JP2018148052A - Remaining life assessment method of oil-filled transformer and diagnostic system - Google Patents

Remaining life assessment method of oil-filled transformer and diagnostic system Download PDF

Info

Publication number
JP2018148052A
JP2018148052A JP2017042167A JP2017042167A JP2018148052A JP 2018148052 A JP2018148052 A JP 2018148052A JP 2017042167 A JP2017042167 A JP 2017042167A JP 2017042167 A JP2017042167 A JP 2017042167A JP 2018148052 A JP2018148052 A JP 2018148052A
Authority
JP
Japan
Prior art keywords
oil
moisture
insulating
transformer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017042167A
Other languages
Japanese (ja)
Other versions
JP6803025B2 (en
Inventor
裕司 八重樫
Yuji Yaegashi
裕司 八重樫
村上 純一
Junichi Murakami
純一 村上
小西 義則
Yoshinori Konishi
義則 小西
佐藤 学
Manabu Sato
学 佐藤
真之 長谷川
Masayuki Hasegawa
真之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Tohoku Electric Power Co Inc
Original Assignee
YUKA IND KK
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK, Tohoku Electric Power Co Inc filed Critical YUKA IND KK
Priority to JP2017042167A priority Critical patent/JP6803025B2/en
Publication of JP2018148052A publication Critical patent/JP2018148052A/en
Application granted granted Critical
Publication of JP6803025B2 publication Critical patent/JP6803025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diagnostic method and a diagnostic system, capable of gripping a life of a transformer.SOLUTION: A transformer diagnostic method performs diagnostic by: dividing a longitudinal section including a region where an existence region in a transformer without an iron core and an insulation oil are existed into a plurality of divisions in a longitudinal direction and a lateral direction; gripping distribution of a winding coil, a solid insulation material, and the insulation oil which are existed in each division; gripping a relationship that water is alternately diffused between the solid insulation material and the insulation oil in each division; gripping a status where the insulation oil including a predetermined water flows in each division; gripping a counter diffusion relationship of a water amount in each division; comparing an actual measurement value of the water amount in the insulation oil actually fetched from one part of the divisions obtained by dividing during the driving of the oil-filled transformer with a value of the water amount in the insulation oil conducted from the counter diffusion relationship to the division where the insulation oil is fetched; and defining a water distribution in the insulation oil in each division even when a difference of the actual value of the water amount in the oil and the water amount in the oil conducted by the counter diffusion relationship is a predetermined threshold value or less.SELECTED DRAWING: Figure 1

Description

本発明は油入変圧器に収容されている巻線絶縁紙の平均重合度残率から油入変圧器の余寿命を求める診断方法及び診断装置に関する。   The present invention relates to a diagnostic method and a diagnostic apparatus for obtaining the remaining life of an oil-filled transformer from the average polymerization degree residual rate of winding insulation paper accommodated in the oil-filled transformer.

変圧器の寿命はコイル絶縁紙の機械的強度の低下、とりわけ抗張力(引張強度)の低下に左右されると考えられている。
変圧器の外部で短絡故障が発生すると変圧器内部のコイルには大きな電磁機械力が発生する。変圧器はこの時にコイル銅線に加わるストレスが1200kg重/cm以下になるように設計されており、コイル絶縁紙がこの時のコイル銅線の伸縮に耐えられなくなった時に破損し、変圧器の内部絶縁が脅かされる状態となる。絶縁紙がこの様な状態になった場合、変圧器は寿命と判断される。
It is considered that the life of the transformer depends on a decrease in mechanical strength of the coil insulating paper, in particular, a decrease in tensile strength (tensile strength).
When a short circuit failure occurs outside the transformer, a large electromagnetic mechanical force is generated in the coil inside the transformer. The transformer is designed so that the stress applied to the coil copper wire at this time is 1200 kgf / cm 2 or less, and the coil insulating paper breaks when it becomes unable to withstand the expansion and contraction of the coil copper wire at this time. The internal insulation of the machine will be threatened. When the insulating paper enters such a state, the transformer is judged to have a life.

巻線絶縁紙の機械的強さはそれを構成するセルロース分子の平均重合度(DP)と相関があることが知られており、日本電機工業会規格JEM1463では、寿命レベルをDP450、危険レベルをDP250と規定している。また、電気協同研究会ではDP450を巻線絶縁紙の寿命レベルとして推奨している(非特許文献1、P177)。
変圧器の余寿命予測方法としては、現時点の変圧器の劣化度を調査して、今後も同様な運転を継続した場合に巻線絶縁紙のDPが低下してその最低値が寿命レベルに達するまでの時間を予測することがなされている(非特許文献2、P40)。
It is known that the mechanical strength of the winding insulation paper has a correlation with the average degree of polymerization (DP) of the cellulose molecules constituting it. In the Japan Electrical Manufacturers' Association standard JEM 1463, the life level is DP450 and the danger level is It is defined as DP250. In addition, the electric cooperative study group recommends DP450 as the life level of the winding insulating paper (Non-patent Document 1, P177).
As a method for predicting the remaining life of a transformer, the current degree of deterioration of the transformer is investigated, and when the same operation is continued in the future, the DP of the winding insulation paper decreases and its minimum value reaches the life level. It has been made to predict the time until (Non-Patent Document 2, P40).

現時点の変圧器の劣化度を調査する方法として、変圧器内部から絶縁に影響しない部分の絶縁紙を採取して巻線絶縁紙の劣化度を推定する方法と、絶縁油中の絶縁紙劣化生成物のCO+COやフルフラールなどの量を測定する方法が非特許文献2に述べられている。
前者は直接的ではあるが、変圧器を停止させないと絶縁紙を採取することは困難である。そこで、運転中でも採取可能な後者の方法が広く実施されている。
Current methods of investigating the degree of deterioration of transformers include the method of estimating the degree of deterioration of winding insulation paper by collecting portions of insulation paper that do not affect insulation from inside the transformer, and the generation of insulation paper deterioration in insulating oil. Non-Patent Document 2 describes a method for measuring the amount of CO 2 + CO, furfural and the like of a product.
Although the former is direct, it is difficult to extract insulating paper unless the transformer is stopped. Therefore, the latter method that can be collected even during operation is widely implemented.

変圧器が今後も同様な運転を継続した場合、巻線絶縁紙のDPが低下してその最低値が寿命レベルに達するまでの時間を予測する方法については、非特許文献1のP180〜P181に寿命予測方法として記載されている。この寿命予測方法は、DPの推定値による方法と絶縁紙劣化生成物の生成量(A)、生成速度(R)、運転年数(Y)をマッピングする方法(ARY−Map法)の2種類が示されている。
ただし、CO+COやフルフラールなどの油中成分から変圧器の劣化度を推測する方法は、非特許文献1のP172〜P174に示されているように、診断にはある程度の幅があり、さらに精度の高い劣化度診断法が求められている。
If the transformer continues to operate in the future, the method of predicting the time until the DP of the winding insulation paper decreases and the minimum value reaches the life level is described in P180 to P181 of Non-Patent Document 1. It is described as a life prediction method. There are two types of life prediction methods: a method based on an estimated DP value, and a method (ARY-Map method) for mapping the generation amount (A), generation rate (R), and operation years (Y) of an insulating paper deterioration product. It is shown.
However, as shown in P172 to P174 of Non-Patent Document 1, the method for estimating the deterioration degree of a transformer from components in oil such as CO 2 + CO and furfural has a certain range of diagnosis, There is a need for a highly accurate degradation diagnosis method.

そこで、劣化の予測に劣化生成物の測定値を用いずに変圧器の運転実績を基に運転初期からのDPの低下を計算で定量的に評価する方法が検討されている(非特許文献3、P43−4、(2)式)。
非特許文献2などでは、変圧器を模擬した試験槽内で絶縁紙を熱加速劣化した試験により、劣化温度とDPの低下割合の関係が種々の実験により明らかにされ報告されている。そこでは、変圧器の負荷や周囲温度から温度上昇履歴を把握し、絶縁紙の熱劣化特性を組み合わせ、絶縁紙の劣化を精度良く推定できることが述べられている。
Therefore, a method for quantitatively evaluating the decrease in DP from the initial operation based on the operation results of the transformer without using the measured value of the deterioration product for the prediction of deterioration has been studied (Non-Patent Document 3). , P43-4, formula (2)).
In Non-Patent Document 2 and the like, the relationship between the deterioration temperature and the rate of decrease in DP has been clarified and reported by various experiments through tests in which insulating paper is thermally accelerated and deteriorated in a test tank simulating a transformer. It describes that the temperature rise history can be grasped from the load of the transformer and the ambient temperature, and the deterioration of the insulating paper can be accurately estimated by combining the thermal deterioration characteristics of the insulating paper.

一方、油入変圧器に使用されている巻線絶縁紙は水分によっても劣化が促進されることが知られており、その影響は定式化されている(非特許文献4、P21−17〜P21−8の(1)式〜(3)式、及び、非特許文献5、P7−7の(4)式、(5)式)。
そのため、変圧器内で最も温度が高くなると予想される巻線上部絶縁紙の水分吸湿状態を把握することが劣化診断を行う上で重要であると考えられる。
しかし、稼働中の変圧器から絶縁紙を採取し、水分量を測定することは通常困難であるため、変圧器から採取した絶縁油中の水分量と絶縁紙−絶縁油間の水分平衡関係から間接的に巻線上部絶縁紙中水分量を推定する手法が検討されている(非特許文献6、P335)。
On the other hand, it is known that the winding insulating paper used in the oil-filled transformer is accelerated by moisture, and its influence is formulated (Non-Patent Document 4, P21-17 to P21). (8) Formulas (1) to (3) and Non-Patent Document 5, P7-7 Formulas (4) and (5)).
Therefore, it is considered that it is important to grasp the moisture absorption state of the upper insulating paper of the winding, which is expected to have the highest temperature in the transformer, for the deterioration diagnosis.
However, it is usually difficult to collect insulation paper from a transformer in operation and measure the amount of moisture. Therefore, from the relationship between the amount of moisture in the insulation oil collected from the transformer and the moisture balance between insulation paper and insulation oil. A technique for indirectly estimating the moisture content in the winding upper insulating paper has been studied (Non-Patent Document 6, P335).

また、特許文献1において絶縁油の温度と水分含有量から、絶縁紙の水分含有量を測定する方法が記載されている。その原理は「絶縁紙の水分蒸気圧と絶縁油の水分蒸気圧とが等しくなるまで、水分は蒸気圧の高い方から低い方に移動する。蒸気圧が等しくなると、水分の移動も終了して平衡状態に達する。」というものである。この特許文献1には、油温度に対する油中水分蒸気圧のグラフと油温度に対する紙中水分蒸気圧のグラフが表2、表3に示されており、油温度と油中水分量が与えられれば紙中水分量が決まると記載されている。   Patent Document 1 describes a method of measuring the moisture content of insulating paper from the temperature and moisture content of insulating oil. The principle is: “Moisture moves from the higher vapor pressure to the lower one until the moisture vapor pressure of the insulating paper and the moisture vapor pressure of the insulating oil are equal. It reaches an equilibrium state. " In this Patent Document 1, a graph of the moisture vapor pressure in oil against the oil temperature and a graph of the moisture vapor pressure in paper against the oil temperature are shown in Tables 2 and 3, and the oil temperature and the moisture content in the oil are given. It is described that the amount of moisture in the paper is determined.

非特許文献7の電気協同研究第61巻第2号P43には「一般に、採油はタンク底部付近のバルブからされるため、運転中の変圧器においては、ダイヤル温度計で示される上部温度と、採油した絶縁油の温度には差がある。しかし、式中の係数にこの温度差が考慮されているため、採油時のダイヤル温度計の値を適用すればよい。」と記載されている。
しかし、非特許文献7では、変圧器内の油中水分および紙中水分がそれぞれ1つずつの代表値で表されているが、変圧器内の油中水分や紙中水分の様相は一定しておらず、より精度の高い紙中水分の推定方法が求められている。
Non-Patent Document 7 Electric Cooperative Research Vol. 61, No. 2, P43 states, “Generally, oil is collected from a valve near the bottom of the tank. Therefore, in an operating transformer, the upper temperature indicated by a dial thermometer, There is a difference in the temperature of the insulating oil collected, but since this temperature difference is taken into consideration in the coefficient in the equation, the value of the dial thermometer at the time of oil extraction may be applied.
However, in Non-Patent Document 7, the moisture in the oil and the moisture in the paper in the transformer are represented by one representative value, but the aspect of the moisture in the oil and the moisture in the paper in the transformer is constant. However, there is a need for a more accurate method for estimating moisture in paper.

特許文献2は、油入変圧器内部の温度分布を考慮して、新規な巻線上部の絶縁紙中水分を推定する装置及び方法を提供することを課題とした技術を記載した文献である。特許文献2に記載の技術において、時間的な温度変化は考慮されており、変化する油温に対して油中水分量および紙中水分量はそれぞれ別な時定数をもって一次遅れで変化すると記載されている。   Patent Document 2 is a document that describes a technique that aims to provide a new apparatus and method for estimating moisture in insulating paper at the upper part of a winding in consideration of the temperature distribution inside the oil-filled transformer. In the technique described in Patent Document 2, a change in temperature with time is taken into consideration, and it is described that the moisture content in oil and the moisture content in paper change with a first order delay with different time constants with respect to the changing oil temperature. ing.

特許文献3は、電力用変圧器の余寿命診断装置および余寿命診断方法に関するものであり、変圧器が運転されてきた巻線最高点温度の履歴を運転時の外気温記録と負荷履歴から推定する技術が記載されている。そして、従来法である絶縁油中の劣化生成物を測定する方法に比較し、熱履歴を用いた方が診断精度を向上できると主張する技術であるが、特許文献3ではまだ絶縁紙中水分の劣化の影響は考慮されていない。   Patent document 3 relates to a remaining life diagnosis device and a remaining life diagnosis method for a power transformer, and estimates the history of the highest winding point temperature at which the transformer has been operated from the outside air temperature record and load history during operation. The technology to do is described. And, compared to the conventional method of measuring degradation products in insulating oil, it is a technology that claims that the use of heat history can improve diagnostic accuracy. However, Patent Document 3 still shows moisture in insulating paper. The effect of deterioration is not considered.

特許文献4は、巻線絶縁紙のDP推定に紙中水分を考慮する方法を提案している。紙中水分を推定する方法は、変圧器運転時における油中水分量を測定し、油中水分量と紙中水分量の関係を表す図を用いて求める方法である。そのとき、上部絶縁物温度を計算により求め、その絶縁油温度および油中水分量における紙中水分平衡値を関係図から推定している。   Patent Document 4 proposes a method that considers moisture in the paper for DP estimation of the winding insulating paper. The method of estimating the moisture in the paper is a method of measuring the moisture content in oil during operation of the transformer and obtaining it using a diagram showing the relationship between the moisture content in oil and the moisture content in paper. At that time, the upper insulator temperature is obtained by calculation, and the water equilibrium value in the paper at the insulating oil temperature and the moisture content in the oil is estimated from the relationship diagram.

特許文献5は、紙−油間の水分平衡関係が紙と油の経年劣化により変化することを考慮した紙中水分量推定方法を提案している。変圧器を循環する油中水分はプレスボード中水分量で決まると仮定し、その年間を通じた平均値を推定する際、変圧器運転時における油中水分量を複数回測定し、紙−油間の水分平衡関係を用いて求めている。プレスボード中水分量で補正された油中水分が変圧器中を還流することから、それを巻線絶縁紙中水分の推定に用いている。   Patent Document 5 proposes a moisture content estimation method in paper that takes into account that the moisture equilibrium relationship between paper and oil changes due to aging of paper and oil. Assuming that the moisture in the oil circulating in the transformer is determined by the moisture content in the press board, when estimating the average value throughout the year, measure the moisture content in the oil several times during operation of the transformer, and between the paper and oil It is obtained using the water balance relationship. Since the moisture in oil corrected by the moisture content in the press board flows back through the transformer, it is used to estimate the moisture in the winding insulation paper.

特許第3709444号公報Japanese Patent No. 3709444 特開2008−192775号公報JP 2008-192775 A 特許第4323396号公報Japanese Patent No. 4323396 特許第4703519号公報Japanese Patent No. 4703519 特許第5704965号公報Japanese Patent No. 5704965

電力用変圧器保守管理専門委員会 編、「4−1 寿命の目安の平均重合度」、社団法人電気協同研究会発行、平成11年2月、第54巻 第5号(その1)、第4章、P177Power Transformer Maintenance Management Committee, “4-1 Average Life Degree of Lifetime”, published by the Japan Electric Cooperative Research Association, February 1999, Vol. 54, No. 5 (Part 1), No. 1 Chapter 4, P177 宮本晃男、「4.変圧器の寿命診断方法」、運転中油入変圧器の寿命診断技術、電気学会研究会資料、産業電力電気応用研究会 IEA−94−5、P40Miyamoto Ikuo, “4. Transformer Life Diagnosis Method”, Lifetime Diagnosis Technology of Oil-immersed Transformer During Operation, IEEJ Research Material, Industrial Electric Power Application Study Group IEA-94-5, P40 水谷嘉伸 他、「154〜275kV 油入変圧器絶縁紙の温度履歴解析に基づく熱劣化評価手法」、平成24年電気学会電力・エネルギー部門大会 No.343、P43−3〜P43−4Yoshinobu Mizutani et al., “Method of evaluating thermal degradation based on temperature history analysis of 154 to 275 kV oil-filled transformer insulation paper”, 2012 IEEJ Power and Energy Division No. 343, P43-3 to P43-4 中塚俊 他、「加速劣化試験による電力用変圧器巻線絶縁紙の熱劣化特性に関する検討」、平成18年電気学会電力・エネルギー部門大会 No.271、P21−17〜P21−18Satoshi Nakatsuka et al., “Examination on Thermal Degradation Characteristics of Power Transformer Winding Insulation Paper by Accelerated Degradation Test”, 2006 IEEJ Power and Energy Division Conference 271, P21-17 to P21-18 中塚俊 他、「熱履歴を用いた電力用変圧器巻線絶縁紙の平均重合度推定」、平成19年電気学会電力・エネルギー部門大会 No.158、P7−7〜P7−8Satoshi Nakatsuka et al., “Estimation of average degree of polymerization of power transformer winding insulation paper using thermal history”, 2007 IEEJ Power and Energy Division No. 158, P7-7 to P7-8 関口朋之 他、「油入変圧器の絶縁紙中水分量推定手法」、平成19年電気学会全国大会 No.5−216、P335Noriyuki Sekiguchi et al., “Method for estimating moisture content in insulating paper of oil-filled transformer”, 2007 IEEJ National Convention No. 5-216, P335 変電設備運用限度評価専門委員会 編、「6−1−5 気泡発生温度に基づく絶縁紙の限界値の決め方 (1)絶縁紙中の水分量の推定方法」、電気協同研究、社団法人電気協同研究会発行、平成17年11月、第61巻第2号、P43"6-1-5 How to determine the limit value of insulating paper based on bubble generation temperature (1) Method for estimating the amount of moisture in insulating paper", Electric cooperative research, Electric cooperative Published by the Society, November 2005, Vol. 61, No. 2, P43

以上説明の特許文献、非特許文献に共通するのは、紙−油間の水分平衡関係を利用している点である。これまでの技術では、巻線上部コイル絶縁紙と油中水分量の間に平衡関係が成り立つものとして、紙中水分量を推定していた。
しかし、稼働中の変圧器においては、変圧器設置の採油口(例えばタンク下部のドレインバルブ)から絶縁油を採取しなければならず、採油時の油中水分量は実際に推定したい巻線上部付近の値とは異なることが考えられる。
また、変圧器内の絶縁油は常に対流していることから、紙−油間の水分関係は局所的に非平衡の関係となっている。したがって、変圧器の採油口から採取した絶縁油中の水分量から実際に推定したい巻線上部付近の油中水分量を従来技術で推定すると、精度が低くなることが課題であった。
What is common to the patent documents and non-patent documents described above is that the moisture equilibrium relationship between paper and oil is utilized. In the conventional technology, the moisture content in the paper has been estimated on the assumption that an equilibrium relationship is established between the upper coil insulating paper and the moisture content in the oil.
However, in the transformer in operation, the insulation oil must be collected from the oil collection port (for example, the drain valve at the bottom of the tank) where the transformer is installed. It may be different from the value near.
Further, since the insulating oil in the transformer is always in convection, the moisture relationship between paper and oil is locally unbalanced. Therefore, when the moisture content in the oil near the upper part of the winding to be actually estimated from the moisture content in the insulating oil collected from the oil collection port of the transformer is estimated by the prior art, the problem is that the accuracy is lowered.

さらに、特許文献5に記載の技術の場合、紙中水分量は年間を通した平均値を用いている。しかし、実際には周囲温度が変化するに伴い紙中水分量は刻々と変化し、絶縁紙の温度が高い時には紙中水分量は少なくなり、絶縁紙の温度が低い時にはその逆の紙中水分量になることから、絶縁紙の劣化を精度よく計算するには、同時刻の温度と水分量の値が必要であると考えられる。同時刻の温度と水分量の値が求まれば、絶縁紙がその条件で刻々とDPが低下する様子を非特許文献5に示されているような劣化式(平均重合度残率)により計算することが可能である。   Furthermore, in the case of the technique described in Patent Document 5, the average value throughout the year is used as the moisture content in the paper. However, in actuality, the moisture content in the paper changes every moment as the ambient temperature changes, and the moisture content in the paper decreases when the temperature of the insulating paper is high, and vice versa when the temperature of the insulating paper is low. Therefore, in order to accurately calculate the deterioration of the insulating paper, it is considered that the temperature and moisture value at the same time are required. Once the temperature and water content at the same time are obtained, the state of DP of the insulating paper that falls every time under that condition is calculated by a deterioration equation (average residual degree of polymerization) as shown in Non-Patent Document 5. Is possible.

本発明の目的は、絶縁油中の水分量から実際に推定したい巻線上部付近の油中水分量を推定する新しい方法を提案し、それに基づき巻線絶縁紙の劣化状態を推定して油入変圧器の余寿命を診断する方法と余寿命を診断する装置を提供することである。   The object of the present invention is to propose a new method for estimating the amount of oil in the vicinity of the upper part of the winding to be actually estimated from the amount of moisture in the insulating oil, and based on that, the deterioration state of the winding insulating paper is estimated to estimate the oil content. A method for diagnosing the remaining life of a transformer and an apparatus for diagnosing the remaining life are provided.

本発明の油入変圧器の余寿命診断方法は、鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断方法であって、前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割し、前記分割した各区域に存在する前記巻線コイルと前記固体絶縁物と前記絶縁油の分布を把握し、各区域において、前記固体絶縁物と絶縁油との間で水分が相互拡散する関係を把握し、各区域において、所定水分を含有している絶縁油が流れる状況を把握し、これらの間の水分量の相互拡散関係を各区域毎に把握し、前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散関係から導かれる絶縁油の油中水分量の値を比較し、前記油中水分量の実測値と前記相互拡散関係から導かれた油中水分量の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定し、この確定した水分分布に基づいて油入変圧器の余寿命診断を行うことを特徴とする。   The method for diagnosing the remaining life of an oil-filled transformer according to the present invention includes an iron core, a winding coil provided around the iron core, a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object, A method for diagnosing the remaining life of an oil-filled transformer having a configuration in which an oil flow is generated in the insulating oil, wherein the transformer is provided with an oil-immersed transformer immersed in an insulating oil contained in a tank. In an incoming transformer, a longitudinal section including a region where the transformer contents excluding the iron core and a region where the insulating oil is present is divided into a plurality of sections in the longitudinal direction and the transverse direction, and each section is present. The distribution of the winding coil, the solid insulator, and the insulating oil is grasped, and in each area, the relationship in which moisture interdiffuses between the solid insulator and the insulating oil is grasped. Understand the situation where insulating oil containing moisture flows, The mutual diffusion relation of the moisture amount between each area is grasped for each zone, and the measured value of the moisture content in the oil of the insulating oil actually collected from a part of the divided zone during the operation of the oil-filled transformer, Compare the value of the moisture content in the oil of the insulating oil derived from the mutual diffusion relationship for the area where the insulating oil was sampled, and the measured value of the moisture content in the oil and the moisture content in the oil derived from the mutual diffusion relationship. If the difference is equal to or less than a predetermined threshold, the moisture distribution in the insulating oil for each of the areas is determined, and the remaining life diagnosis of the oil-filled transformer is performed based on the determined moisture distribution.

