (see FIG. 14) of the insulating cylinder measured by operating the oil-filled transformer 1 in the same manner as when the temperature of the line 6 and the low-voltage side lead conductor 7 was measured. For calculating the n and m values, the oil-filled transformer 1 is subjected to a predetermined load factor in the same manner as when the n and m values of the winding 6 and the low-voltage side lead conductor 7 are calculated. The calculation is performed in accordance with each load factor, and the calculation formula in this case is the same as [Equation 5], and thus the description thereof is omitted. At that time, the highest point temperature of the winding 6 and the highest point temperature rise of the low-voltage side lead conductor 7 are read as the highest point temperature of the insulating cylinder.
Tm ': Maximum temperature rise of the insulation cylinder from the maximum oil temperature immediately after applying the rated current (℃)
Tn ': Insulating cylinder temperature rise value (° C) at steady state from the maximum oil temperature immediately after continuous energization of the rated current
τ1: Time constant when the insulation cylinder temperature rapidly increases immediately after the rated current is applied τ2: Time constant n until the insulation cylinder temperature reaches a constant value immediately after the rated current is supplied : Value representing the relationship between the insulation cylinder temperature and the load factor m: Value representing the relationship between the oil temperature rise and the load factor

前記のように、本発明においては、油入変圧器1を定格負荷にて運転させたことによって得られる実測データ、即ち油入変圧器1の各部位(巻線6、低圧側引出導体7、負荷時タップ切換器9の切換開閉器操作機構10を囲繞する絶縁筒(以下、単に絶縁筒という))におけるTm’,Tn’,τ1,τ2を図6,10,14に示す油入変圧器1各部位の温度上昇特性図から求めた各温度定数と、負荷率を適宜変更させて油入変圧器1を運転させることにより、前記油入変圧器1各部位の温度や油温と負荷率との関係を計算処理して得られるn,mの値とを、それぞれ実測データ作成手段15のコンピュータ14に実測データを必要とするまで記憶させておく。   As described above, in the present invention, actual measurement data obtained by operating the oil-filled transformer 1 at a rated load, that is, each part of the oil-filled transformer 1 (winding 6, low-voltage side lead conductor 7, The oil-filled transformer shown in FIGS. 6, 10, and 14 is Tm ′, Tn ′, τ 1, and τ 2 in an insulating cylinder (hereinafter simply referred to as an insulating cylinder) surrounding the switching switch operating mechanism 10 of the load tap changer 9. 1 By operating the oil-filled transformer 1 by appropriately changing each temperature constant and load factor obtained from the temperature rise characteristic diagram of each part, the temperature, oil temperature and load factor of each part of the oil-filled transformer 1 The values of n and m obtained by calculating the relationship between the measured data and the measured data are stored in the computer 14 of the measured data creating means 15 until the measured data is required.

そして、前記コンピュータ14に記憶させたTm’,Tn’の定数をベースとしてTm(負荷変動直後の前記各部位における最大温度上昇値)とTn(定格負荷運転時における油温上昇値)とを[数7]と[数8]とによって求める。   Then, based on the constants of Tm ′ and Tn ′ stored in the computer 14, Tm (maximum temperature rise value in each part immediately after load change) and Tn (oil temperature rise value during rated load operation) It is obtained by [Expression 7] and [Expression 8].

Figure 2006024800
Figure 2006024800

Figure 2006024800
Figure 2006024800

ここで、
K:現在通電している電流(実負荷)の定格電流(定格負荷)に対する比(負荷率を示す値)
n:冷却方式により定まる定数(巻線温度と負荷率との関係を表わす値)
here,
K: Ratio of current (current load) that is currently energized to the rated current (rated load) (value indicating the load factor)
n: Constant determined by the cooling method (value representing the relationship between winding temperature and load factor)

前記[数7]、[数8]によって求めた油入変圧器1の各部位におけるTmとTnは、コンピュータ14の記憶部に記憶させる。前記のように、本発明においては、図1に示すように、プロトタイプの油入変圧器1を、実際に配電系統に設置されている油入変圧器と同様に、種々の負荷率を想定して運転し、この運転により実測した油入変圧器1の巻線6をはじめ、低圧側引出導体7、絶縁筒に係るTm’,Tn’,τ1,τ2のデータと,前記[数7],[数8]に示す式にて算出したTm,Tnの各温度上昇値とを実測データ作成手段15にて作成し、該作成手段15を構成するコンピュータ14に記憶させる。   The Tm and Tn in each part of the oil-filled transformer 1 obtained by the [Equation 7] and [Equation 8] are stored in the storage unit of the computer 14. As described above, in the present invention, as shown in FIG. 1, the prototype oil-filled transformer 1 is assumed to have various load factors in the same manner as the oil-filled transformer actually installed in the distribution system. And the data of Tm ′, Tn ′, τ1, τ2 related to the low-voltage side lead conductor 7 and the insulating cylinder, including the winding 6 of the oil-filled transformer 1 measured by this operation, and the above [Equation 7], The temperature rise values of Tm and Tn calculated by the equation shown in [Equation 8] are created by the actual measurement data creation means 15 and stored in the computer 14 constituting the creation means 15.

つづいて、最高油温上昇θ0を求める場合について説明する。なお、最高油温を、例えば,図2に示す温度センサgにより計測している場合は、計算する必要はない。負荷率が変更した場合における最高油温上昇θ0は、一般に次に示す[数9]に示す計算式によって求められる。 Next, a case where the maximum oil temperature rise θ 0 is obtained will be described. Note that, for example, when the maximum oil temperature is measured by the temperature sensor g shown in FIG. The maximum oil temperature rise θ 0 when the load factor is changed is generally obtained by the calculation formula shown in [Equation 9] below.

Figure 2006024800
Figure 2006024800

ここで、
θu:定格負荷率における最高油温上昇
θi:初期最高油温上昇(t=0)
t:経過時間
τ:油温変化の時定数(時間)
here,
θu: Maximum oil temperature rise at rated load factor θi: Initial maximum oil temperature rise (t = 0)
t: elapsed time τ: oil temperature change time constant (time)

次に、[数9]の計算式に用いた油温変化の時定数τは、プロトタイプの油入変圧器1での定格負荷時の絶縁油の温度上昇曲線から読み取るものである。   Next, the oil temperature change time constant τ used in the formula of [Equation 9] is read from the temperature rise curve of the insulating oil at the rated load in the prototype oil-filled transformer 1.

本発明は、前記油入変圧器1を所要の負荷率に基づいて運転することにより、各部位(巻線6、低圧側引出導体7、絶縁筒、油温)の温度を実測することにより得られた前記各部位における各種データを援用(実測した各種データを基準とする)して、図2に示す現在運転中の被診断油入変圧器21の各部位における温度上昇値Tcを算出するための算定式を前記[数7],[数8]をベースとして案出した。この算定式は次の[数10]に示す計算式であり、[数10]によって被診断油入変圧器21の各部位における温度上昇値Tcを、油温と負荷率(負荷電流により判る)によって求め、その時の油温と前記温度上昇値Tcとを加算することにより、各部位における温度を求めることができるものである(図5のステップS4参照)。   The present invention is obtained by operating the oil-filled transformer 1 based on a required load factor, and measuring the temperature of each part (winding 6, low-voltage side lead conductor 7, insulating cylinder, oil temperature). In order to calculate the temperature rise value Tc at each part of the diagnostic oil-filled transformer 21 currently in operation shown in FIG. 2 by using the various data obtained at each part (based on the various measured data). Was calculated based on the above [Equation 7] and [Equation 8]. This calculation formula is a calculation formula shown in the following [Equation 10], and the temperature increase value Tc in each part of the diagnosed oil-filled transformer 21 can be obtained from [Equation 10] by determining the oil temperature and the load factor (load current). By adding the oil temperature at that time and the temperature rise value Tc, the temperature at each part can be obtained (see step S4 in FIG. 5).

