JPH07286956A - Deterioration level measuring system and measuring device - Google Patents

Deterioration level measuring system and measuring device

Info

Publication number
JPH07286956A
JPH07286956A JP1666795A JP1666795A JPH07286956A JP H07286956 A JPH07286956 A JP H07286956A JP 1666795 A JP1666795 A JP 1666795A JP 1666795 A JP1666795 A JP 1666795A JP H07286956 A JPH07286956 A JP H07286956A
Authority
JP
Japan
Prior art keywords
light
measured
wavelength
deterioration degree
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1666795A
Other languages
Japanese (ja)
Other versions
JP3860846B2 (en
Inventor
Yoshitaka Takezawa
由高 竹澤
Toru Koyama
小山  徹
Shinichi Akasaka
伸一 赤坂
Makoto Shimodera
下寺  誠
Juichi Miya
宮  寿一
Minokichi Miura
巳之吉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Building Systems Engineering and Service Co Ltd
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Building Systems Engineering and Service Co Ltd
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Building Systems Engineering and Service Co Ltd, Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP01666795A priority Critical patent/JP3860846B2/en
Publication of JPH07286956A publication Critical patent/JPH07286956A/en
Application granted granted Critical
Publication of JP3860846B2 publication Critical patent/JP3860846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a deterioration level measuring system which can measure the deterioration level of the insulating material or the composing material of an apparatus in a nondistructive method without stopping the operation of the apparatus. CONSTITUTION:At least two sorts of single color lights are radiated on the surface of a sample to measure through an optical fiber 9, the reflected lights are led to a light quantity measure 8 through an optical fiber 13, and after the reflection absorbances in the wave lengths are calculated in a deterioration level operation member 1, the reflection absorbance difference or the reflection absorbance ratio of the wave lengths is operated, and furthermore, it is compared and operated with the output from a function generator 15 in which the relation between the deterioration level of the sample to measure, and the reflection absorbance difference or the reflection absorbance ratio of wave lengths, is stored beforehand, so as to decide the deterioration level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、稼働中の機器の運転を
停止することなく、機器に使用されている絶縁材料や構
造材料の劣化度を非破壊で測定できる材料の劣化度測定
システムおよび測定装置に関している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material deterioration degree measuring system capable of nondestructively measuring the deterioration degree of an insulating material or a structural material used in an equipment without stopping the operation of the equipment in operation. It relates to a measuring device.

【0002】[0002]

【従来の技術】回転電機等の絶縁材料や構造材料の劣化
度を評価する非破壊測定システムとしては、特開昭64−
84162 号公報に開示されているように、白色の標準光源
から光ファイバで導いた照射光を絶縁材料と同じ材料で
構成されているセンサ部で反射させ、この反射光を受光
用光ファイバを通して検出し、L*a*b*表色系に基
づいた色度あるいは色度差によって表色演算を行う診断
装置が提案されている。ここでL*は明度指数で明るさ
を表し、a*及びb*はクロマティック指数と呼び、色
度(色相と彩度)を表す。
2. Description of the Related Art As a nondestructive measuring system for evaluating the degree of deterioration of insulating materials and structural materials for rotating electric machines, etc.
As disclosed in Japanese Patent No. 84162, the irradiation light guided from a white standard light source through an optical fiber is reflected by a sensor section made of the same material as the insulating material, and this reflected light is detected through an optical fiber for receiving light. However, a diagnostic device has been proposed which performs colorimetric calculation based on the chromaticity or chromaticity difference based on the L * a * b * colorimetric system. Here, L * is a lightness index and represents brightness, and a * and b * are called chromatic indexes and represent chromaticity (hue and saturation).

【0003】また、特開平3−226651 号公報に記載され
ているように、白色の標準光源から光ファイバで導いた
照射光を絶縁材料と同じ材料で構成されているセンサ部
を透過させ、該透過光を受光用光ファイバを通して検出
する透過光方式によるL*a*b*表色系に基づいた色
度あるいは色度差による表色演算診断装置も提案されて
いる。
Further, as described in Japanese Patent Application Laid-Open No. 3-226651, irradiation light guided by an optical fiber from a white standard light source is transmitted through a sensor section made of the same material as an insulating material, There has also been proposed a colorimetric calculation diagnostic device based on the chromaticity or chromaticity difference based on the L * a * b * colorimetric system, which uses a transmitted light system in which transmitted light is detected through a receiving optical fiber.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術では、回
転電機等の機器製造時に機器の絶縁層中に、予め照射用
光ファイバ,受光用光ファイバ及びセンサ部をそれぞれ
埋設しておく必要があり、これらを埋設していない既存
の機器には適用できないという本質的な問題があった。
In the above-mentioned prior art, it is necessary to embed the irradiation optical fiber, the light receiving optical fiber, and the sensor portion in advance in the insulating layer of the device when manufacturing the device such as the rotating electric machine. However, there was an essential problem that it could not be applied to existing equipment that does not have these embedded.

【0005】さらにL*a*b*表色系に基づいた色度
あるいは色度差による反射光に基づく表色演算方法で
は、表面が塵芥等で汚損した被測定物、あるいは凹凸を
有する被測定物の場合には絶対反射光量の変動の影響が
大きいため、正確な値を求められない等の問題点を有し
ていた。
Further, in the colorimetric calculation method based on the chromaticity based on the L * a * b * colorimetric system or the reflected light due to the chromaticity difference, an object to be measured whose surface is soiled by dust or the like or an object to be measured having irregularities In the case of a product, there is a problem that an accurate value cannot be obtained because the influence of the fluctuation of the absolute reflected light amount is great.

【0006】本発明の目的は、上記の課題を解決し、稼
働中の機器の運転を特に停止することなく、機器に使用
されている絶縁材料や構造材料の劣化度を非破壊で測定
できる材料の劣化度測定システムおよび測定装置を提供
することにある。
An object of the present invention is to solve the above problems and to measure non-destructively the degree of deterioration of insulating materials and structural materials used in equipment without particularly stopping the operation of the equipment in operation. To provide a deterioration degree measuring system and measuring apparatus.

【0007】[0007]

【課題を解決するための手段】本発明者らは、樹脂やオ
イル等の劣化度と光学物性との関係を検討した結果、熱
劣化に伴う樹脂やオイル等の表面反射光強度の変化から
劣化度を判定でき、かつ、表面が塵芥等で汚損した被測
定物、あるいは凹凸を有する被測定物、あるいは半透明
性を有する被測定物の場合に対しても適用し得る劣化度
測定システムを見出し本発明に到達した。即ち、本発明
の要旨は次のとおりである。
As a result of studying the relationship between the degree of deterioration of resin or oil and the optical properties, the present inventors have found that the deterioration due to the change in the intensity of light reflected from the surface of resin or oil due to heat deterioration. We have found a deterioration measurement system that can determine the degree of deterioration and can be applied even to the case where the surface is contaminated with dust or the like, the object having irregularities, or the object having semi-transparency. The present invention has been reached. That is, the gist of the present invention is as follows.

【0008】(1) 波長が相異なる少なくとも2種の
単色光光源からの照射光を照射用光ファイバで導き被測
定物表面に照射し、該被測定物表面からの反射光を受光
用光ファイバを用いて光量測定部に導き、劣化度演算部
において該光量測定部からの出力より各波長における反
射吸光度(Aλ)を(1)式で算出後、各波長間の反射
吸光度差(ΔAλ)あるいは反射吸光度比(Aλ′)を
(2)式あるいは(3)式で演算し、さらに予め被測定
物の劣化度と各波長間の反射吸光度差あるいは反射吸光
度比との関係を記憶させた関数発生部からの出力とを比
較演算することによって劣化度を判定することを特徴と
する材料の劣化度測定システムにある。
(1) Irradiation light from at least two types of monochromatic light sources having different wavelengths is guided by an irradiation optical fiber to irradiate the surface of the object to be measured, and reflected light from the surface of the object to be measured is received by the optical fiber. Is used to calculate the reflection absorbance (A λ ) at each wavelength from the output from the light amount measurement unit in the deterioration degree calculation unit by the formula (1), and then the reflection absorbance difference (ΔA λ ) between the wavelengths is calculated. ) Or the reflection absorbance ratio (A λ ′) is calculated by the equation (2) or the equation (3), and the relationship between the deterioration degree of the object to be measured and the reflection absorbance difference between wavelengths or the reflection absorbance ratio is stored in advance. The deterioration degree measuring system for a material is characterized in that the deterioration degree is determined by comparing and calculating the output from the function generating section.

【0009】[0009]

【数10】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする) (2) 波長が相異なる少なくとも2種の単色光光源
と,該光源光を照射用光ファイバに導く光結合器と,該
光源光を被測定物表面に照射する照射用光ファイバと,
該被測定物表面からの反射光を受光して光量測定部に導
く受光用光ファイバと,前記各波長における反射光強度
を検出して測定値を電気信号として外部出力できる光量
測定部と,該光量測定部からの出力値より各波長におけ
る反射吸光度(Aλ)を前記(1)式で算出後、各波長
間の反射吸光度差(ΔAλ)あるいは反射吸光度比(A
λ′)を前記(2)式あるいは(3)式で演算し、さら
に予め被測定物の劣化度と各波長間の反射吸光度差ある
いは反射吸光度比との関係を記憶させた関数発生部から
の出力とを比較演算することによって劣化度を判定する
劣化度演算部を備えたことを特徴とする材料の劣化度測
定装置にある。
A λ = −log (R λ / 100) (1) ΔA λ = A λ1 −A λ2 (where λ1 <λ2) (2) A λ ′ = A λ1 / A λ2 (however, λ1 <λ2) (3) (The reflectance of the measured object at the wavelength λ (nm) is R
λ (%)) (2) At least two types of monochromatic light sources having different wavelengths, an optical coupler for guiding the source light to an irradiation optical fiber, and irradiation for irradiating the surface of the object with the light source Optical fiber,
A light-receiving optical fiber that receives reflected light from the surface of the object to be measured and guides it to a light amount measuring unit; a light amount measuring unit that can detect the reflected light intensity at each wavelength and externally output the measured value as an electric signal; After calculating the reflection absorbance (A λ ) at each wavelength from the output value from the light quantity measurement unit by the above equation (1), the reflection absorbance difference (ΔA λ ) between the wavelengths or the reflection absorbance ratio (A
λ ′) is calculated by the equation (2) or the equation (3), and the relation between the deterioration degree of the object to be measured and the reflection absorbance difference between wavelengths or the reflection absorbance ratio is stored in advance from the function generator. A deterioration degree measuring apparatus for a material, comprising a deterioration degree calculation unit for judging a deterioration degree by comparing and calculating an output.