本発明の油入変圧器の余寿命診断方法は、鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物とを備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断方法であって、前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割する分割モデル化ステップと、前記固体絶縁物分布と、前記絶縁油分布と、前記固体絶縁物の重量、厚さ及び平均重合度と、前記絶縁油の密度及び飽和水分量と、隣接する前記区域間の開口面積と、温度分布と、油流分布と、初期水分分布を仮定する基礎データ仮定ステップと、前記絶縁油の飽和水分量と、前記絶縁油中の水分拡散係数と、固体絶縁物−油間平衡水分量と、固体絶縁物中の水分の移動速度と、固体絶縁物中の温度勾配を仮定する計算パラメータ仮定ステップと、初期状態の変圧器の絶縁油の油中水分が時間経過とともに前記固体絶縁物に対して相互拡散するが、総水分量は一定であるとする関係を把握し、前記区域毎の絶縁油の油中水分量と固体絶縁物中水分量の相互拡散関係を把握する相互拡散把握ステップと、前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散把握ステップから導かれた絶縁油の油中水分量の計算値を比較し、前記実測値と前記計算値の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する比較ステップと、この決定された水分分布から導かれる前記巻線コイル上部絶縁紙の紙中水分量から前記変圧器の余寿命を診断する診断ステップを具備したことを特徴とする。   The method for diagnosing the remaining life of an oil-filled transformer according to the present invention includes an iron core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object. A method for diagnosing the remaining life of an oil-filled transformer having a structure in which an oil flow is generated in the insulating oil, wherein the content of the provided transformer is immersed in an insulating oil housed in a tank. In the transformer, a division modeling step for dividing a longitudinal section including a region where the transformer contents are removed excluding the iron core and a region where the insulating oil is present into a plurality of sections in a vertical direction and a horizontal direction, and the solid insulation Physical distribution, the insulating oil distribution, the weight, thickness and average degree of polymerization of the solid insulator, the density and saturated water content of the insulating oil, the opening area between the adjacent areas, and the temperature distribution, Basic data assumptions that assume oil flow distribution and initial moisture distribution , The saturated moisture content of the insulating oil, the moisture diffusion coefficient in the insulating oil, the equilibrium moisture content between the solid insulator and the oil, the movement speed of the moisture in the solid insulator, and the The calculation parameter assumption step that assumes the temperature gradient and the moisture in the oil of the insulating oil of the transformer in the initial state mutually diffuse with respect to the solid insulator over time, but the total moisture content is constant. Grasping and interdiffusion grasping step for grasping the mutual diffusion relation between the moisture content in the oil of the insulating oil and the moisture content in the solid insulation for each zone, and from a part of the divided zone when the oil-filled transformer is operated. Compare the measured value of the moisture content of the insulating oil actually collected with the calculated value of the moisture content of the insulating oil derived from the mutual diffusion grasping step for the area where the insulating oil was sampled. If the difference between the value and the calculated value is less than a predetermined threshold The comparison step for determining the moisture distribution in the insulating oil for each area and the diagnosis for diagnosing the remaining life of the transformer from the moisture content in the paper of the winding coil upper insulating paper derived from the determined moisture distribution It is characterized by comprising steps.

本発明において、前記相互拡散把握ステップにおいて、分割した各区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、初期水分量とを把握することが好ましい。
本発明において、前記比較ステップに、前記実測値と前記計算値の差異が所定の閾値を超えた場合、初期水分量と、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、分散係数の少なくとも1つを見直して再計算し、前記差異が閾値以下になるまで再計算を繰り返す機能が付加されたことを特徴とする。
In the present invention, in the mutual diffusion grasping step, the distribution of the insulating oil amount for each of the divided areas, the distribution of the solid insulator amount, the distribution of the opening area between adjacent areas, the oil flow distribution of the insulating oil, It is preferable to grasp the substantial movement speed of water molecules in the solid insulator for each zone, the moisture velocity gradient coefficient in the solid insulator, the thickness of the solid insulator for each zone, and the initial moisture content.
In the present invention, in the comparison step, when the difference between the measured value and the calculated value exceeds a predetermined threshold value, the initial moisture amount, the distribution of the insulating oil amount for each of the areas, the distribution of the solid insulator amount, Distribution of opening area between adjacent areas, oil flow distribution of insulating oil, substantial movement speed of water molecules in solid insulation per area, moisture velocity gradient coefficient in solid insulation, solid insulation per area A feature is added in which at least one of the thickness of the object and the dispersion coefficient is reviewed and recalculated, and the recalculation is repeated until the difference falls below a threshold value.

本発明において、前記相互拡散把握ステップにおいて、以下の(1)式に基づき相互拡散を把握することが好ましい。   In the present invention, in the mutual diffusion grasping step, it is preferable to grasp the mutual diffusion based on the following equation (1).

Figure 2018148052
Figure 2018148052

ただし、(1)式において、x:固体絶縁物の銅線からの位置(mm)、y:固体絶縁物中水分量(%)、yn:n番目の区域(区間)の固体絶縁物中水分量(%)、t:運転開始からの時間(min)、∂t:微小時間(min)、∂yn:微小時間におけるn番目の区域における固体絶縁物中水分量の増分(%)、v:銅線に接する絶縁紙における固体絶縁物中水分子の実質的な移動速度(mm/min)、k’:固体絶縁物中水分速度勾配係数(1/mm)、tp:1区間における固体絶縁物の厚さ(mm)と規定する。 However, in the formula (1), x: position of the solid insulator from the copper wire (mm), y: moisture content in the solid insulator (%), yn: moisture in the solid insulator in the nth section (section) Amount (%), t: time from the start of operation (min), ∂t: minute time (min), ∂yn: increment of moisture content in the solid insulator in the n-th zone in minute time (%), v 0 : Substantial moving speed of water molecules in solid insulator (mm / min) in insulating paper in contact with copper wire, k ′: Moisture velocity gradient coefficient in solid insulator (1 / mm), tp: solid insulation in section 1 It is defined as the thickness (mm) of the object.

本発明において、各区域に含まれる水分量が固体絶縁物中水分量と油中水分量の和であり、各区域の水分量の総和が油入変圧器に含まれる総水分量であり、各区域における水分量の増分はその区域に流入する水分量から流出する水分量を差し引いた量であり、油中水分量の増分が以下の(2)式の関係を満たすことが好ましい。   In the present invention, the amount of water contained in each region is the sum of the amount of water in the solid insulator and the amount of water in the oil, the sum of the amount of water in each region is the total amount of water contained in the oil-filled transformer, The increment of the amount of water in the area is an amount obtained by subtracting the amount of water flowing out from the amount of water flowing into the area, and it is preferable that the increment of the amount of water in oil satisfies the relationship of the following equation (2).

Figure 2018148052
Figure 2018148052

本発明の診断装置は、鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断装置であって、前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に分割した複数の区域を記憶する機能と、前記分割した各区域に存在する前記巻線コイルと前記固体絶縁物と前記絶縁油の分布を記憶する機能と、各区域において、前記固体絶縁物と絶縁油との間で水分が相互拡散する関係を把握し、各区域において、所定水分を含有している絶縁油が流れる状況を把握し、これらの間の水分量の相互拡散関係を各区域毎に計算する機能と、前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散関係から導かれる絶縁油の油中水分量の値を比較し、前記油中水分量の実測値と前記相互拡散関係から導かれた油中水分量の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する機能を有することを特徴とする。   The diagnostic device according to the present invention includes a transformer including an iron core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object. An oil-filled transformer immersed in insulating oil accommodated in a tank, wherein the oil-filled transformer has a remaining life diagnosis device configured to generate an oil flow in the insulating oil. A function of storing a plurality of sections obtained by dividing a longitudinal section including a region where the transformer contents are present and a region where the insulating oil is present in the longitudinal direction and the transverse direction, and the windings present in each of the divided areas. The function of storing the distribution of the wire coil, the solid insulator, and the insulating oil, and the relationship in which the moisture is interdiffused between the solid insulator and the insulating oil in each zone, and the predetermined moisture in each zone Understand the situation where insulating oil containing The function of calculating the interdiffusion relationship of the moisture content between these for each zone, and the actual measured value of the moisture content in the oil of the insulating oil actually taken from a part of the divided zone during operation of the oil-filled transformer And comparing the value of the moisture content in the oil of the insulating oil derived from the mutual diffusion relationship with respect to the area where the insulating oil was sampled, in the oil derived from the measured value of the moisture content in the oil and the mutual diffusion relationship If the difference in the amount of moisture is equal to or less than a predetermined threshold value, it has a function of determining the moisture distribution in the insulating oil for each area.

本発明に係る余寿命診断装置は、鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断装置であって、前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割した各区域を記憶する分割モデル化機能と、前記固体絶縁物分布と、前記絶縁油分布と、前記固体絶縁物の重量、厚さ及び平均重合度と、前記絶縁油の密度及び飽和水分量と、隣接する前記区域間の開口面積と、温度分布と、油流分布と、初期水分分布を記憶する基礎データ仮定機能と、前記絶縁油の飽和水分量と、前記絶縁油中の水分拡散係数と、固体絶縁物−油間平衡水分量と、固体絶縁物中の水分の移動速度と、固体絶縁物中の温度勾配の仮定値を記憶する計算パラメータ仮定機能と、初期状態の変圧器の絶縁油の油中水分が時間経過とともに前記固体絶縁物に対して相互拡散するが、総水分量は一定であるとする関係を把握し、前記区域毎の絶縁油の油中水分量と固体絶縁物中水分量の相互拡散関係を把握して記憶する相互拡散把握機能と、前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散把握ステップから導かれた絶縁油の油中水分量の計算値を比較し、前記実測値と前記計算値の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する比較機能と、この決定された水分分布から導かれる前記巻線コイル上部絶縁紙の紙中水分量から前記変圧器の余寿命を診断する診断機能を具備したことを特徴とする。     A remaining life diagnosis apparatus according to the present invention includes an iron core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object. An oil-filled transformer whose contents are immersed in insulating oil contained in a tank, and a remaining life diagnosis device for an oil-filled transformer configured to generate an oil flow in the insulating oil, wherein the oil-filled transformer A division modeling function for storing each section obtained by dividing a longitudinal section including an existing area of the transformer content excluding the iron core and an area where the insulating oil exists into a plurality of areas in the vertical direction and the horizontal direction; Solid insulator distribution, the insulating oil distribution, the weight, thickness and average degree of polymerization of the solid insulator, the density and saturated water content of the insulating oil, the opening area between the adjacent areas, and the temperature distribution Basic data for storing oil flow distribution and initial moisture distribution Constant function, saturated moisture content of the insulating oil, moisture diffusion coefficient in the insulating oil, equilibrium moisture content between the solid insulator and oil, the movement speed of moisture in the solid insulator, Calculation parameter assumption function that stores the assumed value of the temperature gradient, and moisture in the oil of the insulating oil of the transformer in the initial state mutually diffuses over time with respect to the solid insulator, but the total moisture content is constant A mutual diffusion grasping function for grasping and storing a mutual diffusion relationship between the moisture content in the oil of the insulating oil and the moisture content in the solid insulator for each area, and the division during the operation of the oil-filled transformer. The measured value of the moisture content in the oil of the insulating oil actually collected from a part of the obtained area and the calculated value of the moisture content in the oil of the insulating oil derived from the mutual diffusion grasping step for the area where the insulating oil was collected. And the difference between the measured value and the calculated value is less than a predetermined threshold value. If so, the remaining life of the transformer is determined from the comparison function for determining the moisture distribution in the insulating oil for each section and the moisture content in the paper of the upper insulating paper of the winding coil derived from the determined moisture distribution. A diagnostic function for diagnosis is provided.

本発明の余寿命診断装置の相互拡散把握機能において、分割した各区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、初期水分量とを把握する機能を具備することが好ましい。   In the interdiffusion grasp function of the remaining life diagnosis apparatus of the present invention, the distribution of the insulating oil amount for each divided area, the distribution of the solid insulator amount, the distribution of the opening area between adjacent areas, and the oil flow of the insulating oil It has the function of grasping the distribution, the substantial movement speed of water molecules in the solid insulator for each zone, the moisture velocity gradient coefficient in the solid insulator, the thickness of the solid insulator for each zone, and the initial moisture content. It is preferable.

本発明の余寿命診断装置の比較機能に、前記実測値と前記計算値の差異が所定の閾値を超えた場合、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、分散係数の少なくとも1つを見直して再計算し、前記差異が閾値以下になるまで再計算を繰り返す機能が付加されたことが好ましい。   In the comparison function of the remaining life diagnosis apparatus of the present invention, when the difference between the actual measurement value and the calculated value exceeds a predetermined threshold value, the distribution of the insulating oil amount and the distribution of the solid insulation amount for each area are adjacent to each other. Distribution of open area between zones, oil flow distribution of insulating oil, substantial transfer rate of water molecules in solid insulators per zone, moisture velocity gradient coefficient in solid insulators, and solid insulators per zone It is preferable to add a function of recalculating and recalculating at least one of the thickness and the dispersion coefficient, and repeating the recalculation until the difference falls below a threshold value.

本発明の余寿命診断装置の前記相互拡散把握機能において、以下の(1)式に基づき相互拡散を把握する機能を有することが好ましい。   The interdiffusion grasping function of the remaining life diagnosis apparatus of the present invention preferably has a function of grasping the mutual diffusion based on the following equation (1).

Figure 2018148052
Figure 2018148052

ただし、(1)式において、x:固体絶縁物の銅線からの位置(mm)、y:固体絶縁物中水分量(%)、yn:n番目の区域(区間)の固体絶縁物中水分量(%)、t:運転開始からの時間(min)、∂t:微小時間(min)、∂yn:微小時間におけるn番目の区域における固体絶縁物中水分量の増分(%)、v:銅線に接する絶縁紙における固体絶縁物中水分子の実質的な移動速度(mm/min)、k’:固体絶縁物中水分速度勾配係数(1/mm)、tp:1区間における固体絶縁物の厚さ(mm)と規定する。 However, in the formula (1), x: position of the solid insulator from the copper wire (mm), y: moisture content in the solid insulator (%), yn: moisture in the solid insulator in the nth section (section) Amount (%), t: time from the start of operation (min), ∂t: minute time (min), ∂yn: increment of moisture content in the solid insulator in the n-th zone in minute time (%), v 0 : Substantial moving speed of water molecules in solid insulator (mm / min) in insulating paper in contact with copper wire, k ′: Moisture velocity gradient coefficient in solid insulator (1 / mm), tp: solid insulation in section 1 It is defined as the thickness (mm) of the object.

本発明に係る変圧器の余寿命診断方法によれば、従来の余寿命診断方法においては温度変化による絶縁紙等の固体絶縁物中水分変動を考慮していなかったのに対し、同時刻の温度と水分量から、絶縁紙やプレスボード等の固体絶縁物中の水分変動を考慮し、それらに基づいて油中水分量の分布を把握し、変圧器の劣化を計算することができる。
温度と水分量は逆の挙動を示すことから、従来技術において過剰に固体絶縁物の劣化が計算されていたことが是正され、絶縁紙やプレスボード等の固体絶縁物の寿命、ひいては変圧器の余寿命を正確に計算できる結果、変圧器の余寿命を正確に把握した診断が可能となる。
従って、余寿命が実際には残っている変圧器を寿命であると判断して交換してしまうことがなくなり、変圧器の効率的な運用ができる。
また、変圧器の過負荷運転時の温度と水分の変動を正確に計算することが可能になり、過負荷運転が変圧器の寿命に与える影響も診断することが可能になる。
According to the remaining life diagnosis method for a transformer according to the present invention, the conventional remaining life diagnosis method did not take into account moisture fluctuations in solid insulation such as insulating paper due to temperature change, whereas the temperature at the same time From the amount of moisture and the amount of moisture, it is possible to calculate the deterioration of the transformer by considering the moisture variation in the solid insulator such as insulating paper and press board, and grasping the distribution of the amount of moisture in the oil based on them.
Since temperature and moisture content behave in reverse, it was corrected that the deterioration of solid insulation was excessively calculated in the prior art, and the life of solid insulation such as insulating paper and pressboard, and thus the transformer As a result of accurately calculating the remaining life, it is possible to diagnose the remaining life of the transformer accurately.
Therefore, it is determined that the remaining transformer actually has a remaining life and is not replaced, and the transformer can be operated efficiently.
In addition, it is possible to accurately calculate fluctuations in temperature and moisture during overload operation of the transformer, and it is possible to diagnose the influence of overload operation on the life of the transformer.

本発明に係る第1実施形態の余寿命診断方法の実施に用いた変圧器の概要を示す側断面図。The sectional side view which shows the outline | summary of the transformer used for implementation of the remaining life diagnostic method of 1st Embodiment which concerns on this invention. 第1実施形態に係る余寿命診断方法の各ステップを示すフローチャート。The flowchart which shows each step of the remaining life diagnostic method which concerns on 1st Embodiment. 図1に示す変圧器の部分縦断面に対し複数の区域に分割した状態を示す説明図。Explanatory drawing which shows the state divided | segmented into the several area with respect to the partial longitudinal cross-section of the transformer shown in FIG. 図3に示す変圧器の分割区域に対し絶縁油の分布状態を仮定した一例を示す説明図。Explanatory drawing which shows an example which assumed the distribution state of the insulating oil with respect to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域に対し巻線絶縁紙の分布状態を仮定した一例を示す説明図。Explanatory drawing which shows an example which assumed the distribution state of the winding insulation paper with respect to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域に対しプレスボードと木製物の合計重量分布状態を仮定した一例を示す説明図。Explanatory drawing which shows an example which assumed the total weight distribution state of a press board and a wooden thing with respect to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域に対し隣接する分割区域間の開口面積を仮定した一例を示す説明図。Explanatory drawing which shows an example which assumed the opening area between the division areas adjacent to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域に対し紙中熱電対と油中熱電対と外気温測定用熱電対を個々に設置した位置を示す説明図。Explanatory drawing which shows the position which installed the thermocouple in paper, the thermocouple in oil, and the thermocouple for external temperature measurement separately with respect to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域をより大きな区域にまとめた場合に対し該まとめた区域毎の絶縁油の温度分布を仮定した説明図。FIG. 4 is an explanatory diagram assuming a temperature distribution of insulating oil for each grouped area when the divided areas of the transformer shown in FIG. 3 are grouped into a larger area. 図3に示す変圧器の分割区域に対し絶縁油の流れを6つの大きな流れに分類した状態の一例を示す説明図。Explanatory drawing which shows an example of the state which classified the flow of the insulating oil into six big flows with respect to the division area of the transformer shown in FIG. 図3に示す変圧器の分割区域を図10の場合より大きな区域にまとめた場合に対し、まとめた区域に対する絶縁油の流れを6つの大きな流れに分類した状態を示す説明図。Explanatory drawing which shows the state which divided | segmented the flow of the insulating oil with respect to the gathered area into six big flows with respect to the case where the division | segmentation area of the transformer shown in FIG. 3 was gathered into the bigger area than the case of FIG. 図1に示す変圧器に備えた巻線絶縁紙における紙中水分と該巻線絶縁紙に接触している絶縁油における油中水分について相互の平衡関係を示すグラフ。The graph which shows the mutual equilibrium relationship about the water | moisture content in the paper in the winding insulation paper with which the transformer shown in FIG. 1 was equipped, and the water | moisture content in the oil in the insulating oil which is contacting this winding insulation paper. 図1に示す変圧器に備えたプレスボードにおける紙中水分と該プレスボードに接触している絶縁油における油中水分について相互の平衡関係を示すグラフ。The graph which shows a mutual equilibrium relationship about the water | moisture content in the paper in the press board with which the transformer shown in FIG. 1 was equipped, and the water | moisture content in the oil in the insulating oil which is contacting this press board. 図1に示す変圧器に備えたコイル絶縁紙中水分の移動速度に関し本発明者が求めた結果を示すもので、(A)はステップ昇温実験結果を示すグラフ、(B)はK’=0.15の場合の計算結果を示すグラフ。The result which the inventor calculated | required regarding the moving speed of the water | moisture content in the coil insulation paper with which the transformer shown in FIG. 1 was shown is shown, (A) is a graph which shows a step temperature rising experiment result, (B) is K '= The graph which shows the calculation result in the case of 0.15. コイル絶縁紙中水分の移動速度に関し温度依存性を求めた結果を示すグラフ。The graph which shows the result of having calculated | required temperature dependence regarding the moving speed of the moisture in a coil insulating paper. プレスボード中水分の移動速度について実験結果と計算結果を比較して示すグラフ。The graph which compares and shows an experimental result and a calculation result about the moving speed of the moisture in a press board. 図1に示す構成の変圧器を用いて油中水分量を計算した結果と実験値を対比して示すもので、(A)は実験値を示すグラフ、(B)は計算値を示すグラフ。The result of having calculated the moisture content in oil using the transformer of the composition shown in FIG. 1 and the experimental value are shown in comparison, (A) is a graph showing the experimental value, and (B) is a graph showing the calculated value. 図1に示す構成の変圧器を用いた計算結果において、絶縁紙温度と紙中水分量の時刻による変化を示すグラフ。The graph which shows the change by the time of the insulation paper temperature and the moisture content in paper in the calculation result using the transformer of the structure shown in FIG. 図3に示す変圧器の分割区域に対応させて油温の計算と油中水分量の計算を行った結果を示すもので、(A)は油温の計算結果を濃淡で示す図、(B)は油中水分量を計算した結果を濃淡で示す図。FIG. 3 shows the result of calculating the oil temperature and the amount of water in the oil corresponding to the transformer division shown in FIG. 3, (A) is a diagram showing the calculation result of the oil temperature in light and shade, (B ) Is a diagram showing the result of calculating the amount of water in oil in shades. 本発明を実施する際に用いて好適な余寿命判断装置の一例を示す構成図。The block diagram which shows an example of the remaining life judgment apparatus suitable for using when implementing this invention. 発熱体と見立てた巻線コイル(ヒーター)と巻線絶縁紙と絶縁油が隣接配置され、絶縁紙と絶縁油の境界に境膜が形成されている場合の温度分布と水分分布のモデルについて示す説明図。A model of temperature distribution and moisture distribution when a winding coil (heater), winding insulation paper, and insulation oil are placed adjacent to each other and a film is formed at the boundary between the insulation paper and insulation oil. Illustration. ヒーターと絶縁紙と胸膜と絶縁油が隣接されている場合の水分分布の一例を示す説明図。Explanatory drawing which shows an example of a moisture distribution in case heater, insulating paper, pleura, and insulating oil are adjacent. 巻線絶縁紙中の温度分布モデルと水分移動速度モデルについて示す説明図。Explanatory drawing shown about the temperature distribution model in a coil | winding insulation paper, and a moisture moving speed model. ヒーターと絶縁紙と境膜と絶縁油が隣接されている場合において、時間的に変化する温度勾配が与えられた場合の水分移動について把握するための説明図。Explanatory drawing for grasping | ascertaining a water movement when the temperature gradient which changes temporally is given when a heater, insulating paper, a boundary film, and insulating oil are adjacent. 動粘度と温度の測定値からJIS規定に従い動粘度の温度依存性を推定した計算結果を示すグラフ。The graph which shows the calculation result which estimated the temperature dependence of kinematic viscosity from the measured value of kinematic viscosity and temperature according to JIS specification. 15℃の密度測定値からJIS規定に従う絶縁油1種の熱膨張係数を用いて密度の温度依存性を推定した結果を示すグラフ。The graph which shows the result of having estimated the temperature dependence of the density using the thermal expansion coefficient of 1 type of insulating oil according to JIS specification from the density measured value of 15 degreeC. 動粘度と密度を図25と図26の値、定数const.を4と仮定して油中水分の拡散係数温度依存性を(39)式で計算した結果を示すグラフ。The kinematic viscosity and density are the values in FIGS. 25 and 26, the constant const. The graph which shows the result of having calculated the diffusion coefficient temperature dependence of the water | moisture content in oil by Formula (39) supposing that is 4. FIG.

<第1実施形態>
以下、本発明に係る油入変圧器の余寿命診断方法の第1実施形態について、図面に基づき説明する。
図1は油入変圧器の余寿命診断方法を実施するために用いたモデル変圧器の一例を示す構成図であり、このモデル変圧器は、実際に使用される変圧器の構成要素の集まりからなり、中心に配置された鉄心1の周囲にコイル巻線2が設けられている。各コイル巻線2は絶縁紙3で覆われるとともに、コイル巻線2はその上下をプレスボード5、5によって挟まれ、コイル巻線2にプレスボード5、5によって上下から締め付け力が付加されている。また、巻線と巻線の間のターン間にもスペーサプレスボードが挟まれている。
この実施形態では鉄心1とコイル巻線2と絶縁紙3とプレスボード5を備えて変圧器中身6が構成され、この変圧器中身6が円筒状のタンク7に充填された絶縁油8に浸漬され、変圧器Aが構成されている。この変圧器Aは単相で円筒型の変圧器として構成されている。なお、変圧器Aにおいては、絶縁紙3とプレスボード5以外に種々の木製物が設けられているが、木製物については後に詳述する。
<First Embodiment>
Hereinafter, a first embodiment of a method for diagnosing the remaining life of an oil-filled transformer according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of a model transformer used for carrying out the remaining life diagnosis method of an oil-filled transformer. This model transformer is composed of a collection of components of a transformer actually used. The coil winding 2 is provided around the iron core 1 arranged at the center. Each coil winding 2 is covered with insulating paper 3, and the coil winding 2 is sandwiched between the upper and lower press boards 5 and 5, and a clamping force is applied to the coil winding 2 from above and below by the press boards 5 and 5. Yes. A spacer press board is also sandwiched between turns between the windings.
In this embodiment, an iron core 1, a coil winding 2, an insulating paper 3 and a press board 5 are provided to form a transformer content 6, and the transformer content 6 is immersed in an insulating oil 8 filled in a cylindrical tank 7. Thus, the transformer A is configured. The transformer A is configured as a single-phase cylindrical transformer. In the transformer A, various wooden objects are provided in addition to the insulating paper 3 and the press board 5. The wooden objects will be described in detail later.