Figure 2006024800
Figure 2006024800

ここで、
Tm:定格電流を通電した直後の被診断油入変圧器21の最高油温から各部位の最大温度上昇値(℃)
Tn:定格電流連続通電時における被診断油入変圧器21の最高油温から各部位の温度上昇値(℃)
t:通電時間(計算開始時点を0としてそれからどれだけの時間が経過しているかを示す値)
τ1:定格電流を通電した直後に被診断油入変圧器21の各部位において最高油温からの温度が急激に上昇する際の時定数
τ2:定格電流を通電した直後に被診断油入変圧器21の各部位において最高油温からの温度が最高値を示した時点から一定値に落ちつくまでの時定数
here,
Tm: Maximum temperature rise value (° C.) of each part from the maximum oil temperature of the diagnostic oil-filled transformer 21 immediately after applying the rated current
Tn: Temperature rise value (° C.) of each part from the maximum oil temperature of the diagnosed oil-filled transformer 21 when the rated current is continuously energized
t: energization time (value indicating how much time has passed since the calculation start time was set to 0)
τ1: Time constant when the temperature from the maximum oil temperature suddenly rises at each part of the diagnosed oil-filled transformer 21 immediately after the rated current is energized τ2: Diagnose oil-immersed transformer immediately after the rated current is energized The time constant from when the temperature from the maximum oil temperature reaches the maximum value to the constant value at each part of 21

そして、Tm、Tnは被診断油入変圧器21の負荷率Kによって変わる値であり、かつ、前記負荷率Kは被診断油入変圧器21の二次側に流れる負荷電流を検出することにより判る。そこで、前記Tmは次に示す[数11]に、また、Tnは[数12]によって求めることができる(図5のステップS6参照)。   Tm and Tn are values that change depending on the load factor K of the oil-in-transformed transformer 21 to be diagnosed, and the load factor K is detected by detecting the load current flowing on the secondary side of the oil-in-transformed transformer 21 to be diagnosed. I understand. Therefore, the Tm can be obtained from [Equation 11] shown below, and Tn can be obtained from [Equation 12] (see Step S6 in FIG. 5).

Figure 2006024800
Figure 2006024800

Figure 2006024800
Figure 2006024800

ここで、
Tm’:定格電流を通電した直後の被診断油入変圧器21の各部位における最高油温からの最大温度上昇値(℃)
Tn’:定格電流連続通電したときの被診断油入変圧器21の定常時における最高油温からの温度上昇値(℃)
K:現在通電している電流(実負荷)の定格電流(定格負荷)に対する比(負荷率)
n:冷却方式により定まる定数(所定部位の温度と負荷率との関係を示す値)
なお、前記Tm’,Tn’,K,nはすべてプロトタイプの油入変圧器1を運転した際に実測した定数(値)に相当する油温度の時定数であり、かつ、温度上昇値においても、油入変圧器1の各部位(巻線6、低圧側引出導体7、絶縁筒)において実測した定数(温度)に相当する油温度の時定数である。即ち、前記油温度の時定数は、被診断油入変圧器21の負荷が変化した後に油温度が上昇する際の時定数であることは云うまでもない。
here,
Tm ′: Maximum temperature rise value (° C.) from the maximum oil temperature in each part of the oil-in-transformer 21 to be diagnosed immediately after the rated current is applied
Tn ′: Temperature rise value (° C.) from the maximum oil temperature in the steady state of the oil-in-transformer 21 to be diagnosed when the rated current is continuously energized
K: Ratio of current (current load) that is currently energized to rated current (rated load) (load factor)
n: Constant determined by the cooling method (value indicating the relationship between the temperature of the predetermined part and the load factor)
Tm ′, Tn ′, K, and n are all oil temperature time constants corresponding to constants (values) measured when the prototype oil-filled transformer 1 is operated, and also in terms of temperature rise values. These are oil temperature time constants corresponding to constants (temperatures) measured in each part of the oil-filled transformer 1 (winding 6, low-voltage side lead conductor 7, insulating cylinder). That is, it goes without saying that the time constant of the oil temperature is a time constant when the oil temperature rises after the load of the diagnostic oil-filled transformer 21 changes.

被診断油入変圧器21(油入変圧器1と同一部材は同一符号により説明する)には、図2に示すように、タンク2内の所定部位において絶縁油の温度を検出するための温度センサgが取付けられている。そして、この温度センサgは図2に示すように、タンク2内の最上部に設置されている。また温度センサhは被診断油入変圧器21の周囲温度を検出するものである。   As shown in FIG. 2, the diagnosis oil-filled transformer 21 (the same members as those of the oil-filled transformer 1 are described by the same reference numerals) has a temperature for detecting the temperature of the insulating oil at a predetermined portion in the tank 2. A sensor g is attached. And this temperature sensor g is installed in the uppermost part in the tank 2, as shown in FIG. The temperature sensor h detects the ambient temperature of the oil-in-transformer 21 to be diagnosed.

次に、図2において、22は被診断油入変圧器21の運転状況を把握するための手段を示し、この運転状況把握手段22は、被診断油入変圧器の運転状況を把握するために、被診断油入変圧器21の所要の油中に設置した温度センサgにて検出した油温と、被診断油入変圧器21周辺の温度情報(温度センサhにて検出)をはじめ運転中の被診断油入変圧器21の負荷電流を検出し、これら温度・電流情報をデータファイル化する被診断油入変圧器21の運転状況検出手段23と、油入変圧器1の実測データ作成手段15によって作成した油入変圧器1の実測値データと、前述した[数7]〜[数12]に示す計算式とをファイル化した実測値データファイル24と、被診断油入変圧器21の運転状況を基に、油入変圧器1の実測値をベースにして案出した、例えば、巻線6の温度上昇値Tcを算出する算定式([数10]参照)によって、被診断油入変圧器21の運転中における温度上昇値Tcを算出(シミュレート)する演算処理手段25と、前記演算処理手段25によって演算処理して算出した温度上昇値Tcをベースとして被診断油入変圧器21の寿命損失を後述する所定の算定式にてシミュレートするシミュレーション手段26と、前記シミュレーション手段26によって算出した寿命損失の内容を表示する表示手段27と、前記表示手段27により表示した表示内容を監視所等に設置されているコンピュータ等の管理手段28に出力(伝送)する出力手段29とによって概略構成されている。そして、出力手段29から出力された伝送寿命損失の内容は管理手段28にて表示されるとともに、表示データをいつでも取り出せるように記憶・保存されている。   Next, in FIG. 2, reference numeral 22 denotes a means for grasping the operating condition of the diagnosed oil-filled transformer 21, and this operating condition grasping means 22 is used for grasping the operating condition of the diagnosed oil-filled transformer. The oil temperature detected by the temperature sensor g installed in the required oil of the diagnosed oil-filled transformer 21 and the temperature information around the diagnosed oil-filled transformer 21 (detected by the temperature sensor h) are in operation. The load current of the oil-injected transformer 21 to be diagnosed is detected, and the operating state detecting means 23 of the oil-injected transformer 21 to be diagnosed and the temperature / current information are converted into a data file; 15, the actual measurement data file 24 in which the actual measurement data of the oil-filled transformer 1 and the calculation formulas shown in the above [Equation 7] to [Equation 12] are filed, and the diagnostic oil-immersed transformer 21 Based on actual measured values of oil-filled transformer 1 based on operating conditions For example, the temperature rise value Tc during the operation of the diagnostic oil-filled transformer 21 is calculated (simulated) by the calculation formula (see [Equation 10]) for calculating the temperature rise value Tc of the winding 6, for example. ) And a simulation for simulating the life loss of the diagnostic oil-filled transformer 21 based on the temperature rise value Tc calculated by the arithmetic processing means 25 using a predetermined calculation formula to be described later. Means 26, display means 27 for displaying the contents of the life loss calculated by the simulation means 26, and the display contents displayed by the display means 27 are output to the management means 28 such as a computer installed in a monitoring station ( Output means 29 for transmission). The contents of the transmission life loss output from the output means 29 are displayed by the management means 28 and stored and stored so that the display data can be taken out at any time.