【0010】なお、光源として使用する単色光は、波長
660〜850nmにピーク波長を有するLEDが入手
容易で、寿命も長く性能も安定しており好適である。特
に、660,780,800,820,830,850
nm等のLED光源が好適である。上記領域以外の波長
の光源では、被測定物の劣化の程度が比較的小さいうち
に検出器(光量測定部)がオーバーレンジとなり、測光不
能となる場合がある。被測定物がもともと透明性の高い
アクリル樹脂,ポリカーボネート樹脂等である場合に
は、660,780,800nm等の800nm以下の
波長の光を用いることがより好ましい。一方、被測定物
がもともと着色しているアルキッド樹脂,不飽和ポリエ
ステル樹脂、あるいはすぐに黒く変色してしまうエポキ
シ樹脂、あるいは顔料等を含む不透明な樹脂等について
は、780,800,820,830,850nm等の近
赤外領域の波長を用いることがより好ましい。
As the monochromatic light used as the light source, an LED having a peak wavelength in the wavelength range of 660 to 850 nm is easily available, and the life is long and the performance is stable, which is preferable. In particular, 660,780,800,820,830,850
An LED light source of nm or the like is suitable. In a light source having a wavelength other than the above range, the detector (light quantity measuring unit) may be in the overrange and photometry may not be possible while the degree of deterioration of the measured object is relatively small. When the object to be measured is originally a highly transparent acrylic resin, polycarbonate resin, or the like, it is more preferable to use light having a wavelength of 800 nm or less such as 660, 780, and 800 nm. On the other hand, for the alkyd resin, the unsaturated polyester resin, or the epoxy resin that is discolored immediately to black, or the opaque resin including the pigment, etc., the object to be measured is 780, 800, 820, 830, It is more preferable to use a wavelength in the near infrared region such as 850 nm.

【0011】本発明においては、照射用光ファイバおよ
び受光用光ファイバを機器中に予め埋設しておく必要が
ないので、これら光ファイバもそれ自身の耐熱性を特に
要求されないために、光ファイバとして口径の大きなプ
ラスチック光ファイバの使用が可能であり、受光能を向
上する上で有利である。
In the present invention, since it is not necessary to embed the irradiation optical fiber and the light receiving optical fiber in the equipment in advance, these optical fibers are not particularly required to have their own heat resistance. A plastic optical fiber having a large diameter can be used, which is advantageous in improving the light receiving ability.

【0012】(3) 白色連続光を照射するハロゲンラ
ンプからの照射光を照射用光ファイバで導き被測定物表
面に照射し、該被測定物表面からの反射光を受光用光フ
ァイバを用いて分光器を有する光量測定部に導き、劣化
度演算部において該光量測定部からの出力より各波長に
おける反射吸光度(Aλ)を(1)式で算出後、任意の
2波長間の反射吸光度差(ΔAλ)あるいは反射吸光度
比(Aλ′)を(2)式あるいは(3)式で演算し、さ
らに予め被測定物の劣化度と各波長間の反射吸光度差あ
るいは反射吸光度比との関係を記憶させた関数発生部か
らの出力とを比較演算することによって劣化度を判定す
ることを特徴とする材料の劣化度測定システムにある。
(3) Irradiation light from a halogen lamp that emits white continuous light is guided by an irradiation optical fiber to irradiate the surface of the object to be measured, and reflected light from the surface of the object to be measured is received using an optical fiber for receiving light. It is led to a light quantity measuring unit having a spectroscope, and after calculating the reflection absorbance (A λ ) at each wavelength from the output from the light quantity measuring unit in the deterioration degree computing unit by the formula (1), the reflection absorbance difference between arbitrary two wavelengths. (ΔA λ ) or the reflection absorbance ratio (A λ ′) is calculated by the equation (2) or the equation (3), and the relationship between the deterioration degree of the object to be measured and the reflection absorbance difference between the wavelengths or the reflection absorbance ratio is calculated in advance. The deterioration degree measuring system for a material is characterized in that the deterioration degree is judged by comparing and calculating the output from the function generating section in which is stored.

【0013】[0013]

【数11】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする) (4) 白色連続光を照射するハロゲンランプの光源
と,該光源光を被測定物表面に照射する照射用光ファイ
バと,被測定物表面からの反射光を受光し分光器を有す
る光量測定部に導く受光用光ファイバと,該分光器で分
光された各波長における反射光強度を検出して測定値を
電気信号として外部出力できる光量測定部と,該光量測
定部からの出力値より各波長における反射吸光度
(Aλ)を前記(1)式で算出後、任意の2波長間の反射
吸光度差(ΔAλ)あるいは反射吸光度比(Aλ′)を
前記(2)式あるいは(3)式で演算し、さらに予め被
測定物の劣化度と各波長間の反射吸光度差あるいは反射
吸光度比との関係を記憶させた関数発生部からの出力と
を比較演算することによって劣化度を判定する劣化度演
算部を備えたことを特徴とする材料の劣化度測定装置に
ある。
A λ = −log (R λ / 100) (1) ΔA λ = A λ1 −A λ2 (where λ1 <λ2) (2) A λ ′ = A λ1 / A λ2 (however, λ1 <λ2) (3) (The reflectance of the measured object at the wavelength λ (nm) is R
λ (%)) (4) Light source of a halogen lamp that emits white continuous light, an irradiation optical fiber that irradiates the light from the light source onto the surface of the object to be measured, and receives reflected light from the surface of the object to be measured. An optical fiber for receiving light which is guided to a light quantity measuring section having a spectroscope, a light quantity measuring section capable of detecting the intensity of reflected light at each wavelength dispersed by the spectroscope and outputting the measurement value as an electric signal to the outside, and the light quantity measuring section After calculating the reflection absorbance (A λ ) at each wavelength from the output value from (1), the reflection absorbance difference (ΔA λ ) between any two wavelengths or the reflection absorbance ratio (A λ ′) can be calculated from the above (2). ) Or (3), and further compare and calculate the output from the function generator that stores the relationship between the deterioration degree of the DUT and the reflection absorbance difference between wavelengths or the reflection absorbance ratio in advance. Equipped with a deterioration degree calculator that determines the deterioration degree by In the deterioration degree measurement device of materials, characterized in that the.

【0014】(5) 被測定物の厚さ(t,mm)の入力
を受け付ける入力手段を有し、波長が相異なる少なくと
も2種の単色光光源からの照射光を照射用光ファイバで
導き被測定物表面に照射し、該被測定物表面からの反射
光を受光用光ファイバを用いて光量測定部に導き、劣化
度演算部において該光量測定部からの出力より各波長に
おける反射損失(Lλ,dB/mm)を(4)式で算出
後、各波長間の反射損失差(ΔLλ,dB/mm)を
(5)式で演算し、さらに予め被測定物の劣化度と各波
長間の反射損失差との関係を記憶させた関数発生部から
の出力とを比較演算することによって劣化度を判定する
ことを特徴とする材料の劣化度測定システムにある。
(5) An input means for receiving the thickness (t, mm) of the object to be measured is provided, and the irradiation light from at least two types of monochromatic light sources having different wavelengths is guided by the irradiation optical fiber. Irradiate the surface of the object to be measured, guide the reflected light from the surface of the object to be measured to the light quantity measuring section using the optical fiber for reception, and in the deterioration degree calculating section, from the output from the light quantity measuring section, the reflection loss at each wavelength (L After calculating λ , dB / mm) by the equation (4), the reflection loss difference (ΔL λ , dB / mm) between the wavelengths is calculated by the equation (5), and the deterioration degree of the measured object and each wavelength are calculated in advance. In the material deterioration degree measuring system, the deterioration degree is determined by comparing and calculating the output from the function generating unit that stores the relationship with the reflection loss difference between them.

【0015】[0015]

【数12】 Lλ=−(10/t)log(Rλ/100) …(4) ΔLλ=Lλ1−Lλ2(ただし、λ1<λ2) …(5) (波長λ(nm)における被測定物の反射率をR
λ(%)とする) なお、前記厚さの入力を受け付ける入力手段は、さら
に、被測定物の光線透過率、または厚さ補正の有無の入
力を受け付けるものであり、該入力手段の受け付けた光
線透過率が50%以上である場合、あるいは厚み補正
“有”の指示を受けている場合には、(4)式における
厚さtとして該入力手段の受け付けた厚さの値を採用
し、該入力手段の受け付けた光線透過率が50%未満で
ある場合、あるいは厚み補正“無”の指示を受けている
場合には、(4)式における厚さtとして10を採用す
る。即ち、実質的に(1)式と等価となる。
L λ = − (10 / t) log (R λ / 100) (4) ΔL λ = L λ1 −L λ2 (where λ1 <λ2) (5) (at wavelength λ (nm) The reflectance of the DUT is R
λ (%)) Incidentally, the input means for receiving the input of the thickness is further for inputting the light transmittance of the object to be measured or the presence / absence of thickness correction, and the input means receives the input. When the light transmittance is 50% or more, or when the thickness correction “existence” is instructed, the value of the thickness accepted by the input means is adopted as the thickness t in the equation (4), When the light transmittance received by the input means is less than 50%, or when the instruction for the thickness correction “absent” is received, 10 is adopted as the thickness t in the expression (4). That is, it is substantially equivalent to the equation (1).

【0016】[0016]

【作用】一般に、単一材料からなる有機材料の熱劣化に
伴う反射吸光度スペクトルの変化は、図3で示されるよ
うな変化で代表される。該図のように劣化に伴って可視
領域の短波長側で反射吸光度は著しい増加を示すので、
検出器(光量測定部)の測定レンジ上の制約から660
nm未満の波長領域では機器の寿命点まで、使用されて
いる材料の反射吸光度を測定し続けることが実質的に困
難となってしまう。この短波長側での反射吸光度の増加
は、主に材料の熱酸化劣化反応による電子遷移吸収損失
の増大に起因するものである。
In general, the change in the reflection absorbance spectrum due to the thermal deterioration of the organic material made of a single material is represented by the change shown in FIG. As shown in the figure, since the reflection absorbance significantly increases on the short wavelength side of the visible region with deterioration,
660 due to restrictions on the measurement range of the detector (light quantity measurement unit)
In the wavelength region of less than nm, it becomes substantially difficult to continuously measure the reflection absorbance of the material used until the end of the life of the device. This increase in reflection absorbance on the short wavelength side is mainly due to an increase in electron transition absorption loss due to the thermal oxidation deterioration reaction of the material.

