JP2008066435A - Remaining life assessment apparatus for power transformer - Google Patents

Remaining life assessment apparatus for power transformer Download PDF

Info

Publication number
JP2008066435A
JP2008066435A JP2006241159A JP2006241159A JP2008066435A JP 2008066435 A JP2008066435 A JP 2008066435A JP 2006241159 A JP2006241159 A JP 2006241159A JP 2006241159 A JP2006241159 A JP 2006241159A JP 2008066435 A JP2008066435 A JP 2008066435A
Authority
JP
Japan
Prior art keywords
transformer
winding
life
temperature
history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006241159A
Other languages
Japanese (ja)
Other versions
JP4703519B2 (en
Inventor
Takashi Nakatsuka
俊 中塚
Yuji Yaegashi
裕司 八重樫
Yoshio Sugaya
芳雄 菅谷
Suguru Sasaki
英 佐々木
Takayuki Saito
隆之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitashiba Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2006241159A priority Critical patent/JP4703519B2/en
Publication of JP2008066435A publication Critical patent/JP2008066435A/en
Application granted granted Critical
Publication of JP4703519B2 publication Critical patent/JP4703519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remaining life assessment apparatus for a power transformer capable of carrying out the remaining life assessment with high precision. <P>SOLUTION: This remaining life assessment apparatus for the power transformer creates master curves showing the direct relation among the load record of the removed transformer A and the nearest weather observation data, the life loss ratio V<SB>A</SB>obtained from the winding apex temperature corrected by the insulation oil temperature, the insulating paper moisture content estimated from the insulation oil analysis record, and the average polymerization degree residual rate N<SB>A</SB>measured from the winding insulating paper of the removed transformer. Then, it carries out the remaining life assessment by applying the load record of the transformer for which the remaining life assessment is to be carried out and the nearest weather observation data, the life loss ratio V<SB>2</SB>obtained from the winding apex temperature corrected by the record of the insulation oil temperature, and the insulating paper moisture content obtained from the insulation oil analysis record to the master curves. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力用変圧器の余寿命診断装置に関するものである。 The present invention relates to a remaining life diagnosis device for a power transformer.

変圧器の寿命は巻線絶縁紙の劣化度合いにより左右されるが、一般に劣化度合いを示す「平均重合度残率」が45%程度に低下する値を「寿命の目安」(寿命レベル)としている。しかしながら、運転中の変圧器から平均重合度残率を測定するために巻線絶縁紙を採取することは、巻線を含む変圧器の構造と絶縁紙修復後の絶縁強度維持の観点から極めて難しい。 The life of the transformer depends on the degree of deterioration of the winding insulation paper. In general, the “average residual degree of polymerization” indicating the degree of deterioration is reduced to about 45% as the “estimated life” (life level). . However, it is extremely difficult to collect the winding insulation paper to measure the average polymerization residual ratio from the transformer in operation from the viewpoint of maintaining the insulation strength after repairing the insulation paper and the structure of the transformer including the winding. .

このため、絶縁紙劣化の進行に伴い絶縁油中に発生する劣化指標生成物と呼ばれる化学成分(CO+CO 、フルフラール等)を採油しこれを測定することで、その生成量と平均重合度残率の関係を求め、累積発生量から間接的に余寿命を診断する手法が一般に用いられている(例えば特許文献1)。 For this reason, by collecting and measuring chemical components (CO + CO 2 , furfural, etc.) called degradation indicator products generated in the insulating oil as the insulation paper deteriorates, the amount produced and the average degree of polymerization remaining are measured. In general, a method of diagnosing the remaining life indirectly from the accumulated amount is used (for example, Patent Document 1).

ところが、これら劣化指標生成物の発生元である変圧器の構成材料は、巻線絶縁紙のみならず、プレスボードや木材などがあり、また、発生速度が温度に依存することから、材料構成比の違いや負荷率・外気温度の影響等により、発生量と平均重合度残率の関係にばらつきが発生し精度良く余寿命を診断することは難しかった。また劣化指標生成物による診断は、個々の変圧器が辿ってきた巻線最高点温度の熱履歴の違いにより生成量が左右されることから、推定した平均重合度残率のばらつきが大きく、余寿命診断結果の誤差が大きいという問題があった。 However, the constituent materials of transformers that are the sources of these degradation index products include not only winding insulation paper but also press board and wood, and the generation rate depends on temperature, so the material composition ratio It was difficult to accurately diagnose the remaining lifetime due to variations in the relationship between the amount generated and the average degree of polymerization residual rate due to the difference in load and the influence of the load factor and outside air temperature. In addition, the diagnosis by the degradation index product has a large variation in the estimated average degree of polymerization remaining because the amount of generation depends on the difference in thermal history of the highest winding point temperature that each transformer has traversed. There was a problem that the error of the life diagnosis result was large.

また熱履歴を用いた診断手法として、平均重合度残率と巻線最高点温度の時間積分曲線を予め作成し、温度センサにより測定した温度と時間から前記曲線と比較し余寿命を診断する手法が提案されている(例えば特許文献2)。この場合、変圧器の熱履歴を考慮するには、巻線中への温度センサの埋め込みと、その測定装置等のデータ処理装置の取付けが必要となるため適用される変圧器が限定され、複数台の変圧器を診断する場合には設備が複雑となり実用的ではなかった。 In addition, as a diagnostic method using thermal history, a time integration curve of the average degree of polymerization residual rate and winding maximum point temperature is created in advance, and the remaining life is diagnosed by comparing the curve with the temperature and time measured by the temperature sensor. Has been proposed (for example, Patent Document 2). In this case, in order to consider the thermal history of the transformer, it is necessary to embed a temperature sensor in the winding and to attach a data processing device such as a measuring device thereof, so that the applicable transformer is limited, When diagnosing one transformer, the equipment is complicated and impractical.

このため本発明者は、撤去変圧器の巻線最高点温度の履歴を、少なくとも運転時に記録した外気温度データと負荷履歴から求め、撤去変圧器の運転時における点検の際に測定した絶縁油温度に基づいて、前記巻線最高点温度の履歴を補正し、この複数の撤去変圧器の補正された巻線最高点温度の履歴とその継続時間から得られる寿命損失Vと、撤去変圧器の巻線絶縁紙から測定した巻線絶縁紙の劣化指標となる平均重合度Nとの関係を示すマスターカーブを作成し、被寿命診断変圧器についても、同様に巻線最高点温度の履歴を、少なくとも運転時に記録した外気温度データと負荷履歴から求め、被寿命診断変圧器の運転時における点検の際に測定した絶縁油温度に基づいて、前記巻線最高点温度の履歴を補正し、この被寿命診断変圧器の補正された巻線最高点温度の履歴とその継続時間から得られる寿命損失Vを、前記マスターカーブに当てはめて、平均重合度N を求め、設定した寿命レベルの平均重合度Nに対し当てはめたマスターカーブに対応する寿命損失V と前記平均重合度Nに対応する寿命損失V との差から被寿命診断変圧器の余寿命を診断する方法(特許文献3)を先に開発した。(特許文献3) For this reason, the present inventor obtains the history of the winding maximum point temperature of the removed transformer from at least the outside temperature data and the load history recorded during operation, and the insulating oil temperature measured during the inspection during operation of the removed transformer. Based on the above, the history of the winding maximum point temperature is corrected, the life loss V obtained from the corrected winding maximum point temperature history and the duration of the plurality of removed transformers, and the winding of the removed transformer. Create a master curve showing the relationship with the average polymerization degree N, which is a deterioration index of the winding insulation paper measured from the wire insulation paper, and similarly record at least the highest winding point temperature history for the lifetime diagnostic transformer Obtained from the outside temperature data recorded during operation and the load history, and based on the insulating oil temperature measured during the inspection of the life-testing transformer, the winding maximum point temperature history is corrected and this life Diagnostic transformer supplement Life losses V 1 obtained from the history and its duration of windings highest point temperature, by applying the master curve, an average polymerization degree of N 1, fitted to an average degree of polymerization N 0 lifetime level set It was developed as the life loss V 0 corresponding to the master curve from the difference between life loss V 1 corresponding to the average degree of polymerization N 1 before the method (Patent Document 3) for assessing the remaining service life of the lifting transformer . (Patent Document 3)

先に提案した診断方法(特許文献3)の精度を更に向上させるため、加速劣化試験を行い絶縁紙に含有する水分と寿命損失比の関係を検討した結果、寿命損失比が同じであっても絶縁紙に含有する水分が多いほど,平均重合度残率の低下が顕著であることを確認した。この結果により,絶縁紙に含有する水分量が絶縁紙の劣化に大きな影響を及ぼすことが判明したため,被寿命診断変圧器の巻線最高点温度における絶縁紙の水分量を求めることで,更に余寿命診断の精度が向上することが確認された。
特開2002−367842 特公平2−27809号 特開2006−60134
In order to further improve the accuracy of the previously proposed diagnostic method (Patent Document 3), an accelerated deterioration test was conducted to examine the relationship between the moisture contained in the insulating paper and the life loss ratio. It was confirmed that the more the moisture contained in the insulating paper, the more remarkable the decrease in the average polymerization degree residual rate. As a result, it was found that the amount of moisture contained in the insulating paper has a significant effect on the deterioration of the insulating paper. It was confirmed that the accuracy of life diagnosis improved.
JP 2002-367842 A Japanese Patent Publication No. 2-27809 JP2006-60134

本発明は上記問題を改善するため、巻線絶縁紙の熱履歴、絶縁紙水分量と平均重合度残率の直接的な関係を求め、劣化指標生成物による診断での誤差要因となる熱履歴や設計条件の違い等を排除することで、更に余寿命診断精度の向上を図った電力用変圧器の余寿命診断装置を提供するものである。 In order to solve the above problems, the present invention obtains a direct relationship between the thermal history of the winding insulating paper, the moisture content of the insulating paper and the average polymerization degree residual rate, and the thermal history that causes an error in the diagnosis by the deterioration index product. It is an object of the present invention to provide a power transformer remaining life diagnosis device that further improves the remaining life diagnosis accuracy by eliminating differences in design conditions.

本発明の請求項1記載の電力用変圧器の余寿命診断装置は、
(1)撤去変圧器の巻線最高点温度の履歴を、運転時に記録した外気温度データや負荷履歴から求める第1の手段と、
(2)撤去変圧器の運転時における点検の際に測定した絶縁油温度から、前記巻線最高点温度の履歴を補正する第2の手段と、
(3)撤去変圧器の運転時における採油の際に測定した絶縁油中水分に基づいて、前記巻線最高点温度の絶縁紙水分量を求める第3の手段と、
(4)この撤去変圧器の補正した巻線最高点温度の履歴とその継続時間から得られる寿命損失比Vおよびその絶縁紙水分量Wと、撤去変圧器の巻線絶縁紙から測定した巻線絶縁紙の劣化指標となる平均重合度残率Nとの関係からマスターカーブを作成する第4の手段と、
(5)被寿命診断変圧器の巻線最高点温度の履歴を、運転時に記録した外気温度データや負荷履歴から求める第5の手段と、
(6)被寿命診断変圧器の運転時における点検の際に測定した絶縁油温度から、前記巻線最高点温度の履歴を補正する第6の手段と、
(7)被寿命診断変圧器の運転時における採油の際に測定した絶縁油中水分に基づいて、前記巻線最高点温度の絶縁紙水分量を求める第7の手段と、
(8)この被寿命診断変圧器の補正巻線最高点温度の履歴とその継続時間から得られる寿命損失比V およびその絶縁紙水分量W を、前記第4の手段で作成したマスターカーブに当てはめて、平均重合度残率N を求め、設定した寿命レベルの平均重合度残率N に対し、当てはめたマスターカーブに対応する寿命損失比V と前記平均重合度残率Nに対応する寿命損失比V との差から被寿命診断変圧器の余寿命を測定する第8の手段とからなることを特徴とするものである。
The remaining life diagnosis device for a power transformer according to claim 1 of the present invention comprises:
(1) a first means for obtaining a history of the winding maximum point temperature of the removal transformer from outside temperature data and load history recorded during operation;
(2) a second means for correcting the history of the highest winding point temperature from the insulating oil temperature measured at the time of inspection during operation of the removed transformer;
(3) Third means for determining the amount of moisture in the insulating paper at the highest winding point temperature based on the moisture in the insulating oil measured during oil collection during operation of the removal transformer;
(4) Life loss ratio V obtained from the history of the corrected maximum winding temperature of the removed transformer and its duration, the insulation paper moisture content W, and the winding measured from the insulated wire of the removed transformer A fourth means for creating a master curve from the relationship with the average degree of polymerization residual N, which is an indicator of deterioration of insulating paper,
(5) Fifth means for obtaining the history of the winding maximum point temperature of the life span diagnosis transformer from the outside temperature data and load history recorded during operation;
(6) Sixth means for correcting the history of the highest winding point temperature from the insulating oil temperature measured at the time of inspection during operation of the lifetime diagnostic transformer;
(7) Seventh means for obtaining the insulation paper moisture content at the highest winding point temperature based on the moisture in the insulation oil measured at the time of oil collection during the operation of the life span diagnostic transformer;
(8) A master curve prepared by the fourth means, with the life loss ratio V 1 and its insulating paper moisture content W 1 obtained from the history of the corrected winding maximum point temperature of this life-testable diagnostic transformer and its continuation time. to be fitted, the average degree of polymerization Retention N 1 look, to the average degree of polymerization Retention N 0 lifetime level set, lifetime loss ratio V 0 and the average polymerization degree of survival rate N 1 corresponding to the master curve fitted and it is characterized in that consists of the difference between life loss ratio V 1 corresponding to the eighth means for measuring the remaining life of the lifting transformer.

本発明の請求項2記載の電力用変圧器の余寿命診断装置は、マスターカーブを作成する第4の手段において、撤去変圧器の巻線絶縁紙から測定した平均重合度残率と絶縁油中水分量から求めた絶縁紙水分量、および巻線絶縁紙の加速劣化試験から測定した平均重合度残率と絶縁油中水分量から求めた絶縁紙水分量を用いることを特徴とするものである。 According to a second aspect of the present invention, in the fourth means for creating the master curve, the remaining degree of polymerization in the insulating oil and the average polymerization degree residual rate measured from the winding insulating paper of the removed transformer It is characterized by using the insulating paper moisture content obtained from the moisture content, and the insulating paper moisture content obtained from the average polymerization degree residual rate measured from the accelerated deterioration test of the winding insulating paper and the moisture content in the insulating oil. .

本発明に係る請求項1記載の電力用変圧器の余寿命診断装置によれば、入手が比較的容易な撤去変圧器の負荷記録や外気温度を求める最寄りの気象観測データから求めた巻線最高点温度と、絶縁油温度の点検記録により補正した巻線最高点温度から得られる寿命損失比Vおよび絶縁油中水分量から求めた絶縁紙水分量Wと、撤去変圧器の巻線絶縁紙から測定した平均重合度残率Nとの直接的な関係を求めたマスターカーブを作成し、被寿命診断変圧器の負荷記録や最寄りの気象観測データから求めた巻線最高点温度と絶縁油温度の点検記録により補正した巻線最高点温度から得られる寿命損失比V および絶縁油中水分量から求めた絶縁紙水分量Wを、マスターカーブに当てはめ,設定した寿命レベルの平均重合度残率Nに対し、当てはめたマスターカーブに対応する寿命損失比V との差から余寿命を求めることにより、精度良く余寿命を診断することができ、誤差要因を含む劣化指標生成物発生量による診断手法に比べて精度の高い余寿命診断が可能である。 According to the remaining life diagnosis device for a power transformer according to claim 1 of the present invention, the highest winding obtained from the nearest meteorological observation data for obtaining the load record of the removed transformer and the outside air temperature, which is relatively easy to obtain. From the insulation paper moisture amount W obtained from the life loss ratio V and the amount of moisture in the insulation oil obtained from the point temperature and the winding maximum point temperature corrected by the inspection record of the insulation oil temperature, and the winding insulation paper of the removed transformer Create a master curve that determines the direct relationship with the measured average degree of polymerization residual N, and calculate the maximum winding temperature and insulating oil temperature obtained from the load record of the life-span diagnosis transformer and the nearest weather observation data. The life loss ratio V 1 obtained from the maximum winding temperature corrected by the inspection record and the insulating paper moisture content W 1 obtained from the moisture content in the insulating oil are applied to the master curve, and the average polymerization degree remaining rate at the set life level is applied. for N 0, against By determining the remaining life from the difference between life loss ratio V 0 corresponding to the meta master curve, it can be diagnosed accurately remaining service life, as compared with the diagnosis method by degradation index product emissions containing error factor Accurate remaining life diagnosis is possible.

従って本装置は巻線最高点温度の履歴が全く異なる変圧器であっても、絶縁紙劣化の進展がアレニウス則に従っていることから、指標となるマスターカーブ(寿命損失比−絶縁紙中水分量−平均重合度残率曲線)は絶縁紙水分量をパラメータとした曲線で簡便に表現することができる。変圧器は一般に仕様や製造メーカーの違いによりタイプ毎に冷却装置の冷却能力が異なるが、冷却能力の違いや日射などの気象条件により巻線最高点温度の変動要因が大きい屋外設置の電力用変圧器においても、絶縁油温度の実測値を用いた補正により診断精度を高めることができるのが特徴である。 Therefore, even if this device is a transformer with a completely different winding maximum point temperature history, the progress of insulation paper obeys the Arrhenius law, so the master curve (life loss ratio-moisture content in insulation paper- The average degree-of-polymerization degree residual curve can be simply expressed by a curve with the moisture content of the insulating paper as a parameter. In general, transformers have different cooling capacities for each type depending on specifications and manufacturers, but outdoor power transformers that have large fluctuation factors in the maximum winding temperature due to differences in cooling capacity and weather conditions such as solar radiation. The analyzer is also characterized in that the diagnostic accuracy can be improved by correction using the measured value of the insulating oil temperature.

また請求項2記載の電力用変圧器の余寿命診断装置によれば、撤去変圧器の巻線絶縁紙から測定した平均重合度残率および絶縁油中水分から求めた絶縁紙水分量に加え、更に巻線絶縁紙の加速劣化試験から測定した平均重合度残率および絶縁油中水分から求めた絶縁紙水分量を用いることにより、撤去変圧器においては得られ難い領域(寿命レベルや危険レベル)でのマスターカーブを得ることができる。このため、本装置においては、加速劣化試験で得られる平均重合度残率および絶縁紙水分のデータを用い、撤去変圧器のデータのない領域を補足すると診断精度を更に向上させることができる。 Further, according to the remaining life diagnosis device for a power transformer according to claim 2, in addition to the average residual polymerization rate measured from the winding insulating paper of the removed transformer and the insulating paper moisture content obtained from the moisture in the insulating oil, Furthermore, by using the average polymerization degree residual rate measured from the accelerated deterioration test of the winding insulation paper and the moisture content of the insulation paper obtained from the moisture in the insulation oil, it is difficult to obtain in the transformer (life level and danger level) You can get a master curve at For this reason, in this apparatus, the data of the average degree of polymerization remaining and the insulating paper moisture data obtained in the accelerated deterioration test can be used to supplement the area without the data of the removed transformer to further improve the diagnostic accuracy.

電力用変圧器の寿命を左右する巻線絶縁紙の劣化度合いを推定し、余寿命診断精度を向上させた余寿命診断装置を実現した。 We estimated the degree of deterioration of the winding insulation paper that affects the life of power transformers and realized a remaining life diagnostic device with improved remaining life diagnosis accuracy.

以下本発明の実施例を図1ないし図7を参照して詳細に説明する。先ず第1の手段では、撤去変圧器について巻線最高点温度(ホットスポット)の巻線絶縁紙を採取し平均重合度残率を測定する。また必要に応じて、更に巻線絶縁紙の加速劣化試験を行い、平均重合度残率を測定しても良い。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. First, in the first means, the winding insulation paper of the highest winding point temperature (hot spot) is taken from the removed transformer, and the average polymerization degree residual rate is measured. If necessary, an accelerated deterioration test of the winding insulating paper may be further performed to measure the average degree of polymerization remaining.

次に撤去変圧器の過去の負荷記録(日時、負荷率等)と、撤去変圧器が設置されていた場所に最も近い気象観測地点で観測された外気温度データとから巻線最高点温度を算出する。図1は、外気温変動と負荷による温度上昇の関係を示す図であり、継続時間hにおける任意負荷時の巻線最高点温度θ は、下記(1)式により外気温度θt と負荷電流によって生じる温度上昇θ の和で求める。
θ [℃]=θt [℃]+θ [K] ・・・・(1)
θ :継続時間hにおける任意負荷時の巻線最高点温度[℃]
θt :継続時間hにおける任意負荷時の外気温度[℃]
θ :継続時間hにおける任意負荷時の巻線最高点温度上昇値[K ]
具体的な巻線最高点温度は図2に示す定格負荷時における変圧器内部温度分布と図3に示す継続時間hにおける任意負荷時の変圧器内部温度分布の関係から以下の手順で求める。
1.継続時間hにおける負荷率Lf
Lf=Px/Pn(=(負荷データ[kW]/力率)/変圧器定格負荷[kW])(i)
Px:継続時間hにおける任意負荷[kW]
Pn:定格負荷[kW]
2.継続時間hにおける任意負荷時の負荷損Wcx
Wcx =(Lf) ×Wcn (ii)
Wcn :定格負荷時の負荷損[kW](工場試験記録データ引用)
3.継続時間hにおける任意負荷時の最高油温度上昇値θoil (JEC-2200-1995 「変圧器」参照)
θoil ={(Wcx +Wfn )/(Wcn +Wfn )}0.8 ×θoiln (iii)
Wfn :無負荷損[kW]
θoiln:定格負荷時の最高油温度上昇値[K ](工場試験記録データ引用)
4.定格負荷時の巻線最高点温度・最高油温度間 温度差△θwmn (図2参照)
△θwmn =θwn+εmn(=15または10)―θoiln (iv)
θwn:定格負荷時の中央部平均巻線温度上昇値[K ]
εmn:巻線最高点温度と抵抗法によって測定される巻線平均温度との差(油
自然循環の場合には15℃,油強制循環の場合には10℃)
5.継続時間hにおける任意負荷時の巻線最高点温度・最高油温度間 温度差△θwm(JEC-2200-1995 「変圧器」ならびに図3参照)
△θwm=(Lf)1.6 ×△θwmn (v)
6.継続時間hにおける任意負荷時の巻線最高点温度上昇値θ (図3参照)
θ =θoil +△θwm (vi)
7.継続時間hにおける任意負荷時の最高油温度θoilest
θoilest=θt +θoil (vii)
Next, calculate the highest winding point temperature from the past load record (date, load factor, etc.) of the removed transformer and the outside air temperature data observed at the weather observation point closest to the place where the removed transformer was installed. To do. FIG. 1 is a diagram showing the relationship between the outside air temperature fluctuation and the temperature rise due to the load. The winding maximum point temperature θ 0 at an arbitrary load during the duration h is calculated by the following equation (1) according to the outside air temperature θt and the load current. determined by the sum of the resulting temperature rise theta L.
θ 0 [° C.] = θ t [° C.] + θ L [K] (1)
θ 0 : Winding maximum point temperature at an arbitrary load for duration h [° C.]
θt: Outside air temperature [° C] at an arbitrary load for duration h
θ L : Winding maximum point temperature rise value [K] at an arbitrary load for duration h
The specific winding maximum point temperature is obtained by the following procedure from the relationship between the internal temperature distribution of the transformer at the rated load shown in FIG. 2 and the internal temperature distribution of the transformer at the arbitrary load during the duration h shown in FIG.
1. Load factor Lf at duration h
Lf = Px / Pn (= (load data [kW] / power factor) / transformer rated load [kW]) (i)
Px: Arbitrary load [kW] for duration h
Pn: Rated load [kW]
2. Load loss Wcx at arbitrary load for duration h
Wcx = (Lf) 2 × Wcn (ii)
Wcn: Load loss at rated load [kW] (factory test record data quoted)
3. Maximum oil temperature rise value θoil at any load for duration h (see JEC-2200-1995 “Transformer”)
θoil = {(Wcx + Wfn) / (Wcn + Wfn)} 0.8 × θoiln (iii)
Wfn: No-load loss [kW]
θoiln: Maximum oil temperature rise at rated load [K] (factory test record data quoted)
4). Temperature difference between maximum winding temperature and maximum oil temperature at rated load △ θwmn (See Fig. 2)
Δθwmn = θwn + εmn (= 15 or 10) −θoiln (iv)
θwn: Average winding temperature rise at the center at rated load [K]
εmn: Difference between winding maximum point temperature and winding average temperature measured by resistance method (15 ° C for natural oil circulation, 10 ° C for oil forced circulation)
5. Temperature difference between winding maximum point temperature and maximum oil temperature at any load for duration h Δθwm (see JEC-2200-1995 “Transformer” and Fig. 3)
Δθwm = (Lf) 1.6 × Δθwmn (v)
6). Winding maximum point temperature rise value θ L at any load during duration h (see FIG. 3)
θ L = θoil + Δθwm (vi)
7). Maximum oil temperature θoilest at any load for duration h
θoilest = θt + θoil (vii)

