JP4705597B2 - Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability - Google Patents

Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability Download PDF

Info

Publication number
JP4705597B2
JP4705597B2 JP2007052043A JP2007052043A JP4705597B2 JP 4705597 B2 JP4705597 B2 JP 4705597B2 JP 2007052043 A JP2007052043 A JP 2007052043A JP 2007052043 A JP2007052043 A JP 2007052043A JP 4705597 B2 JP4705597 B2 JP 4705597B2
Authority
JP
Japan
Prior art keywords
steel sheet
stretch flangeability
fatigue characteristics
rolled steel
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007052043A
Other languages
Japanese (ja)
Other versions
JP2008214682A (en
Inventor
浩之 棚橋
大介 前田
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007052043A priority Critical patent/JP4705597B2/en
Publication of JP2008214682A publication Critical patent/JP2008214682A/en
Application granted granted Critical
Publication of JP4705597B2 publication Critical patent/JP4705597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability.

自動車のホイールやロア・アームなど、足回り部品と呼ばれる用途には高強度熱延鋼板が広く用いられている。こうした用途で重要視される鋼板の代表的な特性には、疲労特性と伸びフランジ性があり、両方の特性に優れる鋼板の開発が進められている。このような伸びフランジ性と疲労特性に優れる高強度熱延鋼板を製造する方法として、所定の化学成分を有する鋼の熱延条件を特定の範囲とすることで、ミクロ組織とr値の面内異方性を制御する技術が提案されている(例えば、特許文献1)。   High-strength hot-rolled steel sheets are widely used for applications called undercarriage parts such as automobile wheels and lower arms. Typical characteristics of steel sheets that are regarded as important in such applications are fatigue characteristics and stretch flangeability, and development of steel sheets that are excellent in both characteristics is underway. As a method for producing such a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, the microstructure and the r-value are in-plane by setting the hot-rolling conditions of the steel having a predetermined chemical component within a specific range. A technique for controlling anisotropy has been proposed (for example, Patent Document 1).

本発明者らも、伸びフランジ性に優れたベイニティック・フェライト(BF)相あるいはアシキュラー・フェライト相を主相とした鋼板に疲労特性を具備することによって両特性を兼備した鋼板を得る技術を提案した(例えば、特許文献2、3)。   The present inventors also have a technology for obtaining a steel sheet having both characteristics by providing fatigue characteristics to a steel sheet mainly composed of a bainitic ferrite (BF) phase or an acicular ferrite phase having excellent stretch flangeability. Proposed (for example, Patent Documents 2 and 3).

これらの例に見られるように、伸びフランジ性と疲労特性に優れる鋼板を開発するには、伸びフランジ性に優れる鋼板を基盤にして、それに疲労特性を付与する手法が採用されることが多い。その理由として、疲労特性に優れるマルテンサイト系複合組織鋼板の伸びフランジ性は、ベイナイト系複合組織鋼板やベイナイト鋼板よりも大きく劣ることが挙げられる(例えば、非特許文献1)。非特許文献1によれば、デュアルフェイズ鋼板(DP鋼板)は、軟質のフェライト相と硬質のマルテンサイト相から構成されるものであるから、その界面が伸びフランジ成形時にボイド発生起点となり易く、伸びフランジ性に劣るものとされている。   As seen in these examples, in order to develop a steel sheet excellent in stretch flangeability and fatigue characteristics, a method of imparting fatigue characteristics to a steel sheet excellent in stretch flangeability is often employed. The reason is that the stretch flangeability of a martensitic composite steel sheet having excellent fatigue properties is greatly inferior to that of a bainite composite steel sheet or a bainite steel sheet (for example, Non-Patent Document 1). According to Non-Patent Document 1, since the dual-phase steel plate (DP steel plate) is composed of a soft ferrite phase and a hard martensite phase, its interface tends to become a void generation starting point during stretch flange forming, and stretch. It is considered to be inferior in flangeability.

しかし、マルテンサイト系複合組織鋼板、中でもDP鋼板の疲労特性の、ベイナイト系複合組織鋼板に対する優位性は揺るぎがたいものがある。したがって、DP鋼板に伸びフランジ性を付与する開発手法も有効であると考えられるがそうした事例は少なく、関連した技術が開示されている程度である(例えば、特許文献4)。   However, the superiority of martensitic composite steel sheets, particularly DP steel sheets, over the bainite composite steel sheets is difficult. Therefore, it is considered that a development technique for imparting stretch flangeability to the DP steel sheet is also effective, but there are few such cases, and related techniques are disclosed (for example, Patent Document 4).

特許文献4には、ミクロ組織の形態を、フェライト相が硬質第二相で被覆されたものとすることで穴広げ加工時の亀裂進展が抑制される鋼板を得る技術が開示されている。しかし、このような極めて特殊なミクロ組織形態を達成するためには高度な技術が必要と考えられ、容易かつ安価に製造することは困難であると推測される。   Patent Document 4 discloses a technique for obtaining a steel sheet in which crack growth during hole expansion processing is suppressed by setting the microstructure to a ferrite phase coated with a hard second phase. However, in order to achieve such a very special microstructure form, advanced technology is considered necessary, and it is assumed that it is difficult to manufacture easily and inexpensively.

特開2000−297349号公報JP 2000-297349 A 特開2003−171734号公報JP 2003-171734 A 特開2003−313639号公報JP 2003-313639 A 特開2005−154813号公報Japanese Patent Laid-Open No. 2005-154813 林央、「高穴広げ性熱延鋼板の開発と成形性評価法」塑性と加工、塑性加工学会、1999年2月、第40巻、第457号、87〜92頁Hayashi, “Development and Formability Evaluation Method of High-Hole Expandable Hot Rolled Steel Sheet” Plasticity and Processing, Japan Society for Technology of Plasticity, Vol. 40, No. 457, 87-92

本発明は、こうした問題点を克服して伸びフランジ性を付与し、かつ、本来の疲労特性を劣化させない技術を開発することを目的とするものである。   An object of the present invention is to develop a technique that overcomes these problems and provides stretch flangeability and does not deteriorate the original fatigue characteristics.

本発明は、DP鋼板に適切な加工を行ってから熱処理することで、本来の優れた疲労特性を損なうことなく、かつ、穴広げ変形中盤から終盤の耐亀裂進展性が高められるという知見に基づき、疲労特性に優れた鋼板に、更に伸びフランジ性を付与する製造方法であり、その要旨は以下のとおりである。   The present invention is based on the knowledge that, by performing heat treatment after performing appropriate processing on the DP steel sheet, the crack resistance at the end stage can be improved from the middle stage of the hole expansion deformation without impairing the original excellent fatigue characteristics. This is a production method for imparting stretch flangeability to a steel sheet having excellent fatigue characteristics, and the gist thereof is as follows.

(1) 質量%で、C:0.03〜0.2%、Mn:0.5〜3%、Al:0.01〜0.05%を含有し、Si:2.5%以下、P:0.02%以下、S:0.01%以下、N:0.01%以下に制限し、残部がFe及び不可避的不純物からなる鋼片を、鋳造後直接、あるいはAc点以上1300℃以下に再加熱後、Ar点〜Ar点+100℃を仕上げ温度として熱間圧延を行い、14℃/s未満の平均冷却速度で600〜800℃まで冷却し、更に14℃/s以上の平均冷却速度で室温から450℃以下の温度まで冷却して鋼板とし、該鋼板の板厚t[mm]とロール半径r[mm]が下記(式1)を満たすロールにより、接触角が30〜180°である曲げ加工を少なくとも1回行い、続いて440〜550℃で1〜10s保持する熱処理を行うことを特徴とする疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
15≦r/t≦50 ・・・ (式1)
(2) 曲げ加工時に、鋼板に12〜30MPaの張力を付与することを特徴とする上記(1)に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
(1) By mass%, C: 0.03-0.2%, Mn: 0.5-3%, Al: 0.01-0.05%, Si: 2.5% or less, P : 0.02% or less, S: 0.01% or less, N: 0.01% or less, and the steel slab consisting of Fe and unavoidable impurities in the balance, directly after casting, or Ac 3 point or more 1300 ° C After reheating below, hot rolling is performed using Ar 3 points to Ar 3 points + 100 ° C. as the finishing temperature, cooling to 600 to 800 ° C. at an average cooling rate of less than 14 ° C./s, and further 14 ° C./s or more. The steel sheet is cooled from room temperature to a temperature of 450 ° C. or less at an average cooling rate, and the contact angle is 30 to 30 mm by a roll in which the sheet thickness t [mm] and the roll radius r [mm] satisfy the following (formula 1). Bending at 180 ° is performed at least once, followed by holding at 440-550 ° C. for 1-10 s Process for producing a high-strength hot-rolled steel sheet excellent in fatigue properties and stretch flangeability which is characterized in that the heat treatment that.
15 ≦ r / t ≦ 50 (Formula 1)
(2) The method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability according to (1), wherein a tension of 12 to 30 MPa is applied to the steel sheet during bending.

(3) 質量%で、Cr:0.1〜1%、Mo:0.1〜1%、V:0.1〜1%のうちの1種以上を含有することを特徴とする上記(1)又は(2)に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。   (3) The above (1) characterized by containing at least one of Cr: 0.1 to 1%, Mo: 0.1 to 1%, and V: 0.1 to 1% by mass%. ) Or (2), a method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability.

(4) 質量%で、Ti:0.01〜0.2%、Nb:0.01〜0.3%の一方又は双方を含有することを特徴とする上記(1)〜(3)のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。   (4) Any one of the above (1) to (3), wherein one or both of Ti: 0.01 to 0.2% and Nb: 0.01 to 0.3% are contained in mass%. A method for producing a high-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability according to item 1.

(5) 質量%で、Cu:0.6〜2%を含有することを特徴とする上記(1)〜(4)のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。   (5) High strength with excellent fatigue characteristics and stretch flangeability according to any one of the above (1) to (4), characterized by containing Cu: 0.6-2% by mass% A method for producing a hot-rolled steel sheet.

(6) 質量%で、B:0.0001〜0.0020%を含有することを特徴とする上記(1)〜(5)のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。   (6) It is excellent in the fatigue characteristics and stretch flangeability described in any one of the above (1) to (5), characterized by containing B: 0.0001 to 0.0020% by mass%. Manufacturing method of high-strength hot-rolled steel sheet.

本発明の製造方法によって得られる鋼板は、DP鋼板本来の優れた疲労特性に加え、伸びフランジ性にも優れるため、従来は適用できなかったような部品、用途にも適用することが可能になり、産業上の貢献が極めて顕著である。   The steel sheet obtained by the production method of the present invention is excellent in stretch flangeability in addition to the excellent fatigue characteristics inherent in DP steel sheets, and can be applied to parts and applications that could not be applied conventionally. The industrial contribution is very remarkable.

本発明者らは、BF相を主相とする鋼板と、DP鋼板の穴広げ試験を行って、成形(変形)過程を詳細に観察した。プレス試験機によって変形前の穿孔を行い、穴広げ試験の変形の過程で、孔壁面に発生し、進展する亀裂の状況を、複数の亀裂が壁面を板厚方向に貫通するまで追跡した。   The present inventors performed a hole expansion test on a steel plate having a BF phase as a main phase and a DP steel plate, and observed the forming (deformation) process in detail. Drilling was performed before deformation with a press tester, and the state of cracks that occurred and propagated in the hole wall surface during the deformation process of the hole expansion test was followed until a plurality of cracks penetrated the wall surface in the thickness direction.

その結果、伸びフランジ性に優れるBF鋼板の亀裂の発生は、DP鋼板よりも先行し、亀裂の進展も拡径過程の中盤、即ち、概ね亀裂が破断面と剪断面の境界まで到達する時点までは、DP鋼板を上回ることを新たに知見した。そして、DP鋼板は、穴広げ変形の初期における亀裂の発生と、穴広げ変形の中盤までの亀裂の進展が、BF鋼板よりも優れているにも関わらず、穴広げ変形の中盤から終盤、即ち、亀裂の板厚貫通までの亀裂進展に対する耐性が低いことがわかった。   As a result, the occurrence of cracks in the BF steel sheet, which has excellent stretch flangeability, precedes the DP steel sheet, and the progress of the crack is also in the middle of the diameter expansion process, that is, until the point where the crack reaches the boundary between the fracture surface and the shear plane. Newly discovered that it exceeds the DP steel plate. And although DP steel plate is superior to BF steel plate in the occurrence of cracks in the initial stage of hole expansion deformation and the progress of cracks to the middle part of hole expansion deformation, It was found that the resistance to crack propagation until the crack penetrates through the plate thickness is low.

そして、このような亀裂の進展の「逆転現象」は、鋼板の板厚方向における耐亀裂進展性の変化に起因するものであるとの結論を得た。したがって、DP鋼板の疲労特性を損なわずに、伸びフランジ性を高めるには、穴広げ変形過程の中盤から終盤に相当する、表面からの深さが板厚の1/8から1/4程度の部分の耐亀裂進展性を高めれば良い。
本発明を完成させるために行った実験について説明する。
Then, it was concluded that such “reversal phenomenon” of crack propagation is caused by a change in crack resistance in the thickness direction of the steel sheet. Therefore, in order to improve stretch flangeability without impairing the fatigue properties of the DP steel sheet, the depth from the surface is about 1/8 to 1/4 of the plate thickness, which corresponds to the middle to the end of the hole expansion deformation process. What is necessary is just to raise the crack resistance of a part.
An experiment conducted to complete the present invention will be described.

まず、質量%で、C:0.1%、Si:2.5%、Mn:1.5%、P:0.002%、および、S:0.0015%を含有し、残部がFe、および不可避不純物からなる鋼を溶解し、鋳造して得られた鋼片を熱間圧延し、厚さ3.2mmの鋼板とした。熱間圧延の加熱温度(SRT)を1250℃、仕上げ温度(FT)を850℃、650℃までの平均冷却速度を12℃/s、650℃から20℃までの平均冷却速度を45℃/sとし、20℃で巻き取った。即ち、平均冷却速度を変化させた温度(MT)は650℃、巻き取り温度(CT)は20℃であり、FTからMTまでの平均冷却速度(CR1)は12℃/s、MTからCTまでの平均冷却速度(CR2)は45℃/sである。   First, in mass%, C: 0.1%, Si: 2.5%, Mn: 1.5%, P: 0.002%, and S: 0.0015%, the balance being Fe, And steel consisting of inevitable impurities was melted, and a steel piece obtained by casting was hot-rolled to obtain a steel plate having a thickness of 3.2 mm. The hot rolling heating temperature (SRT) is 1250 ° C, the finishing temperature (FT) is 850 ° C, the average cooling rate from 650 ° C is 12 ° C / s, the average cooling rate from 650 ° C to 20 ° C is 45 ° C / s And wound up at 20 ° C. That is, the temperature (MT) at which the average cooling rate is changed is 650 ° C., the winding temperature (CT) is 20 ° C., the average cooling rate (CR1) from FT to MT is 12 ° C./s, from MT to CT The average cooling rate (CR2) is 45 ° C./s.

得られた鋼板の引張強さ(σ)、伸び(δ)、および、穴広げ限界値(λ)はそれぞれ820MPa、16%、、および、34%である。なお、引張特性は、引張方向が圧延方向と垂直となるように採取したJIS5号試験片にて調べた。またλは、日本鉄鋼連盟規格JFS T 1001に準拠して求めた。また、光学顕微鏡により、ミクロ組織がDP鋼板であることを確認した。 The obtained steel sheet has tensile strength (σ B ), elongation (δ), and hole expansion limit value (λ) of 820 MPa, 16%, and 34%, respectively. The tensile properties were examined with a JIS No. 5 test piece collected so that the tensile direction was perpendicular to the rolling direction. Further, λ was obtained in accordance with Japan Iron and Steel Federation standard JFS T 1001. Moreover, it confirmed that the microstructure was DP steel plate with the optical microscope.

次に、上記の鋼板を種々の温度で熱処理して機械的性質を調べたところ、ある条件範囲においてλを上昇させ得るものの、σの低下を伴うことが判明した。そこで、引張、曲げ、圧延などの加工を加え、更に、加工量を変化させ、その後、熱処理し、引張特性と穴広げ性を評価した。その結果、特定の条件での曲げ加工と熱処理を組み合わせることによって、λが向上し、かつσの低下が極めて僅かであること見出した。また、疲労特性が、加工と熱処理を行う前の鋼板と同等であることも明らかとなった。 Next, when the above steel sheet was heat-treated at various temperatures and the mechanical properties were examined, it was found that although λ could be increased within a certain range of conditions, σ B was decreased. Therefore, processing such as tension, bending, and rolling was added, the amount of processing was changed, and then heat treatment was performed to evaluate tensile properties and hole expandability. As a result, it has been found that by combining bending under specific conditions and heat treatment, λ is improved and σ B is reduced very little. It was also clarified that the fatigue characteristics are equivalent to those of the steel plate before processing and heat treatment.

以下、本発明の詳細について説明する。
曲げ加工とそれに続いて行う熱処理の条件は本発明において最も重要なものであり、実施例にて説明する実験結果に基づいて決定されたものである。
Details of the present invention will be described below.
The conditions for the bending process and the subsequent heat treatment are the most important in the present invention, and are determined based on the experimental results described in the examples.

<曲げ加工と熱処理>
板厚tと曲げロール半径rの関係:図1に模式的に示したロール1による曲げ加工によって鋼板2の表面から適切な深さまで歪を付与し、その後、熱処理することで、穴広げ変形時の中盤から終盤において亀裂の進展に対する耐性を有する鋼板が得られる。tとrの関係は、歪を付与する表面からの深さと歪量を制御する因子であり、歪みが付与される深さは、r/tが大きいと浅くなり、r/tが小さいと深くなる。r/tが15未満では歪が付与される深さが深すぎるとともに、歪量も過剰となるため、穴広げ性が低下する。一方、r/tが50超では、歪が付与される深さが浅く、歪量も不足するため、穴広げ性が向上しない。
<Bending and heat treatment>
Relationship between plate thickness t and bending roll radius r: When bending deformation is performed by applying a strain from the surface of the steel plate 2 to an appropriate depth by bending with the roll 1 schematically shown in FIG. A steel plate having resistance to crack propagation from the middle stage to the final stage is obtained. The relationship between t and r is a factor that controls the depth from the surface to which strain is applied and the amount of strain. The depth to which strain is applied becomes shallow when r / t is large, and deep when r / t is small. Become. If r / t is less than 15, the depth to which strain is applied is too deep and the amount of strain becomes excessive, so that the hole expandability is lowered. On the other hand, if r / t is more than 50, the depth to which strain is applied is shallow and the amount of strain is insufficient, so the hole expandability is not improved.

鋼板とロールの接触角:ロールによる曲げ歪の付与は、図1に模式的に示した鋼板2とロール1の接触角3が30°以上の場合に有効に発現する。一方、鋼板とロールの接触角を180°超とするには、連続的に処理する機構の構築が容易ではないので180°を上限とする。   Contact angle between steel plate and roll: The application of bending strain by the roll is effectively exhibited when the contact angle 3 between the steel plate 2 and the roll 1 schematically shown in FIG. 1 is 30 ° or more. On the other hand, in order to make the contact angle between the steel plate and the roll over 180 °, it is not easy to construct a mechanism for continuous processing, so 180 ° is the upper limit.

曲げに続いて行う熱処理:熱処理温度は、付与された歪の影響を適切に緩和し、かつDP組織あるいはマルテンサイト相の特性に何らかの影響を与えて穴広げ変形時の中盤から終盤において亀裂の進展に対する耐性を高める上で重要な働きをするものと考えられる。熱処理温度が440℃未満では、歪の影響を緩和する効果が十分ではなく延性の低下が無視できない。一方550℃超に加熱されると、鋼板の強度が低下し、目的とする高強度鋼板が得られない。穴広げ性向上の効果を得るには、保持時間を1秒以上とすることが必要である。一方、保持時間が10s超になると結晶粒の粗大化とマルテンサイト相の特性変化により、強度および延性の低下が著しいので保持時間は10s以下とする。   Heat treatment following bending: Heat treatment temperature moderates the effect of applied strain and affects the properties of DP structure or martensite phase to some extent, so that the crack progresses from the middle to the end of hole expansion deformation. It is thought that it plays an important role in increasing resistance to. When the heat treatment temperature is less than 440 ° C., the effect of alleviating the influence of strain is not sufficient, and a decrease in ductility cannot be ignored. On the other hand, when it is heated to over 550 ° C., the strength of the steel sheet is lowered and the intended high-strength steel sheet cannot be obtained. In order to obtain the effect of improving the hole expansibility, the holding time must be 1 second or longer. On the other hand, if the holding time exceeds 10 s, the strength and ductility are significantly reduced due to the coarsening of the crystal grains and the change in characteristics of the martensite phase.

更に、曲げ加工の際に、鋼板に張力を付与することが好ましい。   Furthermore, it is preferable to apply tension to the steel sheet during bending.

鋼板に付与する張力:曲げ加工時に鋼板に付与する張力を12MPa以上とすると穴広げ変形時の中盤から終盤において亀裂の進展に対して有する耐性が一層向上する。この効果は、50MPaまで発現する。しかし、張力が30MPa超になると、鋼板表面やロール表面に疵が生じ、鋼板の疲労特性を損なうことがあり、ロールの磨耗量を増加させることがあるため、上限を30MPaとすることが好ましい。   Tension applied to the steel sheet: When the tension applied to the steel sheet at the time of bending is 12 MPa or more, the resistance to the progress of cracks from the middle to the end of the hole expansion deformation is further improved. This effect is manifested up to 50 MPa. However, when the tension exceeds 30 MPa, wrinkles occur on the steel sheet surface or roll surface, which may impair the fatigue characteristics of the steel sheet and increase the amount of wear of the roll. Therefore, the upper limit is preferably set to 30 MPa.

次に、鋼板の化学成分及び製造方法について説明する。   Next, the chemical composition and manufacturing method of a steel plate will be described.

<鋼板の化学成分>
C:Cはマルテンサイト相を生成させるための必須元素であり、鋼板の強度確保上も重要である。そこで自動車の足回り部品に適用して有用なσ≧440MPa程度の高強度鋼板を得ることを念頭に0.03%以上とした。一方、0.2%を超えると、延性の確保が困難になる上に、溶接性の劣化が危惧されるのでこの値を上限とした。
<Chemical composition of steel sheet>
C: C is an essential element for generating a martensite phase, and is important for securing the strength of the steel sheet. Therefore, it was set to 0.03% or more in consideration of obtaining a high-strength steel sheet having a useful σ B ≧ 440 MPa by being applied to an undercarriage part of an automobile. On the other hand, if it exceeds 0.2%, it is difficult to ensure ductility and there is a risk of deterioration of weldability, so this value was made the upper limit.

Si:Siは脱酸元素であり、過剰に含有すると表面性状を損ねるので、上限を2.5%とした。Siは無添加でも良いが、フェライト相の強化と、フェライト相とオーステナイト相が共存する温度域において前者から後者へのCの移動を促進する効果を有するので、2.5%を上限として添加することが好ましい。   Si: Si is a deoxidizing element, and if it is excessively contained, the surface properties are impaired, so the upper limit was made 2.5%. Si may not be added, but it has the effect of promoting the transfer of C from the former to the latter in the temperature range in which the ferrite phase strengthens and the ferrite phase and austenite phase coexist, so 2.5% is added as the upper limit. It is preferable.

Mn:Mnは強度の確保に有用であるとともに、焼入れ性を向上させてDP鋼板を得るための冷却条件を緩和する働きをする重要な元素であり、0.5%以上を含有させる。一方、3%を超えると焼入れ性が高まる結果、鋼板の強度が高くなり過ぎ、延性の劣化を招くとともに、溶接性の劣化が危惧されるため、3%を上限とする。   Mn: Mn is useful for securing the strength, and is an important element that works to relax the cooling conditions for improving the hardenability and obtaining the DP steel sheet, and contains 0.5% or more. On the other hand, if it exceeds 3%, the hardenability is increased. As a result, the strength of the steel sheet becomes too high, resulting in deterioration of ductility and fear of deterioration of weldability.

P:Pは不純物であり、0.02%を超えると粒界脆化に伴う靭性劣化が問題となる。許容される上限は0.02%である。   P: P is an impurity, and if it exceeds 0.02%, toughness deterioration due to grain boundary embrittlement becomes a problem. The upper limit allowed is 0.02%.

S:Sは不純物であり、熱間圧延時の割れや、延性劣化の原因となるので極力抑制することが好ましいが、低減処理にはコストの増加を伴うので、0.01%を上限とする。   S: S is an impurity, and it is preferable to suppress it as much as possible because it causes cracking during hot rolling and deterioration of ductility. However, since the reduction process involves an increase in cost, the upper limit is 0.01%. .

Al:Alは脱酸元素として使用できる他、Nを固定する機能を有する。これらの効果を発現させるには0.01%以上が必要であるが、0.05%超としても効果が飽和するので上限を0.05%とする。   Al: Al can be used as a deoxidizing element and has a function of fixing N. In order to exhibit these effects, 0.01% or more is necessary, but even if it exceeds 0.05%, the effect is saturated, so the upper limit is made 0.05%.

N:Nは非時効性を損なう働きをするので抑制することが望ましい。ただし、窒化物の形成や、Alによる固定を考慮することで0.01%以下であれば許容される。   N: It is desirable to suppress N because it works to impair non-aging properties. However, if considering the formation of nitrides and fixation with Al, 0.01% or less is allowed.

Cr、Mo、V:Cr、Mo、Vは、何れも焼入れ性を高める作用を有し、DP鋼板の形成を促進する。その効果を得るには、いずれの元素についても0.1%以上を添加することが好ましい。しかし、1.0%を超えて添加しても効果が飽和するため、1.0%を上限とする。   Cr, Mo, V: Cr, Mo, and V all have the effect of enhancing the hardenability and promote the formation of the DP steel sheet. In order to obtain the effect, it is preferable to add 0.1% or more of any element. However, even if added over 1.0%, the effect is saturated, so 1.0% is made the upper limit.

Ti、Nb:Ti、Nbは、炭化物、および窒化物の形成による析出強化の利用や、結晶粒の微細化を目的として添加することができる。このような効果を得るには、少なくとも0.01%の添加が必要であり、一方で、Tiは0.2%、Nbについては0.3%を超えて含有させても効果が飽和する。   Ti, Nb: Ti and Nb can be added for the purpose of utilizing precipitation strengthening due to the formation of carbides and nitrides and making the crystal grains finer. In order to obtain such an effect, addition of at least 0.01% is necessary. On the other hand, even if Ti is contained in an amount exceeding 0.2% and Nb exceeds 0.3%, the effect is saturated.

Cu:Cuは、鋼板の強度を高め、疲労特性を向上させる元素である。この効果を得るには、0.6%以上添加することが好ましい。一方、2%超添加しても効果が飽和する。   Cu: Cu is an element that increases the strength of the steel sheet and improves the fatigue characteristics. In order to obtain this effect, it is preferable to add 0.6% or more. On the other hand, the effect is saturated even if added over 2%.

B:Bは、焼き入れ性を高めるとともに結晶粒界を強化する効果を有するので、脱P能力などを勘案して0.0001%以上を添加することが好ましい。ただし0.0020%超添加しても、効果が飽和する。   B: Since B has the effect of enhancing the hardenability and strengthening the grain boundaries, it is preferable to add 0.0001% or more in consideration of the ability to remove P. However, even if added over 0.0020%, the effect is saturated.

<熱延条件>
熱延加熱温度SRT:鋼片を再加熱して圧延する場合の加熱温度は、オーステナイト域で仕上げ圧延を完了させるため、Ac点を下限とし、設備仕様や能力に応じて設定すれば良い。一方、1300℃超の温度に再加熱した場合には、結晶粒の粗大化による圧延後材質の劣化と、過剰酸化による表面品位の劣化が危惧されるので1300℃を上限とする。
<Hot rolling conditions>
Hot-rolling heating temperature SRT: The heating temperature in the case of reheating and rolling the steel slab may be set according to the equipment specifications and capacity, with Ac 3 points being the lower limit in order to complete finish rolling in the austenite region. On the other hand, when reheated to a temperature exceeding 1300 ° C., the upper limit is set to 1300 ° C. because there is a risk of deterioration of the material after rolling due to coarsening of crystal grains and deterioration of surface quality due to excessive oxidation.

鋳造後、鋼片を冷却する過程でそのまま圧延する方法も採用できる。
圧延終了温度FT:FTがAr点を下回ると、DP組織が得られない。一方、FTがAr点+100℃超では、結晶粒が粗大となって機械的性質の劣化原因となる。そこで圧延終了温度はAr点〜Ar点+100℃とする。
A method of rolling the steel slab as it is in the process of cooling the steel slab after casting can also be adopted.
When rolling end temperature FT: FT is below Ar 3 point, a DP structure cannot be obtained. On the other hand, if the FT exceeds Ar 3 point + 100 ° C., the crystal grains become coarse and cause deterioration of mechanical properties. Therefore, the rolling end temperature is Ar 3 points to Ar 3 points + 100 ° C.

なお、均一な組織を得るためには、熱間圧延の圧延率を60〜95%とすることが望ましい。   In order to obtain a uniform structure, it is desirable that the rolling rate of hot rolling is 60 to 95%.

圧延終了後の冷却:圧延終了後、一次冷却してフェライト相を生成させた後、オーステナイト相との二相領域から二次冷却する二段冷却を行い、巻き取る。ここで、一次冷却の平均冷却速度は、14℃/s未満であり、二次冷却の平均冷却速度は14℃/s以上である。一次冷却は空冷、水冷、ミスト冷却、および送風の何れかを選択して行い、二次冷却は、水冷、ミスト冷却、送風の何れかを選択して行う。二次冷却の平均冷却速度の上限はミクロ組織制御上は特に設ける必要はないが、冷却速度の均一性を確保する目的で200℃/sとすることが望ましい。   Cooling after the end of rolling: After the end of rolling, primary cooling is performed to form a ferrite phase, followed by two-stage cooling in which secondary cooling is performed from a two-phase region with the austenite phase, and winding is performed. Here, the average cooling rate of primary cooling is less than 14 ° C./s, and the average cooling rate of secondary cooling is 14 ° C./s or more. The primary cooling is performed by selecting any one of air cooling, water cooling, mist cooling, and air blowing, and the secondary cooling is performed by selecting any one of water cooling, mist cooling, and air blowing. The upper limit of the average cooling rate of the secondary cooling is not particularly required for controlling the microstructure, but is desirably 200 ° C./s for the purpose of ensuring the uniformity of the cooling rate.

二次冷却開始温度、すなわちMTは、600〜800℃、二次冷却終了温度は巻き取り温度CTであり、室温を含む450℃以下とする。これらは鋼のミクロ組織をDP組織とするために必要な条件として限定されるものである。   The secondary cooling start temperature, that is, MT is 600 to 800 ° C., and the secondary cooling end temperature is the winding temperature CT, which is 450 ° C. or less including room temperature. These are limited as conditions necessary for making the microstructure of steel a DP structure.

このような熱間圧延および二段冷却によって製造された鋼板のミクロ組織は、次のようになる。   The microstructure of the steel sheet produced by such hot rolling and two-stage cooling is as follows.

<ミクロ組織>
マルテンサイト相の面積率:主相(面積率最大の相)をフェライト相、第二相をマルテンサイト相とするDP組織であり、マルテンサイト相の面積率は3〜25%が好ましい範囲である。マルテンサイトの面積率を3%以上にすると、DP鋼板としての高疲労特性が享受できる。一方、マルテンサイトの面積率を25%以下にすると降伏比(降伏点/σ)を低くすることが可能になり、優れた成形性を得ることができる。
<Microstructure>
Area ratio of martensite phase: DP structure in which the main phase (phase with the largest area ratio) is the ferrite phase and the second phase is the martensite phase, and the area ratio of the martensite phase is preferably 3 to 25%. . When the area ratio of martensite is 3% or more, high fatigue characteristics as a DP steel sheet can be enjoyed. On the other hand, when the area ratio of martensite is 25% or less, the yield ratio (yield point / σ B ) can be lowered, and excellent formability can be obtained.

これ以外の相や組織、例えばベイナイト組織や(残留)オーステナイト相を、それらの合計がマルテンサイト相の面積率を上回らない範囲で含むことがある。   Other phases and structures, for example, a bainite structure and a (residual) austenite phase may be included in a range in which the sum thereof does not exceed the area ratio of the martensite phase.

質量%で、C:0.1%、Si:2.5%、Mn:1.5%、P:0.002%、およびS:0.0015%を含有し、残部がFe、および不可避不純物からなる鋼を溶解し、鋳造して得られた鋼片を熱間圧延し、板厚が、2.6mm、3.2mm、および4.0mmの鋼板を製造した。熱延条件は、加熱温度(SRT):1250℃、圧延終了温度(FT):850℃、二次冷却開始温度(MT):650℃、一次冷却平均冷却速度(CR1):12℃/s、二次冷却平均冷却速度(CR2):45℃/s、巻き取り温度(CT):20℃とした。   In mass%, C: 0.1%, Si: 2.5%, Mn: 1.5%, P: 0.002%, and S: 0.0015%, the balance being Fe, and inevitable impurities Steel pieces obtained by melting and casting were hot-rolled to produce steel plates having thicknesses of 2.6 mm, 3.2 mm, and 4.0 mm. The hot rolling conditions were: heating temperature (SRT): 1250 ° C., rolling end temperature (FT): 850 ° C., secondary cooling start temperature (MT): 650 ° C., primary cooling average cooling rate (CR 1): 12 ° C./s, Secondary cooling average cooling rate (CR2): 45 ° C./s, winding temperature (CT): 20 ° C.

得られた鋼に15MPaの張力を付与しつつ、種々の半径のロールで、接触角を変化させて曲げ加工を施した。更に、曲げ加工後の鋼板を、450℃に保持した電気炉内に3秒間在炉させ、取り出して空冷する熱処理を施した。   While applying a tension of 15 MPa to the obtained steel, bending was performed with rolls of various radii while changing the contact angle. Further, the steel plate after bending was subjected to a heat treatment in which it was placed in an electric furnace maintained at 450 ° C. for 3 seconds, taken out and air-cooled.

熱処理した鋼板から引張試験片を作製し、引張強度(σ)と伸び(δ)を測定した。ここで引張強度と伸びの積σ×δが、熱延まま材(曲げ加工と熱処理を行っていない材料)と同等以上の鋼板については、穴広げ試験片、および疲労試験片を作製し、穴広げ率(λ)、および、疲労限(σ)を測定した。σ、δ、およびλの測定方法は上述の方法と同様である。また、σは、JIS Z 2275 に定める1号試験片(b=15mm、R=30mm)を、長手方向を圧延方向と垂直方向に採取し、25Hzで平面曲げ疲労試験を行って測定した2×10回時間強度である。 Tensile test pieces were prepared from the heat-treated steel sheet, and the tensile strength (σ B ) and elongation (δ) were measured. Here, for a steel plate having a tensile strength-elongation product σ B × δ equal to or greater than that of a hot-rolled material (a material not subjected to bending and heat treatment), a hole-expanded test piece and a fatigue test piece are prepared, The hole expansion ratio (λ) and the fatigue limit (σ W ) were measured. The method for measuring σ B , δ, and λ is the same as that described above. Further, σ W was measured by taking a No. 1 test piece (b = 15 mm, R = 30 mm) defined in JIS Z 2275 by taking a longitudinal direction in a direction perpendicular to the rolling direction and performing a plane bending fatigue test at 25 Hz. × 10 6 times time intensity.

σ×δが熱延まま材と同等以上の鋼板のσは、熱延まま材のσに対する変化が小さく、両者の差の絶対値を熱延まま材のσで除した値は、0.03(3%)以内であった。一方、λについては変化が大きく、曲げ加工および熱処理(曲げ加工熱処理)後のλと熱延まま材のλの差の絶対値を熱延まま材のλで除した値は、0.15(15%)以上改善する条件も認められた。 σ W of a steel sheet with σ B × δ equal to or higher than that of the material as hot rolled is small in change with respect to σ W of the material as hot rolled, and the value obtained by dividing the absolute value of the difference by σ W of the material as hot rolled is 0.03 (3%). On the other hand, the change in λ is large, and the value obtained by dividing the absolute value of the difference between λ after bending and heat treatment (bending heat treatment) and λ of the hot rolled material by λ of the hot rolled material is 0.15 ( 15%) or more conditions were also observed.

そこで、図2〜4に示すように、r/tと接触角で整理すると、黒枠で表示した、15≦r/t≦50、かつ接触角が30〜180°の範囲において、板厚に依らずλが5%以上改善されることがわかった。なお、改善率は、(曲げ加工熱処理後のλ−熱延ままのλ)/熱延ままのλ×100、と定義する。   Therefore, as shown in FIGS. 2 to 4, when arranged in terms of r / t and the contact angle, depending on the plate thickness in the range of 15 ≦ r / t ≦ 50 and the contact angle of 30 to 180 ° indicated by a black frame. It was found that λ was improved by 5% or more. The improvement rate is defined as (λ after bending heat treatment -λ as hot rolled) / λ × 100 as hot rolled.

実施例1と同様の成分組成、熱延条件で板厚3.2mmの鋼板を製造し、15MPaの張力を付与しつつ、半径75mmのロールで曲げ加工を施した。接触角は90°とした。曲げ加工後の鋼板を種々の温度に保持した電気炉内で1〜13秒間加熱し、取り出して空冷する熱処理を施した。   A steel plate having a plate thickness of 3.2 mm was produced under the same composition and hot rolling conditions as in Example 1, and bending was performed with a roll having a radius of 75 mm while applying a tension of 15 MPa. The contact angle was 90 °. The steel sheet after bending was heated for 1 to 13 seconds in an electric furnace maintained at various temperatures, and subjected to heat treatment for taking out and air cooling.

実施例1と同様に、熱処理後の鋼板から引張試験片、、穴広げ試験片、および疲労試験片を作製し、σ、δ、λ、およびσを測定した。 In the same manner as in Example 1, tensile test pieces, hole expansion test pieces, and fatigue test pieces were produced from the heat-treated steel plates, and σ B , δ, λ, and σ W were measured.

σ×δが熱延まま材と同じか、それを上回った鋼板のσの変化率は、実施例1と同様、0.03(3%)以内であった。一方、λについては変化が大きく、曲げ加工熱処理による改善率が0.20(20%)以上になる条件も認められた。 As in Example 1, the change rate of σ W of the steel sheet in which σ B × δ is the same as or higher than that of the hot-rolled material was within 0.03 (3%). On the other hand, there was a large change in λ, and it was recognized that the improvement rate by the bending heat treatment was 0.20 (20%) or more.

そこでこれらを詳細に分析したところ、図5に示すように、熱処理温度と処理時間が所定の条件を満たす場合(黒枠内)に、λが5%以上改善されることがわかった。また、図5において、0秒とは、曲げ加工のみを行い、熱処理を行っていないものを指す。   Therefore, when these were analyzed in detail, as shown in FIG. 5, it was found that λ was improved by 5% or more when the heat treatment temperature and the treatment time satisfy the predetermined conditions (within the black frame). In FIG. 5, “0 seconds” means that only bending is performed and heat treatment is not performed.

実施例1と同様の成分組成、熱延条件で板厚3.2mmの鋼板を製造し、得られた鋼板に種々の張力を付与しつつ、半径100mmのロールで、接触角180°の曲げ加工、または半径125mmのロールで接触角90°の曲げ加工を施した。
曲げ加工後の鋼板を、450℃に保持した電気炉内で2秒間加熱し、取り出して空冷する熱処理を施した。
A steel sheet having a thickness of 3.2 mm was produced under the same composition and hot rolling conditions as in Example 1, and bending was performed with a roll having a radius of 100 mm and a contact angle of 180 ° while applying various tensions to the obtained steel sheet. Alternatively, bending with a contact angle of 90 ° was performed with a roll having a radius of 125 mm.
The steel plate after bending was heated in an electric furnace maintained at 450 ° C. for 2 seconds, and then taken out and subjected to heat treatment for air cooling.

実施例1と同様に、熱処理後の鋼板から引張試験片、穴広げ試験片、および疲労試験片を作製し、σ、δ、λ、およびσを測定した。 In the same manner as in Example 1, tensile test pieces, hole expansion test pieces, and fatigue test pieces were produced from the heat-treated steel plates, and σ B , δ, λ, and σ W were measured.

σ×δが熱延まま材と同等以上の鋼板のσの変化率は、実施例1と同様、0.03(3%)以内であった。一方、λについては変化が大きく、曲げ加工熱処理による改善率が0.20(20%)以上になる条件も認められた。 Similar to Example 1, the rate of change in σ W of a steel sheet having σ B × δ equal to or greater than that of the hot-rolled material was 0.03 (3%) or less. On the other hand, there was a large change in λ, and it was recognized that the improvement rate by the bending heat treatment was 0.20 (20%) or more.

そこでこれらを負荷張力に関して整理詳したところ、図6に示すように、負荷張力が5〜50MPaの範囲ではλは何れも5%以上の改善を示し、特に12MPa以上の範囲においてその効果が顕著であることが解った。   Therefore, as shown in FIG. 6, when the load tension is in the range of 5 to 50 MPa, each λ shows an improvement of 5% or more, and the effect is particularly remarkable in the range of 12 MPa or more. I understood that there was.

表1に示す化学成分を有する鋼を溶解し、鋳造して得られた鋼片を、表2に示す条件で熱間圧延して板厚3.2mmの帯鋼とした。ミクロ組織を確認してDP組織が得られた帯鋼について、20MPaの張力を付与しつつ、半径100mmのロールで、接触角180°の曲げ加工を施した。   Steel strips obtained by melting and casting steel having the chemical components shown in Table 1 were hot-rolled under the conditions shown in Table 2 to obtain a strip steel having a thickness of 3.2 mm. The steel strip from which the microstructure was confirmed and the DP structure was obtained was subjected to bending with a roll having a radius of 100 mm and a contact angle of 180 ° while applying a tension of 20 MPa.

曲げ加工後の帯鋼を切断してシート状とし、それらを、450℃に保持した電気炉内に1秒間在炉させ、取り出して空冷する熱処理を施した。   The strip steel after bending was cut into sheets, and they were placed in an electric furnace maintained at 450 ° C. for 1 second, taken out and subjected to heat treatment for air cooling.

熱処理したシートから引張試験片を作製し、引張試験を行ってσとδを測定した。更に、両者の積σ×δが熱延まま材から求めたσ×δと同じか、それを上回った条件で曲げ加工熱処理を行ったシートについては、穴広げ試験片、および疲労試験片を作製し、λ、および、σを実施例1と同様にして測定した。結果を表3に示す。 Tensile test pieces were prepared from the heat-treated sheet and subjected to a tensile test to measure σ B and δ. Furthermore, for a sheet subjected to bending heat treatment under the condition that the product σ B × δ of the two is the same as or higher than σ B × δ obtained from the material as it is hot-rolled, a hole expanding test piece and a fatigue test piece And λ and σ W were measured in the same manner as in Example 1. The results are shown in Table 3.

σ×δが熱延まま材と同じか、それを上回った曲げ加工熱処理材のσの、熱延まま材のσに対する変化は小さく、両者の差の絶対値を熱延まま材のσで除した値は、0.03(3%)以内であった。一方、λについては変化が大きく、表3に示したように、本発明の化学成分と熱延条件を満たす鋼板であれば、加工と熱処理をしたことで穴広げ率が5%以上改善することが認められた。 sigma B × [delta] is equal to or hot-rolled Mom material, the bending of the sigma W thermomechanical processing material above it, small changes to sigma W of hot-rolled Mom material, the absolute value of the difference between the hot-rolled Mom material The value divided by σ W was within 0.03 (3%). On the other hand, the change in λ is large, and as shown in Table 3, if the steel plate satisfies the chemical composition and hot rolling conditions of the present invention, the hole expansion rate is improved by 5% or more by processing and heat treatment. Was recognized.

Figure 0004705597
Figure 0004705597

Figure 0004705597
Figure 0004705597

Figure 0004705597
Figure 0004705597

ロールによる曲げ加工を示す模式図である。It is a schematic diagram which shows the bending process by a roll. ロール半径と接触角を座標としてλの改善率を示す図である(板厚2.6mm)。It is a figure which shows the improvement rate of (lambda) using a roll radius and a contact angle as a coordinate (plate thickness 2.6mm). ロール半径と接触角を座標としてλの改善率を示す図である(板厚3.2mm)。It is a figure which shows the improvement rate of (lambda) using a roll radius and a contact angle as a coordinate (plate thickness 3.2 mm). ロール半径と接触角を座標としてλの改善率を示す図である(板厚4.0mm)。It is a figure which shows the improvement rate of (lambda) using a roll radius and a contact angle as a coordinate (plate | board thickness 4.0mm). 熱処理時間と熱処理温度を座標としてλの改善率を示す図である。It is a figure which shows the improvement rate of (lambda) by using heat processing time and heat processing temperature as a coordinate. 張力とλの改善率の関係を示す図である。It is a figure which shows the relationship between tension | tensile_strength and the improvement rate of (lambda).

符号の説明Explanation of symbols

1 ロール
2 鋼板
3 接触角
t 板厚
r ロール半径
1 Roll 2 Steel plate 3 Contact angle t Thickness r Roll radius

Claims (6)

質量%で、
C:0.03〜0.2%、
Mn:0.5〜3%、
Al:0.01〜0.05%
を含有し、
Si:2.5%以下、
P:0.02%以下、
S:0.01%以下、
N:0.01%以下
に制限し、残部がFe及び不可避的不純物からなる鋼片を、鋳造後直接、あるいはAc点以上1300℃以下に再加熱後、Ar点〜Ar点+100℃を仕上げ温度として熱間圧延を行い、14℃/s未満の平均冷却速度で600〜800℃まで冷却し、更に14℃/s以上の平均冷却速度で室温から450℃以下の温度まで冷却して鋼板とし、該鋼板の板厚t[mm]とロール半径r[mm]が下記(式1)を満たすロールにより、接触角が30〜180°である曲げ加工を少なくとも1回行い、続いて440〜550℃で1〜10s保持する熱処理を行うことを特徴とする疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
15≦r/t≦50 ・・・ (式1)
% By mass
C: 0.03-0.2%,
Mn: 0.5-3%,
Al: 0.01 to 0.05%
Containing
Si: 2.5% or less,
P: 0.02% or less,
S: 0.01% or less,
N: Restricted to 0.01% or less, a steel slab consisting of Fe and unavoidable impurities in the balance, directly after casting, or after reheating to 3 to 1300 ° C. of Ar 3 points to Ar 3 points + 100 ° C. Is subjected to hot rolling at a finishing temperature, cooled to 600 to 800 ° C at an average cooling rate of less than 14 ° C / s, and further cooled from room temperature to 450 ° C or less at an average cooling rate of 14 ° C / s or more. The steel sheet is rolled at least once with a contact angle of 30 to 180 ° with a roll having a thickness t [mm] and a roll radius r [mm] satisfying the following (formula 1), and then 440 A method for producing a high-strength hot-rolled steel sheet excellent in fatigue properties and stretch flangeability, characterized by performing a heat treatment that is held at 550 ° C for 1 to 10 seconds.
15 ≦ r / t ≦ 50 (Formula 1)
曲げ加工時に、鋼板に12〜30MPaの張力を付与することを特徴とする請求項1に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。   The method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability according to claim 1, wherein a tension of 12 to 30 MPa is applied to the steel sheet during bending. 質量%で、
Cr:0.1〜1%、
Mo:0.1〜1%、
V:0.1〜1%
のうちの1種以上を含有することを特徴とする請求項1又は2に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
% By mass
Cr: 0.1 to 1%,
Mo: 0.1 to 1%,
V: 0.1 to 1%
The manufacturing method of the high strength hot-rolled steel plate excellent in the fatigue characteristics and stretch flangeability of Claim 1 or 2 characterized by including 1 or more types of these.
質量%で、
Ti:0.01〜0.2%、
Nb:0.01〜0.3%
の一方又は双方を含有することを特徴とする請求項1〜3のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
% By mass
Ti: 0.01-0.2%
Nb: 0.01 to 0.3%
One or both of these are contained, The manufacturing method of the high strength hot-rolled steel plate excellent in the fatigue characteristics and stretch flangeability of any one of Claims 1-3 characterized by the above-mentioned.
質量%で、
Cu:0.6〜2%
を含有することを特徴とする請求項1〜4のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
% By mass
Cu: 0.6-2%
The manufacturing method of the high strength hot-rolled steel plate excellent in the fatigue characteristics and stretch flangeability of any one of Claims 1-4 characterized by the above-mentioned.
質量%で、
B:0.0001〜0.0020%
を含有することを特徴とする請求項1〜5のいずれか1項に記載の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。
% By mass
B: 0.0001 to 0.0020%
The manufacturing method of the high intensity | strength hot-rolled steel plate excellent in the fatigue characteristics and stretch flangeability of any one of Claims 1-5 characterized by the above-mentioned.
JP2007052043A 2007-03-01 2007-03-01 Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability Active JP4705597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052043A JP4705597B2 (en) 2007-03-01 2007-03-01 Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052043A JP4705597B2 (en) 2007-03-01 2007-03-01 Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability

Publications (2)

Publication Number Publication Date
JP2008214682A JP2008214682A (en) 2008-09-18
JP4705597B2 true JP4705597B2 (en) 2011-06-22

Family

ID=39835088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052043A Active JP4705597B2 (en) 2007-03-01 2007-03-01 Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability

Country Status (1)

Country Link
JP (1) JP4705597B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216451A (en) * 1994-01-31 1995-08-15 Nisshin Steel Co Ltd Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH11179427A (en) * 1997-12-22 1999-07-06 Kawasaki Steel Corp Manufacture of cold rolling steel plate having excellent workability and aging resistance
JP4367091B2 (en) * 2002-12-20 2009-11-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
JP4103658B2 (en) * 2003-03-28 2008-06-18 Jfeスチール株式会社 Manufacturing method of wide steel plate with excellent impact penetration and workability

Also Published As

Publication number Publication date
JP2008214682A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101624439B1 (en) High-strength steel sheet and method for producing the same
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP2011179030A (en) Super-high strength cold-rolled steel sheet having excellent bending properties
JP2008019453A (en) Hot-rolled thin steel plate having superior workability and superior strength and toughness after heat treatment, and manufacturing method therefor
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2000199034A (en) High tensile strength hot rolled steel plate excellent in workability and its production
JP4003401B2 (en) Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
KR20180027689A (en) Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
JP2006233294A (en) Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method
JP2009079255A (en) High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP4325223B2 (en) Ultra-high-strength cold-rolled steel sheet having excellent bake hardenability and manufacturing method thereof
WO2016194273A1 (en) Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
JP2012041611A (en) Method for manufacturing high strength steel sheet excellent in stability of mechanical property
JP2021505769A (en) Ultra-high-strength cold-rolled steel sheet and its manufacturing method
JP4385754B2 (en) Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP4705597B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R151 Written notification of patent or utility model registration

Ref document number: 4705597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350