変圧器Aのコイル巻線2は絶縁紙3によって絶縁分離した状態で鉄心1の周囲に配置された絶縁筒4に巻き付けられ、鉄心1の上部側に上ヨーク9が配置され、鉄心1の下部側に下ヨーク10が配置され、それらの上部と下部に円板状のプレスボード5が配置されている。一次側のコイル巻線と二次側のコイル巻線はそれぞれ図示略の絶縁スペーサなどの固体絶縁物を介し絶縁筒4の周囲に絶縁状態で支持されている。
プレスボード5、5の周辺部分を貫通するように支柱部材11が立設され、これらの支柱部材11は上下のプレスボード5、5を互いに接近する方向に押し付け、それらの内側に設けられているコイル巻線2に所定の締め付け力が付加されている。
なお、図1では略されているが、コイル巻線2の周囲にはプレスボードと同等の木製物からなる巻線スペーサ、絶縁筒レール、絶縁筒ダクトレール、上ヨーク絶縁物、下ヨーク絶縁物等が配置されている。また、図1では略されているが、巻線コイル2の外側には木製物からなる外側バリアが配置されている。これらの木製物は油中水分の拡散移動に影響を与えるので後述のように解析する。
The coil winding 2 of the transformer A is wound around an insulating cylinder 4 arranged around the iron core 1 in a state of being insulated and separated by an insulating paper 3, and an upper yoke 9 is arranged on the upper side of the iron core 1. A lower yoke 10 is disposed on the side, and a disk-shaped press board 5 is disposed on the upper and lower portions thereof. The primary side coil winding and the secondary side coil winding are respectively supported in an insulated state around the insulating cylinder 4 via a solid insulator such as an insulating spacer (not shown).
Support members 11 are erected so as to penetrate the peripheral portions of the press boards 5 and 5, and these support members 11 press the upper and lower press boards 5 and 5 in a direction approaching each other and are provided inside them. A predetermined tightening force is applied to the coil winding 2.
Although omitted in FIG. 1, the coil winding 2 is surrounded by a winding spacer made of a wooden material equivalent to a press board, an insulating cylinder rail, an insulating cylinder duct rail, an upper yoke insulator, and a lower yoke insulator. Etc. are arranged. Although omitted in FIG. 1, an outer barrier made of a wooden material is disposed outside the winding coil 2. Since these wooden objects affect the diffusion and movement of moisture in the oil, they are analyzed as described below.

図1に示す変圧器Aにおいてタンク7の右側に縦型の放熱器(ラジエータ)13が設けられ、放熱器13の上部の導入側とタンク7の上部が上部配管15で接続され、放熱器13の下部の排出側とタンク7の下部が下部配管16で接続されている。
以上の構成により、タンク7の内部に収容されている絶縁油8は上部配管15から放熱器13側に吸入され、放熱器13の内部を通過する間に放熱された後、下部配管16を介しタンク7の下部側に戻るように循環される。
また、タンク7に収容されている絶縁油8は変圧器中身6の発熱により加温されるので、加温された絶縁油は自然対流によりタンク7の下部側から上部側に向かう自然対流を生じる。この自然対流と上述の放熱器13からの戻り流が合成されるとともに、タンク7の内部に収容されている上ヨーク9、下ヨーク10、上下のプレスボード5、コイル巻線2などが絶縁油8の流れに対する流動抵抗体となるため、タンク7の内部においては複雑な複数の絶縁油の流れが生じる。この複雑な複数の絶縁油の流れの解析については後に詳述する。更に、絶縁油についてはポンプで強制循環させる場合もある。
In the transformer A shown in FIG. 1, a vertical radiator (radiator) 13 is provided on the right side of the tank 7. The upper side of the radiator 13 and the upper side of the tank 7 are connected by an upper pipe 15. The lower discharge side and the lower part of the tank 7 are connected by a lower pipe 16.
With the above configuration, the insulating oil 8 accommodated in the tank 7 is sucked from the upper pipe 15 to the radiator 13 side and is radiated while passing through the radiator 13, and then passes through the lower pipe 16. Circulation is performed so as to return to the lower side of the tank 7.
Moreover, since the insulating oil 8 accommodated in the tank 7 is heated by the heat generated in the transformer 6, the heated insulating oil causes natural convection from the lower side to the upper side of the tank 7 by natural convection. . The natural convection and the return flow from the radiator 13 are combined, and the upper yoke 9, the lower yoke 10, the upper and lower press boards 5, the coil winding 2, and the like housed in the tank 7 are insulated oil. Since it becomes a flow resistance body with respect to the flow of 8, in the inside of the tank 7, the flow of a complicated some insulating oil arises. The analysis of the complicated flow of insulating oil will be described in detail later. Further, the insulating oil may be forced to circulate with a pump.

本実施形態に係る図1に示す変圧器Aにおいて、試験用に用いたタンク7は、タンク内上部空間側の絶縁油量を647L、コイル区域に存在する絶縁油量を1142L、タンク下部空間側の絶縁油量を311Lに設定した構造であり、総絶縁油量2100L、定格容量10.2kVAの変圧器である。この変圧器Aにおいて、コイル絶縁紙3の重量は14.3kgであり、上ヨーク絶縁物と巻線スペーサと絶縁筒レールと絶縁筒ダクトレールと下ヨーク絶縁物の総重量は73.7kg、木製物として支柱部材11の重量は27.3kg、絶縁紙とプレスボードと木製物の総重量は115.3kgである。
なお、タンク内上部空間側の絶縁油とコイル区域の絶縁油とタンク下部側の絶縁油には放熱器13側や配管15、16部分に存在する絶縁油を含めた総容量としている。また、タンク7の上部側には図1では略したコンサベータCS(図3〜図9参照)が設置されていて、このコンサベータCSにも絶縁油が110L収容されるが、コンサベータCSに収容される絶縁油についてはタンク内上部空間側の絶縁油の重量に含めることにする。
In the transformer A shown in FIG. 1 according to the present embodiment, the tank 7 used for the test has an insulating oil amount of 647 L on the upper space side in the tank, an insulating oil amount existing in the coil area of 1142 L, and a tank lower space side. This is a transformer having a total insulating oil amount of 2100 L and a rated capacity of 10.2 kVA. In this transformer A, the weight of the coil insulating paper 3 is 14.3 kg, and the total weight of the upper yoke insulator, the winding spacer, the insulating cylinder rail, the insulating cylinder duct rail, and the lower yoke insulator is 73.7 kg, wooden As a thing, the weight of the support | pillar member 11 is 27.3 kg, and the total weight of an insulating paper, a press board, and a wooden thing is 115.3 kg.
The insulating oil on the upper space side in the tank, the insulating oil on the coil section, and the insulating oil on the lower side of the tank have a total capacity including the insulating oil existing on the radiator 13 side and the pipes 15 and 16. Further, a conservator CS (see FIGS. 3 to 9) omitted in FIG. 1 is installed on the upper side of the tank 7, and 110 L of insulating oil is accommodated in the conservator CS. The insulating oil to be contained is included in the weight of the insulating oil on the upper space side in the tank.

絶縁紙3は、厚さ80μmのものをコイル巻線2に対しハーフラップで4枚巻きとした構成が採用されている。
変圧器Aが運転開始直後で新品とみなせる場合は絶縁紙の平均重合度(DP)はすべて新品の値(1100前後)と仮定する。経年で劣化が進むとDPが低下するので、運転開始後で劣化の影響が無視できない時点から計算する場合は、DP分布も仮定する必要がある。本実施形態の変圧器Aの場合、変圧器Aは新品とみなし、本実施形態において絶縁紙3のDPはすべて1174、プレスボードおよび木製物のDPはすべて1101と仮定した。
絶縁油については、15℃における密度0.866g/cm、40℃における動粘度7.68mm/s、100℃における動粘度2.17mm/sの絶縁油を用いた。
The insulating paper 3 has a configuration in which a sheet having a thickness of 80 μm is wound around the coil winding 2 by a half wrap.
When the transformer A can be regarded as new immediately after the start of operation, the average degree of polymerization (DP) of the insulating paper is assumed to be all new values (around 1100). Since DP decreases as deterioration progresses over time, it is necessary to assume the DP distribution when calculating from the time when the influence of deterioration cannot be ignored after the start of operation. In the case of the transformer A of the present embodiment, the transformer A is regarded as a new product. In this embodiment, the DP of the insulating paper 3 is assumed to be 1174, and the DP of the press board and the wooden object is assumed to be 1101.
The insulating oil was used a density 0.866 g / cm 3, 40 insulating oil kinematic viscosity 2.17 mm 2 / s in kinematic viscosity 7.68mm 2 / s, 100 ℃ at ° C. at 15 ° C..

以上説明の変圧器Aを実際に用い、負荷率100%にて20日間運転後、無負荷状態で10日間運転した場合の油中水分の変化を計算により求め、実測値との比較を行った例について以下に説明する。
本実施形態では、最初に図2に示すフローチャートで示すように、前記油入変圧器Aにおいて、前記鉄心1を除いた前記変圧器中身6の存在領域と前記絶縁油8が存在する領域を含む縦断面をとり、その縦断面を縦方向及び横方向に複数の区域に分割する分割モデル化ステップS1を行う。
Transformer A described above was actually used, and after a 20-day operation at a load factor of 100%, a change in moisture in the oil was calculated by calculation for 10 days in a no-load state, and compared with an actual measurement value. Examples are described below.
In the present embodiment, as shown in the flowchart shown in FIG. 2, the oil-filled transformer A includes a region where the transformer contents 6 excluding the iron core 1 and a region where the insulating oil 8 exists. A division modeling step S1 for taking a longitudinal section and dividing the longitudinal section into a plurality of sections in the longitudinal direction and the lateral direction is performed.

「分割モデル化ステップ:S1」
この実施形態では、分割モデル化ステップS1において、図3に例示するようにタンク7の右半分側の縦断面に5cm刻みでメッシュを切り、垂直方向を48層(タンク7の底部側を区域1と設定し、タンク7の内頂部側を区域48と設定)、半径方向に7層(タンク7の内側から外側に順にA〜Gの区域に設定)の計296区域に分割した。
本実施形態の変圧器Aは、単相であり、円筒型であることから、円筒対称性を仮定して半径方向と鉛直方向の2次元で構造を近似することができる。このため、図3に示すように5cmきざみでメッシュを切っていることは、鉄心1を除いた変圧器中身6の存在領域と絶縁油が存在する領域を含む変圧器Aの縦断面を取り、その縦断面を縦方向及び横方向に複数の区域に分割したことを意味する。
“Partition modeling step: S1”
In this embodiment, in the division modeling step S1, as illustrated in FIG. 3, the vertical section on the right half side of the tank 7 is cut in 5 cm increments, and the vertical direction is 48 layers (the bottom side of the tank 7 is the area 1). And the inner top side of the tank 7 was set as a zone 48), and was divided into a total of 296 zones of 7 layers in the radial direction (set in zones A to G in order from the inside to the outside of the tank 7).
Since the transformer A of the present embodiment is single-phase and cylindrical, the structure can be approximated in two dimensions in the radial direction and the vertical direction assuming cylindrical symmetry. For this reason, cutting the mesh in 5 cm increments as shown in FIG. 3 takes a longitudinal section of the transformer A including the region where the transformer contents 6 excluding the iron core 1 and the region where the insulating oil is present, This means that the longitudinal section is divided into a plurality of areas in the longitudinal and lateral directions.

また、放熱器13の内部空間は、図3に示すように、高さ方向を下側から順にR12〜43の区域に分割し、区域RUは放熱器13の上端部の上部配管15を示し、区域RLは放熱器13の下端部の下部配管16を示している。また、タンク7の垂直方向を48層、半径方向に7層の計296区域に分割しているので、タンク7の内部空間は、A41〜A48、B1〜B48、C1〜C48、D1〜D48、E1〜E48、F1〜F48、G1〜G48の区域に分割されている。
なお、A1〜A40に相当する区域は鉄心1が存在し、絶縁油が存在していない区域であるので、本分割モデル化ステップS1において区域設定から除外している。また、放熱器13の内部空間は、32分割して上部配管15と下部配管16で接続される領域(RU、RL)に分けられている。
Moreover, as shown in FIG. 3, the internal space of the radiator 13 divides the height direction into R12 to 43 sections in order from the lower side, and the section RU indicates the upper pipe 15 at the upper end of the radiator 13. An area RL indicates the lower pipe 16 at the lower end of the radiator 13. Further, since the vertical direction of the tank 7 is divided into a total of 296 areas of 48 layers and 7 layers in the radial direction, the internal space of the tank 7 is A41 to A48, B1 to B48, C1 to C48, D1 to D48, It is divided into areas E1 to E48, F1 to F48, and G1 to G48.
In addition, since the area corresponding to A1-A40 is an area where the iron core 1 exists and the insulating oil does not exist, it is excluded from the area setting in this division modeling step S1. The internal space of the radiator 13 is divided into 32 regions (RU, RL) that are divided into 32 and connected by the upper pipe 15 and the lower pipe 16.

「基礎データ仮定ステップ:S2」
次に、本実施形態では、基礎データ仮定ステップS2において、変圧器Aにおける各区域の絶縁油の容積、固体絶縁物(コイル巻線の絶縁紙、プレスボード、巻線スペーサ、絶縁筒レール、絶縁筒ダクトレール、上ヨーク絶縁物、下ヨーク絶縁物等を総称する場合は固体絶縁物と呼称することにする)の配置、厚さ、重量はあらかじめ調べておき、判明しているものはその値を用い、判明していないものは後述する調査結果と矛盾がないように仮定する。
本実施形態において採用した変圧器Aに対し、絶縁油の分布(単位:L)を図4に示し、巻線絶縁紙の分布(単位:g)を図5に示し、絶縁紙以外のプレスボードと木製物の合計重量の分布(単位:g)を図6のように仮定した。
これらの仮定は、実際に用いた変圧器Aの構造の詳細が判明しているので、分割した各区域毎に絶縁油、巻線絶縁紙、プレスボードと木製物がどの程度存在しているのかを割り振った結果である。
“Basic data assumption step: S2”
Next, in this embodiment, in the basic data assumption step S2, the volume of insulating oil in each area in the transformer A, solid insulation (coil winding insulation paper, press board, winding spacer, insulation cylinder rail, insulation) The tube duct rail, upper yoke insulator, lower yoke insulator, etc. are collectively referred to as solid insulator). The arrangement, thickness, and weight are examined in advance, and the known values are the values. It is assumed that what is not known is consistent with the survey results described later.
For the transformer A employed in this embodiment, the distribution of insulating oil (unit: L) is shown in FIG. 4, the distribution of winding insulating paper (unit: g) is shown in FIG. The distribution of the total weight of the wooden objects (unit: g) was assumed as shown in FIG.
Since these assumptions have revealed the details of the structure of the transformer A actually used, how much insulation oil, winding insulation paper, pressboard and wooden objects are present in each divided area. Is the result of allocating

図3〜図6に示す各区域は、隣や上下の区域と接する開口面積を通じて絶縁油が対流し、油中水分が相互拡散する。そこで、各区域間の開口面積は変圧器Aの幾何学的な形状や変圧器の構造を考慮して図7のように仮定した(単位:cm)。
図7においてB9〜B36の区域は、コイル巻線が設けられている区域であり、上下に隣接する区域間の開口面積をそれらの上方と下方の区域の開口面積の半分と仮定した。
また、B8区域とB9区域の間の開口面積は巻線支持物がさらに詰まっていると考え、B8区域の幾何学的な開口面積の4分の1と仮定した。(864/4=216cm)さらに、タンク上部とコイル巻線区域の境(図7において上方の黒い太実線の下の区域)は上部ヨークが存在し、タンク下部とコイル巻線区域の境(図内下方の黒い太実線の下の区域)は下部ヨークがあり、開口していないと考えられるので、それらの区域におけるC〜Fの開口面積は0と仮定した。即ち、図7の上下の黒い太線の部分は絶縁油が流れる場合に壁となり、絶縁油はこの壁を避けるように対流すると仮定する。
In each area shown in FIGS. 3 to 6, the insulating oil convects through the opening area in contact with the adjacent area and the upper and lower areas, and moisture in the oil diffuses mutually. Therefore, the opening area between the sections is assumed as shown in FIG. 7 in consideration of the geometric shape of the transformer A and the structure of the transformer (unit: cm 2 ).
In FIG. 7, areas B9 to B36 are areas where coil windings are provided, and the opening area between adjacent areas above and below is assumed to be half of the opening area of the upper and lower areas.
Also, the opening area between the B8 and B9 areas was considered to be more clogged with the winding support and was assumed to be a quarter of the geometric opening area of the B8 area. (864/4 = 216 cm 2 ) Further, the boundary between the tank upper part and the coil winding area (the area under the upper black solid line in FIG. 7) is the upper yoke, and the boundary between the tank lower part and the coil winding area ( Since the lower yoke in the lower part of the figure has a lower yoke and is considered not to be open, it is assumed that the open area of C to F in these areas is zero. That is, it is assumed that the upper and lower black thick line portions in FIG. 7 become walls when insulating oil flows, and the insulating oil convects so as to avoid this wall.

各領域の上下方向と左右方向の境界の開口面積は図7に数値で示しているが、以下の通りである。
上下方向の開口面積について、A42〜A48は1963cm、A2〜A8は864cm、B10〜B37は432cm、B38〜B48は864cm、C2〜C48は1021cm、B10〜B37は432cm、D2〜D48は1178cm、E2〜E48は1335cm、F2〜F48は1492cm、G2〜G48は1649cmに設定した。
左右方向の開口面積について、A42〜A48からB42〜B48の方向は773cm、B37〜B48からC37〜C48への方向は927cm、C37〜C48からD37〜D48への方向は1082cm、D37〜D48からE37〜E48への方向は1237cm、E37〜E48からF37〜F48への方向は1391cm、F37〜F48からG37〜G48への方向は1546cmに設定した。
The opening area at the boundary between the vertical direction and the horizontal direction of each region is shown as a numerical value in FIG.
The opening area of the vertical direction, A42~A48 is 1963cm 2, A2~A8 is 864cm 2, B10~B37 is 432cm 2, B38~B48 is 864cm 2, C2~C48 is 1021cm 2, B10~B37 is 432 cm 2, D2 ~D48 is 1178cm 2, E2~E48 is 1335cm 2, F2~F48 is 1492cm 2, G2~G48 was set to 1649cm 2.
The opening area of the left-right direction, the direction of B42~B48 from A42~A48 773cm 2, the direction from B37~B48 to C37~C48 927cm 2, the direction from C37~C48 to D37~D48 is 1082cm 2, D37~ direction from D48 to E37~E48 is 1237cm 2, the direction from E37~E48 to F37~F48 1391cm 2, the direction from F37~F48 to G37~G48 was set to 1546 cm 2.

左右方向の開口面積について、B9〜B36からC9〜C36への方向は954cm、C9〜C36からD9〜D36への方向は1113cm、D9〜D36からE9〜E36への方向は1272cm、E9〜E36からF9〜F36への方向は1431cm、F9〜F36からG9〜G36への方向は1590cmに設定した。
左右方向の開口面積について、B1〜B8からC1〜C8への方向は973cm、C1〜C8からD1〜D8への方向は1135cm、D1〜D8からE1〜E8への方向は1297cm、E1〜E8からF1〜F8への方向は1459cm、F1〜F8からG1〜G8への方向は1621cmに設定した。
放熱器13における上下方向の開口面積は746cm、上部配管15と下部配管16の出入口部の開口面積は150cm、CSへの接続部の開口面積は13cmに設定した。
The opening area of the left-right direction, the direction from B9~B36 to C9~C36 954cm 2, direction 1113Cm 2 from C9~C36 to D9~D36, direction from D9~D36 to E9~E36 is 1272cm 2, E9 direction from ~E36 to F9~F36 is 1431cm 2, the direction from F9~F36 to G9~G36 was set to 1590 cm 2.
About the opening area of the left-right direction, the direction from B1-B8 to C1-C8 is 973 cm < 2 >, the direction from C1-C8 to D1-D8 is 1135 cm < 2 >, the direction from D1-D8 to E1-E8 is 1297 cm < 2 >, E1 direction from ~E8 to F1~F8 is 1459cm 2, the direction from F1~F8 to G1~G8 was set to 1621 cm 2.
Radiator opening area of the vertical direction in 13 746cm 2, the opening area of the opening area of the entrance portion of the upper pipe 15 and the lower pipe 16 connections to 150 cm 2, CS was set to 13cm 2.

1サイクルの計算あたりに移動する絶縁油量が容積の半分を超すと計算が不安定となるおそれがある。このため、計算の刻み時間を工夫し、後述する拡散方程式で使用される∂t:微小時間を10秒とした。微小時間について、区域の分割数が少ない場合は1分毎でも良いが296区域に分割している場合は、1区域あたりの流速を大きくするために10秒とした。   If the amount of insulating oil moving per one cycle of calculation exceeds half of the volume, the calculation may become unstable. Therefore, the calculation time is devised, and ∂t: minute time used in the diffusion equation described later is set to 10 seconds. The minute time may be 1 minute when the number of divisions is small, but is 10 seconds in order to increase the flow rate per area when dividing into 296 areas.

それに併せて、後述する各式で用いる時定数は本実施形態の場合、以下のようにそれぞれ決定した。以下の等式の右辺の数値が微小時間10秒の場合に適用する数値である。
・紙中水分−油中水分の平衡時定数:
τp(81.5℃)=205.9min=205.9×60sec=1235.4×10sec
・コイル絶縁紙中水分移動速度:
ν(80℃)=0.015mm/min=0.015mm/60sec=0.0025mm/10sec
・プレスボード中水分移動速度:
ν(80℃)=0.009mm/60sec=0.009/60sec=0.0015mm/10sec
これらの結果、本実施形態では後述する計算のように絶縁油の流速を3mm/sまで上げることができ、より実器に近い対流を設定できるようになった。
本実施形態において変圧器Aで使用する絶縁油の密度と粘度の温度依存性はあらかじめ測定しておき、各値を把握した上で計算に用いる。
In addition, in the case of this embodiment, the time constant used in each formula described later was determined as follows. The numerical value on the right side of the following equation is a numerical value applied when the minute time is 10 seconds.
-Equilibrium time constant of moisture in paper-moisture in oil:
τp (81.5 ° C.) = 205.9 min = 205.9 × 60 sec = 1235.4 × 10 sec
・ Moisture movement speed in coil insulation paper:
ν 0 (80 ° C.) = 0.015 mm / min = 0.015 mm / 60 sec = 0.005 mm / 10 sec
・ Moisture movement speed in press board:
ν (80 ° C.) = 0.0009 mm / 60 sec = 0.000 / 60 sec = 0.015 mm / 10 sec
As a result, in this embodiment, the flow rate of the insulating oil can be increased to 3 mm / s, as will be described later, and a convection closer to a real device can be set.
In this embodiment, the temperature dependence of the density and viscosity of the insulating oil used in the transformer A is measured in advance, and is used for calculation after grasping each value.

本実施形態において変圧器Aで使用する絶縁油の飽和水分量の温度依存性をあらかじめ測定しておく。
本実施形態の変圧器Aの場合、油の飽和水分量はGriffinの式で表すことができる。実際の絶縁油の水分量をpとする。油中水分の重要な指標は相対湿度である水分飽和度である。油中水分飽和度prは以下の(3)式で与えられる。
In this embodiment, the temperature dependence of the saturated moisture content of the insulating oil used in the transformer A is measured in advance.
In the case of the transformer A of this embodiment, the saturated water content of oil can be expressed by the Griffin equation. Let p be the actual moisture content of the insulating oil. An important indicator of moisture in oil is water saturation, which is relative humidity. Oil moisture saturation pr is given by the following equation (3).

Figure 2018148052
Figure 2018148052

この(3)式においてRは気体定数(1.987cal/mol/K)、Tは絶対温度を示す。
変圧器Aに用いた絶縁油については、15℃における密度0.866g/cm、40℃における動粘度7.68mm/s、100℃における動粘度2.17mm/sの絶縁油を用いた。この測定結果から、後に説明する絶縁油粘度の温度依存性を考慮し、後述する計算に用いることができる。
In the formula (3), R represents a gas constant (1.987 cal / mol / K), and T represents an absolute temperature.
The insulating oil used in transformers A, use a density 0.866g / cm 3, 40 insulating oil kinematic viscosity 2.17 mm 2 / s in kinematic viscosity 7.68mm 2 / s, 100 ℃ at ° C. at 15 ℃ It was. From this measurement result, the temperature dependency of the insulating oil viscosity, which will be described later, is taken into consideration and can be used for the calculation described later.

