JPH0395402A - Laser vision sensor - Google Patents

Laser vision sensor

Info

Publication number
JPH0395402A
JPH0395402A JP1233254A JP23325489A JPH0395402A JP H0395402 A JPH0395402 A JP H0395402A JP 1233254 A JP1233254 A JP 1233254A JP 23325489 A JP23325489 A JP 23325489A JP H0395402 A JPH0395402 A JP H0395402A
Authority
JP
Japan
Prior art keywords
distance
modulation
laser
modulation frequency
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1233254A
Other languages
Japanese (ja)
Other versions
JP2644895B2 (en
Inventor
Minoru Kimura
実 木村
Osamu Yamada
修 山田
Hiroyuki Naito
宏之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP1233254A priority Critical patent/JP2644895B2/en
Publication of JPH0395402A publication Critical patent/JPH0395402A/en
Application granted granted Critical
Publication of JP2644895B2 publication Critical patent/JP2644895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable measurement of a distance at a high speed and with high precision by enabling modulation of a laser light by a plurality of modulation frequencies, by conducting primary measurement of a long distance by a low modulation frequency and by conducting highly-precise distance measurement by a high modulation frequency. CONSTITUTION:A laser light emitted from a laser oscillator 1 is modulated in intensity by a light modulator 2. In order to conduct modulation by a plurality of frequencies, two light-modulating elements 202 and 203 are provided. A distance range for measure ment is divided in a plurality and a long distance is measured primarily at a low modulation frequency, while the range of a relatively short distance is measured with high precision at a high modulation frequency. By combining these two measurements, it is made possible to measure the long distance with high precision. By raising the ratio of the modulation frequencies to (n)th power of 2, in addition, a value of the distance measured by the low modulation frequency is recorded in upper bits, while a value of the distance measured by the high modulation frequency is recorded in lower bits, and they are read out as continuous data, whereby distance measurement of a wide dynamic range is conducted. As the result, high-speed and highly-precise measurement of distances can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光を用いて3次元情報を得るためのレー
ザ視覚センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser visual sensor for obtaining three-dimensional information using laser light.

従来の技術 対象物渣での絶対距離をレーザを用いて測定することは
ロボノトの遠隔操作のための祝覚情報源3・\−/ として最近注目されている。このようなレーザ測距装置
は三角法を用いるものと光の往復時間を測定するものと
に大別され、後者はさらにパルスレーザを用いる方式と
連続波発振レーザを強度変調する方式に分けられる。ロ
ボソトの視覚等の比較的短い距離の測定には連続波発振
レーザ強度変調方式が適してお・り、この方式に関して
例えばデビッド・ニッツ7ン(David Nitza
n)  らがプロシーディングス・オブ・ザ・アイ・イ
ー・イー・イー第65巻、206頁、1977年(Pr
oc. IEEEVo 1.. 65 P 206 ,
 1977 )に記載している。以下、第5図を参照し
て、従来の強度変調方式レーザ視覚センサについて説明
する。
BACKGROUND OF THE INVENTION Measuring the absolute distance on the object's surface using a laser has recently attracted attention as a source of congratulatory information for remote control of robots. Such laser distance measuring devices are broadly divided into those that use trigonometry and those that measure the round trip time of light, and the latter are further divided into those that use pulsed lasers and those that modulate the intensity of continuous wave lasers. A continuous wave laser intensity modulation method is suitable for measuring relatively short distances such as robot vision, and this method has been described by, for example, David Nitza.
n) et al. Proceedings of the I.E.I., Vol. 65, p. 206, 1977 (Pr.
oc. IEEEVo 1. .. 65 P 206,
(1977). Hereinafter, a conventional intensity modulation type laser visual sensor will be explained with reference to FIG.

第5図にむいてレーザ発振器1からの出力光を発振器3
によって駆動される光変調器2によって変調周波数fY
1’L  で強度変調する。強度変調されたレーザ光は
穴開き鏡4の穴を通り、スキャナ5によって対象物6に
照射される。対象物6からの散乱光はスキャナ5を通り
、穴開き鏡4によって反射され、集光レンズ7によって
光検出器8に集光される。光検出器8では光電変換が行
われ検出信号iが得られる。
As shown in Figure 5, the output light from laser oscillator 1 is transferred to oscillator 3.
modulation frequency fY by optical modulator 2 driven by
The intensity is modulated by 1'L. The intensity-modulated laser beam passes through a hole in a perforated mirror 4 and is irradiated onto an object 6 by a scanner 5. Scattered light from the object 6 passes through the scanner 5, is reflected by the perforated mirror 4, and is focused by the condensing lens 7 onto the photodetector 8. The photodetector 8 performs photoelectric conversion and obtains a detection signal i.