つづいて、被診断油入変圧器21の所定部位における温度上昇値Tcを算出する場合について説明する。最初に、図2において、被診断油入変圧器21の絶縁油中に設置した温度センサgにより、被診断油入変圧器21の油温を検出する。また、被診断油入変圧器21の運転中における負荷電流(例えば、2次側)を検出し、負荷率Kを割り出す。前記のように、事前に前記のような準備作業が完了したら、前記各種検出データをベースとして巻線6における現時点での温度上昇値を[数10]に示す算定式によって算出する。   Next, the case where the temperature rise value Tc at the predetermined part of the diagnostic oil-filled transformer 21 is calculated will be described. First, in FIG. 2, the oil temperature of the diagnosed oil-filled transformer 21 is detected by a temperature sensor g installed in the insulating oil of the diagnosed oil-filled transformer 21. Further, a load current (for example, secondary side) during operation of the diagnostic oil-filled transformer 21 is detected, and the load factor K is determined. As described above, when the above preparatory work is completed in advance, the current temperature rise value in the winding 6 is calculated by the calculation formula shown in [Equation 10] based on the various detection data.

前記[数10]による温度上昇値Tcの算定に当って、Tmは温度センサgにて検出した油温をベースにして[数11]の計算式により算出し、また、Tnについても前記温度センサgによって検出した油温がベースとなって[数12]の計算式により算出する。そして前記[数11],[数12]の式によって、Tm,Tnを算出したら、これらのTm,Tnを[数10]に代入して巻線6の温度上昇値Tc(推定値)を求める。   In calculating the temperature rise value Tc according to the above [Equation 10], Tm is calculated by the equation of [Equation 11] based on the oil temperature detected by the temperature sensor g, and Tn is also calculated from the temperature sensor. The oil temperature detected by g is used as a base, and is calculated by the formula of [Equation 12]. Then, when Tm and Tn are calculated by the equations [Equation 11] and [Equation 12], the temperature rise value Tc (estimated value) of the winding 6 is obtained by substituting these Tm and Tn into [Equation 10]. .

そして、前記[数10]にて算出した温度上昇値Tcに、このTcを算定した時点の絶縁油の最高油温上昇値θ0を[数9]によって求め、この時点において算出した最高油温上昇値θ0に、前記[数10]にて算出した温度上昇値Tcと周温を加算するか、あるいは、前記温度センサgにて検出した油温に、前記算出した温度上昇値Tcを加算することによって、現在運転中の被診断油入変圧器21における巻線6の温度を把握(推定)することができる。前記算定した巻線6の温度が、巻線温度の限界値(例えば、160℃)以上ある場合、巻線6に異常が発生したということで、運転状況把握手段22の表示手段27に表示され、かつ、異常が発生したことを知らせる警報が発せられる。また、出力手段29を介して図示しない監視所等に被診断油入変圧器21に異常が発生したことを知らせる(図5のステップS7〜S9参照)。 Then, the maximum oil temperature increase value θ 0 of the insulating oil at the time when Tc is calculated is obtained from [Equation 9] to the temperature increase value Tc calculated in [Equation 10], and the maximum oil temperature calculated at this time is calculated. Add the temperature rise value Tc calculated in [Equation 10] and the ambient temperature to the rise value θ 0 , or add the calculated temperature rise value Tc to the oil temperature detected by the temperature sensor g. By doing this, it is possible to grasp (estimate) the temperature of the winding 6 in the diagnosed oil-filled transformer 21 currently in operation. When the calculated temperature of the winding 6 is equal to or higher than the limit value of the winding temperature (for example, 160 ° C.), it is displayed on the display means 27 of the operation status grasping means 22 that an abnormality has occurred in the winding 6. An alarm is issued to notify that an abnormality has occurred. In addition, a monitoring station (not shown) or the like is notified via the output means 29 that an abnormality has occurred in the diagnostic oil-filled transformer 21 (see steps S7 to S9 in FIG. 5).

また、最高油温上昇値θ0が、例えば、120℃を上回った場合も、前記巻線6の温度上昇と同様に異常が発生したということで、表示手段27に表示させるとともに、異常警報が監視所等に運転状況把握手段22の出力手段29によって発信される。 Further, even when the maximum oil temperature rise value θ 0 exceeds 120 ° C., for example, an abnormality has occurred as in the case of the temperature rise of the winding 6, and an abnormality alarm is displayed on the display means 27. It is transmitted to the monitoring station or the like by the output means 29 of the driving condition grasping means 22.

一方、前記巻線6の温度や、油温が、それぞれ限界値以下である場合は、現在運転中の被診断油入変圧器21の寿命損失を後述する計算によって求めることができる。   On the other hand, when the temperature of the winding 6 and the oil temperature are lower than the limit values, respectively, the life loss of the diagnostic oil-filled transformer 21 currently in operation can be obtained by calculation described later.

そして、前記運転中の被診断油入変圧器21の巻線6の温度に関係する温度上昇値Tcを算出した場合、その温度上昇値Tcが、例えば、定格負荷50%で連続運転している状態でその運転中に何等かの理由で負荷率が120%に変更されて運転が継続されている場合に、前記のようにして算出した温度上昇値Tcに基づいてその温度特性図を作図すると、図18に示すように、負荷率が120%で2時間連続運転していた場合、巻線6の温度上昇値Tcは、負荷率50%で連続運転した場合に比べて温度上昇値Tcは上昇し、プロトタイプの油入変圧器1を実際に運転して確認したところ、負荷率120%で2時間運転した場合の温度特性図(図7参照)とほぼ同じであることが判った。即ち、事前に同種の油入変圧器1により同一条件(負荷率と運転時間が同じ)下で実測した実測値とほぼ同じであることが判った。   When the temperature rise value Tc related to the temperature of the winding 6 of the diagnostic oil-filled transformer 21 during operation is calculated, the temperature rise value Tc is continuously operated at a rated load of 50%, for example. If the load factor is changed to 120% for some reason during the operation in the state and the operation is continued, the temperature characteristic diagram is drawn based on the temperature rise value Tc calculated as described above. As shown in FIG. 18, when the load factor is 120% and continuously operated for 2 hours, the temperature rise value Tc of the winding 6 is higher than that when continuously operated at the load factor of 50%. When the prototype oil-filled transformer 1 was actually operated and confirmed, it was found that it was almost the same as the temperature characteristic diagram (see FIG. 7) when operated at a load factor of 120% for 2 hours. In other words, it was found that the measured values obtained in advance under the same conditions (same load factor and operation time) by the same kind of oil-filled transformer 1 were almost the same as the actual measured values.

また、同じく図18〜図20で示すように、被診断油入変圧器21の負荷率が120%〜160%に変化した場合の被診断油入変圧器21の運転においても、油入変圧器1において前記と同様に同一条件で運転した場合に実測した実測値と比較したところ、ほとんど同じ温度上昇値(図7〜図9参照)が得られることが判った。   Similarly, as shown in FIGS. 18 to 20, the oil-filled transformer is also used in the operation of the diagnosed oil-filled transformer 21 when the load factor of the diagnosed oil-filled transformer 21 changes from 120% to 160%. 1 was compared with the actually measured value when operated under the same conditions as described above, it was found that almost the same temperature rise value (see FIGS. 7 to 9) was obtained.

前記のようにして被診断油入変圧器21の運転中における巻線6の温度上昇値Tcを[数10]に示す算定式により求めたら、引き続き被診断油入変圧器21の低圧側引出導体7と、負荷時タップ切換装置9の切換開閉器操作機構10の絶縁筒の温度上昇値Tcを求める。この場合も、前記巻線6の温度上昇値Tcを算出した場合と同様にして求めるものである。   When the temperature rise value Tc of the winding 6 during operation of the diagnosed oil-filled transformer 21 is obtained by the calculation formula shown in [Equation 10] as described above, the low-voltage side lead conductor of the diagnosed oil-filled transformer 21 continues. 7 and the temperature rise value Tc of the insulating cylinder of the switching switch operating mechanism 10 of the on-load tap switching device 9 is obtained. In this case as well, the temperature rise value Tc of the winding 6 is obtained in the same manner as that calculated.