本実施形態において変圧器Aの初期の油中水分分布は本発明者の種々の試験に基づく実測結果の把握から4ppmと仮定した。この油中水分分布の仮定については、後に詳述する。   In the present embodiment, the initial moisture distribution in oil of the transformer A is assumed to be 4 ppm from the grasp of actual measurement results based on various tests by the present inventors. This assumption of moisture distribution in oil will be described in detail later.

次に、変圧器Aにおいて各区域の温度分布を求めて入力する必要があるため、図8に示す変圧器Aの各区域において、B10、B22、B35の区域の絶縁紙中に熱電対(Doble社製水分計)を配置し、C10、C22、C35、D2、G43、RLの区域に熱電対(Doble社製水分計)を配置し、G1の区域の外に外気温を測定するための熱電対を配置した。図8では熱電対を配置した区域をドットを用いて濃い灰色に塗り潰してそれぞれの位置を表示している。   Next, since it is necessary to obtain and input the temperature distribution of each area in the transformer A, in each area of the transformer A shown in FIG. 8, a thermocouple (Double) is formed in the insulating paper in the areas B10, B22, and B35. (Moisture meter manufactured by Kogyo Co., Ltd.), thermocouples (Doble Moisture meter) are installed in the C10, C22, C35, D2, G43, and RL areas, and thermoelectrics for measuring the outside air temperature outside the G1 area. A pair was placed. In FIG. 8, the areas where the thermocouples are arranged are filled with dark gray using dots to indicate the respective positions.

本実施形態の変圧器Aでは、巻線上部(B35)・中部(B22)・下部(B10)の3ヶ所に設置した巻線絶縁紙表面の熱電対と、前述の位置に挿入された6つの熱電対に加え、外気温を測定する熱電対を加えた合計10ヶ所の温度データを採取し、後述する計算に用いる。
前述した如く変圧器Aのタンク7において、図1に符号20、21、22、23、24、25で示すように油中水分センサー(Doble社製水分計)を配置した。油中水分センサー20は上部配管15の内部に設けられ、油中水分センサー21は下部配管16の内部に設けられ、油中水分センサー22はタンク側壁の底部近くに設けられた排油弁26の付近に設けられている。油中水分センサー23はコイル巻線2の底部外側近くに設けられ、油中水分センサー24はコイル巻線2の中央部外側近くに設けられ、油中水分センサー25はコイル巻線2の上部外側近くに設けられ、それぞれの位置の油中水分量を測定することができる。
In the transformer A of the present embodiment, the thermocouples on the surface of the winding insulating paper installed at three places, the upper part of the winding (B35), the middle part (B22), and the lower part (B10), and the six inserted at the above-mentioned positions In addition to the thermocouple, temperature data of a total of 10 locations including the thermocouple for measuring the outside air temperature is collected and used for the calculation described later.
As described above, in the tank 7 of the transformer A, a moisture sensor in oil (a moisture meter manufactured by Doble Co.) is disposed as indicated by reference numerals 20, 21, 22, 23, 24, and 25 in FIG. The oil-in-water sensor 20 is provided in the upper pipe 15, the oil-in-water sensor 21 is provided in the lower pipe 16, and the oil-in-water sensor 22 is an oil discharge valve 26 provided near the bottom of the tank side wall. It is provided in the vicinity. The oil-in-water sensor 23 is provided near the outside of the bottom of the coil winding 2, the oil-in-water sensor 24 is provided near the outside of the center of the coil winding 2, and the oil-in-water sensor 25 is outside the upper portion of the coil winding 2. It is provided nearby, and the amount of water in oil at each position can be measured.

これまでの本発明者らの変圧器に対する研究から、巻線絶縁紙表面温度は絶縁油温と異なり、約10℃高いことが判明しているので、コイル巻線2が位置する区域では油温とは別に紙中温度を計算した。外気温熱電対は変圧器周囲の温度を示している。水分計算するには各区域の温度を必要とするが、測定箇所が10ヶ所と少ないため、その他の箇所は油温を仮定して区域毎に算出し、区域毎の計算に用いる必要がある。そこで変圧器Aにおいて測定可能な10ヶ所の温度とその周囲の温度は、比例配分した温度分布をしていると仮定した。   From previous studies on the transformers of the present inventors, it has been found that the surface temperature of the winding insulation paper is higher by about 10 ° C. than the insulation oil temperature, and therefore the oil temperature in the area where the coil winding 2 is located. Separately, the temperature in the paper was calculated. The outside temperature thermocouple indicates the temperature around the transformer. The moisture calculation requires the temperature of each area, but since there are only 10 measurement points, it is necessary to calculate the other areas for each area assuming the oil temperature and use it for the calculation for each area. Therefore, it was assumed that 10 temperatures measurable in the transformer A and the ambient temperature had a proportionally distributed temperature distribution.

なお、上述の温度比例配分であるが、基本的な考え方について図9を基に以下に説明する。
図9は、図3に示すようにタンク7を垂直方向に48層、半径方向に7層の計296区域に分割した構造に対し簡略化して検討し、タンク7を垂直方向に12層、半径方向に7層の計74の区域に分割した場合の温度分布比例計算の結果を示す図である。
垂直方向に区域を12分割し、タンク7においてB〜Gは12分割のため、計72の区域に分割され、鉄心1の上方に位置するA11、A12の区域と併せて74区域に分割されている。
In addition, although it is the above-mentioned temperature proportional distribution, the basic idea is demonstrated below based on FIG.
FIG. 9 is a simplified view of a structure in which the tank 7 is divided into a total of 296 areas of 48 layers in the vertical direction and 7 layers in the radial direction, as shown in FIG. It is a figure which shows the result of the temperature distribution proportional calculation at the time of dividing | segmenting into the area of a total of 74 of seven layers in a direction.
The area is divided into 12 in the vertical direction, and B to G in the tank 7 are divided into 12 areas, so that they are divided into 72 areas in total and divided into 74 areas together with the areas A11 and A12 located above the iron core 1. Yes.

図9に示すようにC3、C6、C9、D1、G11、RLにそれぞれ熱電対を配置し、区域C3〜C9の油温は変圧器コイル巻線部に挿入された水分計の温度(Do2〜Do4)を用いて比例配分と仮定する。区域A11〜A12、B1〜12、C10〜12の油温は熱電対(熱電対の位置C3、C6、C9)と水分計の温度(Do2〜Do4)を比例配分して仮定した。タンク底部に挿入された水分計の温度(Do1)をD1の油温とし、C1〜C2の油温を周囲の油温から仮定する。放熱器上部の水分計はその近隣の区域G11の油温を表していると仮定し、区域G1は外気温H1(熱電対TC84)に近いがタンク底部水分計の温度(Do1)にも関係していると仮定し、残りの区域GはG11とG1から比例配分で表せると仮定した。残りの区域D〜Fは主に区域Cと区域Gの比例配分と仮定した。ラジエータの油温は下部が水分計の温度(Do6)とし区域G11との間で比例配分した。コンサベータCSの油温は外気温(熱電対TC84)と等しいと仮定した。   As shown in FIG. 9, thermocouples are arranged in C3, C6, C9, D1, G11, and RL, respectively, and the oil temperature in the sections C3 to C9 is the temperature of the moisture meter inserted in the transformer coil winding (Do2 to Do2). Assume proportional distribution using Do4). The oil temperatures in the sections A11 to A12, B1 to 12, and C10 to 12 were assumed by proportionally distributing the thermocouples (thermocouple positions C3, C6, and C9) and the moisture meter temperatures (Do2 to Do4). The temperature (Do1) of the moisture meter inserted in the tank bottom is assumed to be the oil temperature of D1, and the oil temperature of C1 to C2 is assumed from the surrounding oil temperature. Assuming that the moisture meter at the top of the radiator represents the oil temperature in the neighboring zone G11, zone G1 is close to the outside air temperature H1 (thermocouple TC84) but is also related to the tank bottom moisture meter temperature (Do1). It was assumed that the remaining area G can be represented by proportional distribution from G11 and G1. The remaining zones D to F were assumed to be a proportional distribution of zone C and zone G. The oil temperature of the radiator was proportionally distributed between the area G11 and the temperature of the moisture meter (Do6) at the bottom. The oil temperature of the conservator CS was assumed to be equal to the outside air temperature (thermocouple TC84).

以上のように仮定することで、タンク7を分割した区域毎に比例配分により油温を求めることができる。
このように簡略的に比例配分して求めた油温について、図3に示すようにタンク7を垂直方向に48層、半径方向に7層の計296区域に分割した各区域の温度として当てはめて適用すればよい。勿論、タンク7を垂直方向に12層、半径方向に7層の計74の区域に分割した場合の温度分布計算の方法を図3に示すようにタンク7を垂直方向に48層、半径方向に7層の計296区域に分割して詳細に計算し、温度分布を求め、適用することが好ましい。
Assuming the above, the oil temperature can be obtained by proportional distribution for each area into which the tank 7 is divided.
As shown in FIG. 3, the oil temperature obtained by simply proportionally allocating in this way is applied as the temperature of each area obtained by dividing the tank 7 into a total of 296 areas of 48 layers in the vertical direction and 7 layers in the radial direction. Apply. Of course, the method of calculating the temperature distribution when the tank 7 is divided into a total of 74 areas of 12 layers in the vertical direction and 7 layers in the radial direction is shown in FIG. It is preferable to calculate in detail by dividing into 7 layers totaling 296 areas to obtain and apply the temperature distribution.

なお、後述する変圧器の余寿命診断方法を実施する場合に、変圧器の温度履歴を求めておくことが必要な場合は、変圧器の負荷や周囲温度から温度上昇履歴を求めておくことが必要である。その場合は、非特許文献3に記載されている、油入変圧器絶縁紙の温度履歴解析を実施すればよい。
これにより絶縁紙の重合度について変圧器の負荷履歴から計算により温度履歴を算出でき、温度履歴から重合度を算出できる。
一般的な変圧器において温度計は1箇所のみ設置され、その他のデータとして外気温の合計2点の温度データしかない場合は、非特許文献3に記載の温度履歴解析を適用すればよい。
In addition, when implementing the transformer remaining life diagnosis method described later, if it is necessary to obtain the temperature history of the transformer, the temperature rise history can be obtained from the load of the transformer and the ambient temperature. is necessary. In that case, the temperature history analysis of the oil-filled transformer insulating paper described in Non-Patent Document 3 may be performed.
Thus, the temperature history can be calculated by calculating from the load history of the transformer with respect to the polymerization degree of the insulating paper, and the polymerization degree can be calculated from the temperature history.
In a general transformer, only one thermometer is installed, and when there is only two temperature data in total of the outside air temperature as other data, the temperature history analysis described in Non-Patent Document 3 may be applied.

測定に用いる変圧器Aのタンク7内は上述の如く温度分布があることから、絶縁油8には自然対流が生じている。強制循環タイプの変圧器では強制循環分の対流を考慮する必要があるが、本実施形態で用いた変圧器Aの対流については、自然対流を考慮すればよい。タンク7内の絶縁油8の流れについて流体力学的にシミュレーションした結果、対流分布(油流分布)は図10に示すような6ループモデル(ループa〜f)を仮定することにした。
絶縁油の対流の流量は上下の温度差に比例すると考えられる。そこで、各ループに対して温度差を計算し、計算結果が実験値に近くなるように各ループの流速を最適化することが好ましい。
Since there is a temperature distribution in the tank 7 of the transformer A used for measurement as described above, natural convection occurs in the insulating oil 8. In the forced circulation type transformer, it is necessary to consider the convection for the forced circulation. However, the convection of the transformer A used in the present embodiment may be natural convection. As a result of hydrodynamic simulation of the flow of the insulating oil 8 in the tank 7, the convection distribution (oil flow distribution) is assumed to be a six-loop model (loops a to f) as shown in FIG.
It is considered that the convection flow rate of the insulating oil is proportional to the temperature difference between the upper and lower sides. Therefore, it is preferable to calculate the temperature difference for each loop and optimize the flow rate of each loop so that the calculation result is close to the experimental value.

変圧器Aにおいてタンク7内の絶縁油の流れについて、タンク7を垂直方向に12層、半径方向に7層の計74の区域に簡略的に分割し、絶縁油の流れを検討した結果を図11に示す。図11においてB2〜E2の区域の上部側に下ヨークの仕切板としてのプレスボードが太い実線で示すように設けられ、B10〜E10の区域の下部側に上ヨークの仕切板としてのプレスボードが太い実線で示すように設けられている。また、タンク7の上部の絶縁油は上部配管15を介して放熱器13に引き込まれ、放熱器13を通過後、下部配管16を介してタンク7の下部に戻される。   Regarding the flow of the insulating oil in the tank 7 in the transformer A, the tank 7 is simply divided into a total of 74 areas of 12 layers in the vertical direction and 7 layers in the radial direction, and the result of examining the flow of the insulating oil is shown in FIG. 11 shows. In FIG. 11, a press board as a partition plate for the lower yoke is provided on the upper side of the area from B2 to E2 as shown by a thick solid line, and a press board as a partition plate for the upper yoke is provided at the lower side of the area from B10 to E10. It is provided as shown by a thick solid line. The insulating oil at the upper part of the tank 7 is drawn into the radiator 13 through the upper pipe 15, passes through the radiator 13, and is returned to the lower part of the tank 7 through the lower pipe 16.

このため、上ヨークの仕切り板が存在する区域の上方のタンク上部区域のみでループする対流が存在すると考えられる。また、下ヨークの仕切り板が存在するため、タンク下部には対流による油の流入は少ないと考えられる。鉄心とコイル巻線の間の隙間は開口面積が狭いため、絶縁油の流速は速いが油量は少ないと考えられ、むしろコイル巻線外側の対流の方が速くて流量も多いと考えられる。約3mのタンク周囲長に比較し、放熱器13は直径15cmの配管が2本接続された構造となっていることから、放熱器13を流れる油量は少なく、タンク7の壁面に沿って下向きに流れる油量の方が多いと考えられる。この状況から流体力学的にシミュレーションした結果、対流を表現するために図10に示すような6ループの対流モデルを導入できると判断した。
図11に区域を74に分割した場合のループa、ループb、ループc、ループd、ループe、ループfを区別して記載しておく。図11に示す74に分割したループモデルが図10に示す296に区域した変圧器に適用できるとして、後述する計算を行う。
For this reason, it is considered that convection loops only in the upper tank area above the area where the upper yoke partition plate exists. In addition, since the partition plate of the lower yoke exists, it is considered that the oil inflow due to convection is small in the lower part of the tank. Since the gap between the iron core and the coil winding has a small opening area, it is considered that the flow rate of the insulating oil is high but the amount of oil is small. Rather, the convection outside the coil winding is faster and the flow rate is higher. Compared to the tank perimeter of about 3 m, the radiator 13 has a structure in which two pipes with a diameter of 15 cm are connected, so the amount of oil flowing through the radiator 13 is small, and the downward direction along the wall surface of the tank 7 The amount of oil flowing into the As a result of hydrodynamic simulation from this situation, it was determined that a 6-loop convection model as shown in FIG. 10 could be introduced to express convection.
In FIG. 11, loop a, loop b, loop c, loop d, loop e, and loop f when the area is divided into 74 are distinguished and described. It is assumed that the loop model divided into 74 shown in FIG. 11 can be applied to the transformer divided into 296 shown in FIG.

「計算手法」
(総水分量一定計算)
固体絶縁物中水分量(絶縁紙、プレスボード、木製物などを含む固体絶縁物全体としての水分量)と油中水分量の和が各区域に含まれる水分量である。絶縁紙やプレスボードなどの固体絶縁物の劣化による水分の発生や変圧器に外気から流入する水分が無視できる場合は、変圧器内の総水分量は一定と考えられ、各区域の水分量の総和が変圧器に含まれる総水分量であると考える。ただし、固体絶縁物が劣化して水分を加算する場合は加算する水分を考慮する必要がある。
また、各区域における水分量の増分は、その区域に流入する水分量から流出する水分量を差し引いた量である。よって油中水分量は以下の(4)式で計算することができる。
"Calculation method"
(Total calculation of total water content)
The sum of the amount of moisture in the solid insulator (the amount of moisture as the whole solid insulator including insulating paper, pressboard, wooden objects, etc.) and the amount of moisture in the oil is the amount of moisture contained in each zone. If moisture generation due to deterioration of solid insulation such as insulating paper or press board or moisture flowing into the transformer from the outside air can be ignored, the total moisture in the transformer is considered to be constant, and the amount of moisture in each area The sum is considered to be the total amount of water contained in the transformer. However, when the solid insulator deteriorates and moisture is added, it is necessary to consider the moisture to be added.
Further, the increment of the amount of water in each area is an amount obtained by subtracting the amount of water flowing out from the amount of water flowing into the area. Therefore, the water content in oil can be calculated by the following equation (4).

Figure 2018148052
Figure 2018148052

(固体絶縁物中水分拡散方程式差分法)
固体絶縁物の計算は以下の(1)式で示す拡散方程式で求められる。
(Difference method of water diffusion equation in solid insulator)
The calculation of the solid insulator is obtained by the diffusion equation shown by the following equation (1).

Figure 2018148052
Figure 2018148052

ただし、(1)式において、x:固体絶縁物の銅線からの位置(mm)、y:固体絶縁物中水分量(%)、yn:n番目の区域(区間)の固体絶縁物中水分量(%)、t:運転開始からの時間(min)、∂t:微小時間(min)、∂yn:微小時間におけるn番目の区域における固体絶縁物中水分量の増分(%)、v:銅線に接する絶縁紙における固体絶縁物中水分子の実質的な移動速度(mm/min)、k’:固体絶縁物中水分速度勾配係数(1/mm)、tp:1区間における固体絶縁物の厚さ(mm)と規定する。
なお、固体絶縁物を絶縁紙とした場合、n番目の区域(区間)とは、銅線に対しハーフラップで4層巻きすると、銅線の外側に8層の絶縁紙が存在するので、8層の絶縁紙中の何番目であるかを意味する。
However, in the formula (1), x: position of the solid insulator from the copper wire (mm), y: moisture content in the solid insulator (%), yn: moisture in the solid insulator in the nth section (section) Amount (%), t: time from the start of operation (min), ∂t: minute time (min), ∂yn: increment of moisture content in the solid insulator in the n-th zone in minute time (%), v 0 : Substantial moving speed of water molecules in solid insulator (mm / min) in insulating paper in contact with copper wire, k ′: Moisture velocity gradient coefficient in solid insulator (1 / mm), tp: solid insulation in section 1 It is defined as the thickness (mm) of the object.
When the solid insulator is made of insulating paper, the nth section (section) means that when four layers of copper wire are wound with half wrap, eight layers of insulating paper exist outside the copper wire. It means the number in the insulating paper of the layer.

固体絶縁物と接する絶縁油の油中水分は水分飽和度が固体絶縁物最表面のそれと等しくなり平衡になると考える。水分飽和度pは油中水分量p[mg/kg]を油の飽和水分量pで除した値である。油中水分量を以下の(5)式で相当する固体絶縁物中水分量y[%]に変換して計算に用いることができる。なお、以下の式で用いられているパラメータは一般的な変圧器に使用されているクラフト紙のパラメータである。絶縁紙が異なる場合、適用している絶縁紙の種類、マニラ紙などに応じたパラメータを選択して計算する。 The moisture in the oil of the insulating oil in contact with the solid insulator is considered to be in equilibrium because the moisture saturation is equal to that of the outermost surface of the solid insulator. Water saturation p r is a value obtained by dividing the in-oil water content p [mg / kg] in a saturation water content p 0 of the oil. The moisture content in oil can be converted into the moisture content y [%] in the solid insulator corresponding to the following equation (5) and used for calculation. The parameters used in the following formulas are kraft paper parameters used in general transformers. When the insulation paper is different, the calculation is performed by selecting parameters according to the type of insulation paper being applied, the manila paper, and the like.

Figure 2018148052
Figure 2018148052

「油中水分の拡散式」
油中水分に対して以下の(6)式に示す拡散方程式が成り立つ。
"Diffusion formula of moisture in oil"
The diffusion equation shown in the following formula (6) holds for the moisture in the oil.

Figure 2018148052
Figure 2018148052

温度勾配がある場合、拡散係数D拡散は各区域の温度を用いて計算される。拡散係数と水分移動速度νは以下の(7)式の関係がある。 If there is a temperature gradient, the diffusion coefficient D diffusion is calculated using the temperature of each zone. The diffusion coefficient and the moisture movement speed ν have the relationship of the following equation (7).

Figure 2018148052
Figure 2018148052

そこで、区域1の水分移動速度をν、区域1の絶縁油の密度をρのような表し方をすると、ある断面積Sで接する区域1と区域2の境界での1分間の拡散による水分移動量は以下の(8)式のように計算される。 Therefore, when the moisture movement speed in the area 1 is expressed as ν 1 and the density of the insulating oil in the area 1 is expressed as ρ 1 , it is caused by the diffusion for 1 minute at the boundary between the area 1 and the area 2 in contact with a certain cross-sectional area S. The amount of moisture transfer is calculated as in the following equation (8).

Figure 2018148052
Figure 2018148052

(油中水分の分散式)
液体においては密度、温度の揺らぎや、変圧器自身の振動(音波も含む)などにより、方向性の無いミクロな流れがあると考えられる。そのような局所的な流れによる油の混合を分散と呼んでいる。
分散係数をD分散とおくと差分法で表した分散の効果は以下の(9)式で与えられることになる。
(Dispersion formula of moisture in oil)
In liquid, it is considered that there is a micro flow with no directionality due to fluctuations in density and temperature, vibrations of the transformer itself (including sound waves), and the like. This mixing of oil by local flow is called dispersion.
If the dispersion coefficient is D dispersion , the effect of dispersion expressed by the difference method is given by the following equation (9).

Figure 2018148052
Figure 2018148052

(対流による水分移動の式)
対流においては、ある体積の絶縁油が方向性を持って流れる。水分の移動はその体積に含まれる油の油中水分が移動することと考えられる。厳密には、ある区域から温度の異なる他の区域に油が移動すると、熱膨張の関係で油の体積が変化すると考えられるが、その影響は小さいと考え体積変化は無視し、一定容積の油が移動すると考える。
先に説明したように、本実施形態の変圧器Aにおいては、6ループの対流モデルを検討するが、どこの区域の油温に比例した油量と設定したのか、についての詳細は後に説明する。
(Formula of moisture transfer by convection)
In convection, a certain volume of insulating oil flows with direction. The movement of moisture is considered to be the migration of moisture in the oil contained in the volume. Strictly speaking, if oil moves from one area to another where the temperature is different, the volume of the oil is considered to change due to thermal expansion, but the effect is considered to be small and the volume change is ignored. Think that moves.
As described above, in the transformer A of the present embodiment, a six-loop convection model is examined, but details of where the oil amount is set proportional to the oil temperature in which area will be described later. .

「計算パラメータ仮定ステップ:S3」
次に、絶縁油中水分量を計算する上で必要な各種パラメータを計算パラメータ仮定ステップS3において仮定する。
(絶縁油中水分拡散係数)
Eyringによると液体の拡散係数は絶対温度に比例し、粘度に反比例すると規定されている。溶質の拡散係数をD、溶媒の粘度をμ、絶対温度Tとしたとき、以下の(10)式の関係が成り立つ。
“Calculation parameter assumption step: S3”
Next, various parameters necessary for calculating the moisture content in the insulating oil are assumed in the calculation parameter assumption step S3.
(Moisture diffusion coefficient in insulating oil)
Eyring states that the liquid diffusion coefficient is proportional to absolute temperature and inversely proportional to viscosity. When the diffusion coefficient of the solute is D, the viscosity of the solvent is μ, and the absolute temperature T, the relationship of the following equation (10) is established.

Figure 2018148052
Figure 2018148052

ここで、本発明者が過去に変圧器について研究してきた種々の検討結果から定数を4と仮定した。この定数4は物理ハンドブックに記載の有機液体の定数から採用した数値である。この定数4の仮定については後に詳述する。
先に説明したように、あらかじめ調べた絶縁油の粘度の温度依存性を用い、絶縁油中水分拡散係数の温度依存性を算出することができる。
Here, the constant was assumed to be 4 from various examination results that the present inventor has studied on transformers in the past. This constant 4 is a numerical value adopted from the constant of the organic liquid described in the physical handbook. The assumption of this constant 4 will be described in detail later.
As described above, the temperature dependence of the moisture diffusion coefficient in the insulating oil can be calculated using the temperature dependence of the viscosity of the insulating oil examined in advance.