第2の手段として、撤去変圧器の運転時における点検の際に測定した絶縁油温度から、(1)式で求めた巻線最高点温度の履歴を補正する。つまり、運転時における点検の際に変圧器の絶縁油温度の実測値が測定可能であることから、この時の絶縁油温度記録を参照して次式により、巻線最高点温度の補正を行う。
θ[℃]=θ [℃]+(θoilmeasav [℃]−θoilestav[℃])・・・ (2)
また、同様にして、最高油温度の補正を行う。
θoilh[℃]=θoilest[℃]+(θoilmeasav [℃]−θoilestav[℃])(3)
θ:継続時間hにおける任意負荷時の補正巻線最高点温度[℃]
θ :継続時間hにおける任意負荷時の巻線最高点温度[℃]
θoilh:継続時間hにおける任意負荷時の補正最高油温度[℃]
θoilmeasav :実測最高油温度[℃](定期的な点検により測定される最高油温度記録の年間平均値)
θoilestav:最高油温度[℃]((vii)式により得られる毎月の推定最高油温度最大値の年間平均値)
As a second means, the history of the highest winding point temperature obtained by the equation (1) is corrected from the insulating oil temperature measured at the time of inspection during operation of the removal transformer. In other words, since the measured value of the insulation oil temperature of the transformer can be measured at the time of inspection during operation, the winding maximum point temperature is corrected by the following equation with reference to the insulation oil temperature record at this time. .
θ [° C.] = θ 0 [° C.] + (θoilmeasav [° C.] − θoilestav [° C.]) (2)
Similarly, the maximum oil temperature is corrected.
θoilh [° C.] = θoilest [° C.] + (θoilmeasav [° C.] − θoilestav [° C.]) (3)
θ: Corrected winding maximum point temperature [° C] at any load for duration h
θ 0 : Winding maximum point temperature at an arbitrary load for duration h [° C.]
θoilh: Corrected maximum oil temperature [℃] at an arbitrary load for duration h
θoilmeasav: Actual maximum oil temperature [° C] (annual average value of maximum oil temperature record measured by regular inspection)
θoilestav: Maximum oil temperature [° C] (annual average value of the maximum estimated maximum oil temperature every month obtained by the formula (vii))

第3の手段として、撤去変圧器の過去の絶縁油分析記録より、油中水分量Woiから上部絶縁物の水分量Wを以下の手順で求める。
絶縁油温度(上部絶縁物温度)の等価温度θoileは,巻線最高点温度を求める過程で得られる継続時間hiにおける最高油温度θoilhと継続時間hiから(4)式により求める。






(4)式により得られる絶縁油温度(上部絶縁物温度)の等価温度θoileを(5)式により絶対温度Tmに置き換える。
Tm=273+θoile (5)
Tm:絶縁油温度(上部絶縁物温度)の等価温度θoileの絶対温度換算値[K]
絶縁油中水分と絶縁紙水分の関係を表わした図4から得られる(6)式により絶縁油温度(上部絶縁物温度)Tmiと油中水分量Woiから上部絶縁物の水分量Wmiを求める。
log(Wmi)=A+Alog(Woi)+A(log(Woi))2
+Alog(Tmi)+A(log(Tmi)) (6)
Wmi:上部絶縁物の水分量[%]
Woi:油中水分量[ppm]
mi:絶縁油温度[K]
A〜A:定数(図4より得た回帰式の係数)
※(6) 式は3次以上の式でもかまわない。また、対数でなくてもよい。
複数個(i=1〜n個)の絶縁油分析記録より(6)式で求めた上部絶縁物の水分量Wm1…Wmn(i=1〜n個)においてバラツキの大きいデータを排除したWmj(j=1〜m(m≦n))により、適正な上部絶縁物水分量の平均値Wmは(7)式で求める。




絶縁油中水分と絶縁紙水分の関係を表わした図4から得られる(8)式を用い、適正上部絶縁物水分量平均値Wm[%]に対応する適正な油中水分量Wo [ppm]を求める。
log(Wo)=B+Blog(Wm)+B(log(Wm))2
+Blog(Tm)+B(log(Tm))2 (8)
Wo:適正油中水分量[ppm]
Wm:適正上部絶縁物水分量[%]
Tm:絶縁油等価温度[K]
B〜B:定数(図4より得た回帰式の係数)
※(8)式は3次以上の式でもかまわない。また、対数でなくてもよい。
また、(8)式の絶縁油等価温度Tmは(9)式に示す絶縁油平均温度Tmhを代入して適正な油中水分量Woを求めてもよい。




As a third means, from past insulating oil analysis record removal transformer, obtains the water content W m of the upper insulator from the oil water content Woi by the following procedure.
The equivalent temperature θoile of the insulating oil temperature (upper insulator temperature) is obtained from the maximum oil temperature θoilh and duration h i obtained in the process of obtaining the winding maximum point temperature by the equation (4).






The equivalent temperature θoile of the insulating oil temperature (upper insulator temperature) obtained by the equation (4) is replaced with the absolute temperature Tm by the equation (5).
Tm = 273 + θoile (5)
Tm: Absolute temperature conversion value [K] of equivalent temperature θoile of insulating oil temperature (upper insulator temperature)
The water content Wmi of the upper insulator is obtained from the insulating oil temperature (upper insulator temperature) Tmi and the water content Woi in the oil by the equation (6) obtained from FIG. 4 showing the relationship between the moisture in the insulating oil and the moisture of the insulating paper.
log (W mi ) = A 0 + A 1 log (W oi ) + A 2 (log (W oi )) 2
+ A 3 log (T mi ) + A 4 (log (T mi )) 2 (6)
W mi : Moisture content of upper insulator [%]
Woi: Water content in oil [ppm]
T mi : Insulating oil temperature [K]
A 0 to A 4 : Constant (coefficient of regression equation obtained from FIG. 4)
* Equation (6) may be a third or higher order equation. Moreover, it may not be a logarithm.
Excluded data with large variations in the water content W m1 ... W mn (i = 1 to n) of the upper insulator determined by the equation (6) from a plurality (i = 1 to n) of insulating oil analysis records From W mj (j = 1 to m (m ≦ n)), an appropriate average value Wm of the upper insulator water content is obtained by equation (7).




Using the equation (8) obtained from Fig. 4 which shows the relationship between the moisture in insulating oil and the moisture in insulating paper, the appropriate amount of water in oil Wo [ppm] corresponding to the average value of the upper insulating water content Wm [%] Ask for.
log (Wo) = B 0 + B 1 log (Wm) + B 2 (log (Wm)) 2
+ B 3 log (T m ) + B 4 (log (T m )) 2 (8)
Wo: Water content in proper oil [ppm]
Wm: Appropriate upper insulator moisture content [%]
Tm: Insulating oil equivalent temperature [K]
B 0 to B 4 : Constant (coefficient of regression equation obtained from FIG. 4)
* Equation (8) may be a third or higher order equation. Moreover, it may not be a logarithm.
In addition, the insulating oil equivalent temperature Tm in the equation (8) may be calculated by substituting the insulating oil average temperature Tmh shown in the equation (9) for the proper water content Wo.




第4の手段として、撤去変圧器の補正した巻線最高点温度θの履歴とその継続時間h から得られる寿命損失比Vと総運転時間Hでの巻線最高点温度の等価温度θeを求め、巻線の絶縁紙水分量Weを求める。
巻線最高点温度の等価温度θeは,巻線最高点温度を求める過程で得られる継続時間hiにおける巻線最高点温度θと継続時間hiから(10)式により求める。






(10)式により得られる巻線最高点温度の等価温度θeを(11)式により絶対温度Toに置き換える。
To=273+θe (11)
To:巻線最高点温度の等価温度θeの絶対温度換算値[K]

絶縁油中水分と絶縁紙水分の関係を表わした図4から得られる(12)式により適正油中水分量Woと巻線最高点等価温度Toから巻線最高点温度の絶縁紙水分量Weを求める。
log(We)=A+Alog(Wo)+A(log(Wo))2
+Alog(To)+A(log(To))2 (12)
We:巻線の絶縁紙水分量[%]
Wo:適正油中水分量 [ppm]
To:巻線最高点等価温度[K]
A〜A:定数(図4より得た回帰式の係数)
※(12)式は3次以上の式でもかまわない。また、対数でなくてもよい。
また、(12)式の巻線最高点等価温度Toは(13)式に示す巻線最高点平均温度Tohを代入して巻線の絶縁紙水分量Weを求めてもよい。


As a fourth means, an equivalent temperature θe winding highest point temperature in the removal transformer correction windings highest point temperature θ history and its duration h lifetime loss ratio obtained from i V and the total operation time H Obtain the insulation paper moisture content We of the winding.
The equivalent temperature θe of the highest winding point temperature is obtained by the equation (10) from the highest winding point temperature θ and the duration h i during the duration h i obtained in the process of obtaining the highest winding point temperature.






The equivalent temperature θe of the highest winding point temperature obtained by equation (10) is replaced with absolute temperature To by equation (11).
To = 273 + θe (11)
To: Absolute temperature converted value [K] of equivalent temperature θe of winding maximum point temperature

The expression (12) obtained from Fig. 4 showing the relationship between the moisture in the insulating oil and the moisture in the insulating paper. From the appropriate oil moisture Wo and the maximum winding equivalent temperature To, the insulation paper moisture We at the highest winding temperature is obtained. Ask.
log (We) = A 0 + A 1 log (W o ) + A 2 (log (W o )) 2
+ A 3 log (To) + A 4 (log (To)) 2 (12)
W e : Insulation paper moisture content of winding [%]
Wo: Water content in oil [ppm]
To: Maximum winding equivalent temperature [K]
A 0 to A 4 : Constant (coefficient of regression equation obtained from FIG. 4)
* Equation (12) can be 3rd order or higher. Moreover, it may not be a logarithm.
Further, the winding maximum point equivalent temperature To in the equation (12) may be substituted for the winding maximum point average temperature Toh shown in the equation (13) to determine the insulation paper moisture content We of the winding.


次に寿命損失比Vと、撤去変圧器の巻線絶縁紙および加速劣化試験による巻線絶縁紙の平均重合度残率Nとの関係を、図5に示すようにプロットする。撤去変圧器については、上記手段をそれぞれ行なって寿命損失比V、巻線最高点温度の絶縁紙水分量Wおよび平均重合度残率Nとの関係をプロットする。
例えば
撤去変圧器Aについては、
寿命損失比V =exp(b θ )×h /V30、巻線最高点温度の絶縁紙の水分量W および平均重合度残率N
撤去変圧器Bについては、
寿命損失比V =exp(b θ )×h /V30、巻線最高点温度の絶縁紙の水分量W および平均重合度残率N
撤去変圧器Cについては、
寿命損失比V =exp(b θ )×h /V30、巻線最高点温度の絶縁紙の水分量W および平均重合度残率N
また加速劣化試験についても同様に、
寿命損失比V =exp(b θ )×h /V30、巻線最高点温度の絶縁紙の水分量W および平均重合度残率N
等を得ることにより図5に示すマスターカーブを作成する。このマスターカーブは巻線最高点温度の絶縁紙水分量Weと寿命損失比Vおよび平均重合度残率Nの関係から(14)式で表わすことができる。
平均重合度残率N[%]=100+(α−100)/{1+(βm/V)γm} (14)
α:平均重合度残率の最終値
βm,γm:絶縁紙に含有する水分量We[%]によって決まる定数
log(βm)=β+βlog(We)+β(log(We)) (15)
log(γm)=γ+γlog(We)+γ(log(We)) (16)
β〜β,γ〜γ:定数
※(15)、(16)式は3次以上の式でもかまわない。また、対数でなくてもよい。
また、(14)式から変圧器寿命レベルの平均重合度残率Nを45[%]とすると、その時の寿命損失比Vは、(17)式で求められる。
変圧器寿命レベルの寿命損失比V=βm{(100−45)/(45−α)}(1/γm)(17)
よって、変圧器寿命レベルの寿命損失比Vは,巻線最高点温度の絶縁紙水分量We[%]により(15)、(16)式を用いて、βm,γmが求められるので一意的に決定する。
また、変圧器寿命レベルの寿命損失比Vは一般に危険レベルと定義されている平均重合度残率25[%]やそれ以外の値にも置換え可能である。
Next, the relationship between the life loss ratio V and the average polymerization degree residual ratio N of the winding insulation paper of the removed transformer and the winding insulation paper by the accelerated deterioration test is plotted as shown in FIG. For the removal transformer, the above-mentioned means are performed, and the relationship between the life loss ratio V, the insulation paper moisture content W at the highest winding point temperature, and the average polymerization degree residual ratio N is plotted.
For example, for removal transformer A,
Life loss ratio V A = exp (b θ A ) × h A / V 30, the moisture content of insulating paper winding highest point temperature W A and the average degree of polymerization residual ratio N A,
For removal transformer B,
Life loss ratio V B = exp (b θ B ) × h B / V 30 , moisture content W B of insulating paper at winding maximum point temperature and average polymerization degree residual ratio N B ,
For the removal transformer C,
Life loss ratio V C = exp (b θ C ) × h C / V 30 , moisture content W C of insulating paper at the highest winding point temperature and average degree of polymerization N C ,
The same applies to the accelerated deterioration test.
Life loss ratio V E = exp (b θ E ) × h E / V 30 , moisture content W E of insulating paper at the highest winding point temperature and average polymerization degree residual rate N E
Etc. are created to create the master curve shown in FIG. This master curve can be expressed by equation (14) from the relationship between the insulation paper moisture content We at the highest winding point temperature, the life loss ratio V, and the average polymerization degree residual ratio N.
Average degree of polymerization residual N [%] = 100+ (α−100) / {1+ (βm / V) γm } (14)
α: Final value of average degree of polymerization residual rate βm, γm: Constants determined by water content We [%] contained in insulating paper
log (βm) = β 0 + β 1 log (We) + β 2 (log (We)) 2 (15)
log (γm) = γ 0 + γ 1 log (We) + γ 2 (log (We)) 2 (16)
β 0 to β 2 , γ 0 to γ 2 : Constants * The equations (15) and (16) may be equations of third order or higher. Moreover, it may not be a logarithm.
Further, assuming that the average polymerization degree residual N 0 at the transformer life level is 45 [%] from the equation (14), the life loss ratio V 0 at that time can be obtained by the equation (17).
Life Loss Ratio of Transformer Life Level V 0 = βm {(100−45) / (45−α)} (1 / γm) (17)
Therefore, the life loss ratio V 0 at the transformer life level is unique because βm and γm are obtained by using equations (15) and (16) from the insulation paper moisture amount We [%] at the highest winding temperature. To decide.
Further, the life loss ratio V 0 of the transformer life level can be replaced with an average polymerization degree residual rate of 25 [%], which is generally defined as a dangerous level, and other values.

第5の手段として、被寿命診断変圧器の負荷記録(日時、負荷率等)と、被寿命診断変圧器が少なくとも運転時に記録した外気温度データとから巻線最高点温度を算出する。この巻線最高点温度は上記(1)式により算出する。 As a fifth means, the highest winding point temperature is calculated from the load record (date and time, load factor, etc.) of the life diagnosis transformer and the outside temperature data recorded by the life diagnosis transformer at least during operation. The highest winding point temperature is calculated by the above equation (1).

第6の手段として、被寿命診断変圧器の運転時における点検の際に測定した絶縁油温度記録を参照して、前記巻線最高点温度の履歴を上記(2)式により補正する。また、絶縁油温度の履歴を(3)式により補正する。 As a sixth means, the history of the highest winding point temperature is corrected by the above equation (2) with reference to the insulating oil temperature record measured at the time of inspection during operation of the lifespan diagnostic transformer. Further, the history of the insulating oil temperature is corrected by the equation (3).

第7の手段として、被寿命診断変圧器の運転時における採油の際に測定した絶縁油温度と絶縁油中水分に基づいて、上部絶縁物の水分量Wmiを上記(4)、(5)、(6)式により、適正な上部絶縁物水分量平均値Wmおよび適正な油中水分量Woを上記(7)、(8)式により求める。
次に被寿命診断変圧器の巻線最高点温度の等価温度θeを上記(10)式により求め、巻線の絶縁紙水分量Weを適正な油中水分量Woと巻線最高点温度の等価温度Toにより、上記(12)式により求める。
As a seventh means, based on the insulating oil temperature and the moisture in the insulating oil measured at the time of oil collection during the operation of the life-time diagnostic transformer, the water content Wmi of the upper insulator is the above (4), (5), The appropriate upper insulator water content average value Wm and the appropriate oil water content Wo are obtained from the above equations (7) and (8) by the equation (6).
Next, the equivalent temperature θe of the highest winding temperature of the life-testing transformer is obtained by the above equation (10), and the insulation paper moisture amount We of the winding is equivalent to the appropriate amount of moisture in oil Wo and the highest winding temperature. From the temperature To, the above equation (12) is used.

第8の手段として、被寿命診断変圧器の寿命損失比Vを求めることで、平均重合度残率Nを、余寿命損失比Vを求めることで余寿命hを診断する手順を以下に示す。
この被寿命診断変圧器の寿命損失比V と巻線最高点等価温度の巻線絶縁紙水分量W を図5に示すマスターカーブに当てはめると平均重合度残率N と診断される。
次にマスターカーブで設定した寿命レベルの寿命損失比V との差から被寿命診断変圧器の残存する余寿命損失比V を算出する。
被寿命診断変圧器の余寿命損失比V =V −V (18)
被寿命診断変圧器が今後も現在と同じ運用状況で運転されると仮定すれば、被寿命診断変圧器の余寿命損失比Vは(19)式となる。






よって、(18)式と(19)式が等価になった時が(20)式であり、その時が余寿命h2iになる。
0-V1=exp (bθ11)×h21+exp (bθ12)×h22+・・・
・・・+exp (bθ1i)×h2i+・・・exp (bθ1n )×h2n (i=1〜n)(20)
被寿命診断変圧器の余寿命h2iは、(21)式で求めることができ,
2i =h21+h22+・・・・・ +h2n (21)
となり、余寿命が残り(h21+h22+・・・・・ +h2n) であると診断される。
また、被寿命診断変圧器の余寿命h2iは(22)式でも求めることができる。
2i =H×(V0−V1)/V1 (22)
As an eighth means, a procedure for diagnosing the remaining life h 2 by obtaining the average remaining degree of polymerization N 1 and obtaining the remaining life loss ratio V 2 by obtaining the life loss ratio V 1 of the lifespan diagnostic transformer. It is shown below.
This is diagnosed life loss ratio V 1 and winding insulating paper moisture content W 1 of the winding maximum equivalent temperature of the lifetime assessment transformer and applying the master curve shown in FIG. 5 and the average degree of polymerization survival rate N 1.
Then to calculate the remaining life loss ratio V 2 remaining of the lifetime assessment transformer from the difference between life loss ratio V 0 which life level set by the Master Curve.
Remaining life loss ratio of life-span diagnosis transformer V 2 = V 0 -V 1 (18)
Assuming the life diagnosis transformer is operated at the same operating conditions as the current in the future, remaining life loss ratio V 2 of the lifetime assessment transformer is (19).






Therefore, the time when the equations (18) and (19) are equivalent is the equation (20), and at that time, the remaining life h 2i is obtained.
V 0 -V 1 = exp (bθ 11 ) × h 21 + exp (bθ 12 ) × h 22 +...
・ ・ ・ + Exp (bθ 1i ) × h 2i + ... exp (bθ 1n ) × h 2n (i = 1 to n) (20)
The remaining life h 2i of the lifespan diagnostic transformer can be obtained by equation (21).
h 2i = h 21 + h 22 +... + h 2n (21)
Thus, it is diagnosed that the remaining life is remaining (h 21 + h 22 +... + H 2n ).
In addition, the remaining life h 2i of the lifespan diagnostic transformer can also be obtained by equation (22).
h 2i = H × (V 0 −V 1 ) / V 1 (22)

本発明の電力用変圧器の余寿命診断装置は、プログラム化されてCDロムなどの記録媒体に記録され、これをコンピュータにインストールし、データを入力して演算させることにより現在運転中の電力用変圧器の余寿命を診断する。 The power transformer remaining life diagnosis device of the present invention is programmed and recorded on a recording medium such as a CD ROM, and this is installed in a computer, and data is input to be operated for calculation. Diagnose the remaining life of the transformer.

具体的に数値を入れ診断した結果を以下に示す。
本寿命診断法を撤去変圧器(被寿命診断変圧器)に適用し診断した例を以下に示す。
(撤去変圧器)
総運転年数: 46.3[年]
巻線最高点温度部の平均重合度残率実測値: 48.7[%]
(診断手順)
寿命損失比(b=0.0924として)
(4)、(9)式より
絶縁油(上部絶縁物)温度部Voil: 0.00931
巻線最高点温度部Ve: 0.0149
上部絶縁物部等価温度θoile[℃]、Tm[K]
(4)式より
exp(bθoile)=V30×0.00931/(46.3×24×365)
30=exp(b・95)×30×24×365
=1.71×10
θoile=39.7[℃]
(5)式より
Tm=273+39.7
=312.7[K]

適正上部絶縁物水分量平均値Wm:4.46[%]

(6)、(7)式より求めた値である。
適正油中水分量Wo[ppm]
(8)式より
log(Wo)=B+Blog(4.46)+B(log(4.46))2

+Blog(312.7)+B(log(312.7))

Wo=31.3[ppm]
ここで、B=−106.9、B=1.586、B=0.2375、B=68.69、B=−10.30

巻線最高点温度部等価温度θe[℃]、To[K]
(10)式より
exp(bθe)=V30×0.0149/(46.3×24×365)
θe=44.8[℃]
(11)式より
To=273+44.8
=317.8[K]
巻線最高点温度部水分量We[%]
(12)式より
log(We)=A+Alog(31.3)+A(log(31.3))2
+Alog(317.8)+A(log(317.8))
We=4.01[%]

ここで、A=32.43、A=0.5832、A=0.01867、A=−15.68、A=1.037
巻線最高点温度部の平均重合度残率N(%)
(14)、(15)、(16)式より
N=100+(α−100)/{1+(βm/0.0149)γm
=49.5(%)
ここで、α=0、βm=0.01437、γm=0.5566
log(βm)=β+βlog(4.01)+β(log(4.01))
log(γm)=γ+γlog(4.01)+γ(log(4.01))
β=−0.9961、β=−1.075、β=−0.5448

γ=−0.2212、γ=−0.05068、γ=−0.00745
となり、巻線最高点温度部の平均重合度残率の実測値48.7(%)と高い精度で一致する。
変圧器寿命レベルの寿命損失比V
(17)式より
V=βm{(100−45)/(45−α)}(1/γm)
=0.0206
撤去変圧器(被寿命診断変圧器)の余寿命h2i[年]
撤去変圧器(被寿命診断変圧器)の今後の運用状況が今までと同様であるとすると(22)式より
2i=H×(V0−V1)/V1
=46.3×(0.0206−0.0149)/0.0149
=17.7[年]
撤去変圧器(被寿命診断変圧器)の余寿命は17.7[年]と診断される。
The results of diagnosis with specific numerical values are shown below.
An example of diagnosis by applying this life diagnosis method to a removed transformer (lifetime diagnosis transformer) is shown below.
(Removal transformer)
Total operation years: 46.3 [years]
Measured value of average degree of polymerization remaining at the highest winding temperature part: 48.7 [%]
(Diagnosis procedure)
Life loss ratio (b = 0.0924)
From equations (4) and (9)
Insulating oil (upper insulator) temperature part Voil: 0.00931
Winding maximum temperature part Ve: 0.0149
Upper insulator equivalent temperature θoile [° C], Tm [K]
From equation (4)
exp (bθoile) = V 30 × 0.00931 / (46.3 × 24 × 365)
V 30 = exp (b ・ 95) × 30 × 24 × 365
= 1.71 × 10 9
θoile = 39.7 [℃]
From equation (5)
Tm = 273 + 39.7
= 312.7 [K]

Proper upper insulator moisture content average value Wm: 4.46 [%]

It is the value calculated | required from (6) and (7) Formula.
Appropriate moisture content in oil Wo [ppm]
From equation (8)
log (Wo) = B 0 + B 1 log (4.46) + B 2 (log (4.46)) 2

+ B 3 log (312.7) + B 4 (log (312.7))

Wo = 31.3 [ppm]
Here, B 0 = −106.9, B 1 = 1.586, B 2 = 0.2375, B 3 = 68.69, B 4 = −10.30