即ち、被診断油入変圧器21において、低圧側引出導体7の温度上昇値Tcを算定する場合は、Tmを[数11]の計算式により算出し、Tnについては、[数12]に示す計算によって算出する。前記のようにして低圧側引出導体7の温度上昇値Tcを求めるためのTm,Tnを算出したら、これら、Tm,Tnの値を[数10]に示す算定式に代入することにより、低圧側引出導体7の温度上昇値Tc(推定値)を求めるものである。   That is, in the oil-in-transformer 21 to be diagnosed, when calculating the temperature rise value Tc of the low-voltage side lead conductor 7, Tm is calculated by the formula of [Equation 11], and Tn is expressed by [Equation 12]. Calculate by calculation. When Tm and Tn for calculating the temperature rise value Tc of the low-voltage side lead conductor 7 are calculated as described above, by substituting these Tm and Tn values into the calculation formula shown in [Equation 10], The temperature rise value Tc (estimated value) of the lead conductor 7 is obtained.

更に、負荷時タップ切換装置9に用いている切換開閉器操作機構10を囲繞する絶縁筒の温度上昇値Tcを求める場合も、前記巻線6、低圧側引出導体7の温度上昇値Tcを求めた場合と同様に、温度センサgにより検出した油温をベースとして先ず、Tm,Tnの値を[数11],[数12]の計算式により求め、前記Tm,Tnの値を[数10]の算定式に代入することにより、前記絶縁筒の温度上昇値Tcを算出するものである。   Further, when the temperature rise value Tc of the insulating cylinder surrounding the switching switch operating mechanism 10 used in the on-load tap switching device 9 is obtained, the temperature rise value Tc of the winding 6 and the low-voltage side lead conductor 7 is also obtained. In the same manner as described above, based on the oil temperature detected by the temperature sensor g, first, the values of Tm and Tn are obtained by the formulas of [Equation 11] and [Equation 12], and the values of Tm and Tn are obtained by [Equation 10]. ], The temperature rise value Tc of the insulating cylinder is calculated.

そして、前記低圧側引出導体7、絶縁筒の温度上昇値Tcをそれぞれ[数6]に示す計算式により求めた最高油温上昇値θ0と周温または、温度センサgにて検出した油温を加算し、前記加算した値が、低圧側引出導体7や絶縁筒の限界温度以上ある場合は、異常が発生したと判断し、それを表示手段27にて表示するとともに、出力手段29を介して図示しない監視所等に被診断油入変圧器21に異常が発生したことを知らせる。 Then, the maximum oil temperature rise value θ 0 obtained by the calculation formula shown in [Equation 6] and the temperature rise value Tc of the low-voltage side lead conductor 7 and the insulating cylinder, respectively, or the oil temperature detected by the temperature sensor g When the added value is equal to or higher than the limit temperature of the low-voltage side lead conductor 7 or the insulating cylinder, it is determined that an abnormality has occurred, and this is displayed on the display means 27 and via the output means 29. Informing a monitoring station (not shown) that an abnormality has occurred in the oil-filled transformer 21 to be diagnosed.

また、前記[数10]の算定式により算出した低圧側引出導体7、絶縁筒の温度上昇値Tcに基づいてその温度特性図を作成した場合、例えば、低圧側引出導体7においては、負荷率120%,140%,160%で各2時間連続運転したときの温度特性(図21〜図23参照)は、油入変圧器1において同条件で実測した実測値により作成した温度特性図(図11〜図13参照)と比較した場合、ほとんど同じであることが判った。   Further, when the temperature characteristic diagram is created based on the temperature rise value Tc of the low voltage side lead conductor 7 and the insulating cylinder calculated by the formula of [Equation 10], for example, in the low voltage side lead conductor 7, The temperature characteristics (see FIGS. 21 to 23) when continuously operated at 120%, 140%, and 160% for 2 hours each are shown in FIG. 11 to FIG. 13), it was found to be almost the same.

絶縁筒においても、負荷率120%,140%,160%で前記同様に比較してみると[数10]により算出した温度上昇値Tcをベースにして作成した温度特性図(図24〜図26参照)と、油入変圧器1により実測した実測値により作成した温度特性図(図15〜図17参照)とを比較した場合においても、ほとんど同じであることが判った。   Also in the insulating cylinder, when compared with the load factors of 120%, 140%, and 160% in the same manner as described above, temperature characteristic diagrams created based on the temperature rise value Tc calculated by [Equation 10] (FIGS. 24 to 26). (See FIG. 15 to FIG. 17) created by actual measurement values measured with the oil-filled transformer 1 were found to be almost the same.

このように、本発明においては、被診断油入変圧器21の所定部位における温度上昇値Tcの算定に際しては、事前に被診断油入変圧器21と同一またはほぼ同一設計のプロトタイプの油入変圧器1において、余寿命・異常診断に関係する部位(巻線6、低圧側引出導体7、負荷時タップ切換装置9の切換開閉器操作機構10やタップ選択器11を覆う絶縁筒)の温度と油温とを周温と関連させて実測し、前記実測した実測値をベースとしてTm(定格負荷通電直後の前記各部位における油温からの最大温度上昇値)とTn(定格負荷連続運転時における被診断油入変圧器の各部位における油温からの温度上昇値)とを[数7]と[数8]とによって求める。   As described above, in the present invention, when calculating the temperature rise value Tc at a predetermined portion of the diagnosed oil-filled transformer 21, a prototype oil-filled transformer having the same or substantially the same design as the diagnosed oil-filled transformer 21 in advance. The temperature of a part related to the remaining life / abnormality diagnosis (insulation cylinder covering the switching switch operating mechanism 10 of the on-load tap switching device 9 and the tap selector 11) and the tap selector 11 in the container 1 The oil temperature is measured in relation to the ambient temperature, and Tm (the maximum temperature rise value from the oil temperature at each part immediately after the rated load energization) and Tn (at the rated load continuous operation) are based on the actually measured values. The temperature rise value from the oil temperature at each part of the diagnostic oil-filled transformer is determined by [Equation 7] and [Equation 8].

そして、前記算出したTm,Tnをベースとして被診断油入変圧器21の各部位の温度上昇値Tcを算出するための算定式を[数10]に示すように案出した。前記案出した[数10]に示す算定式によって被診断油入変圧器21の各部位における温度上昇値Tcを算出するもので、前記[数10]に示す算定式においてTm,Tnは温度上昇値Tcを求める所定部位(被診断油入変圧器21の巻線6、低圧側引出導体7、絶縁筒)の油温と被診断油入変圧器21の負荷率とをベースにして[数11],[数12]により算出した後、前記算出したTm,Tnを[数10]に代入して被診断油入変圧器21における各部位の温度上昇値Tcを求めるものである。   Then, a calculation formula for calculating the temperature rise value Tc of each part of the diagnostic oil-filled transformer 21 based on the calculated Tm and Tn is devised as shown in [Equation 10]. The temperature rise value Tc in each part of the diagnosed oil-filled transformer 21 is calculated by the calculated formula shown in [Equation 10]. In the calculation formula shown in [Equation 10], Tm and Tn are temperature rises. Based on the oil temperature of the predetermined part (the winding 6 of the oil-in-transformer 21 to be diagnosed, the low-voltage side lead conductor 7 and the insulating cylinder) for obtaining the value Tc and the load factor of the oil-in-transformer 21 to be diagnosed [Equation 11 ] And [Equation 12], the calculated Tm and Tn are substituted into [Equation 10] to obtain the temperature rise value Tc of each part in the oil-in-transformer 21 to be diagnosed.