コイル絶縁紙−油間平衡水分量、コイル絶縁紙中水分の移動速度、コイル絶縁紙中温度勾配などは実験により値を求めた。
「コイル絶縁紙−油間平衡水分量」
コイル絶縁紙−絶縁油の間の平衡水分量については、以下の(11)式で示されるBET式にDP依存性を考慮した式として用いることができる。
Values for the coil insulating paper-oil equilibrium moisture content, the moving speed of moisture in the coil insulating paper, the temperature gradient in the coil insulating paper, and the like were obtained by experiments.
"Equilibrium water content between coil insulation paper and oil"
The equilibrium moisture content between the coil insulating paper and the insulating oil can be used as an equation in consideration of DP dependency in the BET equation represented by the following equation (11).

Figure 2018148052
Figure 2018148052

前記(11)式に示されるパラメータA〜Dは以下の表1で示される値である。なお、この表1に示すパラメータは実験に用いた変圧器に使用されているクラフト紙のパラメータである。よって、異なる種類の絶縁紙、例えば、マニラ紙などの場合はそれに応じたパラメータを選択すれば良い。   The parameters A to D shown in the equation (11) are values shown in Table 1 below. The parameters shown in Table 1 are kraft paper parameters used for the transformer used in the experiment. Therefore, in the case of different types of insulating paper, for example, manila paper, the parameters corresponding to it may be selected.

Figure 2018148052
Figure 2018148052

コイル絶縁紙とプレスボードのDP(平均重合度)は新品の実測値である。コイル絶縁紙とプレスボードでは単分子層飽和吸着量に関係するパラメータAが違い、B、C、Dは等しいと仮定した。
コイル絶縁紙−油の平衡実験の結果とBET式計算結果との比較を図12に示し、プレスボード−油の平衡実験の結果とBET式計算結果との比較を図13に示す。いずれの計算値も、おおよそ実験結果を再現している。
The DP (average degree of polymerization) of the coil insulating paper and the press board is a newly measured value. It was assumed that the parameter A related to the monolayer saturated adsorption amount was different between the coil insulating paper and the press board, and B, C, and D were equal.
FIG. 12 shows a comparison between the results of the coil insulation paper-oil equilibrium experiment and the BET equation calculation results, and FIG. 13 shows a comparison between the results of the pressboard-oil equilibrium experiments and the BET equation calculation results. All of the calculated values roughly reproduce the experimental results.

「油中水分拡散係数」
分散の効果は拡散と相似形をしており、拡散係数を何倍かすることで分散の効果を含めることができる。
分散係数は後述する実験結果を満足する値に最適化して求めることができる。
"Water diffusion coefficient in oil"
The effect of dispersion is similar to that of diffusion, and the effect of dispersion can be included by multiplying the diffusion coefficient several times.
The dispersion coefficient can be obtained by optimizing to a value that satisfies the experimental results described later.

(コイル絶縁紙中水分の移動速度)
先に説明した拡散方程式の(1)式において、パラメータはvとk’の2つである。
図14(A)、(B)に示す試験結果の解析から、v=0.015mm/min、k’=0.15/mmが最適であると判断して計算に用いた。
図14(A)に示す試験結果は、恒温槽に満たした脱水後の絶縁油に絶縁紙を6ラップ巻きした発熱ヒーターを浸漬し、絶縁油に温度計と水分計を浸漬し、8時間保持後にヒーターに通電して3時間で目的の温度に加熱し、その後、一定の通電を続行した場合に得られた経過時間と油中水分量の変位の関係を示している。
ヒーターの加熱に応じて絶縁油の温度は目的の温度に上昇するが、油中水分量はすぐには平衡状態まで上昇せず、時間的に遅れて徐々に図14(A)に示すように立ち上がって上昇する。この関係からvとk’の最適値を求めることができる。図14(B)に示すk’=0.15/mmの場合の計算結果としてvの値を0.015mm/minと設定した場合のカーブが実験結果に近いので、これらの値を計算に用いた。
(Moving speed of moisture in coil insulating paper)
In the equation (1) of the diffusion equation described above, there are two parameters, v 0 and k ′.
From the analysis of the test results shown in FIGS. 14A and 14B, it was judged that v 0 = 0.015 mm / min and k ′ = 0.15 / mm were optimal and used for the calculation.
The test result shown in FIG. 14 (A) shows that a heating heater in which 6 wraps of insulating paper is wound is immersed in insulating oil after dehydration filled in a thermostatic bath, and a thermometer and a moisture meter are immersed in insulating oil and held for 8 hours. The relationship between the elapsed time obtained when the heater is energized and heated to the target temperature in 3 hours and then the constant energization is continued and the amount of moisture in the oil is displaced is shown.
As the heater heats, the temperature of the insulating oil rises to the target temperature, but the water content in the oil does not immediately rise to the equilibrium state, and gradually delays with time as shown in FIG. Get up and rise. From this relationship, the optimum values of v 0 and k ′ can be obtained. As the calculation result in the case of k ′ = 0.15 / mm shown in FIG. 14B, the curve when the value of v 0 is set to 0.015 mm / min is close to the experimental result, so these values are calculated. Using.

(コイル絶縁紙中水分移動速度の温度依存性)
本発明者の別途検討により固体絶縁物中水分移動時定数τは81℃で204.4min、35℃で600minと算出できた。また、時定数の温度依存性が以下の(12)式で近似されると仮定する。(12)式の関係を図15のグラフに示す。
(Temperature dependence of moisture transfer rate in coil insulating paper)
According to a separate study by the present inventors, the time constant τ p of moisture movement in the solid insulator was calculated as 204.4 min at 81 ° C. and 600 min at 35 ° C. Further, it is assumed that the temperature dependence of the time constant is approximated by the following equation (12). The relationship of equation (12) is shown in the graph of FIG.

Figure 2018148052
Figure 2018148052

(12)式の時定数温度依存性の実験値は、81℃と35℃の2点のみ行った。特に、25℃以下で時定数は大きく変動する。   The experimental value of the time constant temperature dependency of the equation (12) was only two points of 81 ° C and 35 ° C. In particular, the time constant varies greatly at 25 ° C. or less.

(プレスボード中水分の移動速度)
プレスボード片を絶縁油に4枚離間して浸漬し、絶縁油をヒーターで加温するとともに、絶縁油に浸漬した油中水分計にて油中水分量を計測するプレスボード−油水分移動実験を行い、その結果を解析した。プレスボードの水分移動時定数はコイル絶縁紙のそれと等しいとして、水分移動速度vは油温80℃にて0.009mm/minとすると図16に示すように実験値をよく再現できた。
(Moving speed of moisture in the press board)
Four press board pieces are immersed in insulating oil, and the insulating oil is heated by a heater, and the moisture content in the oil is measured with a moisture meter immersed in the insulating oil. The results were analyzed. Assuming that the moisture transfer time constant of the press board is equal to that of the coil insulating paper and the moisture transfer rate v is 0.009 mm / min at an oil temperature of 80 ° C., the experimental values can be reproduced well as shown in FIG.

「相互拡散把握ステップ:S4」
(水分分布の時間発展計算)
次に、水分分布の時間発展を計算する。固体絶縁物中の水分は前述した(1)式に示す拡散方程式に従い時間発展する。
絶縁油中の水分は拡散と分散と対流により時間発展する。絶縁紙などの固体絶縁物と絶縁油の境界は両者の水分飽和度に差があれば、水分飽和度が高い方から低い方に水分が移動する方向に時間発展する。変圧器内の総水分量は外部からの侵入や、絶縁紙の劣化による水分発生を無視すると、時間発展における総水分量は一定として考える。計算式は先に示した以下の(1)式で示される。
"Interdiffusion grasping step: S4"
(Time evolution calculation of moisture distribution)
Next, the time evolution of the moisture distribution is calculated. Moisture in the solid insulator develops over time according to the diffusion equation shown in equation (1) above.
Moisture in the insulating oil evolves over time due to diffusion, dispersion and convection. If there is a difference in the moisture saturation between the solid insulator such as insulating paper and the insulating oil, the time will develop in the direction in which the moisture moves from the higher moisture saturation to the lower one. The total moisture content in the transformer is considered to be constant in time evolution, ignoring the intrusion from the outside and the generation of moisture due to the deterioration of the insulating paper. The calculation formula is shown by the following formula (1).

Figure 2018148052
Figure 2018148052

前記(1)式で計算した結果、運転時に採取した絶縁油中水分量と計算で求めた絶縁油採取部の絶縁油中水分量を比較し、その差が設定値(閾値)以下であれば水分分布が確定したとして計算を終了する。この実施形態では閾値として3ppmを採用することができる。
本実施形態の変圧器Aにおいては、絶縁油の採取部を排油弁26とするので、変圧器Aの対称性を考慮した位置として、先に図3に示すように分割した区域E1の絶縁油の油中水分量の計算結果を比較する。油中水分の初期条件は前述した如く4ppm(mg/kg)に設定し、紙中水分の初期条件は1.45%に設定する。
As a result of calculating by the above equation (1), the moisture content in the insulating oil collected during operation is compared with the moisture content in the insulating oil obtained by the calculation, and if the difference is less than the set value (threshold) The calculation is terminated assuming that the moisture distribution has been determined. In this embodiment, 3 ppm can be adopted as the threshold value.
In the transformer A of this embodiment, since the insulating oil collecting part is the oil discharge valve 26, the insulation of the section E1 divided as shown in FIG. Compare the calculation results of water content of oil. As described above, the initial condition of moisture in oil is set to 4 ppm (mg / kg), and the initial condition of moisture in paper is set to 1.45%.

上述の(1)式に基づき、変圧器Aを負荷率100%にて20日間運転後、無負荷状態で10日間運転した場合の油中水分の変化を計算により求め、実測値との比較を行った例について以下に説明する。
実測値は変圧器Aに設けた油中水分センサー20(ラジエータ上部)、油中水分センサー22(タンク底部)、油中水分センサー23(巻線下部)、油中水分センサー24(巻線中部)、油中水分センサー25(巻線上部)から測定された値である。
Based on the above formula (1), after calculating the transformer A for 20 days at a load factor of 100% and then operating for 10 days in a no-load state, the change in moisture in the oil is obtained by calculation, and compared with the measured value. An example performed will be described below.
The measured values are the oil-in-water sensor 20 (upper radiator), the oil-in-water sensor 22 (tank bottom), the oil-in-water sensor 23 (in the lower part of the winding), and the oil-in-water sensor 24 (in the middle of the winding). The value measured from the oil-in-water sensor 25 (the upper part of the winding).

図17(A)に各油中水分センサーから得られた油中水分の実測値を示し、図17(B)に上述の(1)式から計算された油中水分の計算値を示す。
図17(A)、(B)の対比から明らかなように、実測値と計算結果は概ね一致した。
この状態であれば、次のステップに移行することができる。仮に、ここで計算値と実測値が前述の閾値3ppmを超える差異を生じた場合、前述の如く設定した値や仮定した諸データやパラメータを変化させ、上述の計算を繰り返す。
なお、計算値と実測値の差異を比較するのは、変圧器運転開始から10日〜20日の間の油中水分量が安定する期間とし、この期間内で差異が3ppmを超えるか否か、比較することとした。
この計算により、劣化が最も進むと考えられる巻線上部絶縁紙の紙中水分量を計算することができる。
例えば、図18に示す計算例の場合、20日目の巻線上部絶縁紙中水分量は銅線側0.87%、絶縁油側1.12%と計算できる。
FIG. 17A shows actual measured values of moisture in oil obtained from each oil-in-water sensor, and FIG. 17B shows calculated values of moisture in oil calculated from the above equation (1).
As is clear from the comparison between FIGS. 17A and 17B, the actual measurement values and the calculation results almost coincided.
If it is in this state, it can move to the next step. If there is a difference between the calculated value and the actually measured value exceeding the aforementioned threshold value of 3 ppm, the value set as described above, assumed data and parameters are changed, and the above calculation is repeated.
The difference between the calculated value and the measured value is compared with the period in which the amount of water in oil is stable between 10 and 20 days from the start of transformer operation, and whether or not the difference exceeds 3 ppm within this period. I decided to compare them.
By this calculation, it is possible to calculate the moisture content in the paper of the winding upper insulating paper that is considered to be most deteriorated.
For example, in the case of the calculation example shown in FIG. 18, the moisture content in the winding upper insulating paper on the 20th day can be calculated as 0.87% on the copper wire side and 1.12% on the insulating oil side.

なお、計算を繰り返す場合、前述のように種々決定した値のうち、初期水分量と、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、分散係数の少なくとも1つを見直して再計算し、前記差異が閾値以下になるまで再計算を繰り返す。
一例としてこの実施形態では、変圧器Aはモデル解析用であり、前述のように種々決定した値のうち、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、区域毎の固体絶縁物の厚さは適正値が導入されていると推定できるので、最初にその他の項目を見直すことが好ましい。例えば、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、分散係数のいずれかを見直し、変圧器運転開始から10日〜20日の間の油中水分量が安定する期間内で差異が3ppmを超えない結果が得られるか、再計算する。差異が3ppmを超えない結果が得られた場合は再計算を終了する。
差異が3ppmを超えない結果が得られない場合は、先に適正値が導入されていると推定された項目の値を見直して再計算する。再計算する場合、初期水分量、分散系数、油流分布を優先として見直すことが好ましい。
再計算について言えば、本実施形態の場合、分割ステップが良好に設定されていれば、パラメータの最適化によって計算可能であると想定できるが、それでも計算が終息しない場合は閾値を甘くするか、分割モデル化ステップを見直すこととする。
When the calculation is repeated, among the values determined as described above, the initial moisture amount, the distribution of the insulating oil amount for each area, the distribution of the solid insulation amount, and the distribution of the opening area between adjacent areas At least of the oil flow distribution of the insulating oil, the substantial moving speed of the water molecules in the solid insulator per area, the moisture velocity gradient coefficient in the solid insulator, the thickness of the solid insulator per area, and the dispersion coefficient Review one and recalculate and repeat the recalculation until the difference is below the threshold.
As an example, in this embodiment, the transformer A is used for model analysis, and among the variously determined values as described above, the distribution of the insulating oil amount for each of the areas, the distribution of the amount of solid insulation, and the distance between adjacent areas. Since it can be estimated that appropriate values have been introduced for the distribution of the opening area and the thickness of the solid insulator in each area, it is preferable to review other items first. For example, by reviewing either the substantial movement speed of water molecules in the solid insulator for each zone, the moisture velocity gradient coefficient in the solid insulator, or the dispersion coefficient, the oil between 10 to 20 days from the start of transformer operation Recalculate if the difference does not exceed 3 ppm within the period when the amount of moisture in the medium is stable. If the difference does not exceed 3 ppm, the recalculation is terminated.
If the difference does not exceed 3 ppm, the value of the item that has been presumed that the appropriate value has been introduced is reviewed and recalculated. When recalculating, it is preferable to review the initial moisture content, the number of dispersed systems, and the oil flow distribution as priority.
Regarding recalculation, in the case of this embodiment, if the division step is set well, it can be assumed that the calculation can be performed by parameter optimization, but if the calculation still does not end, the threshold value is reduced, We will review the division modeling step.

上述の計算に基づく巻線上部絶縁紙の温度と絶縁紙中水分量の時間変化をまとめて図18に示す。
図18に示す計算結果から、変圧器Aの運転直後に巻線上部絶縁紙の温度が80℃台に上昇し、絶縁紙中水分量が減少し、20日目までは高温高水分量で推移したが、20日目に変圧器Aの運転停止した後は絶縁紙の温度が20℃程度まで下がり、絶縁紙中水分量が増加して1.8%まで増加する挙動が計算で求められ、変圧器Aにおける絶縁紙中の水分履歴を把握するステップが完了した。
FIG. 18 shows the time variation of the temperature of the upper winding insulating paper and the moisture content in the insulating paper based on the above calculation.
From the calculation results shown in FIG. 18, immediately after the operation of the transformer A, the temperature of the upper insulating paper of the winding rises to the 80 ° C. level, the moisture content in the insulating paper decreases, and remains high temperature and high moisture until the 20th day. However, after the operation of the transformer A was stopped on the 20th day, the behavior of the insulation paper temperature decreased to about 20 ° C. and the moisture content in the insulation paper increased to 1.8% was calculated. The step of grasping the moisture history in the insulating paper in the transformer A is completed.

図19は、上述の計算に基づいて得られた各区域毎の油温と油中水分の分布の一例を濃淡で示すもので、運転開始後20日目の16時00分の値を示す。
各区域毎の油温(℃)と油中水分量(ppm)について個々に詳細に算出できるが、図19では詳細な数値の表示は割愛し、図19(A)は油温について高温側を濃い灰色で表示し、低温側を薄い灰色で表示している。図19(B)は油中水分について高い領域を濃い灰色で表示し、低い領域を薄い灰色で濃淡表示している。
図19(A)から、タンク7の上部側で油温が高く下部側で油温が低いことが分かる。図19(B)から、油中水分量についてC14〜G14の領域より上の領域でC38〜G38の領域より下の領域で油中水分量が高いことがわかる。
FIG. 19 shows an example of the distribution of the oil temperature and the moisture in the oil for each section obtained based on the above calculation in shades, and shows the value at 16:00 on the 20th day after the start of operation.
Although the oil temperature (° C.) and the water content in the oil (ppm) can be calculated in detail for each zone, detailed numerical values are not shown in FIG. 19, and FIG. It is displayed in dark gray and the low temperature side is displayed in light gray. In FIG. 19B, the high region for the moisture in the oil is displayed in dark gray, and the low region is displayed in light gray.
FIG. 19A shows that the oil temperature is high on the upper side of the tank 7 and the oil temperature is low on the lower side. From FIG. 19 (B), it can be seen that the water content in oil is high in the region above the region C14 to G14 and in the region below the region C38 to G38.

次の段階は、巻線絶縁紙最低DPの計算である。先の実施形態で用いた新品の変圧器Aの場合、当然ながら現在の巻線絶縁紙最低DPは新品の値である。
先に示した実施形態はそのような計算例であるので、新品の変圧器Aの場合、現在の巻線絶縁紙最低DPは計算に用いた新品の値(巻線絶縁紙DPはすべて1174、プレスボードおよび木製物はすべて1101)である。
The next step is the calculation of the minimum winding insulation paper DP. In the case of the new transformer A used in the previous embodiment, the current winding insulation paper minimum DP is naturally a new value.
Since the embodiment shown above is such a calculation example, in the case of a new transformer A, the current winding insulation paper minimum DP is the new value used for the calculation (the winding insulation paper DP is all 1174, All press boards and wooden objects are 1101).

しかし、図1に示す変圧器Aではない、実使用中の変圧器が測定対象である場合、即ち、例えば経年的に使用した段階の変圧器が測定対象の場合、先のステップである水分履歴計算において、適切にDP分布を代入する必要があるが、実使用中の変圧器ではDP分布が不明であることから、現時点における先のステップの計算を直ちに実行することはできない。
そこで、まず、運転開始時期におけるDPは新品値であると仮定し、運転初期の紙中水分量と油中水分量を適切に仮定し、運転開始時期における紙中水分分布を上述の実施形態で説明した方法に基づき、一定時間分計算し、分割した区域ごとに一定時間経過分のDPの低下を計算する。
However, when the transformer in actual use which is not the transformer A shown in FIG. 1 is the measurement object, that is, when the transformer at the stage of use over time is the measurement object, for example, the moisture history which is the previous step In the calculation, it is necessary to appropriately substitute the DP distribution. However, since the DP distribution is unknown in a transformer in actual use, the calculation of the previous step at the present time cannot be executed immediately.
Therefore, first, assuming that the DP at the operation start time is a new value, the water content in the paper and the water content in the oil at the beginning of the operation are appropriately assumed, and the water content distribution in the paper at the operation start time in the above embodiment. Based on the described method, calculation is performed for a certain period of time, and a decrease in DP for a certain period of time is calculated for each divided area.

水分が存在する場合に絶縁紙のDPが低下する割合は、従来から様々な検討結果が報告されており、例えば、非特許文献5に示される計算式を参考に計算することができる。
非特許文献5には、以下の(13)、(14)、(15)式が開示されている。
Various examination results have been reported for the rate at which DP of insulating paper decreases when moisture is present, and can be calculated with reference to, for example, a calculation formula shown in Non-Patent Document 5.
Non-Patent Document 5 discloses the following equations (13), (14), and (15).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

各式においてβm、γmは絶縁紙中水分量m[%]によって決まる定数であり、(13)式中のβmとγmが(14)式、(15)式に絶縁紙中水分量mを代入することで計算できるので、Vr(寿命損失比)を求めることで平均重合度残率を計算できる。
非特許文献5では、寿命損失比Vrについて、以下の(16)式で定義している。
In each equation, βm and γm are constants determined by the moisture content m [%] in the insulating paper, and βm and γm in the equation (13) substitute the moisture content m in the insulation paper for the equations (14) and (15). Thus, the average degree of polymerization residual ratio can be calculated by obtaining Vr (lifetime loss ratio).
In Non-Patent Document 5, the life loss ratio Vr is defined by the following equation (16).

Figure 2018148052
Figure 2018148052

(16)式においてV30:加熱(巻線)温度95℃で30年連続加熱した時の寿命損失、θ:加熱(巻線)温度[℃]、h:加熱(巻線)温度θが継続した時間を示す。
これら(13)式〜(16)式を用いることで、平均重合度DPの低下を計算できる。
In equation (16), V 30 : life loss when heating (winding) temperature is 95 ° C. for 30 years continuously, θ i : heating (winding) temperature [° C.], h: heating (winding) temperature θ i Indicates the continuous time.
By using these formulas (13) to (16), a decrease in the average degree of polymerization DP can be calculated.

引き続き次の一定時間の紙中水分分布を計算するが、その計算において先に計算された各区域の低下したDPを用いて計算する。
その計算を現在時刻まで順次繰り返し計算し、現時点でのDP分布を求めることができる。その結果から求められる絶縁油中水分量の実験値と計算値の差が設定値(閾値、例えば3ppm)以下になるように仮定する値を適切に選ぶこととする。
その計算を1サイクル実行するのに選ばれる一定時間とは通常の運転であれば1年以下が適切と考えられるが、過負荷運転により急速に絶縁紙の劣化が進んだと考えられる変圧器の場合は、その程度に応じて計算の1サイクルを短くする必要がある。
計算が収束した段階で、現時点での巻線絶縁紙最低DPを求めることができる。
過負荷運転により急激に絶縁紙の劣化が進んだと考えられる場合、計算の区切りを時間単位あるいは1日単位として計算し、DPが1日100下がった場合は、2日目は100低下した時点から再計算する。
Subsequently, the moisture distribution in the paper for the next fixed time is calculated, and the calculation is performed using the lowered DP of each area previously calculated in the calculation.
The calculation can be sequentially repeated until the current time, and the DP distribution at the present time can be obtained. The assumed value is appropriately selected so that the difference between the experimental value and the calculated value of the moisture content in the insulating oil obtained from the result is equal to or less than a set value (threshold value, for example, 3 ppm).
The constant time chosen to execute the calculation for one cycle is considered to be one year or less for normal operation, but the transformer is considered to have rapidly deteriorated due to overload operation. In this case, it is necessary to shorten one cycle of calculation according to the degree.
When the calculation has converged, the current minimum winding insulation paper DP can be obtained.
When it is considered that the deterioration of the insulation paper has progressed suddenly due to overload operation, the calculation break is calculated in units of hours or 1 day, and when DP falls by 100 a day, the second day is the time when 100 drops Recalculate from

「余寿命の診断ステップ」
次のステップは、余寿命の計算および診断ステップである。
これまでと同様な条件で変圧器Aが運転されると仮定する。すなわち、変圧器Aの温度履歴は運転開始から現在までの平均的な負荷や周囲温度がこの先も続くと仮定する。
先のステップで計算された現在のDP分布を用い、次の一定時間後のDP分布を計算し、DPの低下を確認する。一定時間ごとの計算を巻線絶縁紙の最低DPが寿命レベルに達するまで繰り返すことにより、変圧器の余寿命を求めることができ、その値が変換器の余寿命診断の結果となる。例えば、現状の状態で運転した場合、余寿命はあと5年などの評価ができる。
"Remaining life diagnosis step"
The next step is the remaining life calculation and diagnostic step.
Assume that transformer A is operated under the same conditions as before. In other words, it is assumed that the temperature history of the transformer A is that the average load and ambient temperature from the start of operation to the present will continue.
Using the current DP distribution calculated in the previous step, the DP distribution after the next fixed time is calculated to confirm the decrease in DP. By repeating the calculation every certain time until the minimum DP of the winding insulating paper reaches the life level, the remaining life of the transformer can be obtained, and the value becomes the result of the remaining life diagnosis of the converter. For example, when operating in the current state, the remaining life can be evaluated as 5 years.

図20は、これまで概要説明を行った各ステップを実施するために用いる余寿命診断装置(パーソナルコンピュータ)の一例を示す説明図である。
この余寿命診断装置30は、処理部31と記憶部32とインターフェース部33とインターフェース部33に有線または無線で接続された表示部34とから構成されている。
記憶部32には上述した分割モデル化ステップS1で分割された区域の情報、前記基礎データ仮定ステップS2で求められた各種の基礎データ、前記計算パラメータ仮定ステップS3で求められた各種の計算パラメータ、前記相互拡散把握ステップS4で設定されている数式など、複数の情報が個々に記憶され、処理部31には複数の計算や処理を行う機能が付与されている。
上述の各ステップにおいて行う計算は例えばパーソナルコンピューター用一般市販の表計算ソフトを用いて実施することができる。
FIG. 20 is an explanatory diagram showing an example of a remaining life diagnosis apparatus (personal computer) used for carrying out the steps outlined above.
The remaining life diagnosis apparatus 30 includes a processing unit 31, a storage unit 32, an interface unit 33, and a display unit 34 connected to the interface unit 33 by wire or wirelessly.
The storage unit 32 stores information on the areas divided in the division modeling step S1 described above, various basic data obtained in the basic data assumption step S2, various calculation parameters obtained in the calculation parameter assumption step S3, A plurality of pieces of information such as mathematical formulas set in the mutual diffusion grasping step S4 are individually stored, and the processing unit 31 has a function of performing a plurality of calculations and processes.
The calculation performed in each of the above steps can be performed using, for example, a commercially available spreadsheet software for personal computers.

上述のように分割モデル化ステップS1において296区域に分割した各領域を表計算ソフトの各セルに当てはめ、各セルに計算式を組み込み、各領域毎の計算ができるように構成される。
表計算ソフトの各シート毎に、油量計算値、油拡散係数、油密度、油中水分量(g)、固体絶縁物中水分量(g)、油中水分量(ppm)が各区域毎に対応するセルに入力され、各セルに入力されている数値を表示装置34に表示できるように構成されている。
油温計算値は、例えば、図1に示す変圧器Aにおいては、10箇所の温度計測データが10分間隔で自動計測されるが、296区域の個々の区域の全ての温度データについて微小時間、例えば、10秒間隔でデータが必要なので、前述の如く比例配分で区域毎(セル毎)に自動計算し、296区域毎に10秒間隔の温度データに換算して区域毎に記憶され計算に利用される。
各区域の油温が決まると、油拡散係数のシートの各セルに各区域の油拡散係数が計算されて記憶され、油密度のシートの各セルに密度が計算されて記憶され、後の計算に利用される。
油中水分量のシートには各々の分割区域に油が何L入っているか、記録され、後の計算に利用される。
As described above, each region divided into 296 areas in the division modeling step S1 is applied to each cell of the spreadsheet software, and a calculation formula is incorporated in each cell so that calculation can be performed for each region.
For each sheet of spreadsheet software, calculated oil amount, oil diffusion coefficient, oil density, moisture content in oil (g), moisture content in solid insulation (g), moisture content in oil (ppm) The numerical value input to each cell is displayed on the display device 34.
For example, in the transformer A shown in FIG. 1, the oil temperature calculation value is automatically measured at 10-minute intervals for 10 temperature measurement data, but for a minute time for all temperature data in each of the 296 areas, For example, since data is required at 10-second intervals, as described above, it is automatically calculated for each area (each cell) by proportional distribution, converted into temperature data at 10-second intervals for each 296 areas, and stored for each area and used for calculation. Is done.
Once the oil temperature in each area is determined, the oil diffusion coefficient for each area is calculated and stored in each cell of the oil diffusion coefficient sheet, and the density is calculated and stored in each cell of the oil density sheet for later calculation. Used for
The sheet of moisture content in oil records how much oil is contained in each divided area and is used for later calculations.

表計算ソフトにおいて上述のシートの他に、A41〜R43まで296の区域毎のシートが設定され、各区域毎にプレスボードと木製物の厚さに対して重量と平均重合度が入力されて記憶され、各区域毎に絶縁紙の重量と平均重合度が入力されて記憶されている。
また、図7を基に先に説明した区域間の開口面積情報が各区域の境界位置に対応させて記録され、後の計算に利用される。
油中水分量の初期値は全区域で同じ初期水分量からスタートするとして、時間軸のスタート時点に4.0ppmが入力され、後の計算に利用される。
In the spreadsheet software, in addition to the above-mentioned sheets, sheets for each of 296 areas from A41 to R43 are set, and the weight and average polymerization degree are input and stored for the thickness of the press board and the wooden object for each area. The weight of the insulating paper and the average degree of polymerization are input and stored for each area.
Moreover, the opening area information between the areas described above based on FIG. 7 is recorded in correspondence with the boundary position of each area, and is used for later calculations.
Assuming that the initial moisture content in the oil starts from the same initial moisture content in all zones, 4.0 ppm is input at the start of the time axis and is used for later calculations.

固定絶縁物中水分量はコイル絶縁紙中水分量とプレスボード中水分量に分けられ、それぞれの区域に対応するセルに記録されている。
コイル絶縁紙は厚さ80μmの絶縁紙4枚のハーフラップ巻きなどを一例として計算されるので、この場合は合計8層の絶縁紙が重なっていると仮定し計算される。
銅線(コイル巻線)に近い側は高温のため紙中水分は少なく、絶縁油に接する側の絶縁紙ほど低温のため、紙中水分は多くなる傾向がある。表計算ソフトには、絶縁紙1枚毎にコイル絶縁紙中水分値を入力できるように構成され、プレスボードの場合、厚さ方向で水分分布が異なるため、厚さ0.1mm毎にプレスボード中水分の入力が可能なように各領域に対応する各セルが構成されている。
The moisture content in the fixed insulator is divided into the moisture content in the coil insulating paper and the moisture content in the press board, and is recorded in the cells corresponding to the respective areas.
The coil insulating paper is calculated by taking, for example, four half-wrap windings of 80 μm thick insulating paper. In this case, the calculation is performed assuming that a total of eight layers of insulating paper are overlapped.
The side near the copper wire (coil winding) has a high temperature, so there is little moisture in the paper, and the insulating paper on the side in contact with the insulating oil has a low temperature, so the moisture in the paper tends to increase. The spreadsheet software is configured so that the moisture value in the coil insulation paper can be input for each piece of insulation paper. In the case of a press board, the moisture distribution differs in the thickness direction. Each cell corresponding to each region is configured so that medium moisture can be input.

分散係数について、液体は密度、温度のゆらぎ、変圧器の振動などにより大きく影響を受け、ミクロな流れを生じるので、局所的な油の流れによる分散を生じるが、分散の大きさは拡散に比べて桁違いに大きな係数を取り得るので後述する結果を満足するようにパラメータとして振って仮決めして計算を行う必要がある。ここでは後述の如く仮の値が選択され、計算に使用される。
油流速度については1回の時間刻み幅で流れる流量は、それぞれの区域の流路で最少容積の区域において、その区域の断面積から最大流速が3mm/sとした場合の流量を求めた。対流は温度差がある場合に生じる。6つの対流の各ループにおいて温度差を決める高温側と低温側の区域を示し、設定温度に対する割合で対流量が変化するように設定されている。
Regarding the dispersion coefficient, the liquid is greatly affected by density, temperature fluctuations, transformer vibration, etc. and produces a micro flow, which causes dispersion due to the local oil flow. Since a large coefficient can be taken, it is necessary to make a provisional decision by calculating as a parameter so as to satisfy the result described later. Here, provisional values are selected and used for calculation as described later.
As for the oil flow velocity, the flow rate at a single time step was determined in the area of the smallest volume in the flow path of each area when the maximum flow velocity was 3 mm / s from the cross-sectional area of the area. Convection occurs when there is a temperature difference. In each of the six convection loops, a zone on the high temperature side and a low temperature side that determine the temperature difference is shown, and the convection flow rate is set to change at a ratio to the set temperature.

また、前述の拡散方程式を解くために、油中初期水分量(4.0ppm)、紙中初期水分量(1.45%)、コイル絶縁紙厚さ(80μm、1.0倍)、分散係数(60倍)、対流a〜fの各流速(mm/s)を計算パラメータとして代入できるように表計算ソフトの各セルが組まれている。
表計算ソフトの各セルは、変圧器の試験稼働期間30日分、4320行目まで10分区切りで時間毎に設定されている。
In order to solve the above-mentioned diffusion equation, the initial moisture content in oil (4.0 ppm), the initial moisture content in paper (1.45%), the coil insulation paper thickness (80 μm, 1.0 times), the dispersion coefficient Each cell of the spreadsheet software is assembled so that each flow velocity (mm / s) of convection af can be substituted as a calculation parameter (60 times).
Each cell of the spreadsheet software is set for every 30 minutes for the test operation period of the transformer for 30 days and up to the 4320th line by 10 minutes.

以下、これまで概要を述べてきた各ステップの詳細について更に詳しく説明する。
上述した余寿命診断装置の処理部31と記憶部32には、上述した項目とそれらに対応した計算機能と以下の項目に応じた計算に必要な式やパラメータなどが入力可能に構成され、種々の計算がなされる。
「変圧器巻線絶縁紙中水分の具体的な計算方法」
変圧器内水分は絶縁油中水分と絶縁紙中水分の和である。水分は外部からの侵入はないものと考え、変圧器内の総水分量は一定と考える。ただし、場合によっては絶縁紙の経年劣化により発生する若干の水分を考慮する。
The details of each step that has been outlined so far will now be described in more detail.
The processing unit 31 and the storage unit 32 of the remaining life diagnosis apparatus described above are configured to be able to input the above-described items, calculation functions corresponding to them, equations and parameters necessary for calculation according to the following items, and the like. Is calculated.
"Specific calculation method of moisture in transformer winding insulation paper"
The moisture in the transformer is the sum of the moisture in the insulating oil and the moisture in the insulating paper. It is assumed that moisture does not enter from the outside, and the total amount of moisture in the transformer is assumed to be constant. However, in some cases, some moisture generated due to aging of the insulating paper is taken into consideration.

絶縁油中水分は拡散と分散と油流の3通りの移動方法がある。油中水分に濃度勾配がある場合に絶縁油が静止していても濃度が高い側から低い側に水分が移動するのが拡散である。しかし、全体として油の流れがない場合でも、局所的な温度揺らぎや変圧器振動により、実際には絶縁油には局所的な流れが生じているのが分散である。局所的な流れは絶縁油を撹拌していることと同じで、拡散と同様に水分濃度が高い側から低い側に水分が移動する。また、絶縁油の強制循環が無くても変圧器内で温度分布が生じていれば、絶縁油に対流が発生し、油中水分は絶縁油の流れに乗って変圧器内を循環する。   There are three ways to move moisture in insulating oil: diffusion, dispersion, and oil flow. When there is a concentration gradient in the moisture in the oil, even if the insulating oil is stationary, the moisture moves from the high concentration side to the low concentration side. However, even when there is no oil flow as a whole, dispersion is actually caused by a local flow in the insulating oil due to local temperature fluctuations and transformer vibration. The local flow is the same as that of stirring the insulating oil, and the water moves from the high water concentration side to the low water side similarly to the diffusion. In addition, if there is a temperature distribution in the transformer even if there is no forced circulation of the insulating oil, convection occurs in the insulating oil, and moisture in the oil circulates in the transformer along the flow of the insulating oil.

絶縁紙中水分は絶縁紙内に濃度分布がある場合に拡散して絶縁紙内を移動する。また、絶縁紙内に温度分布がある場合は高温側から低温側に水分が移動し、絶縁紙内で水分濃度分布が生じることが知られている。
一方、絶縁油中水分と絶縁紙中水分は相互に水分の移動がある。たとえば、水分を含んだ絶縁油に乾燥した絶縁紙を投入すると、絶縁油から絶縁紙に水分は移動し、絶縁油中水分は減少する。絶縁油と絶縁紙間は相対湿度が高い側から低い側に水分が移動すると考えられる。温度が高いほど絶縁油は多くの水分を含むことができる。一方、絶縁紙は温度が高いほど水分を吸着しなくなる。よって、温度が上昇すると絶縁油の相対湿度は減少し、絶縁紙の相対湿度は増加するので、絶縁紙中水分は絶縁紙から抜けて絶縁油中に放出される。
Moisture in the insulating paper diffuses and moves through the insulating paper when there is a concentration distribution in the insulating paper. Further, it is known that when there is a temperature distribution in the insulating paper, moisture moves from the high temperature side to the low temperature side, and a moisture concentration distribution is generated in the insulating paper.
On the other hand, the moisture in the insulating oil and the moisture in the insulating paper move with each other. For example, when dry insulating paper is put into insulating oil containing moisture, the moisture moves from the insulating oil to the insulating paper, and the moisture in the insulating oil decreases. It is considered that moisture moves between the insulating oil and the insulating paper from the high relative humidity side to the low side. The higher the temperature, the more the insulating oil can contain moisture. On the other hand, the insulating paper does not adsorb moisture as the temperature increases. Therefore, as the temperature rises, the relative humidity of the insulating oil decreases and the relative humidity of the insulating paper increases, so that moisture in the insulating paper is released from the insulating paper and released into the insulating oil.

「巻線コイルの銅線と絶縁紙と絶縁油の境界における温度分布」
紙と油の境界には遷移領域があり、油は油温よりも高い温度で紙と接し水分が平衡すると考える。コイル巻線における温度分布状況を模式的に示すと、絶縁紙は銅線に巻回されている。コイル巻線を構成する銅線は変圧器稼働中は発熱体(ヒーター)であり油温より高温と考えられる。よって、絶縁紙(紙)銅線側で高温、油側で低温となり、紙と油には遷移領域(境膜)があると考えられ、本発明者の認識において、自冷式の変圧器では10〜15℃、送油式変圧器では15〜20℃程度の温度差があると考えている。
例えば、銅線表面が80℃であると仮定すると絶縁紙の厚さ方向に温度は徐々に低下し、絶縁紙の最外面が73℃であるとすると絶縁紙の外の遷移領域(境界膜)で温度は急激に低下して遷移領域を離れた位置の絶縁油温度が60℃になるなどの温度差を生じる。
"Temperature distribution at the boundary of copper wire, insulating paper and insulating oil of winding coil"
There is a transition region at the boundary between paper and oil, and the oil is considered to be in contact with the paper at a temperature higher than the oil temperature to equilibrate moisture. When the temperature distribution situation in the coil winding is schematically shown, the insulating paper is wound around a copper wire. The copper wire constituting the coil winding is a heating element (heater) during the operation of the transformer and is considered to be higher than the oil temperature. Therefore, it is considered that the insulation paper (paper) has a high temperature on the copper wire side and a low temperature on the oil side, and there is a transition region (boundary film) between the paper and the oil. It is considered that there is a temperature difference of about 10 to 15 ° C. and about 15 to 20 ° C. in the oil-feeding transformer.
For example, assuming that the copper wire surface is 80 ° C., the temperature gradually decreases in the thickness direction of the insulating paper, and if the outermost surface of the insulating paper is 73 ° C., a transition region (boundary film) outside the insulating paper. As a result, the temperature drops rapidly, resulting in a temperature difference such that the temperature of the insulating oil at a position away from the transition region reaches 60 ° C.

「巻線絶縁紙に温度勾配のある場合の拡散方程式の導出の詳細」
図21に示すように発熱体と見立てた巻線コイル(ヒーター)温度T、紙中温度はTからTまで直線的に変化、境膜中温度はTからTまで変化、油温Tとした場合の水分分布を計算する。
水分については、図21、図22に示すように単位面積あたり、微小区間∂xにおける微小時間∂tでの水分収支を考える。紙中の位置xにおける水分濃度をy(x)とし、微小区間∂xにおける微小時間∂tにおける水分濃度の変化を∂yとする。∂tの間にx=xを通過する水分を考える。水分は速度v(T)で±x方向に熱運動している。
“Details of Derivation of Diffusion Equation for Winding Insulation Paper with Temperature Gradient”
As shown in FIG. 21, the winding coil (heater) temperature T 0 regarded as a heating element, the paper temperature changes linearly from T 0 to T 1 , and the film temperature changes from T 1 to T 2 , oil The moisture distribution when the temperature is T 2 is calculated.
As for moisture, as shown in FIGS. 21 and 22, the moisture balance at a minute time ∂t in a minute section ∂x is considered per unit area. The moisture concentration at the position x in the paper is y (x), and the change in the moisture concentration at the minute interval に お け る t in the minute section ∂x is ∂y. Consider the moisture that passes x = x during ∂t. Moisture is in thermal motion in the ± x direction at a velocity v (T).

紙中温度はTからTまで直線的に変化していると仮定しているので以下の(17)式と(18)式で表すことができる。 Since it is assumed that the paper temperature changes linearly from T 0 to T 1 , it can be expressed by the following equations (17) and (18).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

水分子の平均速度は温度の平方根に比例すると考えられるが、温度差が小さく温度に対し直線的な変化をすると近似することにより、平均速度は以下の(19)式と(20)式で与えられるとする。巻線絶縁紙中の温度分布モデルと水分移動速度のモデルについて図23に示す。   Although the average speed of water molecules is considered to be proportional to the square root of temperature, the average speed is given by the following formulas (19) and (20) by approximating a small temperature difference and a linear change with temperature. Suppose that FIG. 23 shows a temperature distribution model and moisture transfer rate model in the winding insulating paper.

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

運動している水分子の半分は右に、半分は左に移動すると考える。微小時間∂tあたり左から来る水分量を次のように与える。   We think that half of the moving water molecules move to the right and half move to the left. The amount of moisture coming from the left per minute time ∂t is given as follows.

Figure 2018148052
Figure 2018148052

ここでΔx1は左から来る水分の移動距離である。位置x−Δx1における水分速度は以下の(22)式で表すことができ、微小時間∂tあたりの移動距離は以下の(23)式で表すことができる。   Here, Δx1 is the movement distance of moisture coming from the left. The moisture velocity at the position x−Δx1 can be expressed by the following equation (22), and the moving distance per minute time ∂t can be expressed by the following equation (23).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

この式からΔx1を解くと、以下の(24)式となる。   Solving Δx1 from this equation yields the following equation (24).

Figure 2018148052
Figure 2018148052

(24)式において、分母のk’v∂tは1に比較して十分に小さいと近似して以下の(25)式で表すことができる。 In the equation (24), the denominator k′v 0 ∂t can be approximated to be sufficiently smaller than 1 and can be expressed by the following equation (25).

Figure 2018148052
Figure 2018148052

この関係を(21)式に代入すると以下の(26)式となる。   Substituting this relationship into equation (21) yields the following equation (26).

Figure 2018148052
Figure 2018148052

また、y(x−Δ)を展開して、第2項までをとると以下の(27)式と表すことができることとなり、以下の(28)式となる。   Further, if y (x−Δ) is expanded and the second term is taken, it can be expressed as the following equation (27), and the following equation (28) is obtained.

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

また、右から来る水分量を以下の(29)式で表わすことができる。   The amount of water coming from the right can be expressed by the following equation (29).

Figure 2018148052
Figure 2018148052

ここでΔx2は左から来る水分の移動距離であり、以下の(30)式で表すことができる。従って、左から右に流れる実質的な水分の流れは、以下の(31)式で表すことができる。   Here, Δx2 is the movement distance of moisture coming from the left, and can be expressed by the following equation (30). Therefore, the substantial water flow flowing from the left to the right can be expressed by the following equation (31).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

∂tが極微小な場合、(31)式の第2項目の括弧の中身はv とおける。その場合、(31)を書き直すと実質的な水の流れは以下の(32)式で表すことができる。 When ∂t is extremely small, the content of the parenthesis of the second item of the equation (31) can be v x 2 . In that case, when (31) is rewritten, the substantial flow of water can be expressed by the following equation (32).

Figure 2018148052
Figure 2018148052

次に、時間的に変化する温度勾配が与えられた場合の非平衡な水分移動について計算する。図24に示すようにxとx+∂xとの間の薄膜状の領域における、時間tとt+∂tの間の水分収支は、面xから入る水分量:F(x)、面x+∂xから出る水分量:F(x+∂x)となる。
2つの面に挟まれた領域の水分変化量は以下の(33)式で得られ、拡散方程式は以下の(34)式で得られる。
Next, non-equilibrium moisture movement is calculated when a time-varying temperature gradient is given. As shown in FIG. 24, in the thin film region between x and x + ∂x, the moisture balance between time t and t + ∂t is the amount of moisture entering from surface x: F (x), surface x + ∂x Moisture amount coming out of the water: F (x + ∂x).
The amount of moisture change in the region sandwiched between the two surfaces is obtained by the following equation (33), and the diffusion equation is obtained by the following equation (34).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

この(34)式に先の(19)式を代入すると拡散方程式は以下の(35)式で与えられる。   When the previous equation (19) is substituted into this equation (34), the diffusion equation is given by the following equation (35).

Figure 2018148052
Figure 2018148052

(35)式において、右辺の第1項と第2項は温度勾配があることにより生じる水分移動を表わす。温度勾配があるために水分速度に勾配k’が生じている。仮に温度勾配が無く水分速度が一定、すなわちk’=0と仮定すると、右辺は第3項のみとなり、(35)式は以下の(36)式になる。   In the equation (35), the first and second terms on the right side represent moisture movement caused by a temperature gradient. Due to the temperature gradient, the moisture velocity has a gradient k '. If it is assumed that there is no temperature gradient and the moisture velocity is constant, that is, k ′ = 0, the right side is only the third term, and equation (35) becomes the following equation (36).

Figure 2018148052
Figure 2018148052

ここで以下の(37)式のようにおくと(36)式は以下の(38)式と表すことができ、温度一定による1次式の拡散現象を表す式となる。先に説明した(6)式となる。   Here, if the following equation (37) is set, the equation (36) can be expressed as the following equation (38), which is an equation representing the diffusion phenomenon of the primary equation due to a constant temperature. It becomes (6) Formula demonstrated previously.

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

「差分方程式の導出」
先の(35)式を解析的に解くことは困難であることから、差分法で解くことを考える。差分法では連続体を微小な領域の集合体と考え、微分を隣の領域との差分で表わして解く方法であり、熱流体現象のシミュレーションを行う場合に通常用いられる解析手段である。
yの1階微分∂y/∂xを差分形式で表わすと以下の(39)式となる。
"Derivation of difference equations"
Since it is difficult to analytically solve the previous equation (35), it is considered to solve by the difference method. The difference method is a method of solving a continuum as a collection of minute regions and expressing a differential as a difference from an adjacent region, and is an analysis means usually used for simulation of a thermofluid phenomenon.
When the first-order differential ∂y / ∂x of y is expressed in a difference format, the following equation (39) is obtained.

Figure 2018148052
Figure 2018148052

添え字nは銅線からn番目の微小領域を表わし、例えば先の実験結果の場合は6ラップの場合で12巻きとなることから、n巻き目の絶縁紙と考えることができる。その場合tは紙1枚の厚さ0.167mmを表わす。
また、yの2階微分∂y/∂xを差分形式で表わすと以下の(40)式となる。
The subscript n represents the nth minute region from the copper wire. For example, in the case of the previous experiment, the number of turns is 12 in the case of 6 wraps, and can be considered as n-th insulating paper. In that case t p represents the thickness 0.167mm one sheet of paper.
Further, when the second-order differential ∂ 2 y / ∂x 2 of y is expressed in a differential format, the following equation (40) is obtained.

Figure 2018148052
Figure 2018148052

以上の関係を用い、(35)式の計算式を以下の(41)式の差分方程式で表わすことができる。   Using the above relationship, the calculation formula (35) can be expressed by the following differential equation (41).

Figure 2018148052
Figure 2018148052

(41)式は絶縁紙中の水分移動を計算する式である。その境界条件として、一番内側でコイル巻線(ヒーター:銅線)に直に巻かれている紙と、一番外側で油と接している紙についての計算上の扱いは考慮が必要である。ヒーター側の1枚目の紙は水分移動が2枚目の紙との間でしか起こらない。よって1枚目のyの1階微分の計算として(39)式の代わりに次の(42)式で近似することにした。   Expression (41) is an expression for calculating moisture movement in the insulating paper. As the boundary condition, it is necessary to consider the calculation of paper that is wound directly on the coil winding (heater: copper wire) on the innermost side and paper that is in contact with oil on the outermost side. . In the first paper on the heater side, moisture movement occurs only between the second paper. Therefore, it was decided to approximate by the following equation (42) instead of the equation (39) as the calculation of the first derivative of the first y.

Figure 2018148052
Figure 2018148052

また、1枚目のyの2階微分は2枚目次のそれとほぼ等しいと近似して以下の(43)式で示す関係として計算することとする。   Further, the second-order derivative of y of the first sheet is approximated to be substantially equal to that of the second sheet, and is calculated as a relationship represented by the following equation (43).