Winding highest point temperature part equivalent temperature θe [° C], To [K]
From equation (10)
exp (bθe) = V 30 × 0.0149 / (46.3 × 24 × 365)
θe = 44.8 [℃]
From equation (11)
To = 273 + 44.8
= 317.8 [K]
Winding maximum point temperature part moisture content We [%]
From equation (12)
log (We) = A 0 + A 1 log (31.3) + A 2 (log (31.3)) 2
+ A 3 log (317.8) + A 4 (log (317.8))
We = 4.01 [%]

Here, A 0 = 32.43, A 1 = 0.5832, A 2 = 0.01867, A 3 = −15.68, A 4 = 1.037
Average polymerization degree remaining ratio N (%)
From formulas (14), (15), and (16)
N = 100 + (α−100) / {1+ (βm / 0.0149) γm }
= 49.5 (%)
Here, α = 0, βm = 0.01437, γm = 0.556
log (βm) = β 0 + β 1 log (4.01) + β 2 (log (4.01)) 2
log (γm) = γ 0 + γ 1 log (4.01) + γ 2 (log (4.01)) 2
β 0 = −0.9961, β 1 = −1.075, β 2 = −0.5448

γ 0 = −0.2212, γ 1 = −0.05068, γ 2 = −0.00745
Thus, the measured value 48.7 (%) of the average degree of polymerization residual ratio at the highest temperature part of the winding coincides with high accuracy.
Transformer life level life loss ratio V 0
From equation (17)
V 0 = βm {(100−45) / (45−α)} (1 / γm)
= 0.0206
Remaining life of removed transformer (lifetime diagnostic transformer) h 2i [years]
If the future operation status of the removal transformer (lifetime diagnostic transformer) is the same as before, from Equation (22)
h 2i = H × (V 0 −V 1 ) / V 1
= 46.3 × (0.0206−0.0149) /0.0149
= 17.7 [year]
The remaining life of the removed transformer (lifetime diagnostic transformer) is diagnosed as 17.7 [years].

外気温変動と負荷による温度上昇の関係を示す説明図である。It is explanatory drawing which shows the relationship between the external temperature fluctuation | variation and the temperature rise by load. 定格負荷時の変圧器巻線・油の温度上昇分布を示す概念図である。It is a conceptual diagram which shows the temperature rise distribution of the transformer winding and oil at the time of a rated load. 継続時間hにおける任意負荷時の変圧器巻線・油の温度上昇分布を示す概念図である。It is a conceptual diagram which shows the temperature rise distribution of the transformer coil | winding and oil at the time of arbitrary load in the continuous time h. 各温度における絶縁油中水分量と絶縁紙水分量の平衡状態を示す関係図(出所 Y.Du, M.Zahn, B.C.Lesieutre, A.V.Mamishev, S.R.Lindgren, Moisture Equilibrium in Transformer Paper-Oil Systems. IEEE Electrical Insulation Magaz-ine Vol.15 No.1 1999)である。Relationship diagram showing the equilibrium state of moisture content in insulating oil and insulating paper at each temperature (Source: Y.Du, M.Zahn, BCLesieutre, AVMamishev, SRLindgren, Moisture Equilibrium in Transformer Paper-Oil Systems. IEEE Electrical Insulation Magaz-ine Vol.15 No.1 1999). 絶縁紙に含有する水分量に対する寿命損失比と平均重合度残率の関係を表したマスターカーブを示す関係図である。It is a relationship figure which shows the master curve showing the relationship between the life loss ratio with respect to the moisture content contained in an insulating paper, and an average degree of polymerization residual ratio. 被寿命診断変圧器の診断時までの寿命損失比V とマスターカーブから求めた変圧器寿命レベルの寿命損失比V とから、被寿命診断変圧器の余寿命損失比V を求め、余寿命損失比Vから余寿命hを求める関係を示す説明図である。From the life loss ratio V 1 until the diagnosis of the life-tested diagnostic transformer and the life loss ratio V 0 of the transformer life level obtained from the master curve, the remaining life loss ratio V 2 of the life-diagnosis transformer is obtained. from life loss ratio V 2 is an explanatory diagram showing a relation for determining the remaining service life h 2. 本発明を示す構成図である。It is a block diagram which shows this invention.

Claims (2)

(1)撤去変圧器の巻線最高点温度の履歴を、少なくとも運転時に記録した外気温度データと負荷履歴から求める第1の手段と、
(2)撤去変圧器の運転時における点検の際に測定した絶縁油温度に基づいて、前記巻線最高点温度の履歴を補正する第2の手段と、
(3)撤去変圧器の運転時における採油の際に測定した絶縁油中水分に基づいて、前記巻線最高点温度の絶縁紙水分量を求める第3の手段と、
(4)この撤去変圧器の補正した巻線最高点温度の履歴とその継続時間から得られる寿命損失比Vおよびその絶縁紙水分量Wと、撤去変圧器の巻線絶縁紙から測定した巻線絶縁紙の劣化指標となる平均重合度残率Nとの関係を示すマスターカーブを作成する第4の手段と、
(5)被寿命診断変圧器の巻線最高点温度の履歴を、少なくとも運転時に記録した外気温度データと負荷履歴から求める第5の手段と、
(6)被寿命診断変圧器の運転時における点検の際に測定した絶縁油温度に基づいて、前記巻線最高点温度の履歴を補正する第6の手段と、
(7)被寿命診断変圧器の運転時における採油の際に測定した絶縁油中水分に基づいて、前記巻線最高点温度の絶縁紙水分量を求める第7の手段と、
(8)この被寿命診断変圧器の補正した巻線最高点温度の履歴とその継続時間から得られる寿命損失比V およびその絶縁紙水分量W を、前記第4の手段で作成したマスターカーブに当てはめて、平均重合度残率N を求め、設定した寿命レベルの平均重合度残率Nに対し当てはめたマスターカーブに対応する寿命損失比V と前記平均重合度残率Nに対応する寿命損失比V との差から被寿命診断変圧器の余寿命を診断する第8の手段とからなることを特徴とする電力用変圧器の余寿命診断装置。
(1) a first means for obtaining a history of the highest winding temperature of the removal transformer from at least the outside air temperature data recorded during operation and the load history;
(2) a second means for correcting the history of the highest winding point temperature based on the insulating oil temperature measured at the time of inspection during operation of the removed transformer;
(3) Third means for determining the amount of moisture in the insulating paper at the highest winding point temperature based on the moisture in the insulating oil measured during oil collection during operation of the removal transformer;
(4) Life loss ratio V obtained from the history of the corrected maximum winding temperature of the removed transformer and its duration, the insulation paper moisture content W, and the winding measured from the insulated wire of the removed transformer A fourth means for creating a master curve indicating a relationship with the average degree of polymerization residual ratio N which is a deterioration index of insulating paper;
(5) a fifth means for obtaining a history of the winding maximum point temperature of the life-testable diagnostic transformer from at least the outside air temperature data recorded during operation and the load history;
(6) Sixth means for correcting the history of the highest winding point temperature based on the insulating oil temperature measured at the time of inspection during operation of the lifetime diagnostic transformer;
(7) Seventh means for obtaining the insulation paper moisture content at the highest winding point temperature based on the moisture in the insulation oil measured at the time of oil collection during the operation of the life span diagnostic transformer;
(8) A master prepared by the above-mentioned fourth means for the life loss ratio V 1 obtained from the history of the maximum winding temperature corrected by this life-diagnosis transformer and its duration, and its insulating paper moisture content W 1 By applying the curve to the curve, the average degree of polymerization residual N 1 is obtained, and the life loss ratio V 0 corresponding to the master curve applied to the average degree of polymerization residual N 0 at the set life level and the average degree of polymerization residual N 1 remaining life assessment device for a power transformer, characterized by comprising an eighth means for assessing the remaining service life of the lifting transformer from the difference between life loss ratio V 1 corresponding to.
マスターカーブを作成する第4の手段において、巻線絶縁紙の加速劣化試験から得られる寿命損失比、絶縁紙水分量および平均重合度残率を併用することを特徴とする請求項1記載の電力用変圧器の余寿命診断装置。

The electric power according to claim 1, wherein in the fourth means for creating a master curve, the life loss ratio, the moisture content of the insulating paper, and the average polymerization degree residual rate obtained from the accelerated deterioration test of the winding insulating paper are used in combination. Transformer remaining life diagnostic device.

JP2006241159A 2006-09-06 2006-09-06 Remaining life diagnosis device for power transformers Active JP4703519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241159A JP4703519B2 (en) 2006-09-06 2006-09-06 Remaining life diagnosis device for power transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241159A JP4703519B2 (en) 2006-09-06 2006-09-06 Remaining life diagnosis device for power transformers

Publications (2)

Publication Number Publication Date
JP2008066435A true JP2008066435A (en) 2008-03-21
JP4703519B2 JP4703519B2 (en) 2011-06-15

Family

ID=39288888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241159A Active JP4703519B2 (en) 2006-09-06 2006-09-06 Remaining life diagnosis device for power transformers

Country Status (1)

Country Link
JP (1) JP4703519B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192775A (en) * 2007-02-02 2008-08-21 Tokyo Electric Power Co Inc:The Device and method for controlling operation of oil-immersed transformer during overload operation
KR101046752B1 (en) 2010-06-25 2011-07-06 한국전력공사 Transformer life assessment method
KR101160775B1 (en) 2011-05-17 2012-06-28 한국전력공사 System and method for evaluating integrity of power transformer
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper
KR101438158B1 (en) 2013-03-21 2014-09-05 연세대학교 산학협력단 Method and apparatus for predicting life time of transformer
WO2016066373A1 (en) 2014-10-27 2016-05-06 Landis+Gyr (Europe) Ag A method, system and assembly for determining a reduction of remaining service lifetime of an electrical device during a specific time period of operation of the electrical device
JP2018148052A (en) * 2017-03-06 2018-09-20 東北電力株式会社 Remaining life assessment method of oil-filled transformer and diagnostic system
WO2018186537A1 (en) * 2017-04-04 2018-10-11 한국전력공사 Power transformer asset management device and method therefor
CN108955926A (en) * 2018-07-06 2018-12-07 深圳供电局有限公司 A kind of analysis system applied to insulation oil temperature
JP2019102694A (en) * 2017-12-05 2019-06-24 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
CN111693783A (en) * 2020-05-09 2020-09-22 核动力运行研究所 Oil-immersed paper frequency domain dielectric spectrum temperature correction method based on segmented activation energy
CN111948497A (en) * 2019-05-14 2020-11-17 广西电网有限责任公司南宁供电局 Aging test device and method for transformer insulation paper
US11486939B2 (en) * 2017-07-09 2022-11-01 Aurtra Pty Ltd System and method of determining age of a transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348945A (en) * 1999-06-07 2000-12-15 Tokyo Electric Power Co Inc:The Method and equipment for overload operation of oil- immersed transformer
JP2001210538A (en) * 2000-01-26 2001-08-03 Yuka Ind:Kk Method for diagnosing lifetime of oil-immersed electrical equipment
JP2004061384A (en) * 2002-07-30 2004-02-26 Yuka Ind:Kk Method for inferring moisture content of insulating paper in oil-filled electric device and diagram for inferring used for the same
JP4323396B2 (en) * 2004-08-23 2009-09-02 東北電力株式会社 Power transformer remaining life diagnosis apparatus and remaining life diagnosis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348945A (en) * 1999-06-07 2000-12-15 Tokyo Electric Power Co Inc:The Method and equipment for overload operation of oil- immersed transformer
JP2001210538A (en) * 2000-01-26 2001-08-03 Yuka Ind:Kk Method for diagnosing lifetime of oil-immersed electrical equipment
JP2004061384A (en) * 2002-07-30 2004-02-26 Yuka Ind:Kk Method for inferring moisture content of insulating paper in oil-filled electric device and diagram for inferring used for the same
JP4323396B2 (en) * 2004-08-23 2009-09-02 東北電力株式会社 Power transformer remaining life diagnosis apparatus and remaining life diagnosis method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192775A (en) * 2007-02-02 2008-08-21 Tokyo Electric Power Co Inc:The Device and method for controlling operation of oil-immersed transformer during overload operation
KR101046752B1 (en) 2010-06-25 2011-07-06 한국전력공사 Transformer life assessment method
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper
KR101160775B1 (en) 2011-05-17 2012-06-28 한국전력공사 System and method for evaluating integrity of power transformer
KR101438158B1 (en) 2013-03-21 2014-09-05 연세대학교 산학협력단 Method and apparatus for predicting life time of transformer
WO2016066373A1 (en) 2014-10-27 2016-05-06 Landis+Gyr (Europe) Ag A method, system and assembly for determining a reduction of remaining service lifetime of an electrical device during a specific time period of operation of the electrical device
US10690729B2 (en) 2014-10-27 2020-06-23 Landis+Gyr Ag Method, system and assembly for determining a reduction of remaining service lifetime of an electrical device during a specific time period of operation of the electrical device
EP3447778A1 (en) 2014-10-27 2019-02-27 Landis+Gyr AG Method, system and assembly for determining a reduction of remaining service lifetime of an electrical device based on a temperature dependent aging factor
JP2018148052A (en) * 2017-03-06 2018-09-20 東北電力株式会社 Remaining life assessment method of oil-filled transformer and diagnostic system
KR101942647B1 (en) * 2017-04-04 2019-01-25 한국전력공사 Apparatus for asset management of power transformers
KR20180112516A (en) * 2017-04-04 2018-10-12 한국전력공사 Apparatus and method for asset management of power transformers
WO2018186537A1 (en) * 2017-04-04 2018-10-11 한국전력공사 Power transformer asset management device and method therefor
US11182701B2 (en) 2017-04-04 2021-11-23 Korea Electric Power Corporation Power transformer asset management device and method therefor
US11486939B2 (en) * 2017-07-09 2022-11-01 Aurtra Pty Ltd System and method of determining age of a transformer
US11815566B2 (en) 2017-07-09 2023-11-14 Aurtra Pty Ltd System and method of determining age of a transformer
JP2019102694A (en) * 2017-12-05 2019-06-24 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
JP7048284B2 (en) 2017-12-05 2022-04-05 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
CN108955926A (en) * 2018-07-06 2018-12-07 深圳供电局有限公司 A kind of analysis system applied to insulation oil temperature
CN111948497A (en) * 2019-05-14 2020-11-17 广西电网有限责任公司南宁供电局 Aging test device and method for transformer insulation paper
CN111693783A (en) * 2020-05-09 2020-09-22 核动力运行研究所 Oil-immersed paper frequency domain dielectric spectrum temperature correction method based on segmented activation energy
CN111693783B (en) * 2020-05-09 2023-01-24 核动力运行研究所 Oil-immersed paper frequency domain dielectric spectrum temperature correction method based on segmented activation energy

Also Published As

Publication number Publication date
JP4703519B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4703519B2 (en) Remaining life diagnosis device for power transformers
CN110297167B (en) Transformer aging state evaluation method based on multi-source information fusion
McNutt Insulation thermal life considerations for transformer loading guides
JP5704965B2 (en) Remaining life diagnosis method for power transformers using press board or winding insulation paper
JP4323396B2 (en) Power transformer remaining life diagnosis apparatus and remaining life diagnosis method
Arvind et al. Condition monitoring of power transformer: A review
Srinivasan et al. Prediction of transformer insulation life with an effect of environmental variables
CN106570644B (en) Statistical tool-based quantitative evaluation method for power transmission and transformation equipment
Perkasa et al. Investigating bubble formation in vegetable and mineral oil impregnated transformer paper insulation systems
Allan Practical life-assessment technique for aged transformer insulation
Ohlen et al. Dielectric frequency response and temperature dependence of power factor
Badune et al. Methods for Predicting Remaining Service Life of Power Transformers and Their Components.
Ghazali et al. TNB experience in condition assessment and life management of distribution power transformers
JP2018113737A (en) Life estimation device of pole transformer
CN116840634A (en) Oil paper insulation aging evaluation method based on moisture migration
RU2403581C2 (en) Method for determination of remaining resource of high-voltage equipment within operating action complex
JP2005338045A (en) Method for diagnosing insulation degradation of electric equipment
Agarwal et al. Diagnostic and prognostic models for generator step-up transformers
JP2006098349A (en) Remaining insulation life duration estimating system and estimating method of high pressure rotary machine
RU2751453C1 (en) METHOD FOR CONTROLLING TECHNICAL CONDITION OF POWER TRANSFORMERS WITH VOLTAGE OF 35 kV AND OVER
JP2015072183A (en) Insulation diagnosis method between winding layers of winding device
KR101438158B1 (en) Method and apparatus for predicting life time of transformer
CN104838456B (en) The diagnostic method of oil-filled electric equipment and maintaining method
Agarwal et al. Implementation of remaining useful lifetime transformer models in the fleet-wide prognostic and health management suite
JP6504940B2 (en) Insulation diagnosis method for AC high voltage motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250