【0017】また、劣化度の増大に伴って反射吸光度A
λは短波長側ほど増加するようになるので、任意の2波
長間の反射吸光度差ΔAλ(=Aλ1−Aλ2)あるいは
反射吸光度比Aλ′(=Aλ1/Aλ2)も同様に増加す
る。ここで、λ1<λ2である。例えば図3において、
波長λ1(nm)と波長λ2(nm)間の反射吸光度差Δ
λを、劣化度の大きい材料から順にα1,α2,α3
とすれば、α1>α2>α3の関係が成立する。反射吸
光度比Aλ′に対しても同様のことが言える。図5に
は、表面汚損の無い絶縁材料表面上で測定した場合の反
射吸光度スペクトルと、同じ劣化度で表面汚損の有る絶
縁材料表面上で測定した場合の反射吸光度スペクトルを
示す。波長λ1及び波長λ2間における反射吸光度差Δ
λを表面汚損が無いときΔα,表面汚損が有るときΔ
α′とすれば、絶縁材料が同じ劣化度であれば汚損の有
無に関係なくΔα≒Δα′となる。表面の汚損は反射光
の絶対強度を変化(増大させる場合も低下させる場合も
ある)させるが、一般に波長依存性が小さく、特に本発
明の測定波長領域では波長に依らず一定であると考えて
よい。同様のことは、凹凸を有する表面における測定に
対しても言える。このように、本発明で定義したように
2波長間の反射吸光度差ΔAλを用いれば、被測定物の
表面の汚損並びに形状の影響をほとんど受けないで劣化
度を測定することができる。上記の効果は、反射吸光度
比Aλ′に対しても同様のことが言える。
Further, as the deterioration degree increases, the reflection absorbance A
Since λ increases toward the shorter wavelength side, the reflection absorbance difference ΔA λ (= A λ1 −A λ2 ) between any two wavelengths or the reflection absorbance ratio A λ ′ (= A λ1 / A λ2 ) is also the same. To increase. Here, λ1 <λ2. For example, in FIG.
Reflection absorbance difference Δ between wavelength λ1 (nm) and wavelength λ2 (nm)
Let A λ be α1, α2, α3 in order from the material with the highest degree of deterioration.
Then, the relationship of α1>α2> α3 is established. The same applies to the reflection absorbance ratio A λ ′. FIG. 5 shows a reflection absorbance spectrum when measured on the surface of an insulating material having no surface stain and a reflectance absorbance spectrum measured when measured on the surface of an insulating material having the same degree of deterioration and surface stain. Reflection absorbance difference Δ between wavelength λ1 and wavelength λ2
A λ is Δα when there is no surface stain, Δ when there is surface stain
Assuming α ′, Δα≈Δα ′ regardless of the presence or absence of contamination if the insulating material has the same degree of deterioration. Although surface contamination changes (may increase or decrease) the absolute intensity of reflected light, it is generally considered to have a small wavelength dependence, and in particular, it is considered to be constant regardless of wavelength in the measurement wavelength region of the present invention. Good. The same is true for measurements on uneven surfaces. Thus, by using the reflection absorbance difference ΔA λ between two wavelengths as defined in the present invention, the degree of deterioration can be measured with almost no influence of the surface contamination of the object to be measured and the shape thereof. The same effect can be applied to the above-described reflection absorbance ratio A λ ′.

【0018】光線透過率50%以上を有する樹脂等の場
合、表面反射光のみでなく樹脂中を透過後、裏表面で反
射した光の影響を受ける。そこで樹脂等の厚さ(光路
長)で補正する必要がある。光線透過率が50%未満に
なると裏表面で反射する光の割合は減少し、裏表面から
の反射光の影響はほとんど無視できるようになる。そこ
で光線透過率が50%未満の場合には、厚さ補正をする
ことは不要となる。この場合には、(4)式においてt
=10とおいて適用すればよい。このように、光線透過
率50%以上を有する樹脂等の反射光強度を厚さ(光路
長)で補正することにより、より正確な反射光による劣
化診断を行うことができる。
In the case of a resin or the like having a light transmittance of 50% or more, not only the surface reflected light but also the light reflected by the back surface after passing through the resin is affected. Therefore, it is necessary to correct the thickness of the resin or the like (optical path length). When the light transmittance is less than 50%, the proportion of light reflected on the back surface decreases, and the influence of light reflected from the back surface becomes almost negligible. Therefore, when the light transmittance is less than 50%, it is not necessary to correct the thickness. In this case, in equation (4), t
= 10 may be applied. In this way, by correcting the reflected light intensity of the resin or the like having a light transmittance of 50% or more with the thickness (optical path length), more accurate deterioration diagnosis by reflected light can be performed.

【0019】また、特開平3−226651 号公報に記載され
ているように、劣化度は換算時間θで表すことが一般的
である。換算時間θで表すことにより、様々な熱履歴を
有する材料であっても、θが等しければ同じ劣化程度で
あることを意味する。換算時間θ(h)は(6)式で定義
される。
Further, as described in Japanese Patent Laid-Open No. 3-226651, the deterioration degree is generally represented by a conversion time θ. By expressing it as the conversion time θ, it means that even if the materials have various thermal histories, if θ is the same, the degree of deterioration is the same. The conversion time θ (h) is defined by the equation (6).

【0020】[0020]

【数13】 [Equation 13]

【0021】ここで、ΔEは熱劣化のみかけの活性化エ
ネルギー(J/mol)、Rは気体定数(J/K/mol)、T
は熱劣化の絶対温度(K)、tは劣化時間(h)であ
る。樹脂やオイル等のΔEは、数種の劣化温度に対する
反射吸光度差ΔAλ1λ2の変化をアレニウスプロットす
ることによって容易に算出できる。
Here, ΔE is the apparent activation energy (J / mol) of thermal degradation, R is the gas constant (J / K / mol), T
Is the absolute temperature (K) of heat deterioration, and t is the deterioration time (h). ΔE of resin, oil, etc. can be easily calculated by plotting the change of the reflection absorbance difference ΔA λ1 λ2 with respect to several kinds of deterioration temperatures.

【0022】さらに、予め求めておいた該樹脂や該オイ
ル等を用いた機器の寿命点における換算時間をθ0 とす
れば、実測から求めた換算時間θとの差Δθ(=θ0
θ)が余寿命に相当する換算時間となり、劣化度判定の
尺度となる。即ち、余寿命Δθ(h)は(7)式で表さ
れる。
Further, if the converted time at the life point of the equipment using the resin or the oil obtained in advance is θ 0 , the difference Δθ (= θ 0
θ) is the converted time corresponding to the remaining life, and is a measure for determining the degree of deterioration. That is, the remaining life Δθ (h) is expressed by the equation (7).

【0023】[0023]

【数14】 [Equation 14]

【0024】(7)式より、時間t以降の機器の使用温
度条件が定まれば、余寿命の時間Δt(=t0−t)を求
めることができる。
From the equation (7), if the operating temperature condition of the device after the time t is determined, the remaining life time Δt (= t 0 -t) can be obtained.

【0025】[0025]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0026】(実施例1)図1は劣化度測定システムの
構成を示すブロック図である。図1において、劣化度演
算部1は測定の手順に沿って自動的に切替制御部2に切
替部3,4,5の切替命令信号を送信している。まず、
各波長に対するレファレンス光量を測定する。レファレ
ンス光ファイバ7は測定用の光ファイバ(照射用光ファ
イバ9+受光用光ファイバ13)と同一長さを有する。
光源6から発生したピーク波長λ1の単色光は、切替部
3から切替部4を通り、さらにレファレンス光ファイバ
7から切替部5を通り光量測定部8に伝送される。光量
測定部8では光源6からのピーク波長λ1の単色光のレ
ファレンス光量I1 を計測し、劣化度演算部1に測定値
を出力する。劣化度演算部1では光源6のレファレンス
光量I1 を記憶する。同様にして、光源14から発生し
たλ1とは相異なるピーク波長λ2の単色光を用いて同
じ操作が行われ、劣化度演算部1において光源14のレ
ファレンス光量I2 が記憶される。次に、絶縁材料表面
の反射光量を測定する。光源6からのピーク波長λ1の
単色光は、切替部3から切替部4を通り、さらに照射用
光ファイバ9を伝送して反射光測定部10内で絶縁材料
11の表面に照射される。反射光測定部10は、図2に
示したように外部の迷光を遮断する構造を有している。
絶縁材料11の表面からの反射光12を受光用光ファイ
バ13が受け、その伝送光は切替部5を通り光量測定部
8に送られ、反射光量I1′ が測定され劣化度演算部1
に結果I1′ が出力される。劣化度演算部1では、λ1
における反射率Rλ1(=100×I1′/I1)が算出,
記憶される。同様にして、光源14から発生したλ1と
は相異なるピーク波長λ2の単色光を用いて同じ操作が
行われ、劣化度演算部1においてλ2における反射率R
λ2(=100×I2′/I2)が算出,記憶される。この
ようにして、波長λ1と波長λ2における反射率が得ら
れるので、劣化度演算部1において2波長間の反射吸光
度差ΔAλ(=Aλ1−Aλ2)が求められる。関数発生
部15には、図4に示したような絶縁材料の劣化度に対
応した反射吸光度差がマスターカーブとして予め記憶さ
れており、劣化度演算部1に出力する。この記憶された
関数値と実測の反射吸光度差ΔAλから劣化度演算部1
で比較演算して劣化度を判定し、外部(図示省略)のプ
リンタ等に測定結果として出力する。なお、劣化度判定
のための演算のフローチャートを図10に示した。
(Embodiment 1) FIG. 1 is a block diagram showing the configuration of a deterioration degree measuring system. In FIG. 1, the deterioration degree calculation unit 1 automatically transmits the switching command signals of the switching units 3, 4, and 5 to the switching control unit 2 in accordance with the measurement procedure. First,
The reference light quantity for each wavelength is measured. The reference optical fiber 7 has the same length as the measuring optical fiber (irradiating optical fiber 9 + receiving optical fiber 13).
The monochromatic light having the peak wavelength λ1 generated from the light source 6 is transmitted from the switching unit 3 to the switching unit 4, and further from the reference optical fiber 7 to the switching unit 5 to the light amount measuring unit 8. The light amount measuring unit 8 measures the reference light amount I 1 of the monochromatic light having the peak wavelength λ1 from the light source 6 and outputs the measured value to the deterioration degree calculating unit 1. The deterioration degree calculation unit 1 stores the reference light amount I 1 of the light source 6. Similarly, the same operation is performed using monochromatic light having a peak wavelength λ2 different from λ1 generated from the light source 14, and the deterioration degree calculation unit 1 stores the reference light amount I 2 of the light source 14. Next, the amount of reflected light on the surface of the insulating material is measured. The monochromatic light having the peak wavelength λ1 from the light source 6 passes through the switching unit 3 and the switching unit 4, and further is transmitted through the irradiation optical fiber 9 to be irradiated on the surface of the insulating material 11 in the reflected light measuring unit 10. The reflected light measurement unit 10 has a structure for blocking external stray light as shown in FIG.
The light receiving optical fiber 13 receives the reflected light 12 from the surface of the insulating material 11, the transmitted light is sent to the light amount measuring unit 8 through the switching unit 5, the reflected light amount I 1 ′ is measured, and the deterioration degree calculation unit 1
The result I 1 ′ is output at. In the deterioration degree calculation unit 1, λ1
The reflectance R λ1 (= 100 × I 1 ′ / I 1 ) at
Remembered. Similarly, the same operation is performed using monochromatic light having a peak wavelength λ2 different from λ1 generated from the light source 14, and the deterioration degree calculation unit 1 performs reflectance R at λ2.
λ 2 (= 100 × I 2 ′ / I 2 ) is calculated and stored. In this way, since the reflectances at the wavelengths λ1 and λ2 are obtained, the deterioration degree computing unit 1 obtains the reflection absorbance difference ΔA λ (= A λ1 −A λ2 ) between the two wavelengths. The function generating section 15 stores in advance a reflection absorbance difference corresponding to the degree of deterioration of the insulating material as a master curve as shown in FIG. 4, and outputs it to the deterioration degree calculating section 1. From the stored function value and the measured reflection absorbance difference ΔA λ , the deterioration degree calculation unit 1
, The deterioration degree is determined by comparison calculation and output as a measurement result to an external printer (not shown) or the like. A calculation flowchart for determining the degree of deterioration is shown in FIG.

【0027】(実施例2)図6には3波長(λ1〜λ
3)を同時に用いた劣化度測定システムの構成図を示
す。3波長を1本の光ファイバ中で伝送しても、光には
干渉性がないのでシステムは良好に動作する。光量測定
部8にはそれぞれの波長に対応したフィルタが組み込ま
れており、フィルタを時分割で動作させることにより各
波長での光量を瞬時に測定できる。それぞれの波長の光
は光結合器16を介して照射用光ファイバ9中に同時に
送られる。実施例1と同様に各波長に対するレファレン
ス光量及び反射光量を測定する。絶縁材料11の表面か
らの反射光12を受光用光ファイバ13が受け、その伝
送光は光量測定部8に送られ、反射光量が測定され劣化
度演算部1に結果が出力される。劣化度演算部1では、
波長λ1〜波長λ3における反射率Rλ1〜Rλ3が算
出,記憶される。このようにして、波長λ1〜波長λ3
における反射率が得られるので、劣化度演算部1におい
て3波長間のデータのうち任意の2波長間の反射吸光度
差ΔAλ(=Aλ−Aλ′)が求められる。関数発生部
15には、図4に示したような絶縁材料の劣化度に対応
した反射吸光度差がマスターカーブとして予め記憶され
ており、劣化度演算部1に出力する。この記憶された関
数値と実測の反射吸光度差ΔAλから劣化度演算部1で
劣化度を比較演算して判定し、外部に測定結果として出
力する。
(Embodiment 2) FIG. 6 shows three wavelengths (λ1 to λ).
The block diagram of the deterioration degree measurement system which used 3) simultaneously is shown. Even if three wavelengths are transmitted in one optical fiber, the system operates well because the light has no coherence. A filter corresponding to each wavelength is incorporated in the light quantity measuring unit 8, and the light quantity at each wavelength can be instantaneously measured by operating the filter in a time division manner. The lights of the respective wavelengths are simultaneously sent through the optical coupler 16 into the irradiation optical fiber 9. Similar to the first embodiment, the amount of reference light and the amount of reflected light for each wavelength are measured. The light receiving optical fiber 13 receives the reflected light 12 from the surface of the insulating material 11, the transmitted light is sent to the light amount measuring unit 8, the reflected light amount is measured, and the result is output to the deterioration degree calculation unit 1. In the deterioration degree calculation unit 1,
The reflectances R λ1 to R λ3 at the wavelengths λ1 to λ3 are calculated and stored. In this way, wavelength λ1 to wavelength λ3
Therefore, the deterioration calculating unit 1 obtains the reflection absorbance difference ΔA λ (= A λ −A λ ′) between any two wavelengths in the data between the three wavelengths. The function generating section 15 stores in advance a reflection absorbance difference corresponding to the degree of deterioration of the insulating material as a master curve as shown in FIG. 4, and outputs it to the deterioration degree calculating section 1. From the stored function value and the actually measured reflection absorbance difference ΔA λ , the deterioration degree calculator 1 compares and determines the deterioration degree, and outputs the result as a measurement result to the outside.

【0028】(実施例3)図7には白色光源(ハロゲン
ランプ)を光源に用いた劣化度測定システムの構成図を
示す。白色光源(ハロゲンランプ)を光源に用いても、
システムは良好に動作する。光量測定部8には干渉フィ
ルタからなる分光器が組み込まれており、各波長(50
0〜900nm)での光量を瞬時に測定できる。実施例
1と同様に各波長(500〜900nm)に対するレフ
ァレンス光量及び反射光量を測定する。絶縁材料11の
表面からの反射光12を受光用光ファイバ13が受け、
その伝送光は光量測定部8に送られ、反射光量が測定さ
れ劣化度演算部1に結果が出力される。劣化度演算部1
では、波長500〜900nmにおける反射率R500
900 が連続的に算出,記憶される。このようにして、
波長500〜900nmにおける反射率が得られるの
で、劣化度演算部1において任意の2波長間の反射吸光
度差ΔAλ(=Aλ−Aλ′)が求められる。関数発生
部15には、図4に示したような絶縁材料の劣化度に対
応した反射吸光度差がマスターカーブとして予め記憶さ
れており、劣化度演算部1に出力する。この記憶された
関数値と実測の反射吸光度差ΔAλから劣化度演算部1
で比較演算して劣化度を判定し、外部に測定結果として
出力する。
(Embodiment 3) FIG. 7 shows a block diagram of a deterioration degree measuring system using a white light source (halogen lamp) as a light source. Even if a white light source (halogen lamp) is used as the light source,
The system works well. The light quantity measuring unit 8 incorporates a spectroscope composed of an interference filter, and
The amount of light at 0 to 900 nm) can be measured instantly. Similar to Example 1, the amount of reference light and the amount of reflected light for each wavelength (500 to 900 nm) are measured. The light receiving optical fiber 13 receives the reflected light 12 from the surface of the insulating material 11,
The transmitted light is sent to the light quantity measuring unit 8, the reflected light quantity is measured, and the result is output to the deterioration degree calculating unit 1. Degradation degree calculation unit 1
Then, the reflectance R 500 at a wavelength of 500 to 900 nm
R 900 is continuously calculated and stored. In this way
Since the reflectance in the wavelength range of 500 to 900 nm is obtained, the deterioration degree calculator 1 determines the reflection absorbance difference ΔA λ (= A λ −A λ ′) between any two wavelengths. The function generating section 15 stores in advance a reflection absorbance difference corresponding to the degree of deterioration of the insulating material as a master curve as shown in FIG. 4, and outputs it to the deterioration degree calculating section 1. From the stored function value and the measured reflection absorbance difference ΔA λ , the deterioration degree calculation unit 1
Is compared to determine the degree of deterioration, and is output as a measurement result to the outside.

【0029】なお、前記各実施例においては、固体の絶
縁材料の場合について説明したが、オイル等の液体の材
料についても同様にして劣化度を測定することができ
る。
In each of the above-mentioned embodiments, the case of a solid insulating material has been described, but the deterioration degree can be measured in the same manner for a liquid material such as oil.

【0030】(実施例4)図8は劣化度測定装置の機能
構成を示すブロック図である。図8において、劣化度演
算部1はハードディスクユニット15が内蔵されたノー
トブック型パーソナルコンピュータを用いている。ま
ず、各波長に対するレファレンス光量を測定する。レフ
ァレンス光量は絶縁材料11の位置に酸化アルミナ板を
設置して測定した。酸化アルミナ板を用いないで白色普
通紙やクロームメッキされた金属板等を用いても一向に
差し支えない。光源6から発生したピーク波長660n
mの単色光は、2ヶのプラスチック光結合器16を通
り、照射用光ファイバ9に導かれ、酸化アルミナ板上で
反射される。この反射光は受光用光ファイバ13を通り
光量測定部8に伝送される。光量測定部8はフォトダイ
オードを内蔵した光パワーメータを用いている。光量測
定部8では光源6からのピーク波長660nmの単色光
のレファレンス光量I1 を計測し、劣化度演算部1に測
定値をピンジャックから電圧値としてアナログ出力す
る。劣化度演算部1のパーソナルコンピュータはアナロ
グ出力データを直接入力することはできないので、12
ビットA/D(アナログ/デジタル)変換器19を拡張
コネクタに接続してある。12ビットA/D変換器19
は5ボルトの電圧値を4096(=212)分割して取り
込む能力を有する。劣化度演算部1では、光源6のレフ
ァレンス光量I1 をメモリ上に記憶する。同様にして、
光源14から発生したピーク波長780nmの単色光を
用いて同じ操作が行われ、劣化度演算部1において光源
14のレファレンス光量I2 が記憶される。同様にし
て、光源18から発生したピーク波長850nmの単色
光を用いて同じ操作が行われ、劣化度演算部1において
光源18のレファレンス光量I3 が記憶される。次に、
絶縁材料表面の反射光量を測定する。光源6からのピー
ク波長660nmの単色光は、2ヶのプラスチック光結
合器16を通り、照射用光ファイバ9に導かれ、反射光
測定部10内で絶縁材料11の表面に照射される。反射
光測定部10は、図2に示したように外部の迷光を遮断
する構造を有している。絶縁材料11の表面からの反射
光を受光用光ファイバ13が受け、その伝送光は光量測
定部8に送られ、反射光量I1′ が測定され劣化度演算
部1に結果I1′ が出力される。劣化度演算部1では、
660nmにおける反射率R660(=100×I1′/
1)が算出、メモリ上に記憶される。同様にして、光
源14から発生したピーク波長780nmの単色光を用
いて同じ操作が行われ、劣化度演算部1において780
nmにおける反射率R780(=100×I2′/I2 )が
算出、メモリ上に記憶される。同様にして、光源18か
ら発生したピーク波長850nmの単色光を用いて同じ
操作が行われ、劣化度演算部1において850nmにお
ける反射率R850(=100×I3′/I3)が算出、メモ
リ上に記憶される。このようにして、660,780,
850nmにおける反射率が得られるので、劣化度演算
部1において任意の2波長間の反射吸光度差ΔAλ(=
λ1−Aλ2)が求められる。ハードディスクユニット
からなる関数発生部15には、図4に示したような絶縁
材料の劣化度に対応した反射吸光度差がマスターカーブ
として予め記憶されており、劣化度演算部1に出力す
る。この記憶された関数値と実測の反射吸光度差ΔAλ
の値から劣化度演算部1で比較演算して劣化度を判定
し、外部(図示省略)のプリンタ等に測定結果として出
力する。
(Embodiment 4) FIG. 8 is a block diagram showing the functional arrangement of a deterioration degree measuring apparatus. In FIG. 8, the deterioration degree calculation unit 1 uses a notebook type personal computer having a hard disk unit 15 built therein. First, the reference light amount for each wavelength is measured. The reference light amount was measured by placing an alumina oxide plate at the position of the insulating material 11. There is no problem even if white plain paper or a chrome-plated metal plate is used without using the alumina oxide plate. Peak wavelength 660n generated from light source 6
The monochromatic light of m passes through the two plastic optical couplers 16, is guided to the irradiation optical fiber 9, and is reflected on the alumina oxide plate. The reflected light is transmitted to the light quantity measuring unit 8 through the light receiving optical fiber 13. The light quantity measuring unit 8 uses an optical power meter with a built-in photodiode. The light amount measuring unit 8 measures the reference light amount I 1 of the monochromatic light having the peak wavelength of 660 nm from the light source 6, and outputs the measured value to the deterioration degree calculating unit 1 as an analog voltage value from the pin jack. The personal computer of the deterioration degree calculation unit 1 cannot directly input analog output data.
A bit A / D (analog / digital) converter 19 is connected to the expansion connector. 12-bit A / D converter 19
Has the ability to capture a voltage value of 5 volts by dividing it into 4096 (= 2 12 ). The deterioration degree calculation unit 1 stores the reference light amount I 1 of the light source 6 in the memory. Similarly,
The same operation is performed using the monochromatic light having the peak wavelength of 780 nm generated from the light source 14, and the reference light amount I 2 of the light source 14 is stored in the deterioration degree calculation unit 1. Similarly, the same operation is performed using the monochromatic light having the peak wavelength of 850 nm generated from the light source 18, and the reference light amount I 3 of the light source 18 is stored in the deterioration degree calculation unit 1. next,
The amount of reflected light on the surface of the insulating material is measured. The monochromatic light having the peak wavelength of 660 nm from the light source 6 passes through the two plastic optical couplers 16 and is guided to the irradiation optical fiber 9 to be irradiated on the surface of the insulating material 11 in the reflected light measuring unit 10. The reflected light measurement unit 10 has a structure for blocking external stray light as shown in FIG. The light receiving optical fiber 13 receives the reflected light from the surface of the insulating material 11, the transmitted light is sent to the light amount measuring unit 8, the reflected light amount I 1 ′ is measured, and the result I 1 ′ is output to the deterioration degree calculation unit 1. To be done. In the deterioration degree calculation unit 1,
Reflectance at 660 nm R 660 (= 100 × I 1 ′ /
I 1 ) is calculated and stored in the memory. Similarly, the same operation is performed using the monochromatic light having the peak wavelength of 780 nm generated from the light source 14, and the deterioration degree calculation unit 1 performs 780
The reflectance R 780 (= 100 × I 2 ′ / I 2 ) in nm is calculated and stored in the memory. Similarly, the same operation is performed using the monochromatic light having the peak wavelength of 850 nm generated from the light source 18, and the deterioration degree calculation unit 1 calculates the reflectance R 850 (= 100 × I 3 ′ / I 3 ) at 850 nm. It is stored in memory. In this way, 660, 780,
Since the reflectance at 850 nm is obtained, the deterioration degree calculator 1 calculates the difference in reflection absorbance between arbitrary two wavelengths ΔA λ (=
A λ1 −A λ2 ) is obtained. In the function generator 15 including a hard disk unit, a reflection absorbance difference corresponding to the degree of deterioration of the insulating material as shown in FIG. 4 is stored in advance as a master curve and is output to the deterioration degree calculator 1. This stored function value and the measured reflection absorbance difference ΔA λ
The deterioration degree calculation unit 1 compares and calculates the deterioration degree from the value of 1, and outputs it as a measurement result to an external printer (not shown) or the like.