Figure 2018148052
Figure 2018148052

一番外側で油と接している紙においては紙中水分と油中水分が平衡に向かうように水分移動が起き、平衡状態では両者の相対湿度が一致すると考える。コイル巻線の最表面と油とは、最表面の紙の温度で接していると考える。ヒーター温度(銅線温度)が80℃の場合、油温とは約13℃の温度差を生じていると考えられる。
本実施形態では厳密には境膜中で油中水分は一定値ではないと考えられるが、境膜の取扱いは大変困難であることから境膜における油中水分も境膜外における油中水分と等しいと仮定して考えることとする。
油中水分の相対湿度は飽和度pであり、Griffinの式を用いると、以下の(44)式で表すことができる。
In the paper that is in contact with oil on the outermost side, moisture movement occurs so that the moisture in the paper and the moisture in the oil are in equilibrium. The outermost surface of the coil winding and oil are considered to be in contact with each other at the temperature of the outermost paper. When the heater temperature (copper wire temperature) is 80 ° C., it is considered that there is a temperature difference of about 13 ° C. from the oil temperature.
Strictly speaking, in the present embodiment, it is considered that the moisture in the oil in the film is not a constant value, but since the handling of the film is very difficult, the moisture in the oil in the film is also different from the moisture in the oil outside the film. We assume that they are equal.
The relative humidity of the moisture in the oil is the saturation pr , and can be expressed by the following equation (44) using the Griffin equation.

Figure 2018148052
Figure 2018148052

ここでRは気体定数、Tは絶対温度を表わす。一方、紙中水分はこれまでの本発明者の検討結果から、以下の(45)式の関係で与えられる。   Here, R represents a gas constant, and T represents an absolute temperature. On the other hand, the moisture in the paper is given by the relationship of the following equation (45) based on the results of investigations by the present inventors.

Figure 2018148052
Figure 2018148052

ここで、aは0.260、kは8.49×10−42010/RTを表わす。ただし、ここではRとして1.98cal/mol/Kを用いて計算する。これをpについて解くと以下の(46)式となる。(46)式中のyは紙中水分の飽和度と考えることができる。 Here, a represents 0.260, and k represents 8.49 × 10 −4 e 2010 / RT . However, here, R is calculated using 1.98 cal / mol / K. This is equal to or less than the expression (46) and solving for p r. (46) y r in expression may be considered a saturation Kamichu water.

Figure 2018148052
Figure 2018148052

逆に、油中水分量pを用い(45)式で計算される絶縁紙中水分の値yoilを油の(絶縁紙相当の)紙中水分濃度と考え、それを用いて最外層の絶縁紙の差分計算を行う。すなわち、最外層の絶縁紙(12枚目:先の図14(A)で示した実験例のように6ラップ巻の場合)のyの1階微分の計算として(39)式の代わりに、以下の(47)式を用いることができ、yの2階微分の計算として(40)式の代わりに以下の(48)式を用いることができる。 On the contrary, the moisture content y oil in the insulating paper calculated by the equation (45) using the moisture content p in the oil is regarded as the moisture concentration in the oil (corresponding to the insulating paper), and is used to insulate the outermost layer. Perform paper difference calculation. That is, as the calculation of the first derivative of y of the outermost insulating paper (12th sheet: in the case of 6 wrap winding as in the experimental example shown in FIG. 14A), instead of the equation (39), The following equation (47) can be used, and the following equation (48) can be used in place of equation (40) as the calculation of the second derivative of y.

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

また、系全体の水分量から絶縁紙の水分を差引いて油中水分の全量とし、油量で割って油中水分量を計算する。
(41)式において、パラメータはvとk’の2つである。vは絶縁紙中の水分移動の容易さを表わし、(37)式に見るように拡散定数と意味合いが近い物理量である。
本実施形態では、油中水分も紙中相当の紙中水分濃度yoilと考えているので、紙と油が接している領域においても水分移動がvに関係しているとしている。k’は水分速度勾配、すなわち絶縁紙の高温部(ヒーター側)と低温部(油側)の水分速度の差に関係する。
In addition, the moisture content in the oil is calculated by subtracting the moisture content of the insulating paper from the moisture content of the entire system to obtain the total moisture content in the oil.
In the equation (41), there are two parameters, v 0 and k ′. v 0 represents the ease of moisture movement in the insulating paper, and is a physical quantity that is close in meaning to the diffusion constant as seen in equation (37).
In this embodiment, since the moisture in the oil is also considered to be the moisture concentration y oil in the paper equivalent to that in the paper, the moisture movement is related to v 0 even in the region where the paper and the oil are in contact. k ′ relates to a moisture velocity gradient, that is, a difference in moisture velocity between the high temperature portion (heater side) and the low temperature portion (oil side) of the insulating paper.

そこで、両パラメータは実験結果より最適化することにする。実験結果として、測定値に割合に近い油中水分変化を与えるパラメータを巻線絶縁紙についてはv=0.0025mm/10s、k’=0.15/mmを採用する。これらは、先に図14(A)、(B)を基に先に説明した通り、実験結果から求めた最適値である。
また、プレスボードのvは実験した結果、0.0015mm/10sを採用したが、プレスボードは直接銅線に巻かれることなく絶縁油に浸っていると考え、k’はゼロとした。このプレスボードのvは、図16を基に先に説明した通り、0.009mm/minとすると実験値の再現が良好であることから求めたが、拡散方程式では10秒間隔の値とするため、0.0015mm/10sを採用している。
Therefore, both parameters are optimized from the experimental results. As an experimental result, v 0 = 0.0025 mm / 10 s and k ′ = 0.15 / mm are adopted for the winding insulating paper as a parameter that gives a moisture change in oil close to the measured value. These are optimum values obtained from the experimental results, as described above based on FIGS. 14 (A) and (B).
Further, v 0 is the result of an experiment of pressboard, is adopted 0.0015 mm / 10s, considered immersed in without insulating oil it pressboard wound directly copper, k 'was zero. V 0 of the press board, as previously described based on FIG. 16, but reproducibility of the experimental values with a 0.009 mm / min was determined from it is good, the value of 10 seconds in the diffusion equation Therefore, 0.0015 mm / 10s is adopted.

「絶縁紙の時定数とkおよびk’の温度依存性」
先の図15の説明において近似したように絶縁紙の時定数τpは先の(12)式で近似する。ここで、時定数と水分子の移動速度は反比例の関係を仮定する。すなわち、任意の温度Tに対して次の(49)式が成り立つとする。
"Time constant of insulating paper and temperature dependence of k and k '"
As approximated in the description of FIG. 15, the time constant τp of the insulating paper is approximated by the above equation (12). Here, the time constant and the moving speed of water molecules are assumed to be inversely proportional. That is, it is assumed that the following equation (49) holds for an arbitrary temperature T.

Figure 2018148052
Figure 2018148052

そこで、これまでの実験結果よりτ(80℃)=204.4minおよび v(80℃)=0.015mm/minとすると、G=204.4min×0.015mm/min=3.07mmとなり、以下の(50)式を考える。 Therefore, if τ p (80 ° C.) = 204.4 min and v 0 (80 ° C.) = 0.015 mm / min from the experimental results so far, G = 204.4 min × 0.015 mm / min = 3.07 mm. Consider the following equation (50).

Figure 2018148052
Figure 2018148052

ヒーター温度が80℃の時には以下の(51)式であるが、35℃においては絶縁紙も絶縁油も35℃で一定となると考えると、kは温度依存性をもつこととなる。よって、kは以下の(52)式で表され、同様に水分子の速度も35℃では位置依存性が無くなることから、以下の(53)式と考える。   When the heater temperature is 80 ° C., the following equation (51) is obtained. However, if the insulating paper and the insulating oil are assumed to be constant at 35 ° C. at 35 ° C., k has temperature dependence. Therefore, k is expressed by the following equation (52). Similarly, the velocity of water molecules disappears from position dependency at 35 ° C., so it is considered as the following equation (53).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

「拡散について」
Eyringによると液体の拡散係数は絶対温度に比例し、粘度に反比例すると考えられている。溶質の拡散係数をD、溶媒の粘度をμ、絶対温度をTとしたとき、(10)式の関係となることは先に説明した。
(10)式に示すように絶縁油の粘度は動粘度と密度の積で表わされる。実験に使用した絶縁油の動粘度と密度を測定した結果を以下の表2に示す。
"About diffusion"
According to Eyring, the liquid diffusion coefficient is considered to be proportional to absolute temperature and inversely proportional to viscosity. As described above, when the diffusion coefficient of the solute is D, the viscosity of the solvent is μ, and the absolute temperature is T, the relationship of the equation (10) is satisfied.
As shown in the equation (10), the viscosity of the insulating oil is represented by the product of kinematic viscosity and density. The results of measuring the kinematic viscosity and density of the insulating oil used in the experiment are shown in Table 2 below.

Figure 2018148052
Figure 2018148052

動粘度は40℃と100℃の2点からJIS K2283に従い温度依存性を推定した計算結果を図25に示す。密度は15℃の測定値からJIS C2101に従い絶縁油1種の熱膨張係数7.4×10−4/℃(JIS C2101記載の例)を用い温度依存性を推定した計算結果を図26に示す。 FIG. 25 shows the calculation result of the kinematic viscosity estimated from the temperature dependence from two points of 40 ° C. and 100 ° C. according to JIS K2283. FIG. 26 shows a calculation result of estimating the temperature dependence from the measured value of 15 ° C. using the thermal expansion coefficient 7.4 × 10 −4 / ° C. (example described in JIS C2101) of one kind of insulating oil according to JIS C2101 .

先の(10)式のconst.は溶媒と溶質による定数である。油中水分についてその値はデータが無いので、別な溶媒と溶質による定数からその値を仮定する。溶媒が水、メタノール、エタノールの3種について(溶質)水の拡散係数および粘度のデータを化学便覧(改訂4版)および化学工学便覧(改訂4版)より調べて、定数const.を求めた結果を以下の表3に示す。
溶媒が水の場合に比べてメタノールやエタノールの方が定数const.は小さい事から、有機溶媒中では水が拡散しにくい傾向にあると考えられる。そこで、油中水分の場合の定数const.はメタノールやエタノールの値に近いと考えて定数const.を4と仮定して計算をすることとした。
動粘度と密度を図25と図26の値、定数const.を4と仮定して油中水分の拡散係数温度依存性を(39)式で計算した結果を図27に示す。
The const. Is a constant due to the solvent and solute. Since there is no data on the value of moisture in oil, the value is assumed from constants due to different solvents and solutes. For three types of solvents, water, methanol, and ethanol (solute), the water diffusion coefficient and viscosity data were examined from the Chemical Handbook (Revised 4th Edition) and the Chemical Engineering Handbook (Revised 4th Edition). The results obtained are shown in Table 3 below.
Compared with the case where the solvent is water, methanol and ethanol are more constant const. It is considered that water tends to hardly diffuse in organic solvents. Therefore, the constant const. Is a constant const. The calculation was made assuming that 4 is 4.
The kinematic viscosity and density are the values in FIGS. 25 and 26, the constant const. FIG. 27 shows the result of calculating the diffusion coefficient temperature dependence of moisture in the oil by equation (39) assuming that is 4.

Figure 2018148052
Figure 2018148052

図27に示す結果から、低温では絶縁油の粘度が高いこともあり、高温の絶縁油に比べて拡散係数が小さい。よって、高温の油と低温の油が接している界面において、通常の拡散に加えて拡散係数の違いによる水分移動を考える必要がある。   From the results shown in FIG. 27, the viscosity of the insulating oil may be high at low temperatures, and the diffusion coefficient is smaller than that of high-temperature insulating oil. Therefore, it is necessary to consider moisture movement due to the difference in diffusion coefficient in addition to normal diffusion at the interface where the high temperature oil and the low temperature oil are in contact.

「分散について」
絶縁紙中の水分は拡散により移動すると考えたが、絶縁油中の水分移動はその他の影響がある。拡散のみでの水分移動は極めて遅いものであり、実際の水分伝播を考える時、局所的なミクロな油流の効果を考慮する必要がある。絶縁油中では絶えず無数のミクロな(乱流と考えられる)渦が油中の複数の箇所で発生し、油が集団として移動していると考えられる。そのような無方向なミクロな油の流れによる油中水分の移動現象をここでは「分散」と呼ぶことにする。分散についても拡散同様に分散係数が考えられ、分散係数は拡散係数に比べて桁違いに大きいと考えられる。
絶縁油中の水分に関しても拡散方程式は(40)式と同様に表わすことができ、油中水分濃度をpとすると次の(54)式で表わすことができる。
About dispersion
Although the moisture in the insulating paper was thought to move by diffusion, the moisture movement in the insulating oil has other effects. Moisture movement by diffusion alone is extremely slow, and when considering actual water propagation, it is necessary to consider the effect of local micro oil flow. Insulating oil is considered to have a myriad of micro vortices (considered as turbulent flow) that are constantly generated at a plurality of locations in the oil, and the oil is moving as a group. The phenomenon of moisture in oil due to such a non-directional micro oil flow is referred to herein as “dispersion”. As for dispersion, a dispersion coefficient can be considered like diffusion, and the dispersion coefficient is considered to be orders of magnitude greater than the diffusion coefficient.
With respect to the moisture in the insulating oil, the diffusion equation can be expressed in the same manner as the equation (40), and when the moisture concentration in the oil is p, it can be expressed by the following equation (54).

Figure 2018148052
Figure 2018148052

しかし、隣り合う区域の拡散係数は異なるため、境界では計算方法を工夫する必要がある。(54)式を微分形式で書き直すと以下の(55)式となる。   However, since the diffusion coefficients of adjacent areas are different, it is necessary to devise a calculation method at the boundary. Rewriting equation (54) in differential form yields equation (55) below.

Figure 2018148052
Figure 2018148052

ここで、以下の(56)式のようにおくと(55)式は以下の(57)式で表すことのできる拡散方程式となる。   Here, when the following equation (56) is set, equation (55) becomes a diffusion equation that can be expressed by the following equation (57).

Figure 2018148052
Figure 2018148052

Figure 2018148052
Figure 2018148052

ここでD拡散は拡散係数、v は水分子の平均移動速度を表わす。
温度が連続的に変化している場合は、先の拡散方程式(35)を用いることができる。しかし、この例では境界において拡散係数が不連続なため、境界における水分移動を拡散係数から求められる水分子の平均移動速度を用いて計算する。
前節で求めた油中水分の拡散係数から、水分子の平均移動速度を(56)式を用いて求める。先に説明した296に分割した区域において、区域n−1、区域n、区域n+1が3つ並んでいるときにn番の区域に含まれる水分子のうち半分はn−1番側に、半分はn+1番側に動くと考える。n番の区域の油中水分濃度をp、n番の区域の水分子平均速度をv、境界の断面積をS、n番の区域の密度をρと表わすと、n番の区域からn+1番の区域に単位時間(1分)あたりに移動する水分量Wn→n+1(mg)は以下の(58)式で与えられる。
Here, D diffusion represents a diffusion coefficient, and v represents an average moving speed of water molecules.
If the temperature is continuously changing, the previous diffusion equation (35) can be used. However, in this example, since the diffusion coefficient is discontinuous at the boundary, the water movement at the boundary is calculated using the average movement speed of water molecules obtained from the diffusion coefficient.
Based on the diffusion coefficient of water in oil determined in the previous section, the average moving speed of water molecules is determined using equation (56). In the area divided into 296 as described above, when three areas n-1, n, and n + 1 are arranged, half of the water molecules contained in the nth area are half on the n-1 side. Thinks that it moves to the (n + 1) th side. When the water concentration in oil in the n-th area is expressed as pn, the water molecule average velocity in the n-th area as v n , the cross-sectional area of the boundary as S, and the density of the n-th area as ρ n , the n-th area The amount of water W n → n + 1 (mg) that moves per unit time (1 minute) from the first to n + 1 is given by the following equation (58).

Figure 2018148052
Figure 2018148052

n+1番の区域からも同様にn番の区域に流入する水分Wn+1→n(mg)が考えられ、差し引きするとn番の区域は以下の(59)式だけ水分量ΔW(mg)が増加する。 Similarly, the water W n + 1 → n (mg) flowing into the n-th area from the n + 1-th area can be considered, and when subtracted, the n-th area increases the water content ΔW n (mg) by the following equation (59). To do.

Figure 2018148052
Figure 2018148052

区切られた1区域の厚さをtpとすると、n番の区域に含まれる油量はS×tp×ρ(kg)と表わされるので、n番の区域は以下の(60)式の値だけ油中水分Δw(ppm)が増すことになる。 Assuming that the thickness of one divided area is tp, the amount of oil contained in the nth area is expressed as S × tp × ρ n (kg), so the nth area is a value of the following equation (60). Only the moisture in oil Δw n (ppm) will increase.

Figure 2018148052
Figure 2018148052

変圧器A内の油流は主に対流であると考えられている。しかし、仮に対流が無くても、密度、温度の揺らぎや、変圧器自身の振動(音波も含む)などにより、方向性の無いミクロな油流があると考えられる。
ここで考慮する分散とは、局所的な油流による油の混合が常に起きていることを想定した、油の移動に伴う油中水分の移動である。
そのようなミクロな油流は油中水分の濃度勾配とは無関係に局所的な濃度を平均化する効果があると考えられる。
The oil flow in transformer A is considered to be mainly convective. However, even if there is no convection, it is considered that there is a micro oil flow with no directionality due to fluctuations in density and temperature, vibration of the transformer itself (including sound waves), and the like.
The dispersion considered here is the movement of water in the oil accompanying the movement of the oil, assuming that the mixing of the oil by the local oil flow always occurs.
Such a micro oil stream is considered to have an effect of averaging the local concentration regardless of the concentration gradient of moisture in the oil.

区域n−1、区域n、区域n+1が3つ並んでいるときに油中水分濃度がそれぞれpn−1、p、pn+1であるとする。3区域の油中水分平均値は(pn−1+p+pn+1)/3であり、比例定数をAとすると区域nの油中水分に対して{(pn−1+p+pn+1)/3−p}×Aの増分をもたらす。
これを変形すると(pn−1−2p+pn−1)/3×Aとなり、3×Aを分散係数D分散とおくと分散の効果は次式で与えられることになる。
It is assumed that the water concentration in oil is pn-1 , pn , and pn + 1 , respectively, when three sections n-1, n, and n + 1 are arranged. The average water content in the oil in the three zones is (p n-1 + p n + p n + 1 ) / 3, and if the proportionality constant is A, the water content in the oil in zone n is {(p n-1 + p n + p n + 1 ) / 3-p n } × A increments.
When this is modified, (p n−1 −2p n + p n−1 ) / 3 × A is obtained, and if 3 × A is set as the dispersion coefficient D dispersion , the effect of dispersion is given by the following equation.

Figure 2018148052
Figure 2018148052

この(61)式は(54)式に先の(56)式で示した拡散係数を代入した以下の(62)式と相似な式になっていることが分かる。   It can be seen that the equation (61) is similar to the following equation (62) in which the diffusion coefficient shown in the equation (56) is substituted into the equation (54).

Figure 2018148052
Figure 2018148052

よって、分散による油中水分の移動は拡散方程式(54)式の拡散係数を分散係数に置き換えるだけで計算することができることがわかる。また、境界の区域においては前述の拡散の効果に分散の効果を加えて計算することができる。
分散係数は未知であるから、分散係数をパラメータとして変化させ、実験結果に近い値をとることにする。
Therefore, it is understood that the movement of moisture in oil due to dispersion can be calculated simply by replacing the diffusion coefficient in the diffusion equation (54) with the dispersion coefficient. In the boundary area, the dispersion effect can be added to the aforementioned diffusion effect.
Since the dispersion coefficient is unknown, the dispersion coefficient is changed as a parameter to take a value close to the experimental result.

「対流について」
対流では、ある体積の絶縁油が方向性を持って流れる。水分の移動はその体積に含まれる絶縁油の油中水分が移動することと考えられる。厳密には、ある領域から温度の異なる他の領域に油が移動すると熱膨張の関係で油の体積が変化すると考えられるが、その影響は小さいと考え無視して、一定容積の絶縁油が移動すると考える。
対流の様子は数値計算することが可能であるが、実際の変圧器構造で計算すると大変複雑で計算量が多くなり困難である。そこで、簡単な構造を仮定してシミュレーションした。その結果、
・タンク上部は独立して対流
・タンク下部の対流はわずか
・鉄心とコイル巻線の隙間の流れはコイル巻線外側より流量が少ないが流速は大きい
ことなどが分かった。そこで、先に説明したように図10に示すような6ループモデルを仮定し、対流モデルを検討した。
対流の流量は上下の温度差に比例すると考えられる。そこで、各ループに対して温度差を計算する基となる領域名と100%の流量となる温度設定値を以下の表4のように仮定した。ここで、温度設定値は20日目、16時の各領域の油温とした。
"About convection"
In convection, a certain volume of insulating oil flows with direction. It is considered that the movement of moisture moves the moisture in the insulating oil contained in the volume. Strictly speaking, if the oil moves from one region to another region where the temperature is different, the volume of the oil is considered to change due to thermal expansion. I think so.
The state of convection can be numerically calculated, but it is very complicated and difficult to calculate because it is calculated with an actual transformer structure. Therefore, simulation was performed assuming a simple structure. as a result,
・ Independent convection in the upper part of the tank ・ Slight convection in the lower part of the tank ・ It was found that the flow between the iron core and the coil winding is smaller than the outside of the coil winding but the flow speed is larger. Therefore, as described above, a 6-loop model as shown in FIG. 10 was assumed and a convection model was examined.
The flow rate of convection is considered to be proportional to the temperature difference between the upper and lower sides. Therefore, an area name that is a basis for calculating a temperature difference for each loop and a temperature setting value that is 100% flow rate are assumed as shown in Table 4 below. Here, the temperature set value was the oil temperature of each region at 16:00 on the 20th day.

Figure 2018148052
Figure 2018148052

この結果から先に説明した6ループモデルの対流が生じると判断して問題ないことが分かる。   From this result, it can be seen that there is no problem in judging that the convection of the 6-loop model described above occurs.

以上説明した296に分割した各区域を設定し、上述した基礎データ仮定ステップと相互拡散把握ステップに基づき、表計算ソフトの各セルに設定した数値を代入して拡散方程式を解くように計算すると、先に説明した図17(B)に示す計算結果が得られる。
図17(A)、(B)の対比から明らかなように、実測値と計算結果は概ね一致する状態であれば、次のステップに移行することができる。
仮に、ここで計算値と実測値が前述の閾値3ppmを超える差異を生じた場合、前述の如く設定した値や仮定した諸データやパラメータを変化させ、上述の計算を繰り返す。
この計算により、劣化が最も進むと考えられる巻線上部絶縁紙の紙中水分量を計算することができ、この巻線上部の紙中水分量を把握することで変圧器の余寿命診断ができる。
When each area divided into 296 described above is set, and based on the basic data assumption step and the mutual diffusion grasping step described above, calculation is performed so as to solve the diffusion equation by substituting the numerical values set in each cell of the spreadsheet software. The calculation result shown in FIG. 17B described above is obtained.
As is apparent from the comparison between FIGS. 17A and 17B, if the actual measurement value and the calculation result are substantially in agreement, the process can proceed to the next step.
If there is a difference between the calculated value and the actually measured value exceeding the aforementioned threshold value of 3 ppm, the value set as described above, assumed data and parameters are changed, and the above calculation is repeated.
This calculation allows you to calculate the moisture content in the paper of the upper winding insulation paper, which is thought to deteriorate most, and to determine the remaining life of the transformer by grasping the moisture content in the paper above the winding. .

A…変圧器、1…鉄心、2…コイル巻線、3…絶縁紙、5…プレスボード、6…変圧器中身、7…タンク、8…絶縁油、9…上ヨーク、10…下ヨーク、11…支柱部材、13…放熱器、15…上部配管、16…下部配管、20、21、22、23、24、25…油中水分センサー、26…排油弁、S1…分割モデル化ステップ、S2…基礎データ仮定ステップ、S3…計算パラメータ仮定ステップ、S4…相互拡散把握ステップ、S5…比較ステップ、S6…診断ステップ。   A ... transformer, 1 ... iron core, 2 ... coil winding, 3 ... insulating paper, 5 ... press board, 6 ... transformer contents, 7 ... tank, 8 ... insulating oil, 9 ... upper yoke, 10 ... lower yoke, DESCRIPTION OF SYMBOLS 11 ... Strut member, 13 ... Radiator, 15 ... Upper piping, 16 ... Lower piping, 20, 21, 22, 23, 24, 25 ... Moisture sensor in oil, 26 ... Drain valve, S1 ... Split modeling step, S2 ... Basic data assumption step, S3 ... Calculation parameter assumption step, S4 ... Mutual diffusion grasping step, S5 ... Comparison step, S6 ... Diagnosis step.

Claims (11)

鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断方法であって、
前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割し、
前記分割した各区域に存在する前記巻線コイルと前記固体絶縁物と前記絶縁油の分布を把握し、
各区域において、前記固体絶縁物と絶縁油との間で水分が相互拡散する関係を把握し、各区域において、所定水分を含有している絶縁油が流れる状況を把握し、これらの間の水分量の相互拡散関係を各区域毎に把握し、
前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散関係から導かれる絶縁油の油中水分量の値を比較し、前記油中水分量の実測値と前記相互拡散関係から導かれた油中水分量の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定し、この確定した水分分布に基づいて油入変圧器の余寿命診断を行うことを特徴とする油入変圧器の余寿命診断方法。
Insulating oil in which the contents of a transformer including a core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object are contained in a tank An oil-filled transformer immersed in the oil-filled transformer, and a method for diagnosing the remaining life of an oil-filled transformer configured to generate an oil flow in the insulating oil,
In the oil-filled transformer, a longitudinal cross section including a region where the transformer contents excluding the iron core and a region where the insulating oil is present is divided into a plurality of sections in a vertical direction and a horizontal direction,
Grasp the distribution of the winding coil, the solid insulator and the insulating oil present in each of the divided areas;
In each area, grasp the relationship of moisture interdiffusion between the solid insulator and the insulating oil. In each area, grasp the situation where the insulating oil containing the predetermined moisture flows. Grasp the interdiffusion relationship of quantity for each area,
The measured value of the moisture content in the oil of the insulating oil actually collected from a part of the divided area during operation of the oil-filled transformer, and the insulating oil derived from the mutual diffusion relationship with respect to the area where the insulating oil was collected If the difference in the moisture content in oil derived from the measured value of the moisture content in oil and the mutual diffusion relationship is equal to or less than a predetermined threshold, A remaining life diagnosis method for an oil-filled transformer, wherein a moisture distribution of the oil-filled transformer is determined and a remaining life diagnosis of the oil-filled transformer is performed based on the determined moisture distribution.
鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断方法であって、
前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割する分割モデル化ステップと、
前記固体絶縁物分布と、前記絶縁油分布と、前記固体絶縁物の重量、厚さ及び平均重合度と、前記絶縁油の密度及び飽和水分量と、隣接する前記区域間の開口面積と、温度分布と、油流分布と、初期水分分布を仮定する基礎データ仮定ステップと、
前記絶縁油の飽和水分量と、前記絶縁油中の水分拡散係数と、固体絶縁物−油間平衡水分量と、固体絶縁物中の水分の移動速度と、固体絶縁物中の温度勾配を仮定する計算パラメータ仮定ステップと、
初期状態の変圧器の絶縁油の油中水分が時間経過とともに前記固体絶縁物に対して相互拡散するが、総水分量は一定であるとする関係を把握し、前記区域毎の絶縁油の油中水分量と固体絶縁物中水分量の相互拡散関係を把握する相互拡散把握ステップと、
前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散把握ステップから導かれた絶縁油の油中水分量の計算値を比較し、前記実測値と前記計算値の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する比較ステップと、
この決定された水分分布から導かれる前記巻線コイル上部絶縁紙の紙中水分量から前記変圧器の余寿命を診断する診断ステップを具備したことを特徴とする油入変圧器の余寿命診断方法。
Insulating oil in which the contents of a transformer including a core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object are contained in a tank An oil-filled transformer immersed in the oil-filled transformer, and a method for diagnosing the remaining life of an oil-filled transformer configured to generate an oil flow in the insulating oil,
In the oil-filled transformer, a division modeling step that divides a longitudinal section including a region where the transformer content is excluded and a region where the insulating oil is present excluding the iron core into a plurality of sections in a vertical direction and a horizontal direction;
The solid insulator distribution, the insulating oil distribution, the weight, thickness and average degree of polymerization of the solid insulator, the density and saturated water content of the insulating oil, the opening area between the adjacent areas, and the temperature A basic data assumption step that assumes a distribution, an oil flow distribution, and an initial moisture distribution;
Assuming the saturated moisture content of the insulating oil, the moisture diffusion coefficient in the insulating oil, the equilibrium moisture content between the solid insulator and the oil, the movement speed of moisture in the solid insulator, and the temperature gradient in the solid insulator A calculation parameter assumption step to
Understand the relationship that the moisture in the oil of the insulating oil of the transformer in the initial state mutually diffuses over time with respect to the solid insulator, but the total water content is constant, and the oil of the insulating oil for each area A mutual diffusion grasping step for grasping the mutual diffusion relation between the moisture content in the solid and the moisture content in the solid insulator;
The measured value of the amount of moisture in the oil of the insulating oil actually collected from a part of the divided area during operation of the oil-filled transformer, and derived from the mutual diffusion grasping step for the area where the insulating oil was collected Comparing the calculated value of the moisture content in the oil of the insulating oil, if the difference between the measured value and the calculated value is less than a predetermined threshold, a comparison step for determining the moisture distribution in the insulating oil for each area;
A method for diagnosing the remaining life of an oil-filled transformer, comprising a diagnostic step of diagnosing the remaining life of the transformer from the amount of moisture in the paper of the winding coil upper insulating paper derived from the determined moisture distribution .
前記相互拡散把握ステップにおいて、分割した各区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、初期水分量とを把握することを特徴とする請求項2に記載の油入変圧器の余寿命診断方法。   In the interdiffusion grasping step, the distribution of the insulating oil amount for each divided area, the distribution of the solid insulator amount, the distribution of the opening area between adjacent areas, the oil flow distribution of the insulating oil, and the solid for each area 3. The substantial movement speed of water molecules in the insulator, the moisture velocity gradient coefficient in the solid insulator, the thickness of the solid insulator in each area, and the initial moisture content are ascertained. A method for diagnosing the remaining life of oil-filled transformers. 前記比較ステップに、前記実測値と前記計算値の差異が所定の閾値を超えた場合、初期水分量と、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、分散係数の少なくとも1つを見直して再計算し、前記差異が閾値以下になるまで再計算を繰り返す機能が付加されたことを特徴とする請求項2または請求項3に記載の油入変圧器の余寿命診断方法。   In the comparison step, when the difference between the measured value and the calculated value exceeds a predetermined threshold, the initial moisture amount, the distribution of the insulating oil amount for each zone, the distribution of the solid insulator amount, and between adjacent zones Distribution of opening area, oil flow distribution of insulating oil, substantial movement speed of water molecules in solid insulation per area, moisture velocity gradient coefficient in solid insulation, and thickness of solid insulation per area The oil-filled transformer according to claim 2 or 3, further comprising a function of recalculating and recalculating at least one of the dispersion coefficients, and repeating the recalculation until the difference falls below a threshold value. Remaining life diagnosis method. 前記相互拡散把握ステップにおいて、以下の(1)式に基づき相互拡散を把握することを特徴とする請求項1〜4のいずれか一項に記載の油入変圧器の余寿命診断方法。
Figure 2018148052
ただし、(1)式において、x:固体絶縁物の銅線からの位置(mm)、y:固体絶縁物中水分量(%)、yn:n番目の区域(区間)の固体絶縁物中水分量(%)、t:運転開始からの時間(min)、∂t:微小時間(min)、∂yn:微小時間におけるn番目の区域における固体絶縁物中水分量の増分(%)、v:銅線に接する絶縁紙における固体絶縁物中水分子の実質的な移動速度(mm/min)、k’:固体絶縁物中水分速度勾配係数(1/mm)、tp:1区間における固体絶縁物の厚さ(mm)と規定する。
5. The method for diagnosing the remaining life of an oil-filled transformer according to claim 1, wherein in the mutual diffusion grasping step, the mutual diffusion is grasped based on the following expression (1).
Figure 2018148052
However, in the formula (1), x: position of the solid insulator from the copper wire (mm), y: moisture content in the solid insulator (%), yn: moisture in the solid insulator in the nth section (section) Amount (%), t: time from the start of operation (min), ∂t: minute time (min), ∂yn: increment of moisture content in the solid insulator in the n-th zone in minute time (%), v 0 : Substantial moving speed of water molecules in solid insulator (mm / min) in insulating paper in contact with copper wire, k ′: Moisture velocity gradient coefficient in solid insulator (1 / mm), tp: solid insulation in section 1 It is defined as the thickness (mm) of the object.
各区域に含まれる水分量が固体絶縁物中水分量と油中水分量の和であり、各区域の水分量の総和が油入変圧器に含まれる総水分量であり、各区域における水分量の増分はその区域に流入する水分量から流出する水分量を差し引いた量であり、油中水分量の増分が以下の(2)式の関係を満たすことを特徴とする請求項1〜請求項5のいずれか一項に記載の油入変圧器の余寿命診断方法。
Figure 2018148052
The amount of water contained in each area is the sum of the amount of water in the solid insulator and the amount of water in the oil, and the sum of the amounts of water in each area is the total amount of water contained in the oil-filled transformer. The increment of is the amount obtained by subtracting the amount of moisture flowing out from the amount of moisture flowing into the area, and the increment of the amount of moisture in the oil satisfies the relationship of the following equation (2): The remaining life diagnosis method of the oil-filled transformer as described in any one of 5-5.
Figure 2018148052
鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断装置であって、
前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に分割した複数の区域を記憶する機能と、
前記分割した各区域に存在する前記巻線コイルと前記固体絶縁物と前記絶縁油の分布を記憶する機能と、
各区域において、前記固体絶縁物と絶縁油との間で水分が相互拡散する関係を把握し、各区域において、所定水分を含有している絶縁油が流れる状況を把握し、これらの間の水分量の相互拡散関係を各区域毎に計算する機能と、
前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散関係から導かれる絶縁油の油中水分量の値を比較し、前記油中水分量の実測値と前記相互拡散関係から導かれた油中水分量の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する機能を有することを特徴とする油入変圧器の余寿命診断装置。
Insulating oil in which the contents of a transformer including a core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object are contained in a tank An oil-filled transformer immersed in the oil-filled transformer, and a remaining life diagnosis device for an oil-filled transformer configured to generate an oil flow in the insulating oil,
In the oil-filled transformer, a function of storing a plurality of areas obtained by dividing a longitudinal section including a region where the transformer contents are excluded and the region where the insulating oil is present, excluding the iron core, in a vertical direction and a horizontal direction;
A function of storing distribution of the winding coil, the solid insulator, and the insulating oil present in each of the divided areas;
In each area, grasp the relationship of moisture interdiffusion between the solid insulator and the insulating oil. In each area, grasp the situation where the insulating oil containing the predetermined moisture flows. The ability to calculate the interdiffusion relationship of quantities for each area;
The measured value of the moisture content in the oil of the insulating oil actually collected from a part of the divided area during operation of the oil-filled transformer, and the insulating oil derived from the mutual diffusion relationship with respect to the area where the insulating oil was collected If the difference in the moisture content in oil derived from the measured value of the moisture content in oil and the mutual diffusion relationship is equal to or less than a predetermined threshold, A remaining life diagnosis device for an oil-filled transformer having a function of determining the moisture distribution of the oil-filled transformer.
鉄心と、その周囲に設けられた巻線コイルと、コイル絶縁用の絶縁紙、プレスボード、木製物を含む含水性の固体絶縁物と、を備えた変圧器中身がタンクに収容された絶縁油に浸漬された油入変圧器であり、前記絶縁油に油流が生じる構成の油入変圧器の余寿命診断装置であって、
前記油入変圧器において、前記鉄心を除いた前記変圧器中身の存在領域と前記絶縁油が存在する領域を含む縦断面を縦方向及び横方向に複数の区域に分割した各区域を記憶する分割モデル化機能と、
前記固体絶縁物分布と、前記絶縁油分布と、前記固体絶縁物の重量、厚さ及び平均重合度と、前記絶縁油の密度及び飽和水分量と、隣接する前記区域間の開口面積と、温度分布と、油流分布と、初期水分分布を記憶する基礎データ仮定機能と、
前記絶縁油の飽和水分量と、前記絶縁油中の水分拡散係数と、固体絶縁物−油間平衡水分量と、固体絶縁物中の水分の移動速度と、固体絶縁物中の温度勾配の仮定値を記憶する計算パラメータ仮定機能と、
初期状態の変圧器の絶縁油の油中水分が時間経過とともに前記固体絶縁物に対して相互拡散するが、総水分量は一定であるとする関係を把握し、前記区域毎の絶縁油の油中水分量と固体絶縁物中水分量の相互拡散関係を把握して記憶する相互拡散把握機能と、
前記油入変圧器の運転時に前記分割した区域の一部から実際に採取した絶縁油の油中水分量の実測値と、前記絶縁油を採取した区域に対し前記相互拡散把握ステップから導かれた絶縁油の油中水分量の計算値を比較し、前記実測値と前記計算値の差異が所定の閾値以下であれば前記各区域毎の絶縁油中の水分分布を確定する比較機能と、
この決定された水分分布から導かれる前記巻線コイル上部絶縁紙の紙中水分量から前記変圧器の余寿命を診断する診断機能を具備したことを特徴とする油入変圧器の余寿命診断装置。
Insulating oil in which the contents of a transformer including a core, a winding coil provided around the core, and a water-containing solid insulator including insulating paper for coil insulation, a press board, and a wooden object are contained in a tank An oil-filled transformer immersed in the oil-filled transformer, and a remaining life diagnosis device for an oil-filled transformer configured to generate an oil flow in the insulating oil,
In the oil-filled transformer, a division for storing each area obtained by dividing a longitudinal section including a region where the transformer contents are excluded and a region where the insulating oil is present excluding the iron core into a plurality of regions in the vertical direction and the horizontal direction. Modeling function and
The solid insulator distribution, the insulating oil distribution, the weight, thickness and average degree of polymerization of the solid insulator, the density and saturated water content of the insulating oil, the opening area between the adjacent areas, and the temperature Basic data assumption function to store the distribution, oil flow distribution, and initial moisture distribution;
Assumption of saturated moisture content of the insulating oil, moisture diffusion coefficient in the insulating oil, equilibrium moisture content between the solid insulator and oil, movement speed of moisture in the solid insulator, and temperature gradient in the solid insulator A calculation parameter assumption function for storing values;
Understand the relationship that the moisture in the oil of the insulating oil of the transformer in the initial state mutually diffuses over time with respect to the solid insulator, but the total water content is constant, and the oil of the insulating oil for each area Interdiffusion grasping function to grasp and memorize the mutual diffusion relation between the moisture content in the solid and the moisture content in the solid insulator,
The measured value of the amount of moisture in the oil of the insulating oil actually collected from a part of the divided area during operation of the oil-filled transformer, and derived from the mutual diffusion grasping step for the area where the insulating oil was collected Compare the calculated value of the amount of moisture in the oil of the insulating oil, and if the difference between the measured value and the calculated value is less than a predetermined threshold, the comparison function to determine the moisture distribution in the insulating oil for each area;
A remaining life diagnosis device for an oil-filled transformer comprising a diagnostic function for diagnosing the remaining life of the transformer from the amount of moisture in the winding coil upper insulating paper derived from the determined moisture distribution .
前記相互拡散把握機能において、初期水分量と、分割した各区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さを把握する機能を具備することを特徴とする請求項8に記載の油入変圧器の余寿命診断装置。   In the interdiffusion grasping function, the initial moisture amount, the distribution of the insulating oil amount for each divided area, the distribution of the solid insulator amount, the distribution of the opening area between adjacent areas, and the oil flow distribution of the insulating oil, And a function of grasping a substantial movement speed of water molecules in the solid insulator for each area, a moisture velocity gradient coefficient in the solid insulator, and a thickness of the solid insulator for each area. The remaining life diagnosis apparatus for oil-filled transformers according to 8. 前記比較機能に、前記実測値と前記計算値の差異が所定の閾値を超えた場合、初期水分量と、前記区域毎の絶縁油量の分布と、固体絶縁物量の分布と、隣接する区域間の開口面積の分布と、絶縁油の油流分布と、区域毎の固体絶縁物中水分子の実質的移動速度と、固体絶縁物中水分速度勾配係数と、区域毎の固体絶縁物の厚さと、分散係数の少なくとも1つを見直して再計算し、前記差異が閾値以下になるまで再計算を繰り返す機能が付加されたことを特徴とする請求項8または請求項9に記載の油入変圧器の余寿命診断装置。   In the comparison function, when the difference between the measured value and the calculated value exceeds a predetermined threshold value, the initial moisture amount, the distribution of the insulating oil amount for each zone, the distribution of the solid insulator amount, and between adjacent zones Distribution of opening area, oil flow distribution of insulating oil, substantial movement speed of water molecules in solid insulation per area, moisture velocity gradient coefficient in solid insulation, and thickness of solid insulation per area The oil-filled transformer according to claim 8 or 9, further comprising a function of recalculating and recalculating at least one of the dispersion coefficients, and repeating the recalculation until the difference falls below a threshold value. Remaining life diagnosis device. 前記相互拡散把握機能において、以下の(1)式に基づき相互拡散を把握する機能を有することを特徴とする請求項8〜10のいずれか一項に記載の油入変圧器の余寿命診断装置。
Figure 2018148052
ただし、(1)式において、x:固体絶縁物の銅線からの位置(mm)、y:固体絶縁物中水分量(%)、yn:n番目の区域(区間)の固体絶縁物中水分量(%)、t:運転開始からの時間(min)、∂t:微小時間(min)、∂yn:微小時間におけるn番目の区域における固体絶縁物中水分量の増分(%)、v:銅線に接する絶縁紙における固体絶縁物中水分子の実質的な移動速度(mm/min)、k’:固体絶縁物中水分速度勾配係数(1/mm)、tp:1区間における固体絶縁物の厚さ(mm)と規定する。
The residual diffusion diagnosis device for oil-filled transformers according to any one of claims 8 to 10, wherein the mutual diffusion grasping function has a function of grasping mutual diffusion based on the following equation (1). .
Figure 2018148052
However, in the formula (1), x: position of the solid insulator from the copper wire (mm), y: moisture content in the solid insulator (%), yn: moisture in the solid insulator in the nth section (section) Amount (%), t: time from the start of operation (min), ∂t: minute time (min), ∂yn: increment of moisture content in the solid insulator in the n-th zone in minute time (%), v 0 : Substantial moving speed of water molecules in solid insulator (mm / min) in insulating paper in contact with copper wire, k ′: Moisture velocity gradient coefficient in solid insulator (1 / mm), tp: solid insulation in section 1 It is defined as the thickness (mm) of the object.
JP2017042167A 2017-03-06 2017-03-06 Remaining life diagnosis method and diagnostic equipment for oil-immersed transformers Active JP6803025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042167A JP6803025B2 (en) 2017-03-06 2017-03-06 Remaining life diagnosis method and diagnostic equipment for oil-immersed transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042167A JP6803025B2 (en) 2017-03-06 2017-03-06 Remaining life diagnosis method and diagnostic equipment for oil-immersed transformers

Publications (2)

Publication Number Publication Date
JP2018148052A true JP2018148052A (en) 2018-09-20
JP6803025B2 JP6803025B2 (en) 2020-12-23

Family

ID=63591611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042167A Active JP6803025B2 (en) 2017-03-06 2017-03-06 Remaining life diagnosis method and diagnostic equipment for oil-immersed transformers

Country Status (1)

Country Link
JP (1) JP6803025B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102694A (en) * 2017-12-05 2019-06-24 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
CN111159868A (en) * 2019-12-20 2020-05-15 上海电力大学 Oil-immersed transformer vibration analysis method considering vibration suppression effect of insulating oil
CN114964947A (en) * 2022-04-20 2022-08-30 西安交通大学 Device and method for preparing insulating paper with unevenly distributed micro water
JP7157268B1 (en) 2022-03-23 2022-10-19 一般財団法人電力中央研究所 Life evaluation method for pole-mounted transformers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348945A (en) * 1999-06-07 2000-12-15 Tokyo Electric Power Co Inc:The Method and equipment for overload operation of oil- immersed transformer
JP2004061384A (en) * 2002-07-30 2004-02-26 Yuka Ind:Kk Method for inferring moisture content of insulating paper in oil-filled electric device and diagram for inferring used for the same
JP2006060134A (en) * 2004-08-23 2006-03-02 Tohoku Electric Power Co Inc Apparatus and method for assessing the remaining life of transformer for power supply
JP2008066435A (en) * 2006-09-06 2008-03-21 Tohoku Electric Power Co Inc Remaining life assessment apparatus for power transformer
JP2008192775A (en) * 2007-02-02 2008-08-21 Tokyo Electric Power Co Inc:The Device and method for controlling operation of oil-immersed transformer during overload operation
JP2011171413A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Lifetime assessment apparatus for oil-filled electrical device, lifetime assessment method for oil-filled electrical device, degradation suppression apparatus for oil-filled electrical device, and degradation suppression method for oil-filled electrical device
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348945A (en) * 1999-06-07 2000-12-15 Tokyo Electric Power Co Inc:The Method and equipment for overload operation of oil- immersed transformer
JP2004061384A (en) * 2002-07-30 2004-02-26 Yuka Ind:Kk Method for inferring moisture content of insulating paper in oil-filled electric device and diagram for inferring used for the same
JP2006060134A (en) * 2004-08-23 2006-03-02 Tohoku Electric Power Co Inc Apparatus and method for assessing the remaining life of transformer for power supply
JP2008066435A (en) * 2006-09-06 2008-03-21 Tohoku Electric Power Co Inc Remaining life assessment apparatus for power transformer
JP2008192775A (en) * 2007-02-02 2008-08-21 Tokyo Electric Power Co Inc:The Device and method for controlling operation of oil-immersed transformer during overload operation
JP2011171413A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Lifetime assessment apparatus for oil-filled electrical device, lifetime assessment method for oil-filled electrical device, degradation suppression apparatus for oil-filled electrical device, and degradation suppression method for oil-filled electrical device
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102694A (en) * 2017-12-05 2019-06-24 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
JP7048284B2 (en) 2017-12-05 2022-04-05 株式会社東光高岳 Transformer diagnostic system, transformer diagnostic method, and transformer
CN111159868A (en) * 2019-12-20 2020-05-15 上海电力大学 Oil-immersed transformer vibration analysis method considering vibration suppression effect of insulating oil
CN111159868B (en) * 2019-12-20 2024-03-29 上海电力大学 Oil immersed transformer vibration analysis method considering insulating oil vibration inhibition effect
JP7157268B1 (en) 2022-03-23 2022-10-19 一般財団法人電力中央研究所 Life evaluation method for pole-mounted transformers
JP2023140455A (en) * 2022-03-23 2023-10-05 一般財団法人電力中央研究所 Life evaluation method of pole transformer
CN114964947A (en) * 2022-04-20 2022-08-30 西安交通大学 Device and method for preparing insulating paper with unevenly distributed micro water
CN114964947B (en) * 2022-04-20 2024-05-28 西安交通大学 Insulation paper preparation device and method with micro water unevenly distributed

Also Published As

Publication number Publication date
JP6803025B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP2018148052A (en) Remaining life assessment method of oil-filled transformer and diagnostic system
Mikityuk Heat transfer to liquid metal: review of data and correlations for tube bundles
Cilliyuz et al. Measurements and performance evaluations of natural ester and mineral oil-immersed identical transformers
Zhang et al. Prediction of pressure drop and flow distribution in disc-type transformer windings in an OD cooling mode
Hill et al. Analysing the power transformer temperature limitation for avoidance of bubble formation
Wang et al. Numerical and experimental validation of variation of power transformers’ thermal time constants with load factor
JP7048284B2 (en) Transformer diagnostic system, transformer diagnostic method, and transformer
El Aghoury et al. Corrosion-fatigue strain-life model for steel bridge girders under various weathering conditions
Šeruga et al. Creep damage calculation for thermo mechanical fatigue
Chandran et al. A review on status monitoring techniques of transformer and a case study on loss of life calculation of distribution transformers
Liu et al. Effect of PTFE and liquid water on the thermal characteristics of compressed gas diffusion backing of PEM fuel cell
Allahbakhshi et al. An improved computational approach for thermal modeling of power transformers
Wang et al. Finite element analysis of crack mouth opening displacement compliance in crack length evaluation for clamped single edge tension specimens
Mikheevskiy et al. Fatigue crack growth analysis under spectrum loading in various environmental conditions
De Jaeger et al. Influence of geometrical parameters of open-cell aluminum foam on thermohydraulic performance
Kassi et al. Analysis of aged oil on the cooling of power transformers from computational fluid dynamics and experimental measurements
Valentín et al. Forced and mixed convection heat transfer at high pressure and high temperature in a graphite flow channel
Correa et al. Power transformer temperature–moisture dynamics modeling: an experimental validation
JP5742432B2 (en) Method for predicting deterioration of molded product, method for producing molded product based on design obtained thereby, and molded product
Riedmann et al. A physical model for the improvement of DGA-based condition assessment of power transformers
Askari et al. Analysis of thermal models to determine the loss of life of mineral oil immersed transformers
de Carvalho Sousa et al. Method for rating and analyzing the combined effects of moisture and temperature on the oil–paper insulation system of power transformers by means of load variations
Koufakis et al. Thermal coefficient measurements of the insulation in distribution transformers of a 20 kV network
Raith et al. Simulation of long-term transformer operation with a dynamic thermal, moisture and aging model
Ribeiro et al. Performance of Thermal Break Strips in Lightweight Steel Framed Walls

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6803025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250