得られる検出信号iは周波数f蕩.の交流信号であり、
位相は対象物6!f.での距離に比例して遅れる。従っ
て、位相検出器9によって発振器3からの参照信号rと
検出信号iとの位相差φを測定することによって対象物
61での距離が測定できる。距離Lは、光の速度をCと
すれば、次式で求められる。
The resulting detection signal i has a frequency f. is an AC signal of
The phase is object 6! f. The delay is proportional to the distance. Therefore, by measuring the phase difference φ between the reference signal r from the oscillator 3 and the detection signal i using the phase detector 9, the distance to the object 61 can be measured. The distance L is determined by the following equation, where C is the speed of light.

L=c・φ/4πfyyt レーザ光をスキャナ5を用いて2次元平面上を走査しな
から測距を行い、距離Lによって表された距離画像を得
る。
L=c·φ/4πfyyt A distance image represented by the distance L is obtained by scanning a two-dimensional plane with a laser beam using the scanner 5 and measuring the distance.

得られる距離Lの測距精度及び分解能は、位相差φの検
出精度及び分解能によって決1る。そのため、測距精度
及び分解能を向上させるために変調周波数fYW  を
高くすることがある。その場合、位相差φが2πになる
距離Lが短くなるため、長距離の測定には向かなくなっ
てし資う。一例として変調周波数fffi  が5MH
zと100MHzで位相差5・・−7 φの検出精度が1度の時について位相差φが2πになる
距離精度を第1表に示す。
The distance measurement accuracy and resolution of the obtained distance L are determined by the detection accuracy and resolution of the phase difference φ. Therefore, the modulation frequency fYW may be increased in order to improve ranging accuracy and resolution. In that case, the distance L at which the phase difference φ becomes 2π becomes shorter, making it unsuitable for long-distance measurement. As an example, the modulation frequency fffi is 5MH
Table 1 shows the distance accuracy at which the phase difference φ becomes 2π when the detection accuracy of the phase difference φ is 1 degree between z and 100 MHz.

第1表 変調周波数と測距精度 変調周波数f.を5 M H zどすれば30rn 甘
で一義的に測距ができるが距離精度は83關しか得られ
ず、変調周波数fmを100MHzとすれば距離精度は
4.2間となるが1.5 m iでしか一義的に距離を
求められない。
Table 1 Modulation frequency and ranging accuracy Modulation frequency f. If you set the modulation frequency fm to 5 MHz, you can measure the distance unambiguously and unambiguously, but the distance accuracy is only 83 degrees, and if the modulation frequency fm is 100 MHz, the distance accuracy is 4.2 degrees, but it is 1.5 degrees. The distance can only be determined uniquely by m i.

そこで、レーザ光を走査しないレーザ測距装置に於いて
は、複数の変調周波数を組合せて、長距離を精度良く測
定する方法をとることが行われている(例えば、松本弘
一「振幅変調光の利用計測」,O  Plus  E,
 No. 98, P1’l9 (1988) )。
Therefore, in laser distance measuring devices that do not scan laser light, methods are used to measure long distances with high precision by combining multiple modulation frequencies (for example, Koichi Matsumoto, ``Amplitude modulated light "Usage Measurement", O Plus E,
No. 98, P1'l9 (1988)).

6・\−7 発明が解決しようどする課題 しかし、従来のレーザ視覚センサにち・いてはレーザ光
を走査しなから測距を行い、距離を画像として捉えるこ
とが行われているため、高速に信号処理を行う必要があ
り、レーザ光を走査しないレーザ測距装置で採用してい
るような複数の変調周波数による測定ができず、高粘度
の測距が行われていなかった。
6.\-7 Problems to be solved by the invention However, conventional laser vision sensors measure distance without scanning the laser beam and capture the distance as an image, so they cannot be used at high speeds. It is necessary to perform signal processing, and it is not possible to measure using multiple modulation frequencies, as is the case with laser distance measuring devices that do not scan laser beams, and distance measurement with high viscosity has not been performed.

本発明は高速で、かつ高精度の測距を行うことを目的と
するものである。
An object of the present invention is to perform distance measurement at high speed and with high accuracy.