前記[数10]にて算出した温度上昇値Tcと最高油温上昇値θ0と周温とを加算しその加算値が所定部位の限界温度以上ある場合、前記温度上昇値Tcに関係する部位(例えば、巻線6)は、異常と判断されて関係者に異常であることを警報したり、表示する等して知らせるように構成されている。 When the temperature rise value Tc calculated in [Equation 10], the maximum oil temperature rise value θ 0, and the ambient temperature are added and the added value is equal to or higher than the limit temperature of the predetermined part, the part related to the temperature rise value Tc (For example, the winding 6) is configured so as to warn the relevant person that it is determined to be abnormal and to notify the person concerned of the abnormality by displaying it or the like.

次に、前記被診断油入変圧器21の温度上昇値Tcをベースとして被診断油入変圧器21の寿命損失を求める。この場合は、例えば、電気学会技術報告(1部)第143号に示されている「油入変圧器運転指針」に示されている式から展開して[数13]として示す次式により算出する。この場合、被診断油入変圧器21の所定部位に対して巻線最高点温度95℃で運転したときの正規寿命をY0とした場合、時間t間における寿命損失V(正規寿命Y0に対する損失度合)を求めるための計算式である。 Next, the life loss of the diagnosed oil-filled transformer 21 is obtained based on the temperature rise value Tc of the diagnosed oil-filled transformer 21. In this case, for example, it is calculated from the following formula shown as [Equation 13] expanded from the formula shown in “Oil-filled transformer operation guideline” shown in Technical Report (Part 1) No. 143 of the Institute of Electrical Engineers of Japan. To do. In this case, assuming that the normal life when the predetermined part of the oil-filled transformer 21 to be diagnosed is operated at the maximum winding point temperature of 95 ° C. is Y 0 , the life loss V during the time t (relative to the normal life Y 0) . This is a calculation formula for calculating the degree of loss.

Figure 2006024800
Figure 2006024800

ここで、
0:正規寿命
b:定数(80℃〜150℃においては0.1155)
θ:[数10]にて算出した温度上昇値(Tc)
0〜t:所定時間内における寿命損失分
dt:計算時間ステップ
e:指数関数
here,
Y 0 : Regular life b: Constant (0.1155 at 80 ° C. to 150 ° C.)
θ: Temperature rise value (Tc) calculated by [Equation 10]
0 to t: life loss within a predetermined time dt: calculation time step e: exponential function

前記[数13]により算出した寿命損失において、算定の結果V=1となれば被診断油入変圧器21は寿命がきたということになる。そして、前記寿命損失の計算を行うことにより、被診断油入変圧器21は、現在の負荷率で運転を継続した場合、その寿命を巻線温度95℃で連続30年運転可能とした場合の正規寿命の基準に対し、Vの時間だけ寿命が損失したことを表わすものである。前記の寿命損失Vを算出すると、表示手段27により表示されるとともに、出力手段29にて図示しない監視所等管理手段28に伝送され、表示・記憶保持される(図5のステップS10〜S12参照)。   In the life loss calculated by the above [Equation 13], if the calculation result V = 1, it means that the life of the diagnostic oil-filled transformer 21 has been reached. Then, by calculating the life loss, the diagnosed oil-filled transformer 21 can operate continuously at the winding temperature of 95 ° C. for 30 years when the operation is continued at the current load factor. This indicates that the life is lost for the time of V with respect to the standard of the normal life. When the life loss V is calculated, it is displayed by the display means 27 and transmitted to the monitoring station management means 28 (not shown) by the output means 29, and is displayed / stored (see steps S10 to S12 in FIG. 5). ).

本発明は、以上説明したように、プロトタイプの油入変圧器1を用いて実測した巻線6、低圧側引出導体7、負荷時タップ切換装置9の切換開閉器操作機構10等の絶縁筒、油温をそれぞれ所定の負荷率、周囲温度を勘案して複数パターン実測し、その実測値に基づき被診断油入変圧器21の各部位の温度上昇値Tcを算出する算定式[数10]を案出し、この算定式によって被診断油入変圧器21の温度上昇値Tcを算出(シミュレーション)する。そして、前記算出した温度上昇値Tcをベースにして、前記被診断油入変圧器21の寿命損失、異常発生を未然にシミュレートすることにより、当該被診断油入変圧器21がいつまで使用できるか、即ち、寿命損失や異常発生を高精度で、かつ、迅速・確実に算出することができ、利便である。   As described above, the present invention includes an insulation cylinder such as the winding 6 measured using the prototype oil-filled transformer 1, the low-voltage side lead conductor 7, the switching switch operating mechanism 10 of the on-load tap switching device 9, and the like. A plurality of patterns are actually measured in consideration of a predetermined load factor and ambient temperature for each oil temperature, and a calculation formula [Equation 10] for calculating a temperature rise value Tc of each part of the oil-in-transformer 21 to be diagnosed based on the actually measured values. The temperature rise value Tc of the diagnosed oil-filled transformer 21 is calculated (simulated) using this calculation formula. Then, based on the calculated temperature rise value Tc, how long the diagnosed oil-filled transformer 21 can be used by simulating the life loss and abnormality occurrence of the diagnosed oil-filled transformer 21 in advance. That is, it is convenient because it is possible to calculate life loss and abnormality occurrence with high accuracy and promptly and reliably.

被診断油入変圧器21の寿命損失や異常発生のシミュレーションは、前述したように、被診断油入変圧器21の温度上昇値Tcを本発明の算定式により計算して算出し、その算出した温度上昇値Tcに基づき所定部位の温度上昇をグラフにて作図すると、この作図したグラフに示される温度上昇の状況が同一設計または同一設計に値するプロトタイプの油入変圧器1によって実際に同一条件で実測した実測値の温度をグラフ化した場合、前者と後者においてはほぼ一致した状態にて表わされている。これは、被診断油入変圧器21の温度上昇値Tcを算出する算定式が、実測したデータを基にして案出されているからに他ならず、これにより、被診断油入変圧器21における各部位の温度上昇値Tcは実際に温度を測定した場合とほぼ同じ値にて計算することができるため、本発明の計算式により算出した温度上昇値Tcをベースにする限り、被診断油入変圧器21の余寿命、異常発生を高精度で算出することができるので、被診断油入変圧器21の保守管理を円滑・良好に行うことができる。   As described above, the simulation of the life loss and abnormality occurrence of the diagnosed oil-filled transformer 21 is performed by calculating the temperature rise value Tc of the diagnosed oil-filled transformer 21 using the calculation formula of the present invention. When the temperature rise of a predetermined part is plotted on the graph based on the temperature rise value Tc, the temperature rise shown in the drawn graph is actually the same by the prototype oil-filled transformer 1 having the same design or the same design. When the temperature of the actually measured value is graphed, the former and the latter are represented in a substantially matched state. This is because the calculation formula for calculating the temperature rise value Tc of the diagnosed oil-filled transformer 21 is devised based on the actually measured data. Since the temperature rise value Tc of each part in can be calculated with substantially the same value as when actually measuring the temperature, as long as the temperature rise value Tc calculated by the calculation formula of the present invention is used as a base, the oil to be diagnosed Since the remaining life and abnormality occurrence of the input transformer 21 can be calculated with high accuracy, the maintenance management of the oil-in-transformer 21 to be diagnosed can be performed smoothly and satisfactorily.

なお、本発明において、負荷電流は油入変圧器1や被診断油入変圧器21の2次側に流れる電流について説明したが、これを限定せず、1次側電流あるいはタップ番号が判明すれば、それらによって負荷電流を検出して使用することができることは云うまでもない。また、被診断油入変圧器21の温度上昇値Tcを算出する場合、負荷電流と油温、もしくは、負荷電流と周囲温度のいづれかの条件を満たすことにより容易に算出することができることはもとより、事前に被診断油入変圧器21の各部位の温度を想定し、これを実際温度として運転状況検出手段23に入力させ、そのデータを基に温度上昇値Tcを算出して、その値をシミュレートすることにより、被診断油入変圧器21の寿命損失とか異常診断を行うようにしても、本発明は成立するものである。   In the present invention, the load current is described as the current flowing in the secondary side of the oil-filled transformer 1 or the oil-filled transformer 21 to be diagnosed. However, the present invention is not limited to this, and the primary current or tap number can be found. Needless to say, the load current can be detected and used by them. Further, when calculating the temperature rise value Tc of the diagnostic oil-filled transformer 21, it can be easily calculated by satisfying either the load current and the oil temperature or the load current and the ambient temperature. Assuming the temperature of each part of the oil-filled transformer 21 to be diagnosed in advance, this is input as the actual temperature to the operating condition detecting means 23, and the temperature rise value Tc is calculated based on the data, and the value is simulated. Thus, the present invention can be established even if a life loss or abnormality diagnosis of the oil-in-transformer 21 to be diagnosed is performed.

プロトタイプの油入変圧器において、当該変圧器の所定部位の温度を検出する場合の概略構成図である。In a prototype oil-filled transformer, it is a schematic block diagram in the case of detecting the temperature of the predetermined part of the said transformer. 本発明の余寿命・異常診断システムにより被診断油入変圧器の余寿命等を把握する場合の概略構成図である。It is a schematic block diagram in the case of grasping | ascertaining the remaining life etc. of a to-be-diagnosed oil-filled transformer with the remaining life and abnormality diagnosis system of this invention. 被診断油入変圧器の側面図である。It is a side view of a diagnostic oil-filled transformer. 油入変圧器の温度分布図である。It is a temperature distribution map of an oil-filled transformer. 本発明のシステムの実行を概略的に説明するためのフローチャート図である。It is a flowchart figure for demonstrating schematically execution of the system of this invention. 巻線温度上昇の変化を示す特性図である。It is a characteristic view which shows the change of winding temperature rise. 油入変圧器を負荷率50%連続、120%2時間運転した場合の、巻線および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the actual value of a coil | winding and an oil temperature at the time of driving | running an oil-filled transformer for 50% of load ratios and 120% for 2 hours. 油入変圧器を負荷率50%連続、140%2時間運転した場合の、巻線および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the actual value of a coil | winding and an oil temperature at the time of driving | running an oil-filled transformer for 50% of a load factor continuously for 140% for 2 hours. 油入変圧器を負荷率50%連続、160%2時間運転した場合の、巻線および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the actual value of a coil | winding and an oil temperature at the time of operating a load factor 50% continuous and 160% for 2 hours. 低圧側引出導体の温度上昇の変化を示す特性図である。It is a characteristic view which shows the change of the temperature rise of a low voltage | pressure side lead conductor. 油入変圧器を負荷率50%連続、120%2時間運転した場合の、低圧側引出導体および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of a low voltage | pressure side lead conductor and oil temperature at the time of operating an oil-filled transformer for 50% of load ratios, 120% for 2 hours. 油入変圧器を負荷率50%連続、140%2時間運転した場合の、低圧側引出導体および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of a low voltage | pressure side extraction conductor and oil temperature at the time of driving | running an oil-filled transformer for 50% of load rates and 140% for 2 hours. 油入変圧器を負荷率50%連続、160%2時間運転した場合の、低圧側引出導体および油温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of a low voltage | pressure side lead conductor and oil temperature at the time of driving | running an oil-filled transformer for 50% of load factor continuously for 160% for 2 hours. 絶縁筒温度上昇の変化を示す特性図である。It is a characteristic view which shows the change of an insulation cylinder temperature rise. 油入変圧器を負荷率50%連続、120%2時間運転した場合の、絶縁筒温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of an insulation cylinder temperature at the time of driving | running an oil-filled transformer for 50% of load factors continuously and 120% for 2 hours. 油入変圧器を負荷率50%連続、140%2時間運転した場合の、絶縁筒温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of an insulation cylinder temperature at the time of driving | running an oil-filled transformer for 50% of load factors continuously for 140% for 2 hours. 油入変圧器を負荷率50%連続、160%2時間運転した場合の、絶縁筒温度の実測値を示す温度特性図である。It is a temperature characteristic figure which shows the measured value of an insulation cylinder temperature at the time of driving | running an oil-filled transformer for 50% of load factors continuously for 160% for 2 hours. 被診断油入変圧器を負荷率50%連続、120%2時間運転したときの巻線温度を巻線実測定数により計算して示す巻線温度特性図である。It is a winding temperature characteristic figure which calculates and calculates the winding temperature when a diagnostic oil-filled transformer is operated at a load factor of 50% continuously for 120% for 2 hours based on actual winding constants. 被診断油入変圧器を負荷率50%連続、140%2時間運転したときの巻線温度を巻線実測定数により計算して示す巻線温度特性図である。It is a winding temperature characteristic figure which calculates and calculates the winding temperature when a diagnostic oil-filled transformer is operated at a load factor of 50% continuously for 140% for 2 hours based on actual winding constants. 被診断油入変圧器を負荷率50%連続、160%2時間運転したときの巻線温度を巻線実測定数により計算して示す巻線温度特性図である。It is a winding temperature characteristic figure which calculates and calculates the winding temperature when a diagnostic oil-filled transformer is operated at a load factor of 50% continuously for 160% for 2 hours based on actual winding constants. 被診断油入変圧器を負荷率50%連続、120%2時間運転したときの低圧側引出導体温度をその実測定数により計算して示す低圧側引出導体温度特性図である。It is a low-pressure side lead conductor temperature characteristic figure which calculates and calculates the low-pressure side lead conductor temperature by the actual measurement constant when a diagnostic oil-filled transformer is operated for 120% for 2 hours at a load factor of 50%. 被診断油入変圧器を負荷率50%連続、140%2時間運転したときの低圧側引出導体温度をその実測定数により計算して示す低圧側引出導体温度特性図である。It is a low-pressure side lead conductor temperature characteristic figure which calculates the low-pressure side lead conductor temperature when operating a diagnostic oil-filled transformer for 50% of a load factor continuously for 140% for 2 hours by the actual measurement constant. 被診断油入変圧器を負荷率50%連続、160%2時間運転したときの低圧側引出導体温度をその実測定数により計算して示す低圧側引出導体温度特性図である。It is a low-pressure side lead conductor temperature characteristic figure which calculates and calculates the low-pressure side lead conductor temperature by the actual measurement constant when a diagnostic oil-filled transformer is operated for 160% for 2 hours at a load factor of 50%. 被診断油入変圧器を負荷率50%連続、120%2時間運転したときの絶縁筒温度をその実測定数により計算して示す絶縁筒温度特性図である。It is an insulation cylinder temperature characteristic figure which calculates and calculates the insulation cylinder temperature when the diagnostic oil-filled transformer is operated at a load factor of 50% continuously for 120% for 2 hours. 被診断油入変圧器を負荷率50%連続、140%2時間運転したときの絶縁筒温度をその実測定数により計算して示す絶縁筒温度特性図である。It is an insulation cylinder temperature characteristic figure which calculates and calculates the insulation cylinder temperature when the diagnostic oil-filled transformer is operated with a load factor of 50% continuously for 140% for 2 hours. 被診断油入変圧器を負荷率50%連続、160%2時間運転したときの絶縁筒温度をその実測定数により計算して示す絶縁筒温度特性図である。It is an insulation cylinder temperature characteristic figure which calculates and calculates the insulation cylinder temperature when a diagnostic oil-filled transformer is operated for 50% of a load factor continuously for 160% for 2 hours.

符号の説明Explanation of symbols

1 プロトタイプの油入変圧器
2 タンク
3 冷却装置
4 油導管
5 油ポンプ
6 巻線
7 低圧側引出導体
9 負荷時タップ切換装置
10 切換開閉器操作機構
11 タップ選択器
12 検出温度選択器
13 A/D変換器
14 コンピュータ
15 実測データ作成手段
21 被診断油入変圧器
22 運転状況把握手段
23 運転状況検出手段
24 実測値データファイル
25 演算処理手段
26 シミュレーション手段
27 表示手段
28 管理手段
29 出力手段
a〜e、g、h 温度センサ
Tc 温度上昇値
DESCRIPTION OF SYMBOLS 1 Prototype oil-filled transformer 2 Tank 3 Cooling device 4 Oil conduit 5 Oil pump 6 Winding 7 Low voltage side lead conductor 9 Load tap switching device 10 Switching switch operating mechanism 11 Tap selector 12 Detection temperature selector 13 A / D converter 14 Computer 15 Actual measurement data creation means 21 Diagnosed oil-filled transformer 22 Operating condition grasping means 23 Operating condition detection means 24 Actual measurement data file 25 Arithmetic processing means 26 Simulation means 27 Display means 28 Management means 29 Output means a to e, g, h Temperature sensor Tc Temperature rise value

Claims (9)

巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転状態を示す油温と負荷電流とからなる運転データを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段と、を具備することを特徴とする油入変圧器の余寿命・異常診断システム。 Prototype oil-immersed transformer with operating conditions such as the temperature of the insulation cylinder surrounding the switching switch operating mechanism of the winding, lead conductor, load tap changer, etc. Operation consisting of measured data creation means of oil-filled transformer that creates data files by actually measuring over time according to a predetermined load factor, and oil temperature and load current indicating the operating state of the diagnosed oil-filled transformer Based on the operation status detection means of the oil-filled transformer to be diagnosed that detects data over time, and the data accumulated in the actual data creation means of the oil-filled transformer based on the operation status detected by the operation status detection means Based on the calculation formula for the temperature rise value devised in this way, the arithmetic processing means for calculating the temperature rise value during operation of the diagnostic oil-filled transformer, and the temperature rise value during operation calculated by the arithmetic processing means Based on Simulation means for simulating life loss / abnormality generation of diagnostic oil-filled transformer, display means for displaying information simulated by the simulation means, and output means for outputting simulation information displayed by the display means An oil-immersed transformer remaining life / abnormality diagnosis system characterized by 前記実測データ作成手段により運転中の実測データを取得するために用いるプロトタイプの油入変圧器は、被診断油入変圧器と同一および/または該被診断油入変圧器とほぼ同一の設計にて製造されていることを特徴とする請求項1記載の油入変圧器の余寿命・異常診断システム。   The prototype oil-filled transformer used for acquiring the actually measured data during operation by the measured data creating means is the same as the diagnosed oil-filled transformer and / or substantially the same design as the diagnosed oil-filled transformer. 2. The residual life / abnormality diagnosis system for an oil-filled transformer according to claim 1, wherein the system is manufactured. 前記油入変圧器における余寿命を診断する部位は、巻線であり、異常診断部位は前記巻線、タンク内の絶縁油、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒であることを特徴とする請求項1記載の油入変圧器の余寿命・異常診断システム。   The part for diagnosing the remaining life in the oil-filled transformer is a winding, and the abnormality diagnosis part surrounds the winding, the insulating oil in the tank, the lead conductor, and the switching switch operating mechanism of the on-load tap switching device. 2. The remaining life / abnormality diagnosis system for an oil-filled transformer according to claim 1, wherein the system is an insulating cylinder. 巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常診断を行う部位の温度上昇値を時間および負荷率による関数として当該部位の運転データを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする油入変圧器の余寿命・異常診断システム。 Prototype oil-immersed transformer with operating conditions such as the temperature of the insulation cylinder surrounding the switching switch operating mechanism of the winding, lead conductor, load tap changer, etc. The measurement data creation means of the oil-filled transformer that creates data files by actually measuring over time according to a predetermined load factor, and the part and abnormality diagnosis that contribute to the remaining life during operation of the oil-filled transformer to be diagnosed The temperature rise value of the part to be performed is a function of time and load factor, and the operation data of the diagnostic oil-filled transformer that detects the operation data of the part over time and the operation condition detected by the operation condition detection means In addition, a temperature rise value during operation of the diagnosed oil-filled transformer is calculated based on a formula for calculating a temperature rise value based on data accumulated in the actual measurement data creation means of the oil-filled transformer. An arithmetic processing means, a simulation means for simulating a life loss / abnormality occurrence of a diagnostic oil-filled transformer based on a temperature rise value during operation calculated by the arithmetic processing means, and information simulated by the simulation means are displayed. An oil-immersed transformer remaining life / abnormality diagnosis system comprising: display means; and output means for outputting simulation information displayed by the display means. 巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転状態を示す負荷電流と冷却媒体温度、もしくは、負荷電流と周囲温度のいずれかを経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする油入変圧器の余寿命・異常診断システム。 Prototype oil-immersed transformer with operating conditions such as the temperature of the insulation cylinder surrounding the switching switch operating mechanism of the winding, lead conductor, load tap changer, etc. Measured data creation means of an oil-filled transformer that creates data files by actually measuring over time according to a predetermined load factor, and load current and cooling medium temperature indicating the operating state of the diagnosed oil-filled transformer, or Based on the operation status detection means of the diagnosed oil-filled transformer that detects either load current or ambient temperature over time and the operation status detected by the operation status detection means, actual measurement data creation of the oil-filled transformer An arithmetic processing means for calculating a temperature rise value at the time of operation of the diagnostic oil-filled transformer based on a temperature rise value calculation formula devised based on data accumulated in the means, and calculated by the arithmetic processing means operation Simulation means for simulating life loss / abnormality generation of the oil-filled transformer to be diagnosed based on the temperature rise value in the display, display means for displaying information simulated by the simulation means, and output of simulation information displayed by the display means And a remaining life / abnormality diagnosis system for an oil-filled transformer, comprising: 前記負荷電流は、被診断油入変圧器の2次側の電流、もしくは、1次側の電流および接続タップ情報であることを特徴とする請求項1記載の油入変圧器の余寿命・異常診断システム。   The remaining life / abnormality of an oil-filled transformer according to claim 1, wherein the load current is a current on the secondary side of the oil-filled transformer to be diagnosed, or a current on the primary side and connection tap information. Diagnostic system. 巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常判断を行う部位の温度を、現時刻における温度として経時的に検出する被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする油入変圧器の余寿命・異常診断システム。 Prototype oil-immersed transformer with operating conditions such as the temperature of the insulation cylinder surrounding the switching switch operating mechanism of the winding, lead conductor, load tap changer, etc. The measurement data creation means of the oil-filled transformer that creates data files by actually measuring over time according to a predetermined load factor, and the part that contributes to the remaining life and abnormality judgment during the operation of the diagnosed oil-filled transformer Based on the operating status detected by the operating status detecting means and the operating status detected by the operating status detecting means, the actual condition of the oil-filled transformer is detected. An arithmetic processing means for calculating a temperature rise value during operation of the diagnostic oil-filled transformer based on a temperature rise value calculation formula devised based on data accumulated in the data creating means; and Based on the calculated temperature rise value during operation, simulation means for simulating life loss / abnormality generation of the oil-in-transformer to be diagnosed, display means for displaying information simulated by the simulation means, and display by the display means An oil-immersed transformer remaining life / abnormality diagnosis system, characterized by comprising output means for outputting simulation information. 巻線、引出導体、負荷時タップ切換装置の切換開閉器操作機構を囲繞する絶縁筒の温度等油入変圧器の余寿命および異常診断を行う部位の温度を運転状態のプロトタイプの油入変圧器により所定の負荷率に応じて経時的に実測してデータファイルを作成する油入変圧器の実測データ作成手段と、被診断油入変圧器の運転中において余寿命に寄与する部位および異常判断を行う部位の温度を、負荷変動および周囲温度が変動した場合を想定してシミュレートする機能を具備した被診断油入変圧器の運転状況検出手段と、前記運転状況検出手段により検出した運転状況を基に、前記油入変圧器の実測データ作成手段に蓄積したデータをベースにして案出した温度上昇値の算定式に基づき前記被診断油入変圧器の運転時における温度上昇値を算出する演算処理手段と、前記演算処理手段にて算出した運転時における温度上昇値に基づき被診断油入変圧器の寿命損失・異常発生をシミュレーションするシミュレーション手段と、前記シミュレーション手段によりシミュレーションした情報を表示する表示手段と、前記表示手段にて表示したシミュレーション情報を出力する出力手段とを具備することを特徴とする油入変圧器の余寿命・異常診断システム。 Prototype oil-immersed transformer with operating conditions such as the temperature of the insulation cylinder surrounding the switching switch operating mechanism of the winding, lead conductor, load tap changer, etc. The measurement data creation means of the oil-filled transformer that creates data files by actually measuring over time according to a predetermined load factor, and the part that contributes to the remaining life and abnormality judgment during the operation of the diagnosed oil-filled transformer The operating condition detection means of the oil-in-transformer to be diagnosed having the function of simulating the temperature of the part to be performed assuming that the load fluctuation and the ambient temperature fluctuate, and the operating condition detected by the operating condition detection means Based on the calculation formula for the temperature rise value based on the data accumulated in the actual measurement data creation means of the oil-filled transformer, the temperature rise value during operation of the diagnosed oil-filled transformer is calculated based on An arithmetic processing means, a simulation means for simulating a life loss / abnormality occurrence of the diagnostic oil-filled transformer based on the temperature rise value during operation calculated by the arithmetic processing means, and information simulated by the simulation means are displayed. An oil-immersed transformer remaining life / abnormality diagnosis system comprising: display means; and output means for outputting simulation information displayed by the display means. 前記演算処理手段により演算処理されて算出される被診断油入変圧器の各部位における温度上昇値の算定式は、プロトタイプの油入変圧器にて実測した実測データをベースにして案出した以下の算定式であることを特徴とする請求項1,4,5,7,8記載の油入変圧器の余寿命・異常診断システム。
[数10]
Tc=(Tm−Tn)×exp(-t/τ2)+Tn−(Tm×exp(-t/τ1)
但し、
Tm:定格電流を通電した直後の被診断油入変圧器の最高油温からの各部位の最大温度上昇値(℃)。
Tn:定格電流連続通電時における被診断油入変圧器の最高油温からの各部位の温度上昇値(℃)。
t:通電時間(計算開始時点を0としてそれからどれだけの時間が経過しているかを示す値)。
τ1:定格電流を通電した直後に被診断油入変圧器の各部位において最高油温からの温度が急激に上昇する際の時定数。
τ2:定格電流を通電した直後に被診断油入変圧器の各部位において最高油温からの温度が最高値を示した時点から一定値に落ち着くまでの時定数。
The calculation formula of the temperature rise value in each part of the diagnosed oil-filled transformer calculated by the calculation processing by the calculation processing means is devised based on the actual measurement data actually measured by the prototype oil-filled transformer. The residual life / abnormality diagnosis system for an oil-filled transformer according to claim 1, 4, 5, 7, or 8, characterized in that:
[Equation 10]
Tc = (Tm−Tn) × exp (−t / τ 2) + Tn− (Tm × exp (−t / τ 1) )
However,
Tm: Maximum temperature increase value (° C.) of each part from the maximum oil temperature of the diagnostic oil-filled transformer immediately after the rated current is applied.
Tn: Temperature rise value (° C.) of each part from the maximum oil temperature of the oil-in-transformer to be diagnosed during continuous energization of the rated current.
t: energization time (a value indicating how much time has passed since the calculation start time is 0).
τ1: Time constant when the temperature from the maximum oil temperature suddenly increases in each part of the oil-filled transformer to be diagnosed immediately after the rated current is applied.
τ2: Time constant from when the temperature from the maximum oil temperature reaches the maximum value at each part of the oil-filled transformer to be diagnosed immediately after the rated current is applied until the value reaches a constant value.
JP2004202511A 2004-07-09 2004-07-09 Oil-immersed transformer remaining life/anomaly diagnostic system Pending JP2006024800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202511A JP2006024800A (en) 2004-07-09 2004-07-09 Oil-immersed transformer remaining life/anomaly diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202511A JP2006024800A (en) 2004-07-09 2004-07-09 Oil-immersed transformer remaining life/anomaly diagnostic system

Publications (1)

Publication Number Publication Date
JP2006024800A true JP2006024800A (en) 2006-01-26

Family

ID=35797847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202511A Pending JP2006024800A (en) 2004-07-09 2004-07-09 Oil-immersed transformer remaining life/anomaly diagnostic system

Country Status (1)

Country Link
JP (1) JP2006024800A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046752B1 (en) 2010-06-25 2011-07-06 한국전력공사 Transformer life assessment method
JP2016225379A (en) * 2015-05-28 2016-12-28 株式会社日立産機システム Method and device for diagnosing remaining life of transformer
CN113552434A (en) * 2021-07-21 2021-10-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Oil-immersed current transformer low-temperature characteristic research system based on expert comprehensive judgment
WO2023026578A1 (en) 2021-08-23 2023-03-02 株式会社日立産機システム Diagnostic system for transformer
CN115753880A (en) * 2022-11-22 2023-03-07 西南交通大学 Oil-immersed vehicle-mounted traction transformer heat dissipation performance evaluation method based on comprehensive temperature rise factors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046752B1 (en) 2010-06-25 2011-07-06 한국전력공사 Transformer life assessment method
JP2016225379A (en) * 2015-05-28 2016-12-28 株式会社日立産機システム Method and device for diagnosing remaining life of transformer
CN113552434A (en) * 2021-07-21 2021-10-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Oil-immersed current transformer low-temperature characteristic research system based on expert comprehensive judgment
CN113552434B (en) * 2021-07-21 2022-06-24 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Oil-immersed current transformer low-temperature characteristic research system based on expert comprehensive judgment
WO2023026578A1 (en) 2021-08-23 2023-03-02 株式会社日立産機システム Diagnostic system for transformer
CN115753880A (en) * 2022-11-22 2023-03-07 西南交通大学 Oil-immersed vehicle-mounted traction transformer heat dissipation performance evaluation method based on comprehensive temperature rise factors
CN115753880B (en) * 2022-11-22 2024-03-19 西南交通大学 Evaluation method for heat dissipation performance of oil-immersed vehicle-mounted traction transformer based on comprehensive temperature rise factors

Similar Documents

Publication Publication Date Title
CN100433206C (en) Transformer monitoring system
US8635034B2 (en) Method and system for monitoring transformer health
Karandaev et al. Diagnostic functions of a system for continuous monitoring of the technical condition of the transformers of arc steelmaking furnaces
US8738301B2 (en) Method for gas analysis of on-load tap changers
KR101046752B1 (en) Transformer life assessment method
JP3157374B2 (en) Remaining life diagnosis device for oil-filled transformer
Liniger et al. Early detection of coil failure in solenoid valves
CN115244555A (en) Method and apparatus for assessing overall asset condition
JP2006024800A (en) Oil-immersed transformer remaining life/anomaly diagnostic system
CN116171389A (en) Device for determining a fault probability value for a transformer component and system having such a device
JP2005073478A (en) Equipment monitoring device and equipment monitoring system
JP6689212B2 (en) Life estimation device for pole transformer
Bumblauskas et al. Maintenance and recurrent event analysis of circuit breaker data
Goel et al. Condition monitoring of transformer using oil and winding temperature analysis
Young Transformer life management-condition monitoring
CN111562450A (en) System and method for monitoring service life of reactor
JP2019125767A (en) Transformer deterioration status display device
Cliteur et al. Condition assessment of power transmission and distribution components
JP2013140080A (en) Instrument soundness determination device and method
Agarwal et al. Implementation of remaining useful lifetime transformer models in the fleet-wide prognostic and health management suite
Karlsson A review of lifetime assessment of tranformers and the use of Dissolved Gas Analysis
RU2366059C1 (en) Method of controlling and diagnosing technical state of turbo-generators
Van Der Walt et al. Analytical Condition Monitoring System for Liquid-immersed Transformers
Lee et al. A method for estimating transformer temperatures and elapsed lives considering operation loads
JPH03274473A (en) Oil-filled transformer and apparatus and method for diagnosing life thereof