JP4703830B2 - Obstacle detection sensor for automated guided vehicles - Google Patents

Obstacle detection sensor for automated guided vehicles Download PDF

Info

Publication number
JP4703830B2
JP4703830B2 JP2000280285A JP2000280285A JP4703830B2 JP 4703830 B2 JP4703830 B2 JP 4703830B2 JP 2000280285 A JP2000280285 A JP 2000280285A JP 2000280285 A JP2000280285 A JP 2000280285A JP 4703830 B2 JP4703830 B2 JP 4703830B2
Authority
JP
Japan
Prior art keywords
distance
light
measurement
distance measurement
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000280285A
Other languages
Japanese (ja)
Other versions
JP2002090454A (en
Inventor
徹也 小島
恵一 平田
利宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2000280285A priority Critical patent/JP4703830B2/en
Publication of JP2002090454A publication Critical patent/JP2002090454A/en
Application granted granted Critical
Publication of JP4703830B2 publication Critical patent/JP4703830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、変調光を物体に当て、その反射光の受光信号に、物体までの往復距離に応じて発生する位相変化から距離を測定し、この距離から障害物であるか否かを判定する無人搬送車の障害物検知センサにおいて、変調周波数によって決まる測定可能距離より遠い位置にある反射率の高い物体による誤動作を防止することを目的とする。
【0002】
【従来の技術】
工場内の走行路を、所定の誘導手段に案内されて走行する無人搬送車は、衝突事故を防止するために障害物検知センサが取り付けられる。
【0003】
この障害物検知センサとして、図3に示すように同方向を向く投光器1と受光器2を回転駆動機構3により所定の角度範囲内で同時に回転させ、図4に示すように所定の回転ピッチΔθ毎に、投光器1から出た変調光が検出物体4で反射して受光器2に戻ったときの位相変化φから物体4までの距離Lを求め、この距離Lが所定の検知エリアa内にあるか否かにより障害物の有無を判定するものがある。
【0004】
この距離測定の原理を図5で説明する。投光器1は発振回路5で生成した高周波パルスf1(ω1t)で発光する。受光器2には、物体4で反射して戻り、往復距離2Lに応じた位相変化φを持つ高周波パルス光が入射する。この受光信号f1(ω1t+φ)に、混合回路6で局部発振信号f2(ω2t)をミキシングしてビートダウン信号f3(ω3t+φ)を得る。このビートダウン信号の周波数はf1とf2の周波数差f3=f1−f2であり、位相差φを保持している。このビートダウン信号f3(ω3t+φ)をローパスフィルタ7で取り出し、位相測定回路8で位相基準信号f4(ω3t)により位相差φを測定する。物体までの距離Lは、光速をCとするとき、L=C・(φ/2π)/2f1であるので、距離演算回路9で測定したφに所定の係数を掛けることにより距離Lを求めることができる。
【0005】
【発明が解決しようとする課題】
上記位相差方式の距離測定は、光波が往復する距離2Lが、その光波の1波長λよりも小さいという条件で測定が可能であり、変調周波数f1で測定が不可能になる上限距離LMが決まる。すなわち、光の速度をC(m/秒)とすると、LM=C/2fであり、例えば、光の変調周波数が8MHZのときは距離が18.75mに達するまでは測定可能であるが、距離が18.75mになると測定される距離が0mとなって測定不能になる。
【0006】
無人搬送車の障害物の検知は、一般に、3m程度あれば要求性能を満たす。しかし、無人搬送車の走行路の壁面は、一面がステンレス板で形成されている場合のように、反射率が高い素材で作られている場合がある。このとき、図6に示すように、18.75m離れたステンレス板10からの反射光lsの強さと、0.5m前にいる黒い服を着た人11からの反射光lmの強さが区別できない。
【0007】
この対策として、光を下方や上方に向け、光学的に光が戻らないようにする方式も考えられる。しかし、床面と天井面を複数回反射して光が戻る可能性もあり、この角度を大きくすると、反射位置の高さによって測定距離が変動する問題が生じる。さらに、背の低い検出物が測定できないという不具合も生じる。
【0008】
そこで、本発明は検知エリアより遠い位置で強い反射があっても、これを検知エリア外の物体からの反射であるとして、測定対象から除外できる無人搬送車の障害物検知装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1にかかる無人搬送車の障害物検知センサは、同一方向を向く投光器と受光器を周囲空間に向けて所定のステップ角ずつ回転させ、各回転ステップ毎に、投光器から照射した変調光の位相と、この光が検出物体で反射し受光器に戻った反射光の位相の差を検出して検出物体までの距離を測定し、これらの距離によって障害物の有無を判定する無人搬送車の障害物検知センサにおいて、各回転ステップ毎に前記変調光の変調周波数を相対的に大きい周波数と相対的に小さい周波数に変えて1回づつ測定を行い、隣接する2ステップの距離測定値の差を求めると共に、該距離測定値が、前記変調周波数が相対的に大きい変調光の測定可能上限距離より近い物体からの反射光によるものか、遠い物体からの反射光によるものかを区別するための基準値を設定し、前記距離測定値の差が前記基準値以下であるとき、該距離測定値を正しい距離測定値として扱い、前記距離測定値の差が前記基準値を超えたとき、該距離測定値をエラーとして排除することを特徴とする。
【0010】
【実施形態】
本発明は、図3〜図5に示す構成の障害物検知センサにおいて、投光器1から照射する変調光の周波数を、投光器1と受光器2を1ステップ回転させる毎に、例えば8MHZと7.5MHZに切換えて距離測定を行う。
【0011】
本発明の障害物検知センサは、具体的には、例えば図1に示すようにA/Dコンバータを内蔵したワンチップマイクロコンピュータを用いて構成される。
【0012】
図1において、4は検出物体、12は投受光器である。投受光器12は、回転駆動機構であるパルスモータ13により同一方向に向けて同時に回転させられる投光用ミラー14及び受光用ミラー15と、投光用ミラー14を介して高周波パルス光を照射する投光素子16及び検出物体4で反射した高周波パルス光を受光用ミラー15を介して受光する受光素子17とから構成される。
【0013】
18は発振回路で、投光素子16に供給する高周波パルス信号f1、混合用の高周波パルス信号f2、位相基準信号f3を発生する。これらの信号f1,f2,f3は、例えば8MHZで測定するときと7.5MHZで測定するときで周波数が切換えられる。19はAGC回路付きのアンプで、受光素子17の出力する受光信号f1(ω1t+φ)を増幅する。20はヘテロダイン検波を行う混合回路で、アンプ17で増幅された受光信号f1(ω1t+φ)と、混合用の高周波パルス信号f2(ω2t)を混合してビートダウン信号f3(ω3t+φ)を生成する。このビートダウン信号は、投光素子16から検出物体4を介して受光素子17に到るまでの往復距離2Lに応じて受光信号f3に生じる位相変化φを持っている。
【0014】
21はレベル変換回路で、ビートダウン信号f3(ω3t+φ)に生じている位相変化φを、位相基準信号f3(ω3t)と位相比較し、位相遅れに対応する電圧信号V1を出力する。22はA/D変換器を内蔵したワンチップマイクロコンピュータで、レベル変換回路21から入力されるアナログ電圧V1を距離の測定値として受け、A/D変換器でデジタル値に変換した後に障害物有無の判定を行い、出力回路23を通して出力する。このマイクロコンピュータ22は、発振回路18及びモータドライブIC24に対する制御をも行う。
【0015】
図1の障害物検知センサAの動作を図2のフローチャートに基づいて説明する。始めに初期化を行う。これは、内部データを初期化すると共に、パルスモータ13によって投受光器12を回転位置を初期位置に戻すものである。次に、図4に示したようなΔθ(例えば1.6°)の1回転ステップ毎に距離測定を行いながら、例えば160°の測定範囲の距離測定を行い、全ての測定値を記憶する。この測定は、1回転ステップ毎に、変調光の変調周波数をf1を、例えば8MHZと7.5MHZに切換えて行われる。この切り換えに連動して、局部発振周波数f2と位相基準信号f3の周波数の切換えも同時に行われる。
【0016】
これらの測定が終了すると、図6で説明した測定可能範囲外からの反射光による測定値を排除するための処理を行う。
【0017】
この処理は、隣接する測定点の測定値を比較し、その差が基準値(例えば0.5m)以下であるとき正しい距離測定値と判定し、基準値を超えたときエラー値に置き換える処理を、測定エリアの一端から他端まで繰り返して行う。これは、測定可能範囲にある物体までの距離が測定されたときは、変調周波数f1を変えても正しい距離が計測されるのに対し、測定範囲外を測定したときは変調周波数f1を変えると測定値が大きく変動することを利用したものである。
【0018】
これを、さらに説明する。測定可能範囲で、変調周波数f1を変えて回転の1ステップ毎に行われる測定は、測定対象位置が変動するので、測定値は厳密には一致しない。しかし、測定対象位置は、検出物体の外形に沿って移動するので隣接する2点を比較しても距離の変化は少ない。一方、測定可能範囲よりも遠い位置にある物体からの反射光で測定を行ったときは、測定値が大きく変動する。例えば、8MHZと7.5MHZで測定を行なうと、8MHZでは18.5mで測定距離が0m、7.5MHZで20mに達したとき測定距離が0mとなるので、図6に示すように、距離Lが18.5m≦L<20mの区間では、差が18.5m、20m以上の距離では1.5mの差が生じる。この関係を利用することにより、測定可能範囲の測定値のみを正しいデータとして取り出すことができる。
【0019】
なお、変調周波数を8MHZと7.5MHZに変化させて測定を行なうと、距離が300mに達したとき両者の測定値が0mとなり、理論上300m〜318.5mの区間で両者の測定値が同一となる。しかし、300m以上という距離では光の減衰が著しく、この反射光が検出されることはないので問題にならない。
【0020】
測定範囲外からの反射光による測定値をエラーとして排除する処理が終わると、測定された距離が検知エリアaにあるか否かにより、障害物の有無を判定する。
【0021】
上記実施例は、回転の1ステップ毎に変調光の周波数を変化させ、各回転ステップ毎に1回ずつ測定を行っている。これは、測定時間を短縮するためである。同一の測定対象位置について変調周波数f1を変化させて2回ずつ測定を行うと、測定回数が2倍になって、測定に長い時間を必要とすることになり、無人搬送車を高速移動させるための障害になる。
【0022】
また、本発明では、測定可能範囲外からの反射光による測定値を排除するために隣接する測定点の測定値を比較する処理を行っているが、この処理は、ノイズによる誤った測定値を排除するため、元々行う必要があるものであり、この処理は処理時間に影響を及ぼさない。
【0023】
【発明の効果】
本発明の請求項1にかかる発明は、検知物体で反射して戻る変調光の位相変化を検出して距離測定を行う障害物検知装置において、変調周波数によって制限される測定可能距離よりも遠い位置にある物体からの反射光による測定値を、1回転ステップ毎に変調周波数を変え、隣接する測定点の距離測定値と比較することによりエラー値として排除することができる。特に、本発明は、1回転ステップに1回ずつ測定を行えばよく、隣接する測定点との比較はノイズ除去のための処理として本来必要な処理であって処理時間を増加させるものではない。このため、測定時間を短く保て、無人搬送車を高速走行させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の構成を示すブロック図
【図2】図1の装置の動作を説明するフローチャート
【図3】位相検出による距離測定を行う投光器と受光器を示す図
【図4】測定値から障害物の有無判定を行う検知エリアを説明する図
【図5】位相検出による距離測定の原理を説明するブロック図
【図6】測定可能範囲より遠く離れた物体からの反射によって誤動作する原因を説明する図
【符号の説明】
1 投光器
2 受光器
4 検出物体
12 投受光器
13 パルスモータ(回転駆動機構)
14 投光用ミラー
15 受光用ミラー
16 投光素子
17 受光素子
18 発振回路
で、投光素子16に供給する
高周波パルス信号f1、混合用の高周波パルス信号f2、位相基準信号f3を発生する。これらの信号f1,f2,f3は、例えば8MHZで測定するときと7.5MHZで測定するときで周波数が切換えられる。
19 アンプ
20 混合回路
21 レベル変換回路
22 ワンチップマイクロコンピュータ
23 出力回路
24 モータドライブIC
a 検知エリア
[0001]
[Industrial application fields]
In the present invention, modulated light is applied to an object, a distance is measured from a phase change generated according to a round-trip distance to the object in a light reception signal of the reflected light, and whether or not the object is an obstacle is determined from this distance. In the obstacle detection sensor of an automatic guided vehicle, it aims at preventing malfunctioning by the object with a high reflectance in the position far from the measurable distance decided by a modulation frequency.
[0002]
[Prior art]
In order to prevent a collision accident, an automatic guided vehicle that travels on a traveling path in a factory while being guided by a predetermined guiding means is provided with an obstacle detection sensor.
[0003]
As this obstacle detection sensor, the projector 1 and the light receiver 2 facing in the same direction as shown in FIG. 3 are simultaneously rotated within a predetermined angular range by the rotation drive mechanism 3, and a predetermined rotation pitch Δθ as shown in FIG. Every time, the modulated light emitted from the projector 1 is reflected by the detection object 4 and returned to the light receiver 2 to obtain a distance L from the phase change φ to the object 4, and this distance L is within a predetermined detection area a. There is one that determines the presence or absence of an obstacle depending on whether or not there is an obstacle.
[0004]
The principle of this distance measurement will be described with reference to FIG. The projector 1 emits light with the high-frequency pulse f 11 t) generated by the oscillation circuit 5. High frequency pulse light having a phase change φ corresponding to the round trip distance 2L is incident on the light receiver 2 after being reflected by the object 4 and returned. The received light signal f 11 t + φ) is mixed with the local oscillation signal f 22 t) by the mixing circuit 6 to obtain a beat down signal f 33 t + φ). The frequency of this beat-down signal is the frequency difference f 3 = f 1 -f 2 between f 1 and f 2 and holds the phase difference φ. This beat-down signal f 33 t + φ) is taken out by the low-pass filter 7, and the phase difference φ is measured by the phase measurement circuit 8 using the phase reference signal f 43 t). Since the distance L to the object is L = C · (φ / 2π) / 2f 1 where the speed of light is C, the distance L is obtained by multiplying φ measured by the distance calculation circuit 9 by a predetermined coefficient. be able to.
[0005]
[Problems to be solved by the invention]
The distance measurement of the phase difference method can be performed under the condition that the distance 2L that the light wave reciprocates is smaller than one wavelength λ of the light wave, and the upper limit distance LM that cannot be measured at the modulation frequency f 1 is obtained. Determined. That is, assuming that the speed of light is C (m / sec), L M = C / 2f. For example, when the modulation frequency of light is 8 MHz, measurement is possible until the distance reaches 18.75 m. When the distance is 18.75 m, the measured distance becomes 0 m and measurement is impossible.
[0006]
In general, the detection of an obstacle of an automatic guided vehicle satisfies the required performance if it is about 3 m. However, the wall surface of the traveling path of the automatic guided vehicle may be made of a material having a high reflectance, as in the case where one surface is formed of a stainless steel plate. At this time, as shown in FIG. 6, the intensity of the reflected light ls from the stainless steel plate 10 which is 18.75 m away from the intensity of the reflected light lm from the person 11 wearing black clothes 0.5 m ahead is distinguished. Can not.
[0007]
As a countermeasure against this, a method is conceivable in which light is directed downward or upward so that the light is not optically returned. However, there is a possibility that the light will return after being reflected from the floor surface and the ceiling surface a plurality of times. If this angle is increased, the measurement distance varies depending on the height of the reflection position. Furthermore, there is a problem that a short detection object cannot be measured.
[0008]
Therefore, the present invention provides an obstacle detection device for an automatic guided vehicle that can be excluded from a measurement target even if there is strong reflection at a position far from the detection area, as reflection from an object outside the detection area. Objective.
[0009]
[Means for Solving the Problems]
The obstacle detection sensor of the automatic guided vehicle according to claim 1 of the present invention rotates the projector and the light receiver facing in the same direction by a predetermined step angle toward the surrounding space, and irradiates from the projector at each rotation step. An unattended person who measures the distance to the detection object by detecting the difference between the phase of the modulated light and the phase of the reflected light that is reflected by the detection object and returned to the light receiver. In the obstacle detection sensor of the transport vehicle, the measurement is performed once by changing the modulation frequency of the modulated light to a relatively large frequency and a relatively small frequency at each rotation step, and the distance measurement value of two adjacent steps is measured. with obtaining the difference between the, distinguish whether the distance measurement value, or due to light reflected from an object closer than measurable limit distance of the modulation frequency is relatively large modulated light from the reflection light from the distant object It sets the reference value of the order, when the difference of the distance measurement value is equal to or less than the reference value, treats the distance measurement as correct distance measurements, the difference of the distance measurement value exceeds the reference value The distance measurement value is excluded as an error .
[0010]
Embodiment
In the obstacle detection sensor having the configuration shown in FIGS. 3 to 5, the present invention changes the frequency of the modulated light emitted from the projector 1 to, for example, 8 MHz and 7.5 MHz every time the projector 1 and the receiver 2 are rotated one step. Switch to and measure the distance.
[0011]
Specifically, the obstacle detection sensor of the present invention is configured using a one-chip microcomputer incorporating an A / D converter, for example, as shown in FIG.
[0012]
In FIG. 1, 4 is a detection object, and 12 is a projector / receiver. The light projector / receiver 12 emits high-frequency pulsed light through a light projecting mirror 14 and a light receiving mirror 15 that are simultaneously rotated in the same direction by a pulse motor 13 that is a rotation drive mechanism, and the light projecting mirror 14. The light emitting element 16 and the light receiving element 17 that receives the high frequency pulse light reflected by the detection object 4 through the light receiving mirror 15 are configured.
[0013]
An oscillation circuit 18 generates a high frequency pulse signal f 1 to be supplied to the light projecting element 16, a high frequency pulse signal f 2 for mixing, and a phase reference signal f 3. These signals f 1 , f 2 , and f 3 are switched in frequency, for example, when measuring at 8 MHz and when measuring at 7.5 MHz. An amplifier 19 with an AGC circuit amplifies the light reception signal f 11 t + φ) output from the light receiving element 17. A mixing circuit 20 for performing heterodyne detection mixes the received light signal f 11 t + φ) amplified by the amplifier 17 with a high-frequency pulse signal f 22 t) for mixing to generate a beat down signal f 3 ( ω 3 t + φ). This beat-down signal has a phase change φ generated in the light receiving signal f 3 according to the reciprocating distance 2L from the light projecting element 16 to the light receiving element 17 via the detection object 4.
[0014]
A level conversion circuit 21 compares the phase change φ generated in the beat-down signal f 33 t + φ) with the phase reference signal f 33 t), and a voltage signal V 1 corresponding to the phase delay. Is output. Reference numeral 22 denotes a one-chip microcomputer incorporating an A / D converter, which receives the analog voltage V1 input from the level conversion circuit 21 as a distance measurement value and converts it into a digital value by the A / D converter, and whether there is an obstacle. Is output through the output circuit 23. The microcomputer 22 also controls the oscillation circuit 18 and the motor drive IC 24.
[0015]
The operation of the obstacle detection sensor A of FIG. 1 will be described based on the flowchart of FIG. Initialization is performed first. This initializes the internal data and returns the rotational position of the projector / receiver 12 to the initial position by the pulse motor 13. Next, while performing distance measurement for each rotation step of Δθ (for example, 1.6 °) as shown in FIG. 4, distance measurement is performed for a measurement range of, for example, 160 °, and all measured values are stored. This measurement is performed by changing the modulation frequency of the modulated light at f1 to, for example, 8 MHz and 7.5 MHz every rotation step. In conjunction with this switching, the local oscillation frequency f 2 and the phase reference signal f 3 are also switched at the same time.
[0016]
When these measurements are completed, the process for eliminating the measurement value due to the reflected light from outside the measurable range described in FIG. 6 is performed.
[0017]
This process is a process of comparing measured values of adjacent measurement points, determining that the difference is less than a reference value (for example, 0.5 m), and determining that the distance measurement value is correct, and replacing the error value when the reference value is exceeded. Repeat from one end of the measurement area to the other. This is because when the distance to an object within the measurable range is measured, the correct distance is measured even if the modulation frequency f1 is changed, whereas when the modulation frequency f1 is changed when measuring outside the measurement range. This is based on the fact that the measured value varies greatly.
[0018]
This will be further described. In the measurement that can be performed within the measurable range, the measurement frequency is changed at each step of the rotation with the modulation frequency f 1 being changed. However, since the measurement target position moves along the outer shape of the detection object, even if two adjacent points are compared, there is little change in the distance. On the other hand, when measurement is performed with reflected light from an object located far from the measurable range, the measurement value varies greatly. For example, when the measurement is performed at 8 MHz and 7.5 MHz, the measurement distance is 0 m at 18.5 m at 8 MHz and 0 m at 20 MHz at 7.5 MHz. Therefore, as shown in FIG. Is 18.5 m ≦ L <20 m, the difference is 18.5 m, and a distance of 20 m or more causes a difference of 1.5 m. By utilizing this relationship, it is possible to extract only measured values in the measurable range as correct data.
[0019]
When the measurement is performed with the modulation frequency changed to 8 MHz and 7.5 MHz, when the distance reaches 300 m, both measured values become 0 m, and both measured values are theoretically the same between 300 m and 318.5 m. It becomes. However, at a distance of 300 m or more, the attenuation of light is significant, and this reflected light is not detected, so there is no problem.
[0020]
When the process of eliminating the measurement value due to reflected light from outside the measurement range as an error ends, the presence or absence of an obstacle is determined based on whether or not the measured distance is in the detection area a.
[0021]
In the above embodiment, the frequency of the modulated light is changed for each rotation step, and the measurement is performed once for each rotation step. This is to shorten the measurement time. If the measurement is performed twice with the modulation frequency f 1 being changed at the same measurement target position, the number of measurements is doubled and a long time is required for the measurement, and the automatic guided vehicle is moved at high speed. Become an obstacle for.
[0022]
Further, in the present invention, in order to exclude the measurement value due to the reflected light from outside the measurable range, a process of comparing the measurement values of the adjacent measurement points is performed. In order to eliminate it, it is necessary to perform it originally, and this processing does not affect the processing time.
[0023]
【The invention's effect】
The invention according to claim 1 of the present invention is an obstacle detection device that measures a distance by detecting a phase change of modulated light reflected and returned by a sensing object, and is located farther than a measurable distance limited by a modulation frequency. Can be eliminated as an error value by changing the modulation frequency at each rotation step and comparing it with the distance measurement value of the adjacent measurement points. In particular, in the present invention, it is only necessary to perform measurement once per rotation step, and comparison with adjacent measurement points is a process that is originally necessary as a process for removing noise and does not increase the processing time. For this reason, it is possible to keep the measurement time short and to drive the automatic guided vehicle at high speed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a flowchart for explaining the operation of the apparatus in FIG. 1. FIG. 3 is a diagram showing a projector and a receiver that measure distance by phase detection. 4 is a diagram illustrating a detection area in which the presence / absence of an obstacle is determined from measured values. FIG. 5 is a block diagram illustrating the principle of distance measurement by phase detection. FIG. 6 is a result of reflection from an object far away from a measurable range. Diagram explaining the cause of malfunction [Explanation of symbols]
1 Emitter 2 Receiver 4 Sensing Object 12 Emitter / Receiver 13 Pulse Motor (Rotation Drive Mechanism)
14 Emitting mirror 15 Receiving mirror 16 Emitting element 17 Receiving element 18 The oscillation circuit generates a high-frequency pulse signal f 1 to be supplied to the projecting element 16, a high-frequency pulse signal f 2 for mixing, and a phase reference signal f 3 To do. These signals f 1 , f 2 , and f 3 are switched in frequency, for example, when measuring at 8 MHz and when measuring at 7.5 MHz.
19 amplifier 20 mixing circuit 21 level conversion circuit 22 one-chip microcomputer 23 output circuit 24 motor drive IC
a Detection area

Claims (1)

同一方向を向く投光器と受光器を周囲空間に向けて所定のステップ角ずつ回転させ、各回転ステップ毎に、投光器から照射した変調光の位相と、この光が検出物体で反射し受光器に戻った反射光の位相の差を検出して検出物体までの距離を測定し、これらの距離によって障害物の有無を判定する無人搬送車の障害物検知センサにおいて、
各回転ステップ毎に前記変調光の変調周波数を相対的に大きい周波数と相対的に小さい周波数に変えて1回づつ測定を行い、隣接する2ステップの距離測定値の差を求めると共に、該距離測定値が、前記変調周波数が相対的に大きい変調光の測定可能上限距離より近い物体からの反射光によるものか、遠い物体からの反射光によるものかを区別するための基準値を設定し、前記距離測定値の差が前記基準値以下であるとき、該距離測定値を正しい距離測定値として扱い、前記距離測定値の差が前記基準値を超えたとき、該距離測定値をエラーとして排除することを特徴とする無人搬送車の障害物検知センサ。
Rotate the projector and receiver facing the same direction by a predetermined step angle toward the surrounding space, and at each rotation step, the phase of the modulated light emitted from the projector and this light is reflected by the detection object and returned to the receiver. In the obstacle detection sensor of the automatic guided vehicle that detects the difference in the phase of the reflected light and measures the distance to the detection object, and determines the presence or absence of the obstacle by these distances,
At each rotation step, the modulation frequency of the modulated light is changed to a relatively large frequency and a relatively small frequency, and measurement is performed once to obtain a difference between distance measurement values of two adjacent steps , and the distance measurement. A reference value for distinguishing whether the value is due to reflected light from an object closer to the measurable upper limit distance of the modulated light having a relatively high modulation frequency or reflected light from a far object is set, and when the difference of the distance measurement value is equal to or less than the reference value, eliminating treats the distance measurement as correct distance measurements, when the difference of the distance measurement value exceeds the reference value, the distance measurement as an error An obstacle detection sensor for an automatic guided vehicle.
JP2000280285A 2000-09-14 2000-09-14 Obstacle detection sensor for automated guided vehicles Expired - Lifetime JP4703830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280285A JP4703830B2 (en) 2000-09-14 2000-09-14 Obstacle detection sensor for automated guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280285A JP4703830B2 (en) 2000-09-14 2000-09-14 Obstacle detection sensor for automated guided vehicles

Publications (2)

Publication Number Publication Date
JP2002090454A JP2002090454A (en) 2002-03-27
JP4703830B2 true JP4703830B2 (en) 2011-06-15

Family

ID=18765157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280285A Expired - Lifetime JP4703830B2 (en) 2000-09-14 2000-09-14 Obstacle detection sensor for automated guided vehicles

Country Status (1)

Country Link
JP (1) JP4703830B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209298A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Ranging device and ranging method
JP2008241695A (en) 2007-02-27 2008-10-09 Fujifilm Corp Range finder and range finding method
JP5180501B2 (en) * 2007-03-23 2013-04-10 富士フイルム株式会社 Ranging device and ranging method
JP5180502B2 (en) * 2007-03-23 2013-04-10 富士フイルム株式会社 Ranging device and ranging method
NL1033591C2 (en) * 2007-03-26 2008-09-29 Maasland Nv Unmanned vehicle for moving manure.
NL1033590C2 (en) 2007-03-26 2008-09-29 Maasland Nv Unmanned vehicle for delivering feed to an animal.
JP5280030B2 (en) * 2007-09-26 2013-09-04 富士フイルム株式会社 Ranging method and apparatus
JP4895304B2 (en) * 2007-09-26 2012-03-14 富士フイルム株式会社 Ranging method and apparatus
JP2009085705A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Apparatus and method for distance measurement and program
JP5021410B2 (en) * 2007-09-28 2012-09-05 富士フイルム株式会社 Ranging device, ranging method and program
JP2010014502A (en) * 2008-07-02 2010-01-21 Murata Mach Ltd Optical range finder
KR101556593B1 (en) * 2008-07-15 2015-10-02 삼성전자주식회사 Method for Image Processing
JP2011145116A (en) * 2010-01-13 2011-07-28 Takenaka Engineering Co Ltd Heterodyne detection of beam-type detector
WO2012127671A1 (en) 2011-03-24 2012-09-27 北陽電機株式会社 Signal processing device of scanning-type distance measurement device, signal processing method, and scanning-type distance measurement device
JP2015213225A (en) * 2014-05-02 2015-11-26 竹中エンジニアリング株式会社 Light-receiving circuit of light beam type detector
JP6393523B2 (en) 2014-06-04 2018-09-19 北陽電機株式会社 Laser sensor and automatic transfer device
JP6530685B2 (en) * 2015-09-15 2019-06-12 株式会社デンソーアイティーラボラトリ Object detection apparatus, object detection system, object detection method and object detection program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395402A (en) * 1989-09-08 1991-04-19 Matsushita Giken Kk Laser vision sensor
JP2000181541A (en) * 1998-12-21 2000-06-30 Komatsu Ltd Self-traveling type vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127685A (en) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd Laser distance measuring instrument
JPH02124581U (en) * 1989-03-27 1990-10-15
JPH0980153A (en) * 1995-09-08 1997-03-28 Mitsubishi Electric Corp Distance measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395402A (en) * 1989-09-08 1991-04-19 Matsushita Giken Kk Laser vision sensor
JP2000181541A (en) * 1998-12-21 2000-06-30 Komatsu Ltd Self-traveling type vehicle

Also Published As

Publication number Publication date
JP2002090454A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP4703830B2 (en) Obstacle detection sensor for automated guided vehicles
US8831908B2 (en) Signal processing apparatus used for operations for range finding and scanning rangefinder
US20210325515A1 (en) Transmit signal design for an optical distance measurement system
US6888494B2 (en) FMCW radar system
JP4007498B2 (en) Automotive radar equipment
JP5930590B2 (en) Radar equipment
JP4506822B2 (en) Fog detection device and installation method thereof
JP4894360B2 (en) Radar equipment
US11947008B2 (en) Distance measuring optoelectronic sensor and method for detecting a target object
JPH10507428A (en) Sensor for visibility detection and fogging detection by rain
US5623334A (en) Optical distance measurement apparatus and method using cleaning device
JP2004271233A (en) Radar device equipped with abnormality detection function
JP4093885B2 (en) Radar device with anomaly detection function
JP2021511507A (en) Methods and devices for checking the validity of lateral movement
JP3723804B2 (en) Automotive radar equipment
JP6598517B2 (en) Reverse running vehicle detection system using light waves
JP3853642B2 (en) Automotive radar equipment
JP4279168B2 (en) Range sensor distance calculation method
WO2021024433A1 (en) Obstacle detection device
JP4151393B2 (en) Short range sensor
JP3369501B2 (en) Radio-type road information detection device
KR101670474B1 (en) Optics mechanism and method operating the same
JP2004205273A (en) Close-range sensor
WO2011155002A1 (en) Range finder and running vehicle
JP3363568B2 (en) Optical phase difference type vehicle sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4703830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term