課題を解決するための手段 上記目的を達成するため、本発明に訟ける技術的手段は
次のようになる。請求項1および2記載の発明において
は、レーザ光の変調を複数の変調周波数で変調できるよ
うにし、低い変調周波数において長距離の一義的な測距
を行い、高い変調周波数において高精度の測距を行うも
のである。請求項3訟よび4記載の発明においてはレー
ザ光の変調周波数の比を2のn乗倍どし、低い変調周波
数にて測距した値を上位ビソトに、高い変調周波7 ・
・一/ 数にて測距した値を下位ビットに記録して、ダイナミッ
クレンジの広い測距を行うものである。請求項5記載の
発明においては、レーザ光の走査方法を主走査複数回に
つき副走査1ステップ移動とし、1走査ラインごとに複
数の変調周波数による測距を行い、高速で高精度の測距
を行うものである。請求項6記載の発明に訃いては、検
出器の倹出信号と複数の変調周波数信号の混合信号とを
混合することにより周波数のビートダウンを行うように
したものである。
Means for Solving the Problems In order to achieve the above object, the technical means applicable to the present invention are as follows. In the inventions according to claims 1 and 2, the laser beam can be modulated at a plurality of modulation frequencies, and unique distance measurement over a long distance is performed at a low modulation frequency, and highly accurate distance measurement is performed at a high modulation frequency. This is what we do. In the invention described in claims 3 and 4, the ratio of the modulation frequencies of the laser beams is multiplied by 2 to the nth power, and the value measured at the lower modulation frequency is placed in the upper range, and the higher modulation frequency 7.
・The value measured in units of 1/2 is recorded in the lower bits to perform distance measurement with a wide dynamic range. In the invention according to claim 5, the scanning method of the laser beam is one sub-scanning step for each plurality of main scans, distance measurement is performed using a plurality of modulation frequencies for each scanning line, and high-speed and high-precision distance measurement is performed. It is something to do. According to the sixth aspect of the invention, frequency beatdown is performed by mixing the detector signal and a mixed signal of a plurality of modulated frequency signals.

作用 請求項】訟よび2記載の発明にかいては、レーザ光の変
調を複数の周波数で行うようにすることで、測距の距離
レンジを複数に分割して、低い変調周波数においては長
距離を一義的に測定し、高い変調周波数にて比較的短い
距離範囲を高精度に測定するものである。この2つを組
合せることにより長距離を高精度で測距することが可能
となる。
[Claim] According to the invention described in the lawsuit and 2, the distance range for distance measurement is divided into a plurality of parts by modulating the laser beam at a plurality of frequencies. It uniquely measures a relatively short distance range at a high modulation frequency with high precision. By combining these two, it becomes possible to measure long distances with high accuracy.

請求項3および4に記載の発明にち・いては、変調周波
数の比を2のn乗倍にすることによシ、低?変調周波数
による測距の値を上位ビットに、高い変調周波数による
測距の値を下位ビットに記録し、連続したデータとして
読み出すことによりダイチ■ックレンジの広い測距を行
うものである。
According to the inventions described in claims 3 and 4, by increasing the ratio of modulation frequencies to the nth power of 2, low The distance measurement value based on the modulation frequency is recorded in the upper bits, the distance measurement value based on the higher modulation frequency is recorded in the lower bits, and distance measurement with a wide range of accuracy is performed by reading out the data as continuous data.

例えば上位ビット、下位ビットそれぞれを8ビットとし
て測距を行い、連続したデータとして読み出せば16ビ
ットで測距を行ったことと等価になる。
For example, if distance measurement is performed using 8 bits for each of the upper and lower bits and read out as continuous data, it is equivalent to performing distance measurement using 16 bits.

請求項5に記載の発明にkいては、レーザ光の走査を主
走査複数回につき副走査1ステップ移動とし、1走査ラ
インごとに複数の変調周波数による測距を行う。すなわ
ち、1ラインごとに粗い測距から高精度の測距へと複数
の変調周波数による測距を行い、副走査により画像を形
成していくものである。これにより、高速で高精度の測
距を実現するものである。
According to the invention described in claim 5, the scanning of the laser beam is performed by moving one sub-scan step for each plurality of main scans, and distance measurement is performed using a plurality of modulation frequencies for each scanning line. That is, distance measurement is performed for each line from coarse distance measurement to highly accurate distance measurement using a plurality of modulation frequencies, and an image is formed by sub-scanning. This realizes high-speed and highly accurate distance measurement.

請求項6に記載の発明にお・いては、検出器からの検出
信号と発振器からの混合信号とを混合することにより周
波数のビートダウンを行う。この結果、検出信号は変調
周波数と同じ周波数の交流信号となり、測距のための位
相比較等の信号処理回9 ・・−/ 路系にはそれぞれの周波数に応じたものが必要であるが
、周波数をビートダウンして同一の周波数にすることに
よシ単一の周波数帯の信号処理回路系1つで処理できる
In the invention described in claim 6, the frequency beatdown is performed by mixing the detection signal from the detector and the mixed signal from the oscillator. As a result, the detection signal becomes an alternating current signal with the same frequency as the modulation frequency, and signal processing circuits such as phase comparison for distance measurement are required for the road system depending on each frequency. By beating down the frequencies to make them the same frequency, processing can be performed with one signal processing circuit system for a single frequency band.

実施例 以下、第1図を参照しながら本発明の第1の実施例につ
いて説明する。レーザ発振器■からでたレーザ光を光変
調器2により強度変調する。本実施例では複数の周波数
で変調を行うために2つの光変調素子202、203が
ある。ここでは光変調器としてEOM (電気光学変調
器)を用いた。直線偏光しているレーザ光をλ/4板2
01にて円偏光化し、光変調素子202、203で電界
によって偏光角を回転し、検光子204により直線偏光
を選択することにより強度変調を行う。変調周波数によ
ってEOMの同調回路の値が異なるため光変調素子20
2、203には専用の同調回路24、25が付いている
。変調信号は複数、たとえば5MHzと80MHzの2
つの変調信号が使用され、2台の発振器21、22から
出され、RFアンブ23によ9増幅されて同10・\−
7 調回路24、25に入る。
EXAMPLE A first example of the present invention will be described below with reference to FIG. The intensity of the laser light emitted from the laser oscillator (2) is modulated by the optical modulator (2). In this embodiment, two light modulation elements 202 and 203 are provided to perform modulation at a plurality of frequencies. Here, an EOM (electro-optic modulator) was used as the optical modulator. The linearly polarized laser beam is passed through the λ/4 plate 2.
The light is circularly polarized at 01, the polarization angle is rotated by an electric field at light modulators 202 and 203, and linearly polarized light is selected by an analyzer 204 to perform intensity modulation. Since the value of the EOM tuning circuit differs depending on the modulation frequency, the light modulation element 20
2 and 203 are equipped with dedicated tuning circuits 24 and 25. There are multiple modulation signals, for example two of 5MHz and 80MHz.
A modulation signal is used, which is output from two oscillators 21 and 22, and is amplified by 9 by an RF amplifier 23.
7 Enters the key circuits 24 and 25.

変調周波数の選択はモードセレクタ10により行う。モ
ードセレクタ10からの信号にようスイノチ101、1
02が切換えられる。
The modulation frequency is selected by the mode selector 10. According to the signal from the mode selector 10, Suinochi 101, 1
02 is switched.

強度変調されたレーザ光は穴開き鏡4の穴を通り、スキ
ャナ5により対象物6に照射する。対象物6から反射し
た散乱光はスキャナ5を通り、穴開き鏡4で反射され、
集光レンズ7で光検出器8に集光され電気信号に変換さ
れる。
The intensity-modulated laser beam passes through a hole in a perforated mirror 4 and is irradiated onto an object 6 by a scanner 5. The scattered light reflected from the object 6 passes through the scanner 5 and is reflected by the perforated mirror 4.
The light is focused on a photodetector 8 by a focusing lens 7 and converted into an electrical signal.

スキャナ5によりレーザ光は2次元平面53」二を走査
され画像を形成するが、スキャナ5はスキャナドライバ
50によって制御されてしる。走査の方法としては、高
速度モードの場合、第2図(a)に示すように主走査方
向51に走査を行い、1ラインを引くごとに副走査方向
52に1ステップずつ移動し、2次元千面53上を走査
し終えると副走査は振り戻され次の画面の形成が引き続
き行われる。この場合、変調周波数は低い周波数だけで
測距を行う。
The laser beam is scanned by the scanner 5 over a two-dimensional plane 53'' to form an image, and the scanner 5 is controlled by a scanner driver 50. As for the scanning method, in the case of high-speed mode, scanning is performed in the main scanning direction 51 as shown in FIG. When the scanning of the thousand planes 53 is completed, the sub-scanning is reversed and the formation of the next screen continues. In this case, distance measurement is performed using only a low modulation frequency.

スキャナドライバ50は1た、モードセレクタ10によ
って制御され、高精度モードを選択すると、11 ・\
−ノ 走査方法が変更され第2図(b)に示すようになる。
The scanner driver 50 is controlled by the mode selector 10, and when the high precision mode is selected, the scanner driver 50 is controlled by the mode selector 10.
- The scanning method is changed as shown in FIG. 2(b).

本実施例では変調周波数を5MHzと80MHzの2つ
としたため、主走査2回ごとに副走査が1ステップずつ
移動する。主走査の奇数回目では5MHz,偶数回目で
は80MHzの変調周波数になるようにスイッチ101
、102が切換えられ、それぞれの測距が行われる。変
調周波数を2種類以上にし、よシ細かに設定する場合に
は変調周波数の数だけ主走査の繰返しの回数を増やすこ
とになる。
In this embodiment, since the modulation frequencies are 5 MHz and 80 MHz, the sub-scan moves by one step every two main scans. The switch 101 is set so that the modulation frequency is 5 MHz for odd-numbered main scans and 80 MHz for even-numbered main scans.
, 102 are switched, and respective distance measurements are performed. When using two or more types of modulation frequencies and setting them more precisely, the number of repetitions of main scanning is increased by the number of modulation frequencies.

光検出器8からの検出信号iを広帯域アンプ81で増幅
した後、位相検出器9で発振器21から分波した5MH
zの参照信号rとの位相差φを測定し、距離を算出する
After the detection signal i from the photodetector 8 is amplified by the broadband amplifier 81, the 5MH signal is demultiplexed from the oscillator 21 by the phase detector 9.
The phase difference φ between z and the reference signal r is measured, and the distance is calculated.

高精度測距の場合は、発振器21、22から分波した基
準信号をDBM(ダブルバランスドミキサ)27にて混
合し、ビートダウンにより2つの変調周波数の差周波を
取り出す。本実施例では75MHzである。この差周波
信号をD B M28にて80MHzの検出信号と混合
することにより5MHzの信号を得ることができる。モ
ードセレクタ10によって制御されるスイッチ103、
104により、5MHzで変調されている時はスルー 
8 0 M H zで変調されている時はDBM28を
通るようにすれば位相検出器9は5MHzの周波数帯の
1つだけで信号処理できる。
In the case of high-precision distance measurement, the reference signals separated from the oscillators 21 and 22 are mixed in a DBM (double balanced mixer) 27, and the difference frequency between the two modulation frequencies is extracted by beatdown. In this embodiment, it is 75 MHz. A 5 MHz signal can be obtained by mixing this difference frequency signal with an 80 MHz detection signal in the DBM28. switch 103 controlled by mode selector 10;
When modulated at 5MHz by 104, it is through.
When the signal is modulated at 80 MHz, if the signal is passed through the DBM 28, the phase detector 9 can process the signal using only one of the 5 MHz frequency bands.

位相検出器9の出力はAD変換器91でディジタル信号
に変換される。ここで1たモードセレクタ10によって
制御されたスイッチ105により、変調周波数が5MH
zの場合は上位ビットに、80MHzの場合は下位ビッ
トになるよう切換えられメモリ11に記録される。メモ
リ11からデータを読み出す場合には、連続したビット
として扱う。本実施例では入力に8ビットのAD変換器
91を用い、出力に12ビットODA変換器92を用い
た。
The output of the phase detector 9 is converted into a digital signal by an AD converter 91. Here, the modulation frequency is set to 5MH by the switch 105 controlled by the mode selector 10.
When the frequency is 80 MHz, the data is switched to the upper bits, and when the frequency is 80 MHz, the lower bits are switched and recorded in the memory 11. When reading data from the memory 11, it is treated as continuous bits. In this embodiment, an 8-bit AD converter 91 was used for input, and a 12-bit ODA converter 92 was used for output.

高速度モードではメモリ11の上位8ビットだけが使用
され下位4ビットにはOが入る。したがって、30mを
256段階で117imの分解能で測距を行っている。
In the high-speed mode, only the upper 8 bits of the memory 11 are used and O is stored in the lower 4 bits. Therefore, distance measurement is performed over 30 m in 256 steps with a resolution of 117 im.

高精度モードではメモリ11の上位4ビットに5MHz
での測距データ、下位8ビットに8 0 M H z1
3 ・\−7 での測距データが記録される。メモリ11に何ビットず
つ割当てるかは、2つの変調周波数の比がいくらかによ
り決められる。本実施例の場合には80/5=16であ
り、4ビソトとした。したがって、5MHzでは大1か
に16段階の測距を行い、80MHzでは256段階の
測距を行う。読み出しは12ビットで行うので30mを
4096段階の5。2朋の分解能で測距することになる
In high precision mode, 5MHz is applied to the upper 4 bits of memory 11.
distance measurement data, lower 8 bits are 80 MHz1
3. Distance data at \-7 is recorded. How many bits to allocate to memory 11 is determined by the ratio of the two modulation frequencies. In the case of this embodiment, 80/5=16, which is 4 bits. Therefore, at 5 MHz, distance measurement is performed in 16 steps, and at 80 MHz, distance measurement is performed in 256 steps. Since the readout is performed in 12 bits, the distance of 30m is measured with a resolution of 5.2 mm in 4096 steps.

画像形成の速度はスキャナ5のスピードで決ってし甘う
か、本実施例では10面のポリゴンスキャナを用いて6
000rpmで回転し主走査を行った。
The speed of image formation is determined by the speed of the scanner 5, but in this embodiment, a 10-sided polygon scanner is used.
Main scanning was performed by rotating at 000 rpm.

副走査にはガルバノミラスキャナを用−てかり、高速度
モードでは毎秒10画面を形戒する。モードセレクタ1
0で高精度モードを選択すれば主走査2回で副走査1ラ
イン移動するため毎秒5画面の速度となる。ここで1ラ
インごとに複数の変調周波数で測距を行うのはメモリ1
1へのデータの転送のやシ易さと、ある程度動きのある
対象物6も画像として捉えるためである。本実施例では
1ラインの形成時間は高精度モードの時でも17500
秒で14へ−/ あり、1ライン形成時における画素のズレはほとんど無
視できる。
A galvanometer mirror scanner is used for sub-scanning, and in high-speed mode it scans 10 screens per second. Mode selector 1
If the high-precision mode is selected with 0, the speed is 5 screens per second because it moves one line in the sub-scan with two main scans. Here, the memory 1 performs distance measurement using multiple modulation frequencies for each line.
This is because it is easy to transfer data to 1 and because an object 6 that has some movement can be captured as an image. In this example, the forming time for one line is 17500 even in high precision mode.
14 in seconds, and the pixel shift when forming one line can be almost ignored.

第3図に本発明の第2の実施例について説明する。本実
施例は光変調器として1個のE O M 205を用い
たものであり、切換えタップ付の同調回路26が付いて
いる。その他の部分は第1図の構成ど同一であり、図示
および説明を省略する。RFアンブ23で増幅した発振
器21、22からの信号はモードセレクタ10によって
制御されるスイノチ102、106によりl+Q適の同
調条ヂトになるタップに入力される。本実施例ではEO
Mが1個であるためセンナの小型化のために有利である
A second embodiment of the present invention will be explained in FIG. This embodiment uses one EOM 205 as an optical modulator, and is equipped with a tuning circuit 26 with a switching tap. The other parts are the same as those shown in FIG. 1, and illustration and description thereof will be omitted. The signals from the oscillators 21 and 22 amplified by the RF amplifier 23 are inputted to the taps which are controlled by the mode selector 10 and are controlled by the switch 102 and 106 to provide a suitable tuning condition of l+Q. In this example, EO
Since the number of M is one, it is advantageous for downsizing the senna.

第4図に本発明の第3の実施例について説明する。本実
施例ではレーザ発振器1に半導体レーザを用いて内部変
調を行うようにしたものである。
A third embodiment of the present invention will be explained in FIG. In this embodiment, a semiconductor laser is used as the laser oscillator 1 to perform internal modulation.

発振器21、22から出た変調信号は増幅器30で増幅
され、同調回路29を通してレーザ発振器1に入力され
る。変調周波数の選択はモードセレクタ10で制御され
たスイッチ101で行われる。同調回路29はハイパス
フィルタであり、5MHz以上の周波数15 ・\−7 に対して損失なく透過する。レーザ発振器1にはDC電
圧がバイアスとしてかかってかり、変調信号がかかるこ
とにより発振を開始し、変調信号により強度変調された
レーザ光が取り出される。その他の部分は第1図の構成
と同一である。
The modulated signals output from the oscillators 21 and 22 are amplified by an amplifier 30 and input to the laser oscillator 1 through a tuning circuit 29. Selection of the modulation frequency is performed by a switch 101 controlled by a mode selector 10. The tuning circuit 29 is a high-pass filter, and transmits frequencies 15.\-7 of 5 MHz or higher without loss. A DC voltage is applied as a bias to the laser oscillator 1, and when a modulation signal is applied, oscillation is started, and laser light whose intensity is modulated by the modulation signal is extracted. The other parts are the same as the configuration shown in FIG.

本実施例によれば外部の光変調器2が不要であるため、
非常に小型の光源となる。レーザ光の走査及び検出、信
号処理に関しては第1図の実施例と同様であるのでここ
では説明を省略する。
According to this embodiment, since the external optical modulator 2 is not required,
It becomes a very small light source. Since scanning and detection of laser light and signal processing are the same as those in the embodiment shown in FIG. 1, their explanations will be omitted here.

発明の効果 以上のように、本発明によれば第1にレーザ光の変調を
複数の周波数で行い長距離を複数の距離レンジに分割し
て測距を行うため長距離にわたって高精度の測距が可能
となる。
Effects of the Invention As described above, according to the present invention, firstly, the laser beam is modulated at multiple frequencies and distance measurement is performed by dividing a long distance into multiple distance ranges. becomes possible.

第2に変調周波数の比を2のn乗倍にすることにより小
さなビット数のAD変換器によりデータ変換が可能とな
る。高精度モードにおけるデータの書込は、低い変調周
波数のデータを上位ビットに、高い変調周波数のデータ
を下位ビットに記録し、読み出しは連続するデータとし
て扱えば広いダイナミノクレンジの測定ができる。高速
度モードにおいては上位ビットだけを用い、下位のビッ
トをOとすれば良い。高精度モード時のレーザ光走査は
主走査を複数回につき副走査1ステップ移動とし、1ラ
インごとに粗い測距から高精度の測距と、複数の変調周
波数による測距を行う。この時の1ラインの計測時間は
2つの変調周波数を用いたとして1/500秒であり、
高精度の測距を高速に行うことが可能となっている。
Second, by increasing the modulation frequency ratio to the nth power of 2, data conversion becomes possible using an AD converter with a small number of bits. When writing data in the high precision mode, data with a low modulation frequency is recorded in the upper bits, data with a high modulation frequency is recorded in the lower bits, and reading is treated as continuous data, allowing measurement over a wide dynamic range. In the high speed mode, only the upper bits may be used and the lower bits may be set to O. In the laser beam scanning in the high precision mode, the laser beam moves by one step in the sub-scan for every plural main scans, and ranges from rough distance measurement to high-precision distance measurement and distance measurement using a plurality of modulation frequencies for each line. The measurement time for one line at this time is 1/500 seconds assuming that two modulation frequencies are used.
It is now possible to perform high-precision distance measurement at high speed.

第3に検出器からの検出信号と発振器からの基準信号を
混合することにより周波数のビートダウンを行い、ビー
トダウンされた信号の周波数を複数の変調周波数に対し
て1つにしているので、測距のための信号処理回路系は
単一の周波数帯で済むことになり回路の簡略化、低コス
ト化、センサの小型化が図られる。しかも、モードセレ
クタにより変調周波数の切換え及び信号処理回路での周
波数のビートダウンが自動的に行われるため、高速度で
高精度な測距が可能となる。
Third, frequency beatdown is performed by mixing the detection signal from the detector and the reference signal from the oscillator, and the frequency of the beatdown signal is made one for multiple modulation frequencies, so it is possible to measure The signal processing circuit system for distance measurement only needs to use a single frequency band, resulting in simpler circuits, lower costs, and smaller sensors. Moreover, since the mode selector automatically switches the modulation frequency and the signal processing circuit automatically performs frequency beatdown, high-speed and highly accurate distance measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

l7・\−/ 第1図は本発明の第1の実施例におけるレーザ視覚セン
サの全体構成を示すブロック図、第2図は第1図の構成
におけるレーザ光の走査方法を示すタイミング図、第3
図は本発明の第2の実施例に訟けるレーザ視覚センサの
光変調系の構或を示すブロック図、第4図は本発明の第
3の実施例におけるレーザ光の変調回路系のブロノク図
、第5図は従来例にかけるレーザ桃覚センサの構或を示
すブロック図である。
l7・\-/ FIG. 1 is a block diagram showing the overall configuration of a laser visual sensor in the first embodiment of the present invention, FIG. 2 is a timing diagram showing a laser beam scanning method in the configuration of FIG. 1, and FIG. 3
The figure is a block diagram showing the structure of the light modulation system of a laser visual sensor according to the second embodiment of the present invention, and FIG. 4 is a block diagram of the laser light modulation circuit system according to the third embodiment of the present invention. FIG. 5 is a block diagram showing the structure of a conventional laser peach sensor.

Claims (6)

【特許請求の範囲】[Claims] (1)レーザ発振器と、前記レーザ発振器からのレーザ
光を複数の変調周波数で変調する手段と、変調されたレ
ーザ光を被測定物に照射する手段と、被測定物からの反
射レーザ光を検出する光検出器と、前記光検出器の出力
と前記複数の変調周波数の中の1つの変調周波数の電気
信号との位相差を検出する手段と、前記複数の変調周波
数の1つを選択する手段とを具備したことを特徴とする
レーザ視覚センサ。
(1) A laser oscillator, a means for modulating the laser beam from the laser oscillator at a plurality of modulation frequencies, a means for irradiating the modulated laser beam onto an object to be measured, and detecting the reflected laser beam from the object to be measured. means for detecting a phase difference between the output of the photodetector and an electrical signal of one modulation frequency among the plurality of modulation frequencies, and means for selecting one of the plurality of modulation frequencies. A laser visual sensor characterized by comprising:
(2)複数の変調周波数の1つを選択する手段が高速モ
ードと高精度モードのモード選択手段であり、高速モー
ドでは低い変調周波数でレーザ光の変調を行い、長距離
を一義的に測距し、高精度モードでは高い変調周波数で
レーザ光の変調を行い、高精度の測距を行う請求項1記
載のレーザ視覚センサ。
(2) The means for selecting one of a plurality of modulation frequencies is the mode selection means for high-speed mode and high-precision mode, and in high-speed mode, the laser beam is modulated at a low modulation frequency to uniquely measure distances over long distances. 2. The laser visual sensor according to claim 1, wherein the laser beam is modulated at a high modulation frequency in the high-precision mode to perform high-precision distance measurement.
(3)複数の変調周波数の比を2のn乗倍とする請求項
1記載のレーザ視覚センサ。
(3) The laser visual sensor according to claim 1, wherein the ratio of the plurality of modulation frequencies is 2 to the nth power.
(4)高速モードでの測距データを上位ビットに、高精
度モードでの測距データを下位ビットに記録する請求項
2記載のレーザ視覚センサ。
(4) The laser visual sensor according to claim 2, wherein the distance measurement data in the high-speed mode is recorded in the upper bits, and the distance measurement data in the high-precision mode is recorded in the lower bits.
(5)高精度モードによる測距において、レーザ光の走
査を主走査複数回につき副走査1ステップ移動とし、主
走査の1回を低い変調周波数による測距、他の回を高い
変調周波数による測距とする請求項1記載のレーザ視覚
センサ。
(5) In distance measurement in high-precision mode, the laser beam scans by one sub-scan step for each main scan, and one main scan is used for distance measurement using a low modulation frequency, and the other times are used for distance measurement using a high modulation frequency. The laser visual sensor according to claim 1, wherein the distance is a distance.
(6)検出器からの検出信号を複数の変調周波数信号の
混合信号と混合することによりビートダウンを行う請求
項1記載のレーザ視覚センサ。
(6) The laser vision sensor according to claim 1, wherein the beatdown is performed by mixing the detection signal from the detector with a mixed signal of a plurality of modulated frequency signals.
JP1233254A 1989-09-08 1989-09-08 Laser vision sensor Expired - Fee Related JP2644895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233254A JP2644895B2 (en) 1989-09-08 1989-09-08 Laser vision sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233254A JP2644895B2 (en) 1989-09-08 1989-09-08 Laser vision sensor

Publications (2)

Publication Number Publication Date
JPH0395402A true JPH0395402A (en) 1991-04-19
JP2644895B2 JP2644895B2 (en) 1997-08-25

Family

ID=16952193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233254A Expired - Fee Related JP2644895B2 (en) 1989-09-08 1989-09-08 Laser vision sensor

Country Status (1)

Country Link
JP (1) JP2644895B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304523A (en) * 1995-05-02 1996-11-22 Toshiba Corp Optical searching device
JP2002090454A (en) * 2000-09-14 2002-03-27 Hokuyo Automatic Co Obstacle detection sensor for automated guided vehicle
CN110168403A (en) * 2017-02-28 2019-08-23 索尼半导体解决方案公司 Distance-measuring device, distance measurement method and Range Measurement System
JP2021185368A (en) * 2016-12-27 2021-12-09 パイオニア株式会社 Method for determining scanning method, and measuring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519033B1 (en) 2018-07-03 2019-05-29 Dolphin株式会社 Object detection device, object detection method, and design method of object detection device
JP6541165B1 (en) * 2019-01-24 2019-07-10 Dolphin株式会社 Optical scanning method, optical scanning device and object detection device
JP6651110B1 (en) 2019-05-28 2020-02-19 Dolphin株式会社 Object detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119660A (en) * 1973-03-16 1974-11-15
JPS62127685A (en) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd Laser distance measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119660A (en) * 1973-03-16 1974-11-15
JPS62127685A (en) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd Laser distance measuring instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304523A (en) * 1995-05-02 1996-11-22 Toshiba Corp Optical searching device
JP2002090454A (en) * 2000-09-14 2002-03-27 Hokuyo Automatic Co Obstacle detection sensor for automated guided vehicle
JP4703830B2 (en) * 2000-09-14 2011-06-15 北陽電機株式会社 Obstacle detection sensor for automated guided vehicles
JP2021185368A (en) * 2016-12-27 2021-12-09 パイオニア株式会社 Method for determining scanning method, and measuring method
CN110168403A (en) * 2017-02-28 2019-08-23 索尼半导体解决方案公司 Distance-measuring device, distance measurement method and Range Measurement System
EP3591437A4 (en) * 2017-02-28 2020-07-22 Sony Semiconductor Solutions Corporation Distance measurement device, distance measurement method, and distance measurement system
CN110168403B (en) * 2017-02-28 2023-12-01 索尼半导体解决方案公司 Distance measuring device, distance measuring method, and distance measuring system

Also Published As

Publication number Publication date
JP2644895B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US3796495A (en) Apparatus and methods for scanning phase profilometry
US3715165A (en) Investigating the topography of reflecting surfaces
US6747736B2 (en) Terahertz wave spectrometer
JP2001227911A (en) Interference detecting apparatus and tomograph
US3597536A (en) Dual beam laser display device employing polygonal mirror
Luan Experimental investigation of photonic mixer device and development of TOF 3D ranging Ssystems based on PMD technology
US5000567A (en) Laser radar system for detecting an object
JPH0395402A (en) Laser vision sensor
US5369489A (en) Time division multiplexed microscopy
US4861158A (en) Chirp and Doppler optical gauge
US5754298A (en) Method and apparatus for imaging semiconductor device properties
JPH10232204A (en) Device for measuring refractive index
US4179936A (en) Acoustic image recorders
Li et al. Two-Dimensional Field Mapping of GaAs Microstrip Circuit by Electro-optic Sampling
SU1734066A1 (en) Method of studying relief and phase objects in a laser scanning microscope and device thereof
JP3546126B2 (en) 3D shape measuring device
JPH02307046A (en) Face plate defect detection system by heterodyne system and inspection device
JP2004212622A (en) Confocal microscope
Grabowski et al. Three-dimensional pictures of industrial scenes applying an optical radar
KR100270365B1 (en) High Speed Scanning Interferometer System
JP3111551B2 (en) Video clock signal generator
SU1629751A1 (en) Scanning differential optical microscope
JPH076922B2 (en) Pattern defect detection method
JPH0682552A (en) Electrooptical distance measurement
JPH1038536A (en) Three dimensional shape measuring device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees