JPH0682552A - Electrooptical distance measurement - Google Patents

Electrooptical distance measurement

Info

Publication number
JPH0682552A
JPH0682552A JP4233859A JP23385992A JPH0682552A JP H0682552 A JPH0682552 A JP H0682552A JP 4233859 A JP4233859 A JP 4233859A JP 23385992 A JP23385992 A JP 23385992A JP H0682552 A JPH0682552 A JP H0682552A
Authority
JP
Japan
Prior art keywords
light
phase
measurement
internal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4233859A
Other languages
Japanese (ja)
Other versions
JP3236941B2 (en
Inventor
Yukihisa Ichikawa
恭久 一川
Koji Sasaki
幸治 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP23385992A priority Critical patent/JP3236941B2/en
Publication of JPH0682552A publication Critical patent/JPH0682552A/en
Application granted granted Critical
Publication of JP3236941B2 publication Critical patent/JP3236941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure a distance highly accurately by measuring the phases of measuring light and internal light having maximum modulation frequency immediately before and after switching whereas measuring the phases of measuring light and internal light having frequency other than the maximum modulation frequency prior to switching. CONSTITUTION:Light from a light source is reflected in the order of modulation frequencies F3, F2, F1 and impinges, as an internal light, on a detector and the phase thereof is measured by specified times through a phase meter thus determining an average value. The light source is then switched to emit measuring light in the order of frequencies F1, F3, F2, F1 which impinges on the detector and the phase thereof is measured by specified times through the phase meter thus determining the average value thereof. Switching is made again to the internal light and the phase is measured similarly by specified times in the order of frequencies F1, F3, F2, F1. Distance measurement data D1 is obtained from phase measurements of internal and measuring lights during an interval from first phase measurement of internal light having frequency F3 to F1 immediately after S2 whereas data D2 is obtained from phase measurements of internal light and measuring light during the interval from F3 following to S2 to F1 following to S4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波距離計における測
距方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring method in a light wave distance meter.

【0002】[0002]

【従来の技術】従来、切換器により内部光路と測定光路
を交互に切り換え、光源から内部光路を通って検出器に
入射する内部光と光源から測定光路を通って検出器に入
射する測定光の位相をそれぞれ少なくとも2つの変調周
波数の光について順次求め、内部光と測定光の位相差か
ら目標点までの測距を行なう光波距離計による測距方法
が知られている。
2. Description of the Related Art Conventionally, an internal optical path and a measuring optical path are alternately switched by a switching device, and an internal light that enters a detector from a light source through the internal optical path and a measuring light that enters the detector from a light source through the measuring optical path. A distance measuring method using a light wave distance meter is known, in which the phases are sequentially obtained for lights of at least two modulation frequencies, and the distance is measured from the phase difference between the internal light and the measuring light to a target point.

【0003】これを更に詳細に説明すると、図3に示す
ように、内部光の位相測定Aと測定光の位相測定Bとを
切換器の切り換えにより順次行なう場合、例えば3つ
(F1、F2、F3、F1>F2>F3とする)の変調周波数
の光を用い、内部光の位相測定Aは、変調周波数F3
2及びF1の順序で、測定光の位相測定Bは変調周波数
1、F2、及びF3の順序で行なう。(同図中、1、
2、3はそれぞれ変調周波数F1、F2、F3で測定した
値を示す。) 各変調周波数における測定では、例えば1万回測定して
平均値を求める。測定データD1、D2、D3、D4、D5
は、内部光路から測定光路への切換器による切り換えの
前後に行なわれる周波数F1、F2、F3の内部光の位相
測定と周波数F1、F2、F3の測定光の位相測定とから
求める(同図中D1〜D5は測距データD1、D2…D5
得られるタイミングを示す。)
This will be described in more detail. As shown in FIG. 3, when the phase measurement A of the internal light and the phase measurement B of the measurement light are sequentially performed by switching the switch, for example, three (F 1 , F 1 2 , F 3 , F 1 > F 2 > F 3 ), and the phase measurement A of the internal light is performed using the modulation frequency F 3 ,
In the order of F 2 and F 1 , the phase measurement B of the measurement light is performed in the order of the modulation frequencies F 1 , F 2 , and F 3 . (In the figure, 1,
Reference numerals 2 and 3 represent values measured at modulation frequencies F 1 , F 2 and F 3 , respectively. In the measurement at each modulation frequency, for example, the measurement is performed 10,000 times to obtain the average value. Measurement data D 1 , D 2 , D 3 , D 4 , D 5
Is the phase measurement of the internal light of the frequencies F 1 , F 2 , F 3 and the phase measurement of the measurement light of the frequencies F 1 , F 2 , F 3 performed before and after the switching from the internal optical path to the measurement optical path by the switch. (D 1 to D 5 in the figure indicate the timing at which the distance measurement data D 1 , D 2 ... D 5 are obtained.)

【0004】[0004]

【発明が解決しようとする課題】前述の測距方法による
と、ドリフトのために比較的正確な測距値が得られない
という課題があった。本発明は、従来の測距方法の課題
を解決することをその目的とするものである。
According to the above-described distance measuring method, there is a problem that a relatively accurate distance measuring value cannot be obtained due to drift. An object of the present invention is to solve the problems of the conventional distance measuring method.

【0005】[0005]

【課題を解決するための手段】本発明は、前記目的を達
成するために、切換器により内部光路と測定光路を交互
に切り換え、光源から内部光路を通って検出器に入射す
る内部光と、光源から測定光路を通って検出器に入射す
る測定光の位相を、それぞれ少なくとも2つの変調周波
数の光について求め、測定光と内部光の位相差から目標
点までの測距を行なう光波距離計の測距方法において、
最大変調周波数以外の周波数の測定光又は内部光からそ
の位相の測定を開始し、切換器による内部光路と測定光
路の切り換えの直前及び直後には、最大変調周波数の内
部光と測定光の位相を測定し、前記切り換えの直前の1
つ前に最大変調周波数以外の同一の周波数の内部光と測
定光の位相を測定すると共に前記最大変調周波数の内部
光と測定光の位相データの平均値を求めることを特徴と
する。
In order to achieve the above object, the present invention provides an internal light which is switched between an internal optical path and a measurement optical path by a switch and is incident on a detector from a light source through the internal optical path. The phase of the measuring light that enters the detector from the light source through the measuring optical path is obtained for the light of at least two modulation frequencies, and the range of the optical distance meter that measures the distance from the phase difference between the measuring light and the internal light to the target point is measured. In the distance measuring method,
The measurement of the phase is started from the measurement light or the internal light of a frequency other than the maximum modulation frequency, and the phase of the internal light of the maximum modulation frequency and the phase of the measurement light are measured immediately before and after the switching of the internal optical path and the measurement optical path by the switch. Measure and 1 immediately before the switching
Before this, the phases of the internal light and the measuring light of the same frequency other than the maximum modulation frequency are measured, and the average value of the phase data of the internal light and the measuring light of the maximum modulation frequency is obtained.

【0006】[0006]

【作用】前述した測距方法によれば、内部光の位相測定
は、図3に示すように、変調周波数F3、F2、F1の順
序で行ない、測定光の位相測定は、変調周波数F1
2、F3の順序で行なうが、この測定された位相データ
は、それぞれ、その測定前の周波数と測定時の周波数の
差の大きさにより位相データのドリフト量が異なる。す
なわち、図4に示すように、高い精度が要求される短距
離計測用の高周波数F1による内部光の位相データA
1は、その測定前の周波数F2と測定時の周波数F1の差
が大きいためドリフト量が大きいのに対し、高周波数F
1による測定光の位相データB1は、その測定前の周波数
と測定時の周波数がF1で変らないため、ドリフト量が
小さい。これは周波数差が大きく変化すると、受光部又
は送光部の電気回路内にあるインダクタンス成分などに
より信号が落ちつくまで時間がかかるためである。
According to the distance measuring method described above, the phase of the internal light is measured in the order of the modulation frequencies F 3 , F 2 , and F 1 as shown in FIG. 3, and the phase of the measurement light is measured by the modulation frequency. F 1 ,
The measurement is performed in the order of F 2 and F 3 , but the measured phase data has a different drift amount of the phase data depending on the magnitude of the difference between the frequency before measurement and the frequency at the time of measurement. That is, as shown in FIG. 4, the phase data A of the internal light at the high frequency F 1 for short distance measurement, which requires high accuracy.
1 has a large difference between the frequency F 2 before the measurement and the frequency F 1 at the time of the measurement, the drift amount is large, while the high frequency F
The phase data B 1 of the measurement light by 1 has a small drift amount because the frequency before measurement and the frequency at the time of measurement do not change at F 1 . This is because it takes time for the signal to settle down due to an inductance component or the like in the electric circuit of the light receiving section or the light transmitting section when the frequency difference greatly changes.

【0007】したがって周波数F1による測定光と内部
光の位相差データを求めたとき、ドリフトが相殺され
ず、高い精度が得られない。本発明は、従来の測距方法
についてのこのような考察から導き出されたものであ
る。
Therefore, when the phase difference data between the measurement light and the internal light at the frequency F 1 is obtained, the drifts are not canceled out and high accuracy cannot be obtained. The present invention is derived from such consideration of the conventional distance measuring method.

【0008】図1に示すように、周波数F3、F2及びF
1の内部光の位相データA3、A2及びA1を順次求め、次
いで切換器を切換えて、周波数F1、F3、F2及びF1
測定光の位相データB1′、B3、B2及びB1を求め、再
び切換器を切換えて周波数F1、F3、F2及びF1の内部
光の位相データA1′、A3、A2及びA1を求め、次いで
周波数F1、F3、F2及びF1の測定光の位相データ
1′、B3、B2、B1を求める。そして位相データ
1、B1′及び位相B1、A1′の平均値を算出し、測距
データD1を求める。以下同様の測定を任意回繰返す。
As shown in FIG. 1, frequencies F 3 , F 2 and F
The phase data A 3 , A 2 and A 1 of the internal light of 1 are sequentially obtained, and then the switching device is switched to the phase data B 1 ′, B 3 of the measurement light of the frequencies F 1 , F 3 , F 2 and F 1. , B 2 and B 1 are obtained, the switch is switched again to obtain the phase data A 1 ′, A 3 , A 2 and A 1 of the internal light of the frequencies F 1 , F 3 , F 2 and F 1 , and then the frequencies Phase data B 1 ′, B 3 , B 2 , and B 1 of the measurement lights of F 1 , F 3 , F 2, and F 1 are obtained. Then, the average value of the phase data A 1 and B 1 ′ and the phases B 1 and A 1 ′ is calculated to obtain the distance measurement data D 1 . The same measurement is repeated any number of times.

【0009】各周波数における測定では、例えば500
0回測定して平均値を求める。測距データD1、D2
は、内部光路から測定光路への切換器による切り換えの
前後に行なわれる周波数F3、F2、F1の内部光の位相
測定及び周波数F1、F3、F2、F1の測定光の位相測定
と、測定光路から内部光路への切換器による切り換えの
直後に行われる周波数F1の内部光の位相測定とから求
める。
In the measurement at each frequency, for example, 500
Measure 0 times to obtain the average value. Distance measurement data D 1 , D 2 ...
Is the phase measurement of the internal light of frequencies F 3 , F 2 , F 1 performed before and after the switching from the internal optical path to the measuring optical path by the switch and of the measuring light of frequencies F 1 , F 3 , F 2 , F 1 . It is determined from the phase measurement and the phase measurement of the internal light of the frequency F 1 performed immediately after the switching from the measurement optical path to the internal optical path by the switch.

【0010】内部光路から測定光路への切り換えの直前
の周波数F1の内部光の位相データA1及び該切り換え直
後の周波数F1の測定光の位相データB1′のドリフト量
は、前述の理由により大(ΔD)及び小(Δd)であ
り、測定光路から内部光路への切り換えの直前の周波数
1の測定光の位相データB1及び該切り換え直後の周波
数F1の内部光の位相データA1′のドリフト量は、大
(ΔD)及び小(Δd)である。
The drift amount of the phase data A 1 of the internal light of the frequency F 1 immediately before the switching from the internal optical path to the measurement optical path and the phase data B 1 ′ of the measurement light of the frequency F 1 immediately after the switching is due to the above-mentioned reason. Is larger (ΔD) and smaller (Δd), and the phase data B 1 of the measuring light of the frequency F 1 immediately before the switching from the measuring optical path to the internal optical path and the phase data A of the internal light of the frequency F 1 immediately after the switching. drift amount of 1 'is greater ([Delta] D) and small ([Delta] d).

【0011】したがって測距データD1は例えば(Δd
−ΔD)+(ΔD−Δd)として平均値を算出して求め
れば位相差データのドリフト量は相殺される。
Therefore, the distance measurement data D 1 is, for example, (Δd
If the average value is calculated as −ΔD) + (ΔD−Δd), the drift amount of the phase difference data is canceled.

【0012】[0012]

【実施例】以下本発明の実施例を図面につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0013】図2は、本発明の測距方法の実施に使用す
る光波距離計の原理図を示す。
FIG. 2 shows a principle diagram of an optical distance meter used for implementing the distance measuring method of the present invention.

【0014】同図において、1は、例えば、F1=15
MHz、F2=150KHz、F3=165KHzの3つ
の周波数の信号を出力する発振器で、この発振器1の出
力は変調器2に供給され、変調器2の出力は例えばレー
ザダイオードの光源3に供給されるようになっている。
4は送受光用ミラー、5は対物レンズ、6は目標点に置
かれた反射鏡、7は光の検出器、8は切換器、9は位相
計である。
In the figure, 1 is, for example, F 1 = 15.
An oscillator that outputs signals of three frequencies of MHz, F 2 = 150 KHz, and F 3 = 165 KHz. The output of the oscillator 1 is supplied to the modulator 2, and the output of the modulator 2 is supplied to the light source 3 of the laser diode, for example. It is supposed to be done.
Reference numeral 4 is a mirror for transmitting and receiving light, 5 is an objective lens, 6 is a reflecting mirror placed at a target point, 7 is a light detector, 8 is a switch, and 9 is a phase meter.

【0015】次に、測距方法について説明すると、先
ず、切換器8を図示の位置にし、光源3から変調周波数
3=165KHzの光を放射させ、この光を内部光と
して、光源3からプリズム10、11、12を経て検出
器7に至る内部光路を経て検出器7に入射させ、この内
部光の位相を位相計9で測定する。この測定は、例えば
1000回繰返し、その平均値を求める。その後、切換
器8はそのままにして変調周波数がF2=150KH
z、F1=15MHzの光を順次内部光路に通じて内部
光の位相を測定する。この周波数F2及びF1での内部光
の位相の測定は、それぞれ例えば2500回、5000
回行ない、その平均値を算出する。
Next, the distance measuring method will be described. First, the switch 8 is set to the position shown in the figure, and the light source 3 emits light having a modulation frequency F 3 = 165 KHz. The phase of the internal light is measured by the phase meter 9 after being made incident on the detector 7 through the internal optical path reaching the detector 7 via 10, 11, and 12. This measurement is repeated 1000 times, for example, and the average value is obtained. After that, the switch 8 is left as it is and the modulation frequency is F 2 = 150 KH.
Light of z and F 1 = 15 MHz is sequentially passed through the internal optical path to measure the phase of the internal light. The measurement of the phase of the internal light at the frequencies F 2 and F 1 is performed 2500 times, 5000 times, respectively.
It is repeated and the average value is calculated.

【0016】次いで、切換器8を上方に移動し、周波数
1の光を測定光として、光源3からプリズム12、送
受光用ミラー4、対物レンズ5、反射鏡6、対物レンズ
5及び前記ミラー4を経て検出器7に至る測定光路を通
って検出器7に入射させ、この測定光の位相を位相計9
で測定する。この周波数F1は例えば5000回繰返
し、その平均値を求める。その後、切換器8は、そのま
まにして変調周波数がF3=165KHz、F2=150
KHz及びF1=15MHzの光を順次測定光路に通し
て測定光の位相を測定する。この周波数F3、F2及びF
1での測定光の位相の測定は、それぞれ例えば1000
回、2500回及び10000回行ない、その平均値を
算出する。以上の測定の後ドリフト量を相殺するため位
相データA1、B1′及びB1、A1′の平均値を算出し、
測距データとしてD1を求める。再び切換器8を内部光
路側に切り換え、変調周波数をF1、F3、F2及びF1
順序で変え、それぞれについて内部光の位相を測定す
る。各周波数での内部光の位相測定は前と同じようにF
1については5000回、F3については1000回、F
2については2500回、F1については5000回行な
う。
Next, the switch 8 is moved upward, and the light of the frequency F 1 is used as the measurement light. From the light source 3, the prism 12, the transmission / reception mirror 4, the objective lens 5, the reflecting mirror 6, the objective lens 5, and the mirror. It is incident on the detector 7 through the measuring optical path reaching the detector 7 via 4 and the phase of this measuring light is measured by the phase meter 9
To measure. This frequency F 1 is repeated 5000 times, for example, and the average value is obtained. After that, the switching device 8 is left as it is and the modulation frequency is F 3 = 165 KHz and F 2 = 150.
Light of KHz and F 1 = 15 MHz is sequentially passed through the measurement optical path to measure the phase of the measurement light. This frequencies F 3 , F 2 and F
The measurement of the phase of the measurement light at 1 is, for example, 1000
Repeat 2500 times and 10000 times and calculate the average value. After the above measurement, the average value of the phase data A 1 , B 1 ′ and B 1 , A 1 ′ is calculated to cancel the drift amount,
D 1 is obtained as the distance measurement data. The switch 8 is again switched to the internal optical path side, the modulation frequency is changed in the order of F 1 , F 3 , F 2 and F 1 , and the phase of the internal light is measured for each. The internal light phase measurement at each frequency is the same as before.
1 times 5000 times, F 3 1000 times, F
Repeat 2500 times for 2 and 5000 times for F 1 .

【0017】測距データD1は、切換器8の第1回目の
切り換えS1の直前の周波数F1の内部光の位相測定より
2つ手前の周波数F3の内部光の位相測定から第2回目
の切り換えS2の直後の周波数F1の内部光の位相測定ま
での間に行われる内部光の位相測定及び測定光の位相測
定とから得られる。測距データD2は、切換器8の第2
回目の切り換えS2の後の周波数F2の内部光の位相測定
から切換器8の第4回目の切り換えS4の後の周波数F1
の内部光の位相測定までの間に行なわれる内部光の位相
測定及び測定光の位相測定とから得られる。
The distance measurement data D 1 is the second from the phase measurement of the internal light of the frequency F 3 which is two before the phase measurement of the internal light of the frequency F 1 immediately before the first switching S 1 of the switch 8. It is obtained from the phase measurement of the internal light and the phase measurement of the measurement light performed until the phase measurement of the internal light of the frequency F 1 immediately after the second switching S 2 . The distance measurement data D 2 is the second data of the switching device 8.
From the phase measurement of the internal light of frequency F 2 after the second switching S 2 , the frequency F 1 after the fourth switching S 4 of the switching device 8
It is obtained from the internal light phase measurement and the measurement light phase measurement performed up to the internal light phase measurement.

【0018】[0018]

【発明の効果】本発明は、前述のように、最大変調周波
数以外の周波数の測定光又は内部光からその位相の測定
を開始し、切換器による内部光路と測定光路の切り換え
の直前及び直後には、最大変調周波数の内部光と測定光
の位相を測定し、前記切り換えの直前の1つ前に最大変
調周波数以外の同一の周波数の内部光と測定光の位相を
測定するので、位相測定のドリフト量が相殺され精度の
高い測距値が得られるという効果を有する。
As described above, according to the present invention, the phase measurement is started from the measuring light or the internal light having a frequency other than the maximum modulation frequency, and immediately before and after the switching of the internal optical path and the measuring optical path by the switch. Measures the phases of the internal light having the maximum modulation frequency and the measurement light, and immediately before the switching, measures the phases of the internal light and the measurement light having the same frequency other than the maximum modulation frequency. This has the effect of offsetting the drift amount and obtaining a highly accurate distance measurement value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の測距方法の実施例を説明するタイム
チャート
FIG. 1 is a time chart explaining an embodiment of a distance measuring method according to the present invention.

【図2】 本発明の測距方法の実施に使用する光波距離
計の原理図
FIG. 2 is a principle diagram of a lightwave rangefinder used for implementing the distance measuring method of the present invention.

【図3】 従来の光波距離計における測距方法を説明す
るタイムチャート
FIG. 3 is a time chart explaining a distance measuring method in a conventional optical distance meter.

【図4】 従来の光波距離計における測定方法による位
相データとドリフトとの関係を示すタイムチャート
FIG. 4 is a time chart showing the relationship between phase data and drift measured by a conventional lightwave distance meter.

【符号の説明】[Explanation of symbols]

1 発振器 2 変調器 3 光源 7 光の検出器 8 切換器 4 位相計 1 oscillator 2 modulator 3 light source 7 light detector 8 switcher 4 phase meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 切換器により内部光路と測定光路を交互
に切り換え、光源から内部光路を通って検出器に入射す
る内部光と、光源から測定光路を通って検出器に入射す
る測定光の位相を、それぞれ少なくとも2つの変調周波
数の光について求め、測定光と内部光の位相差から目標
点までの測距を行なう光波距離計の測距方法において、
最大変調周波数以外の周波数の測定光又は内部光からそ
の位相の測定を開始し、切換器による内部光路と測定光
路の切り換えの直前及び直後には、最大変調周波数の内
部光と測定光の位相を測定し、前記切り換えの直前の1
つ前に最大変調周波数以外の同一の周波数の内部光と測
定光の位相を測定すると共に前記最大変調周波数の内部
光と測定光の位相データの平均値を求めることを特徴と
する光波距離計における測距方法。
1. A phase of an internal light which is switched between an internal optical path and a measurement optical path by a switch, and which is incident on a detector from a light source through the internal optical path, and a phase of measurement light which is incident on a detector from a light source through the measurement optical path. Is obtained for light of at least two modulation frequencies, and a distance measuring method of a light wave range finder for measuring a distance from a phase difference between measurement light and internal light to a target point
The measurement of the phase is started from the measurement light or the internal light of a frequency other than the maximum modulation frequency, and immediately before and after the switching of the internal optical path and the measurement optical path by the switch, the phase of the internal light of the maximum modulation frequency and the measurement light is changed. Measure and 1 immediately before the switching
In the light distance meter characterized by measuring the phase of the internal light of the same frequency other than the maximum modulation frequency and the measurement light before and the average value of the phase data of the internal light of the maximum modulation frequency and the measurement light Distance measuring method.
JP23385992A 1992-09-01 1992-09-01 Distance measurement method for lightwave distance meter Expired - Lifetime JP3236941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23385992A JP3236941B2 (en) 1992-09-01 1992-09-01 Distance measurement method for lightwave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23385992A JP3236941B2 (en) 1992-09-01 1992-09-01 Distance measurement method for lightwave distance meter

Publications (2)

Publication Number Publication Date
JPH0682552A true JPH0682552A (en) 1994-03-22
JP3236941B2 JP3236941B2 (en) 2001-12-10

Family

ID=16961694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23385992A Expired - Lifetime JP3236941B2 (en) 1992-09-01 1992-09-01 Distance measurement method for lightwave distance meter

Country Status (1)

Country Link
JP (1) JP3236941B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899702A (en) * 1988-02-12 1990-02-13 Toyota Jidosha Kabushiki Kaisha Aluminum alloy piston and piston-ring assembly treated to suppress agglutination of the piston alloy to a piston-ring
JP2010014502A (en) * 2008-07-02 2010-01-21 Murata Mach Ltd Optical range finder
CN105518480A (en) * 2013-06-14 2016-04-20 微软技术许可有限责任公司 Depth map correction using lookup tables

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707363B2 (en) 2004-10-20 2011-06-22 株式会社 ソキア・トプコン Light wave distance meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899702A (en) * 1988-02-12 1990-02-13 Toyota Jidosha Kabushiki Kaisha Aluminum alloy piston and piston-ring assembly treated to suppress agglutination of the piston alloy to a piston-ring
JP2010014502A (en) * 2008-07-02 2010-01-21 Murata Mach Ltd Optical range finder
CN105518480A (en) * 2013-06-14 2016-04-20 微软技术许可有限责任公司 Depth map correction using lookup tables
US10230934B2 (en) 2013-06-14 2019-03-12 Microsoft Tehcnology Licensing, Llc Depth map correction using lookup tables

Also Published As

Publication number Publication date
JP3236941B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JP2896782B2 (en) Pulse type lightwave distance meter
US7339655B2 (en) Electric optical distance wavelength meter
EP0640846B1 (en) Optical measuring apparatus
US5082364A (en) Rf modulated optical beam distance measuring system and method
JP2909742B2 (en) Delay time measuring device
JPH0419512B2 (en)
US20060119833A1 (en) Method and device for deriving geodetic distance data
JPH01141388A (en) Photoelectric distance measurement
JPH01235889A (en) Light wave distance measuring instrument having linearity error correction function
JP3583906B2 (en) Optical rangefinder
EP0512450A2 (en) Wavelength variation measuring apparatus
US4827317A (en) Time interval measuring device
US4822164A (en) Optical inspection device and method
JPH0682552A (en) Electrooptical distance measurement
JPH05323029A (en) Distance measuring method by light wave range finder
JPH06186337A (en) Laser distance measuring equipment
JP2903220B2 (en) Distance measurement method for lightwave distance meter
JP2537375B2 (en) Lightwave rangefinder
JPH11160065A (en) Optical wave distance measuring instrument
JPH05232229A (en) Pulse signal detector and optical distance meter
JP3118731B2 (en) Distance measurement method with lightwave distance meter
JPH0448289A (en) Light wave range finder
JPH08105971A (en) Ranging method using multi-pulse and device therefor
JPS5988673A (en) Laser device for measuring distance
JPS6023739Y2 (en) light wave distance meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term