【0031】なお、本実施例では3波長を用いた材料の
劣化度測定装置を説明したが、2波長のみでも測定装置
は良好に動作する。
In this embodiment, the deterioration measuring device for materials using three wavelengths has been described, but the measuring device operates well even with only two wavelengths.

【0032】(実施例5)実施例1と同様の劣化度測定
システムを用いて、絶縁材料11の波長λ1と波長λ2
における反射率を得た後、劣化度演算部1において2波
長間の反射吸光度比Aλ′(=Aλ1/Aλ2)を求め
る。関数発生部15には、図9に示したような絶縁材料
の劣化度に対応した反射吸光度比がマスターカーブとし
て予め記憶されており、劣化度演算部1に出力する。こ
の記憶された関数値と実測の反射吸光度比Aλ′から劣
化度演算部1で比較演算して劣化度を判定し、外部(図
示省略)のプリンタ等に測定結果として出力する。
(Embodiment 5) Using the deterioration measuring system similar to that of Embodiment 1, the wavelengths λ1 and λ2 of the insulating material 11 are measured.
After obtaining the reflectance at, the deterioration degree calculation unit 1 obtains the reflection absorbance ratio A λ ′ (= A λ1 / A λ2 ) between the two wavelengths. The function generation unit 15 stores in advance a reflection absorbance ratio corresponding to the deterioration degree of the insulating material as a master curve as shown in FIG. 9, and outputs it to the deterioration degree calculation unit 1. From the stored function value and the actually measured reflection / absorption ratio A λ ′, the deterioration degree calculation unit 1 performs a comparison calculation to determine the deterioration degree, and outputs it to an external printer (not shown) or the like as a measurement result.

【0033】(実施例6)実施例2と同様の劣化度測定
システムを用いて、絶縁材料11の波長λ1〜波長λ3
における反射率を得た後、劣化度演算部1において3波
長間のデータのうち任意の2波長間の反射吸光度比
λ′(=Aλ1/Aλ2)を求める。関数発生部15に
は、図9に示したような絶縁材料の劣化度に対応した反
射吸光度比がマスターカーブとして予め記憶されてお
り、劣化度演算部1に出力する。この記憶された関数値
と実測の反射吸光度比Aλ′から劣化度演算部1で劣化
度を比較演算して判定し、外部に測定結果として出力す
る。
(Embodiment 6) Using the deterioration degree measuring system similar to that in Embodiment 2, wavelengths λ1 to λ3 of the insulating material 11 are measured.
After obtaining the reflectance at, the deterioration degree computing unit 1 obtains the reflection absorbance ratio A λ ′ (= A λ1 / A λ2 ) between any two wavelengths of the data between the three wavelengths. The function generation unit 15 stores in advance a reflection absorbance ratio corresponding to the deterioration degree of the insulating material as a master curve as shown in FIG. 9, and outputs it to the deterioration degree calculation unit 1. From the stored function value and the actually measured reflection / absorbance ratio A λ ′, the deterioration degree calculator 1 compares and determines the deterioration degree, and outputs the result as a measurement result to the outside.

【0034】(実施例7)実施例3と同様の劣化度測定
システムを用いて、絶縁材料11の波長500〜900
nmにおける反射率を得た後、劣化度演算部1において
任意の2波長間の反射吸光度比Aλ′(=Aλ1
λ2)を求める。関数発生部15には、図9に示した
ような絶縁材料の劣化度に対応した反射吸光度比がマス
ターカーブとして予め記憶されており、劣化度演算部1
に出力する。この記憶された関数値と実測の反射吸光度
比Aλ′から劣化度演算部1で比較演算して劣化度を判
定し、外部に測定結果として出力する。
(Embodiment 7) Using a deterioration degree measuring system similar to that of Embodiment 3, wavelengths of insulating material 11 of 500 to 900 are used.
After obtaining the reflectance in nm, the deterioration calculating unit 1 calculates the reflection absorbance ratio between two arbitrary wavelengths A λ ′ (= A λ 1 /
A λ2 ) is calculated. The function generation section 15 stores in advance a reflection absorbance ratio corresponding to the degree of deterioration of the insulating material as a master curve as shown in FIG.
Output to. From the stored function value and the actually measured reflection / absorption ratio A λ ′, the deterioration degree calculation unit 1 performs a comparison operation to determine the deterioration degree, and outputs it as a measurement result to the outside.

【0035】なお、前記各実施例においては、固体の絶
縁材料の場合について説明したが、オイル等の液体の材
料についても同様にして劣化度を測定することができ
る。
In each of the above-mentioned embodiments, the case of a solid insulating material has been described, but the deterioration degree can be measured in the same manner for a liquid material such as oil.

【0036】(実施例8)実施例4と同様の劣化度測定
装置を用いて、絶縁材料11の660,780,850
nmにおける反射率を得た後、劣化度演算部1において
任意の2波長間の反射吸光度比Aλ′(=Aλ1
λ2)を求める。ハードディスクユニットからなる関
数発生部15には、図9に示したような絶縁材料の劣化
度に対応した反射吸光度比がマスターカーブとして予め
記憶されており、劣化度演算部1に出力する。この記憶
された関数値と実測の反射吸光度比Aλ′の値から劣化
度演算部1で比較演算して劣化度を判定し、外部(図示
省略)のプリンタ等に測定結果として出力する。
(Embodiment 8) Using the deterioration degree measuring apparatus similar to that of Embodiment 4, the insulating materials 11, 660, 780 and 850 are used.
After obtaining the reflectance in nm, the deterioration calculating unit 1 calculates the reflection absorbance ratio between two arbitrary wavelengths A λ ′ (= A λ 1 /
A λ2 ) is calculated. In the function generator 15 including a hard disk unit, a reflection absorbance ratio corresponding to the degree of deterioration of the insulating material as shown in FIG. 9 is stored in advance as a master curve and is output to the deterioration degree calculator 1. From the stored function value and the actually measured value of the reflection / absorption ratio A λ ′, the deterioration degree calculation unit 1 performs a comparison calculation to determine the deterioration degree, and outputs it to an external printer (not shown) as a measurement result.

【0037】なお、本実施例では3波長を用いた材料の
劣化度測定装置を説明したが、2波長のみでも測定装置
は良好に動作する。
In this embodiment, the material deterioration measuring device using three wavelengths has been described, but the measuring device works well even with only two wavelengths.

【0038】(実施例9)図11は厚さの入力手段20
を有する劣化度測定システムの構成を示すブロック図で
ある。図11において、劣化度演算部1は測定の手順に
沿って自動的に切替制御部2に切替部3,4,5の切替
命令信号を送信している。まず、各波長に対するレファ
レンス光量を測定する。レファレンス光ファイバ7は測
定用の光ファイバ(照射用光ファイバ9+受光用光ファ
イバ13)と同一長さを有する。光源6から発生したピ
ーク波長λ1の単色光は、切替部3から切替部4を通
り、さらにレファレンス光ファイバ7から切替部5を通
り光量測定部8に伝送される。光量測定部8では光源6
からのピーク波長λ1の単色光のレファレンス光量I1
を計測し、劣化度演算部1に測定値を出力する。劣化度
演算部1では光源6のレファレンス光量I1 を記憶す
る。同様にして、光源14から発生したλ1とは相異な
るピーク波長λ2の単色光を用いて同じ操作が行われ、
劣化度演算部1において光源14のレファレンス光量I
2 が記憶される。次に、絶縁材料表面の反射光量を測定
する。光源6からのピーク波長λ1の単色光は、切替部
3から切替部4を通り、さらに照射用光ファイバ9を伝
送して反射光測定部10内で絶縁材料11の表面に照射
される。反射光測定部10は、図2に示したように外部
の迷光を遮断する構造を有している。絶縁材料11の表
面からの反射光12を受光用光ファイバ13が受け、そ
の伝送光は切替部5を通り光量測定部8に送られ、反射
光量I1′が測定され劣化度演算部1に結果I1′が出力
される。劣化度演算部1では、λ1における反射率R
λ1(=100×I1′/I1)が算出,記憶される。同様
にして、光源14から発生したλ1とは相異なるピーク
波長λ2の単色光を用いて同じ操作が行われ、劣化度演
算部1においてλ2における反射率Rλ2(=100×I
2′/I2)が算出,記憶される。このようにして、波長
λ1と波長λ2における反射率が得られるので、劣化度
演算部1において2波長間の反射損失差ΔLλ(=L
λ1−Lλ2)が求められる。関数発生部15には、図1
2に示したような絶縁材料の劣化度に対応した反射損失
差がマスターカーブとして予め記憶されており、劣化度
演算部1に出力する。この記憶された関数値と実測の反
射損失差ΔLλから劣化度演算部1で比較演算して劣化
度を判定し、外部(図示省略)のプリンタ等に測定結果
として出力する。図13には透過率50%の絶縁皮膜に
ついて、厚さ補正の有無によるデータのバラツキの様子
を示すグラフを示した。図13において、aは厚さ補正
なしのプロット、bは厚さ補正ありのプロットを示す。
厚さ補正によってデータのバラツキが大幅に低減された
ことがわかる。
(Embodiment 9) FIG. 11 shows a thickness input means 20.
It is a block diagram which shows the structure of the deterioration measuring system which has. In FIG. 11, the deterioration degree calculation unit 1 automatically transmits the switching command signals of the switching units 3, 4, and 5 to the switching control unit 2 in accordance with the measurement procedure. First, the reference light amount for each wavelength is measured. The reference optical fiber 7 has the same length as the measuring optical fiber (irradiating optical fiber 9 + receiving optical fiber 13). The monochromatic light having the peak wavelength λ1 generated from the light source 6 is transmitted from the switching unit 3 to the switching unit 4, and further from the reference optical fiber 7 to the switching unit 5 to the light amount measuring unit 8. In the light quantity measuring unit 8, the light source 6
Reference light amount I 1 of monochromatic light having a peak wavelength λ1 from
Is measured and the measured value is output to the deterioration degree calculation unit 1. The deterioration degree calculation unit 1 stores the reference light amount I 1 of the light source 6. Similarly, the same operation is performed using monochromatic light having a peak wavelength λ2 different from λ1 generated from the light source 14,
The reference light amount I of the light source 14 in the deterioration degree calculation unit 1
2 is memorized. Next, the amount of reflected light on the surface of the insulating material is measured. The monochromatic light having the peak wavelength λ1 from the light source 6 passes through the switching unit 3 and the switching unit 4, and further is transmitted through the irradiation optical fiber 9 to be irradiated on the surface of the insulating material 11 in the reflected light measuring unit 10. The reflected light measurement unit 10 has a structure for blocking external stray light as shown in FIG. The light receiving optical fiber 13 receives the reflected light 12 from the surface of the insulating material 11, the transmitted light is sent to the light amount measuring unit 8 through the switching unit 5, the reflected light amount I 1 ′ is measured, and the deterioration degree calculating unit 1 The result I 1 ′ is output. In the deterioration degree calculation unit 1, the reflectance R at λ1
λ 1 (= 100 × I 1 ′ / I 1 ) is calculated and stored. Similarly, the same operation is performed using monochromatic light having a peak wavelength λ2 different from λ1 generated from the light source 14, and the deterioration degree calculation unit 1 performs reflectance R λ2 (= 100 × I) at λ2.
2 '/ I 2 ) is calculated and stored. In this way, the reflectance at the wavelength λ1 and the reflectance at the wavelength λ2 are obtained, so that the deterioration degree calculator 1 calculates the reflection loss difference ΔL λ (= L) between the two wavelengths.
.lambda.1 -L.lambda.2 ) is obtained. The function generator 15 includes
The reflection loss difference corresponding to the deterioration degree of the insulating material as shown in 2 is stored in advance as a master curve, and is output to the deterioration degree calculation unit 1. The deterioration degree calculator 1 compares the stored function value and the actually measured reflection loss difference ΔL λ to determine the deterioration degree, and outputs the measured result to an external printer (not shown) or the like. FIG. 13 shows a graph showing a state of data variation depending on the presence or absence of thickness correction for an insulating film having a transmittance of 50%. In FIG. 13, a is a plot without thickness correction, and b is a plot with thickness correction.
It can be seen that the variation in the data was significantly reduced by the thickness correction.

【0039】[0039]

【発明の効果】本発明によれば、実働中の機器の運転を
停止することなく、機器に使用されている絶縁材料や構
造材料の劣化度を非破壊で測定できる。さらに、表面が
塵芥等で汚損した被測定物、あるいは凹凸を有する被測
定物の場合にも適用できる劣化度測定システムを得るこ
とが可能となる。
According to the present invention, it is possible to nondestructively measure the degree of deterioration of an insulating material or a structural material used in a device without stopping the operation of the device in actual operation. Further, it becomes possible to obtain a deterioration degree measuring system applicable to a measured object whose surface is contaminated with dust or the like, or a measured object having irregularities.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の劣化度測定システムの構成を示すブ
ロック図。
FIG. 1 is a block diagram showing a configuration of a deterioration degree measuring system according to a first embodiment.

【図2】実施例1の光ファイバ測定端部を示す模式斜視
図。
FIG. 2 is a schematic perspective view showing an optical fiber measurement end portion of the first embodiment.

【図3】絶縁材料の反射吸光度スペクトルの例。FIG. 3 is an example of a reflection absorbance spectrum of an insulating material.

【図4】劣化度判定の基準となる反射吸光度差マスター
カーブの一例。
FIG. 4 is an example of a reflection-absorption-difference master curve that serves as a reference for determining the degree of deterioration.

【図5】表面汚損の有無と反射吸光度スペクトルの関係
を示すグラフ。
FIG. 5 is a graph showing the relationship between the presence or absence of surface contamination and the reflection absorbance spectrum.

【図6】実施例2の劣化度測定システムの構成を示すブ
ロック図。
FIG. 6 is a block diagram showing the configuration of a deterioration degree measuring system according to a second embodiment.

【図7】実施例3の劣化度測定システムの構成を示すブ
ロック図。
FIG. 7 is a block diagram showing a configuration of a deterioration degree measuring system according to a third embodiment.

【図8】実施例4の劣化度測定装置の構成を示すブロッ
ク図。
FIG. 8 is a block diagram showing the configuration of a deterioration degree measuring device according to a fourth embodiment.

【図9】劣化度判定の基準となる反射吸光度比マスター
カーブの一例。
FIG. 9 is an example of a reflection / absorption ratio master curve that is used as a criterion for determining the degree of deterioration.

【図10】劣化度判定のための演算のフローチャート
図。
FIG. 10 is a flowchart of calculation for determining the degree of deterioration.

【図11】実施例9の劣化度測定システムの構成を示す
ブロック図。
FIG. 11 is a block diagram showing the configuration of a deterioration degree measurement system according to a ninth embodiment.

【図12】劣化度判定の基準となる反射損失差マスター
カーブの一例。
FIG. 12 is an example of a reflection loss difference master curve that serves as a reference for deterioration degree determination.

【図13】透過率50%の絶縁皮膜についての厚さ補正
の有無を示すグラフ。
FIG. 13 is a graph showing the presence or absence of thickness correction for an insulating film having a transmittance of 50%.

【符号の説明】[Explanation of symbols]

1…劣化度演算部、2…切替制御部、3,4,5…切替
部、6…光源(波長λ1)、7…レファレンス光ファイ
バ、8…光量測定部、9…照射用光ファイバ、10…反
射光測定部、11…絶縁材料、12…反射光、13…受
光用光ファイバ、14…光源(波長λ2)、15…関数
発生部、16…光結合器、17…光源(ハロゲンラン
プ)、18…光源(850nm)、19…12ビットA
/D変換器、20…厚さの入力手段。
DESCRIPTION OF SYMBOLS 1 ... Deterioration degree calculation part, 2 ... Switching control part, 3, 4, 5 ... Switching part, 6 ... Light source (wavelength λ1), 7 ... Reference optical fiber, 8 ... Light quantity measuring part, 9 ... Irradiation optical fiber, 10 ... Reflected light measuring section, 11 ... Insulating material, 12 ... Reflected light, 13 ... Receiving optical fiber, 14 ... Light source (wavelength λ2), 15 ... Function generating section, 16 ... Optical coupler, 17 ... Light source (halogen lamp) , 18 ... Light source (850 nm), 19 ... 12 bit A
/ D converter, 20 ... Thickness input means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤坂 伸一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 下寺 誠 東京都千代田区神田錦町一丁目6番地 株 式会社日立ビルシステムサービス内 (72)発明者 宮 寿一 東京都千代田区神田錦町一丁目6番地 株 式会社日立ビルシステムサービス内 (72)発明者 三浦 巳之吉 東京都千代田区神田錦町一丁目6番地 株 式会社日立ビルシステムサービス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Akasaka 7-1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Makoto Shimodera 1-chome Kandanishikicho, Chiyoda-ku, Tokyo 6 In Hitachi Building System Service Co., Ltd. (72) Inventor, Juichi Miya Miya, 1-chome Kanda Nishikicho, Chiyoda-ku, Tokyo 6 In Hitachi Building System Service Co., Ltd. (72) Minokichi Miura 1-chome, Kanda Nishiki, Chiyoda-ku, Tokyo Address 6 Hitachi Building System Service Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】波長が相異なる少なくとも2種の単色光光
源からの照射光を照射用光ファイバで導き被測定物表面
に照射し、該被測定物表面からの反射光を受光用光ファ
イバを用いて光量測定部に導き、劣化度演算部において
該光量測定部からの出力より各波長における反射吸光度
(Aλ)を(1)式で算出後、各波長間の反射吸光度差
(ΔAλ)を(2)式で演算し、さらに予め被測定物の
劣化度と各波長間の反射吸光度差との関係を記憶させた
関数発生部からの出力とを比較演算することによって劣
化度を判定することを特徴とする材料の劣化度測定シス
テム。 【数1】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
1. An irradiation optical fiber guides irradiation light from at least two types of monochromatic light sources having different wavelengths to irradiate the surface of the object to be measured, and the reflected light from the surface of the object to be measured is received by an optical fiber for receiving light. It is led to the light amount measuring unit using the light absorption amount measuring unit, and the reflection absorbance (A λ ) at each wavelength is calculated by the formula (1) from the output from the light amount measuring unit in the deterioration degree calculating unit, and then the reflection absorbance difference (ΔA λ ) between the respective wavelengths. Is calculated by the equation (2), and the degree of deterioration is determined by comparing and calculating the output from the function generator that stores the relationship between the degree of deterioration of the DUT and the reflection absorbance difference between wavelengths in advance. A material deterioration measuring system characterized by the above. [Number 1] A λ = -log (R λ / 100) ... (1) ΔA λ = A λ1 -A λ2 ( However, .lambda.1 <.lambda.2) reflections ... (2) (wavelength lambda object to be measured in (nm) Rate R
λ (%))
【請求項2】前記単色光光源として、波長660nm以
上850nm以下のピーク波長を有する光源を用いるこ
とを特徴とする請求項1記載の材料の劣化度測定システ
ム。
2. The material deterioration degree measuring system according to claim 1, wherein a light source having a peak wavelength of 660 nm or more and 850 nm or less is used as the monochromatic light source.
【請求項3】白色連続光を照射するハロゲンランプから
の照射光を照射用光ファイバで導き被測定物表面に照射
し、該被測定物表面からの反射光を受光用光ファイバを
用いて分光器を有する光量測定部に導き、劣化度演算部
において該光量測定部からの出力より各波長における反
射吸光度(Aλ)を(1)式で算出後、任意の2波長間
の反射吸光度差(ΔAλ)を(2)式で演算し、さらに
予め被測定物の劣化度と各波長間の反射吸光度差との関
係を記憶させた関数発生部からの出力とを比較演算する
ことによって劣化度を判定することを特徴とする材料の
劣化度測定システム。 【数2】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
3. The light emitted from a halogen lamp that emits white continuous light is guided by an irradiation optical fiber to irradiate the surface of the object to be measured, and the reflected light from the surface of the object is spectrally separated using an optical fiber for receiving light. Led to a light quantity measuring unit having a vessel, and after calculating the reflection absorbance (A λ ) at each wavelength from the output from the light quantity measuring unit in the deterioration degree calculating unit by the formula (1), the reflection absorbance difference between arbitrary two wavelengths ( ΔA λ ) is calculated by the equation (2), and the deterioration degree is calculated by comparing and calculating the output from the function generating unit that stores the relationship between the deterioration degree of the DUT and the reflection absorbance difference between wavelengths in advance. A deterioration degree measuring system for materials, which is characterized by determining. [Number 2] A λ = -log (R λ / 100) ... (1) ΔA λ = A λ1 -A λ2 ( However, .lambda.1 <.lambda.2) reflections ... (2) (wavelength lambda object to be measured in (nm) Rate R
λ (%))
【請求項4】波長が相異なる少なくとも2種の単色光光
源と,該光源光を照射用光ファイバに導く光結合器と,
該光源光を被測定物表面に照射する照射用光ファイバ
と,該被測定物表面からの反射光を受光して光量測定部
に導く受光用光ファイバと,前記各波長における反射光
強度を検出して測定値を電気信号として外部出力できる
光量測定部と,該光量測定部からの出力値より各波長に
おける反射吸光度(Aλ)を(1)式で算出後、各波長間
の反射吸光度差(ΔAλ)を(2)式で演算し、さらに
予め被測定物の劣化度と各波長間の反射吸光度差との関
係を記憶させた関数発生部からの出力とを比較演算する
ことによって劣化度を判定する劣化度演算部を備えたこ
とを特徴とする材料の劣化度測定装置。 【数3】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
4. At least two types of monochromatic light sources having different wavelengths, and an optical coupler that guides the light sources to an irradiation optical fiber,
An irradiation optical fiber for irradiating the surface of the object to be measured with the light source light, an optical fiber for receiving light which receives reflected light from the surface of the object to be measured and guides it to a light amount measuring section, and detects reflected light intensity at each wavelength. Then, after calculating the reflected light absorbance (A λ ) at each wavelength from the output value from the light amount measurement unit and the output value from the light amount measurement unit by the formula (1), the difference in the reflected light absorbance between the respective wavelengths (ΔA λ ) is calculated by the equation (2), and the output from the function generating unit that stores the relationship between the deterioration degree of the object to be measured and the reflection absorbance difference between wavelengths in advance is compared and calculated. A deterioration degree measuring device for a material, comprising: a deterioration degree calculating section for judging the degree of deterioration. (3) A λ = −log (R λ / 100) (1) ΔA λ = A λ1 −A λ2 (where λ1 <λ2) (2) (Reflection of the measured object at the wavelength λ (nm)) Rate R
λ (%))
【請求項5】前記単色光光源として、波長660nm以
上850nm以下のピーク波長を有するLED光源を用
いることを特徴とする請求項4記載の材料の劣化度測定
装置。
5. The material deterioration degree measuring device according to claim 4, wherein an LED light source having a peak wavelength of 660 nm or more and 850 nm or less is used as the monochromatic light source.
【請求項6】白色連続光を照射するハロゲンランプの光
源と,該光源光を被測定物表面に照射する照射用光ファ
イバと,被測定物表面からの反射光を受光し分光器を有
する光量測定部に導く受光用光ファイバと,該分光器で
分光された各波長における反射光強度を検出して測定値
を電気信号として外部出力できる光量測定部と,該光量
測定部からの出力値より各波長における反射吸光度(A
λ)を(1)式で算出後、任意の2波長間の反射吸光度
差(ΔAλ)を(2)式で演算し、さらに予め被測定物
の劣化度と各波長間の反射吸光度差との関係を記憶させ
た関数発生部からの出力とを比較演算することによって
劣化度を判定する劣化度演算部を備えたことを特徴とす
る材料の劣化度測定装置。 【数4】 Aλ=−log(Rλ/100) …(1) ΔAλ=Aλ1−Aλ2(ただし、λ1<λ2) …(2) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
6. A light source of a halogen lamp for irradiating continuous white light, an irradiation optical fiber for irradiating the surface of the object to be measured with the light of the light source, and a quantity of light having a spectroscope for receiving reflected light from the surface of the object to be measured. An optical fiber for receiving light to be guided to the measuring section, a light quantity measuring section capable of externally outputting the measured value as an electric signal by detecting the reflected light intensity at each wavelength dispersed by the spectroscope, and an output value from the light quantity measuring section Reflection absorbance at each wavelength (A
λ ) is calculated by the equation (1), then the reflection absorbance difference (ΔA λ ) between two arbitrary wavelengths is calculated by the equation (2), and the deterioration degree of the DUT and the reflection absorbance difference between the respective wavelengths are calculated in advance. A deterioration degree measuring device for a material, comprising: a deterioration degree calculating section for judging a deterioration degree by comparing and calculating an output from a function generating section that stores the relationship of Equation 4] A λ = -log (R λ / 100) ... (1) ΔA λ = A λ1 -A λ2 ( However, .lambda.1 <.lambda.2) reflections ... (2) (wavelength lambda object to be measured in (nm) Rate R
λ (%))
【請求項7】波長が相異なる少なくとも2種の単色光光
源からの照射光を照射用光ファイバで導き被測定物表面
に照射し、該被測定物表面からの反射光を受光用光ファ
イバを用いて光量測定部に導き、劣化度演算部において
該光量測定部からの出力より各波長における反射吸光度
(Aλ)を(1)式で算出後、各波長間の反射吸光度比
(Aλ′)を(3)式で演算し、さらに予め被測定物の
劣化度と各波長間の反射吸光度比との関係を記憶させた
関数発生部からの出力とを比較演算することによって劣
化度を判定することを特徴とする材料の劣化度測定シス
テム。 【数5】 Aλ=−log(Rλ/100) …(1) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
7. An irradiation optical fiber guides irradiation light from at least two types of monochromatic light sources having different wavelengths to irradiate the surface of the object to be measured, and reflected light from the surface of the object to be measured is received by an optical fiber for receiving light. It is led to a light quantity measuring section using the light quantity measuring section, and the reflection absorbance (A λ ) at each wavelength is calculated by the formula (1) from the output from the light quantity measuring section in the deterioration degree calculating section, and then the reflection absorbance ratio between each wavelength (A λ ′) ) Is calculated by the equation (3), and the degree of deterioration is determined by comparing and calculating the output from the function generator that stores the relationship between the degree of deterioration of the object to be measured and the reflection absorbance ratio between wavelengths in advance. A material deterioration measuring system characterized by: Equation 5] A λ = -log (R λ / 100) ... (1) A λ '= A λ1 / A λ2 ( However, λ1 <λ2) ... (3 ) ( a wavelength lambda of the object to be measured in (nm) R is the reflectance
λ (%))
【請求項8】前記単色光光源として、波長660nm以
上850nm以下のピーク波長を有する光源を用いるこ
とを特徴とする請求項7記載の材料の劣化度測定システ
ム。
8. The deterioration measuring system for a material according to claim 7, wherein a light source having a peak wavelength of 660 nm or more and 850 nm or less is used as the monochromatic light source.
【請求項9】白色連続光を照射するハロゲンランプから
の照射光を照射用光ファイバで導き被測定物表面に照射
し、該被測定物表面からの反射光を受光用光ファイバを
用いて分光器を有する光量測定部に導き、劣化度演算部
において該光量測定部からの出力より各波長における反
射吸光度(Aλ)を(1)式で算出後、任意の2波長間
の反射吸光度比(Aλ′)を(3)式で演算し、さらに
予め被測定物の劣化度と各波長間の反射吸光度比との関
係を記憶させた関数発生部からの出力とを比較演算する
ことによって劣化度を判定することを特徴とする材料の
劣化度測定システム。 【数6】 Aλ=−log(Rλ/100) …(1) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
9. The irradiation light from a halogen lamp that emits white continuous light is guided by an irradiation optical fiber to irradiate the surface of the object to be measured, and the reflected light from the surface of the object to be measured is separated using an optical fiber for receiving light. To a light amount measuring unit having a vessel, and the deterioration calculating unit calculates the reflection absorbance (A λ ) at each wavelength from the output from the light amount measuring unit by the formula (1), and then the reflection absorbance ratio between arbitrary two wavelengths ( A λ ′) is calculated by the equation (3), and the output from the function generating unit that stores the relationship between the degree of deterioration of the object to be measured and the reflection / absorption ratio between wavelengths in advance is compared and calculated. A deterioration degree measuring system for materials, which is characterized by judging the degree. (6) A λ = −log (R λ / 100) (1) A λ ′ = A λ1 / A λ2 (where λ1 <λ2) (3) (measurement target at wavelength λ (nm)) R is the reflectance
λ (%))
【請求項10】波長が相異なる少なくとも2種の単色光
光源と,該光源光を照射用光ファイバに導く光結合器
と,該光源光を被測定物表面に照射する照射用光ファイ
バと,該被測定物表面からの反射光を受光して光量測定
部に導く受光用光ファイバと,前記各波長における反射
光強度を検出して測定値を電気信号として外部出力でき
る光量測定部と,該光量測定部からの出力値より各波長
における反射吸光度(Aλ)を(1)式で算出後、各波長
間の反射吸光度比(Aλ′)を(3)式で演算し、さら
に予め被測定物の劣化度と各波長間の反射吸光度比との
関係を記憶させた関数発生部からの出力とを比較演算す
ることによって劣化度を判定する劣化度演算部を備えた
ことを特徴とする材料の劣化度測定装置。 【数7】 Aλ=−log(Rλ/100) …(1) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
10. At least two kinds of monochromatic light sources having different wavelengths, an optical coupler for guiding the light source light to an irradiation optical fiber, and an irradiation optical fiber for irradiating the surface of the object to be measured with the light source light. A light-receiving optical fiber that receives reflected light from the surface of the object to be measured and guides it to a light amount measuring unit; a light amount measuring unit that can detect the reflected light intensity at each wavelength and externally output the measured value as an electric signal; The reflection absorbance (A λ ) at each wavelength is calculated by the equation (1) from the output value from the light quantity measurement unit, and the reflection absorbance ratio (A λ ′) between the wavelengths is calculated by the equation (3). It is characterized by comprising a deterioration degree calculation unit for determining the deterioration degree by comparing and calculating the output from the function generating unit that stores the relationship between the deterioration degree of the measurement object and the reflection absorbance ratio between the respective wavelengths. Material deterioration measuring device. Equation 7] A λ = -log (R λ / 100) ... (1) A λ '= A λ1 / A λ2 ( However, λ1 <λ2) ... (3 ) ( a wavelength lambda of the object to be measured in (nm) R is the reflectance
λ (%))
【請求項11】前記単色光光源として、波長660nm
以上850nm以下のピーク波長を有するLED光源を
用いることを特徴とする請求項10記載の材料の劣化度
測定装置。
11. The monochromatic light source has a wavelength of 660 nm.
11. The material deterioration degree measuring device according to claim 10, wherein an LED light source having a peak wavelength of not less than 850 nm is used.
【請求項12】白色連続光を照射するハロゲンランプの
光源と,該光源光を被測定物表面に照射する照射用光フ
ァイバと,被測定物表面からの反射光を受光し分光器を
有する光量測定部に導く受光用光ファイバと,該分光器
で分光された各波長における反射光強度を検出して測定
値を電気信号として外部出力できる光量測定部と,該光
量測定部からの出力値より各波長における反射吸光度
(Aλ)を(1)式で算出後、任意の2波長間の反射吸
光度比(Aλ′)を(3)式で演算し、さらに予め被測
定物の劣化度と各波長間の反射吸光度比との関係を記憶
させた関数発生部からの出力とを比較演算することによ
って劣化度を判定する劣化度演算部を備えたことを特徴
とする材料の劣化度測定装置。 【数8】 Aλ=−log(Rλ/100) …(1) Aλ′=Aλ1/Aλ2(ただし、λ1<λ2) …(3) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
12. A light source of a halogen lamp for irradiating continuous white light, an irradiation optical fiber for irradiating the surface of the object to be measured with the light of the light source, and a light quantity having a spectroscope for receiving reflected light from the surface of the object to be measured. An optical fiber for receiving light to be guided to the measuring section, a light quantity measuring section capable of externally outputting the measured value as an electric signal by detecting the reflected light intensity at each wavelength dispersed by the spectroscope, and an output value from the light quantity measuring section After calculating the reflection absorbance (A λ ) at each wavelength by the equation (1), the reflection absorbance ratio between any two wavelengths (A λ ′) is calculated by the equation (3), and the deterioration degree of the measured object is calculated in advance. A deterioration degree measuring device for a material, comprising a deterioration degree calculating section for judging a deterioration degree by comparing and calculating an output from a function generating section which stores a relationship with a reflection absorbance ratio between respective wavelengths. . A λ = −log (R λ / 100) (1) A λ ′ = A λ1 / A λ2 (where λ1 <λ2) (3) (measurement object at wavelength λ (nm) R is the reflectance
λ (%))
【請求項13】被測定物の厚さ(t,mm)の入力を受け
付ける入力手段を有し、波長が相異なる少なくとも2種
の単色光光源からの照射光を照射用光ファイバで導き被
測定物表面に照射し、該被測定物表面からの反射光を受
光用光ファイバを用いて光量測定部に導き、劣化度演算
部において該光量測定部からの出力より各波長における
反射損失(Lλ,dB/mm)を(4)式で算出後、各波長
間の反射損失差(ΔLλ,dB/mm)を(5)式で演算
し、さらに予め被測定物の劣化度と各波長間の反射損失
差との関係を記憶させた関数発生部からの出力とを比較
演算することによって劣化度を判定することを特徴とす
る材料の劣化度測定システム。 【数9】 Lλ=−(10/t)log(Rλ/100) …(4) ΔLλ=Lλ1−Lλ2(ただし、λ1<λ2) …(5) (波長λ(nm)における被測定物の反射率をR
λ(%)とする)
13. An object to be measured which has an input means for receiving an input of a thickness (t, mm) of an object to be measured and guides irradiation light from at least two kinds of monochromatic light sources having different wavelengths by an irradiation optical fiber. Irradiate the surface of the object, guide the reflected light from the surface of the object to be measured to the light quantity measuring section by using the light receiving optical fiber, and in the deterioration degree calculating section, from the output from the light quantity measuring section, the reflection loss at each wavelength (L λ , DB / mm) by the formula (4), and then the reflection loss difference (ΔL λ , dB / mm) between the wavelengths is calculated by the formula (5). The deterioration degree measuring system for a material, wherein the deterioration degree is determined by comparing and calculating the output from the function generating unit that stores the relationship with the reflection loss difference. L λ = − (10 / t) log (R λ / 100) (4) ΔL λ = L λ1 −L λ2 (where λ1 <λ2) (5) (at wavelength λ (nm) The reflectance of the DUT is R
λ (%))
【請求項14】前記厚さの入力を受け付ける入力手段
は、さらに、被測定物の光線透過率、または厚さ補正の
有無の入力を受け付けるものであり、 該入力手段の受け付けた光線透過率が50%以上である
場合、あるいは厚み補正“有”の指示を受けている場合
には、(4)式における厚さtとして該入力手段の受け
付けた厚さの値を採用し、 該入力手段の受け付けた光線透過率が50%未満である
場合、あるいは厚み補正“無”の指示を受けている場合
には、(4)式における厚さtとして10を採用するこ
とを特徴とする請求項13記載の材料の劣化度測定シス
テム。
14. The input means for receiving the input of the thickness further receives the light transmittance of the object to be measured or the input of the presence / absence of thickness correction, and the light transmittance received by the input means is When the value is 50% or more, or when the thickness correction “present” is instructed, the value of the thickness accepted by the input means is adopted as the thickness t in the equation (4), and the thickness of the input means is changed. 14. When the received light transmittance is less than 50%, or when the instruction for thickness correction “absent” is received, 10 is adopted as the thickness t in the expression (4). Degradation measuring system for the described materials.
【請求項15】前記単色光光源として、波長660nm
以上850nm以下のピーク波長を有する光源を用いる
ことを特徴とする請求項13記載の材料の劣化度測定シ
ステム。
15. The monochromatic light source has a wavelength of 660 nm.
14. The material deterioration degree measuring system according to claim 13, wherein a light source having a peak wavelength of not less than 850 nm is used.
JP01666795A 1994-02-25 1995-02-03 Material degradation degree measuring system and measuring device Expired - Fee Related JP3860846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01666795A JP3860846B2 (en) 1994-02-25 1995-02-03 Material degradation degree measuring system and measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-27795 1994-02-25
JP2779594 1994-02-25
JP01666795A JP3860846B2 (en) 1994-02-25 1995-02-03 Material degradation degree measuring system and measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003204213A Division JP2004077469A (en) 1994-02-25 2003-07-31 Degradation level measurement system and measurement device for material

Publications (2)

Publication Number Publication Date
JPH07286956A true JPH07286956A (en) 1995-10-31
JP3860846B2 JP3860846B2 (en) 2006-12-20

Family

ID=26353054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01666795A Expired - Fee Related JP3860846B2 (en) 1994-02-25 1995-02-03 Material degradation degree measuring system and measuring device

Country Status (1)

Country Link
JP (1) JP3860846B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172814A (en) * 2003-11-19 2005-06-30 Kansai Paint Co Ltd Reflected ultraviolet ray measuring apparatus
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
CN104076001A (en) * 2013-12-17 2014-10-01 浙江工商大学 Detection device based on laser array and large yellow croaker storage time detection method
CN104937393A (en) * 2013-01-31 2015-09-23 株式会社日立高新技术 Automatic analyzer
JP2018002431A (en) * 2016-07-06 2018-01-11 株式会社日立製作所 Elevator state diagnostic device, or elevator
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000169B2 (en) * 2018-01-15 2022-01-19 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172814A (en) * 2003-11-19 2005-06-30 Kansai Paint Co Ltd Reflected ultraviolet ray measuring apparatus
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
JP4710701B2 (en) * 2006-04-18 2011-06-29 富士電機システムズ株式会社 Deterioration diagnosis method and apparatus for polymer material
CN104937393A (en) * 2013-01-31 2015-09-23 株式会社日立高新技术 Automatic analyzer
CN104937393B (en) * 2013-01-31 2018-01-02 株式会社日立高新技术 Automatic analysing apparatus
CN104076001A (en) * 2013-12-17 2014-10-01 浙江工商大学 Detection device based on laser array and large yellow croaker storage time detection method
JP2018002431A (en) * 2016-07-06 2018-01-11 株式会社日立製作所 Elevator state diagnostic device, or elevator
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program

Also Published As

Publication number Publication date
JP3860846B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
CN101294795B (en) Apparatus and method for measuring film thickness
KR100242670B1 (en) Method and device for spectral remission and transmission measurement
JP6042961B2 (en) Color measuring unit
CN101514888B (en) Apparatus and method of measuring film thickness
JPH07167711A (en) System for calibrating self-recording spectrophotometer
CA2633253C (en) Apparatus and method for illuminator-independent color measurements
KR100517104B1 (en) Non-destructive diagnostic method and non-destructive diagnostic apparatus
JP4710701B2 (en) Deterioration diagnosis method and apparatus for polymer material
US5774228A (en) Deterioration diagnosis method and device of electrical machine and apparatus
JPH07286956A (en) Deterioration level measuring system and measuring device
JPH0815131A (en) Deterioration diagnostic system
JP2004077469A (en) Degradation level measurement system and measurement device for material
JP3440759B2 (en) Method and apparatus for diagnosing deterioration of electrical equipment
JPH09222393A (en) Device for diagnosing degree of deterioration
JP3205212B2 (en) Degradation diagnostic device
JP2001307924A (en) Degradation diagnostic device for oil-immersed transformer
JP5585722B2 (en) Reflection characteristic measuring device
CN112611746A (en) Absorption spectrum detection device and detection method for material micro-area
JPH07140074A (en) Deterioration monitoring system for machine
JPH0599747A (en) Industrial colorimeter compensating aging of lamp and color measurement method
JPH10281985A (en) Method of diagnosing degree of deterioration
JPH10300670A (en) Method and system for diagnosing deterioration of oil-filled electric apparatus
CN214749784U (en) Absorption spectrum detection device for material micro-area
JPH10311788A (en) Deterioration degree diagnosing device
JP7206576B2 (en) Measuring method and equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040224

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20040611

Free format text: JAPANESE INTERMEDIATE CODE: A912

RD02 Notification of acceptance of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees