JP4700300B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP4700300B2
JP4700300B2 JP2004204442A JP2004204442A JP4700300B2 JP 4700300 B2 JP4700300 B2 JP 4700300B2 JP 2004204442 A JP2004204442 A JP 2004204442A JP 2004204442 A JP2004204442 A JP 2004204442A JP 4700300 B2 JP4700300 B2 JP 4700300B2
Authority
JP
Japan
Prior art keywords
heat insulating
heat
quartz
sic
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004204442A
Other languages
Japanese (ja)
Other versions
JP2006032386A (en
Inventor
恵信 山▲崎▼
智晴 島田
謙一 石黒
明 諸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2004204442A priority Critical patent/JP4700300B2/en
Publication of JP2006032386A publication Critical patent/JP2006032386A/en
Application granted granted Critical
Publication of JP4700300B2 publication Critical patent/JP4700300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウエハやガラス基板等を熱処理するための熱処理装置に関する。   The present invention relates to a heat treatment apparatus for heat treating a semiconductor wafer, a glass substrate or the like.

複数の基板をボートに載置し、例えば1200°C程度の温度での高温加熱によって熱処理を行う縦型炉を有する熱処理装置が知られている。
この種の熱処理装置において、反応炉下方の炉口を断熱部材を有する炉口キャップにより遮蔽し、熱処理を行うことは公知である(特許文献1参照)。
A heat treatment apparatus having a vertical furnace in which a plurality of substrates are mounted on a boat and heat-treated by high-temperature heating at a temperature of, for example, about 1200 ° C. is known.
In this type of heat treatment apparatus, it is known to perform heat treatment by shielding the furnace port below the reaction furnace with a furnace port cap having a heat insulating member (see Patent Document 1).

特開平6−338473号公報JP-A-6-338473

しかしながら、より高温、例えば1350°Cで基板を熱処理する場合、基板を支持する支持具の下方に設けられる断熱部材を石英(SiO)製とすると、石英がクリープ現象を起こして変形してしまうおそれがある。石英製の断熱部材が変形すると、断熱部材による断熱効果が低下するので、炉口キャップが高温になる。炉口キャップが高温になると、炉口部のシール材料であり耐熱温度が例えば250°CであるOリングが溶けて、炉口キャップによる遮蔽性が失われる。さらに、Oリングが溶けて炉口部の遮蔽性が失われると、支持具が倒れて破損したり、支持具に支持された基板が破損する可能性がある。 However, when the substrate is heat-treated at a higher temperature, for example, 1350 ° C., if the heat insulating member provided below the support for supporting the substrate is made of quartz (SiO 2 ), the quartz is deformed due to a creep phenomenon. There is a fear. When the quartz heat insulating member is deformed, the heat insulating effect of the heat insulating member is lowered, and the furnace port cap becomes high temperature. When the furnace port cap reaches a high temperature, the O-ring which is a seal material for the furnace port part and has a heat-resistant temperature of, for example, 250 ° C. melts, and the shielding by the furnace port cap is lost. Furthermore, if the O-ring melts and the shielding property of the furnace port portion is lost, the support tool may fall down and be damaged, or the substrate supported by the support tool may be damaged.

本発明の目的は、高温、例えば1350°C以上の温度で熱処理を行う場合においても有効に断熱を行うことができる断熱構造を有する熱処理装置を提供することにある。   An object of the present invention is to provide a heat treatment apparatus having a heat insulation structure capable of effectively performing heat insulation even when heat treatment is performed at a high temperature, for example, a temperature of 1350 ° C. or higher.

上記課題を解決するため、本発明の第1の特徴とするところは、炉口が下端に設けられた反応室と、この反応室内で基板を支持する支持具と、この支持具の下方で第1のピッチをもって上下方向に設けられた複数の炭化珪素製断熱板と、該複数の炭化珪素製断熱板の下方で第2のピッチをもって上下方向に設けられた複数の石英製断熱板と、該複数の石英製断熱板の下方に設けられ前記反応室の炉口を閉塞する炉口キャップとを有し、前記炭化珪素製断熱板の第1のピッチは、前記石英製断熱板の第2のピッチよりも大きくしてなる熱処理装置にある。炭化珪素製断熱板の第1のピッチと石英製断熱板の第2のピッチとを同一にした場合に対し、炭化珪素製断熱板の第1のピッチを石英製断熱板の第2のピッチよりも大きくしても、1350°C以上の高温加熱を断熱する効果が同等であることが実験により確認されている。また、基板を処理ガスの雰囲気中で熱処理する場合、石英製断熱板の第2のピッチよりも大きい炭化珪素(SiC)製断熱板の第1のピッチに処理ガス(気体)による断熱層が形成されると、断熱効果が向上する。このように、炭化珪素製断熱板の第1のピッチを石英製断熱板の第2のピッチよりも大きくすることにより、断熱効果を得つつ、複数の炭化珪素製断熱板の軽量化及びコストダウン並びに反応室内の低熱容量化を図ることができる。   In order to solve the above-mentioned problems, the first feature of the present invention is that a reaction chamber having a furnace port provided at the lower end, a support member for supporting a substrate in the reaction chamber, and a lower part below the support member. A plurality of heat insulation plates made of silicon carbide provided in the vertical direction with a pitch of 1, a plurality of heat insulation plates made of quartz provided in the vertical direction with a second pitch below the heat insulation plates made of silicon carbide; A furnace port cap provided below the plurality of quartz heat insulating plates and closing the furnace port of the reaction chamber, and the first pitch of the silicon carbide heat insulating plates is a second pitch of the quartz heat insulating plate. There is a heat treatment apparatus that is larger than the pitch. Where the first pitch of the silicon carbide heat insulating plate is the same as the second pitch of the quartz heat insulating plate, the first pitch of the silicon carbide heat insulating plate is set to be greater than the second pitch of the quartz heat insulating plate. However, it has been confirmed by experiments that the effect of insulating heat at a high temperature of 1350 ° C. or higher is equivalent. Further, when the substrate is heat-treated in the atmosphere of the processing gas, a heat insulating layer made of the processing gas (gas) is formed on the first pitch of the silicon carbide (SiC) heat insulating plate larger than the second pitch of the quartz heat insulating plate. When it is done, the heat insulation effect improves. Thus, by making the 1st pitch of a silicon carbide heat insulation board larger than the 2nd pitch of a quartz heat insulation board, weight reduction and cost reduction of a plurality of silicon carbide heat insulation boards are acquired, obtaining a heat insulation effect. In addition, the heat capacity in the reaction chamber can be reduced.

また、本発明の第2の特徴とするところは、炉口が下端に設けられた反応室と、この反応室内で基板を支持する支持具と、この支持具の下方で上下方向に設けられた複数の炭化珪素製断熱板と、該複数の炭化珪素製断熱板の下方で上下方向に設けられた複数の石英製断熱板と、該複数の石英製断熱板の下方に設けられ前記反応室の炉口を閉塞する炉口キャップとを有し、前記炭化珪素製断熱板の厚さは、前記石英製断熱板の厚さよりも薄い熱処理装置にある。炭化珪素製断熱板は、石英製断熱板よりも薄くても、1350°C以上の熱に対して断熱効果がある。また、複数の石英製断熱板は、熱容量が炭化珪素製の部材よりも大きく、複数の炭化珪素製断熱板によって断熱された後の低温化された熱を断熱するので、反応室側からの熱を受け止めるとともに、炭化珪素製断熱板を透過した熱を遮ることができる。このように、炭化珪素製断熱板の厚さを石英製断熱板の厚さよりも薄くすることにより、断熱効果を得つつ、複数の炭化珪素製断熱板の軽量化及び反応室内の低熱容量化を図ることができる。   The second feature of the present invention is that a reaction chamber having a furnace port at the lower end, a support for supporting the substrate in the reaction chamber, and a vertical direction below the support are provided. A plurality of heat insulation plates made of silicon carbide, a plurality of heat insulation plates made of quartz provided in the vertical direction below the heat insulation plates made of silicon carbide, and the reaction chamber provided below the heat insulation plates made of quartz made of quartz. A furnace port cap for closing the furnace port, and the thickness of the silicon carbide heat insulating plate is smaller than the thickness of the quartz heat insulating plate. Even if the silicon carbide heat insulating plate is thinner than the quartz heat insulating plate, it has a heat insulating effect against heat of 1350 ° C. or higher. In addition, the plurality of quartz heat insulating plates have a larger heat capacity than the silicon carbide member and insulate the low-temperature heat after being insulated by the plurality of silicon carbide heat insulating plates. In addition, the heat transmitted through the silicon carbide heat insulating plate can be blocked. In this way, by making the thickness of the silicon carbide heat insulating plate thinner than that of the quartz heat insulating plate, the heat insulating effect can be obtained while reducing the weight of the plurality of silicon carbide heat insulating plates and reducing the heat capacity in the reaction chamber. You can plan.

本発明によれば、高温、例えば1350°C以上の温度で熱処理を行う場合においても、有効に断熱を行うことができる。   According to the present invention, even when heat treatment is performed at a high temperature, for example, a temperature of 1350 ° C. or higher, heat insulation can be performed effectively.

次に本発明の実施形態を図面に基づいて説明する。
図1には、本発明の実施形態に係る熱処理装置10が示されている。この熱処理装置10は、例えば縦型であり、主要部が配置された筺体12を有する。この筺体12には、ポッドステージ14が接続されており、このポッドステージ14にポッド16が搬送される。ポッド16は、例えば25枚の基板が収納され、図示しない蓋が閉じられた状態でポッドステージ14にセットされる。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a heat treatment apparatus 10 according to an embodiment of the present invention. The heat treatment apparatus 10 is, for example, a vertical type and includes a casing 12 in which a main part is arranged. A pod stage 14 is connected to the housing 12, and the pod 16 is conveyed to the pod stage 14. The pod 16 stores, for example, 25 substrates, and is set on the pod stage 14 with a lid (not shown) closed.

筺体12内において、ポッドステージ14に対向する位置には、ポッド搬送装置18が配置されている。また、このポッド搬送装置18の近傍には、ポッド棚20、ポッドオープナ22及び基板枚数検知器24が配置されている。ポッド搬送装置18は、ポッドステージ14とポッド棚20とポッドオープナ22との間でポッド16を搬送する。ポッドオープナ22は、ポッド16の蓋を開けるものであり、この蓋が開けられたポッド16内の基板枚数が基板枚数検知器24により検知される。   In the housing 12, a pod transfer device 18 is disposed at a position facing the pod stage 14. Further, a pod shelf 20, a pod opener 22, and a substrate number detector 24 are arranged in the vicinity of the pod transfer device 18. The pod carrying device 18 carries the pod 16 among the pod stage 14, the pod shelf 20, and the pod opener 22. The pod opener 22 opens the lid of the pod 16, and the number of substrates in the pod 16 with the lid opened is detected by the substrate number detector 24.

さらに、筺体12内には、基板移載機26、ノッチアライナ28及び支持具30(ボート)が配置されている。基板移載機26は、例えば5枚の基板を取り出すことができるアーム32を有し、このアーム32を動かすことにより、ポッドオープナ22の位置に置かれたポッド16、ノッチアライナ28及び支持具30間で基板を搬送する。ノッチアライナ28は、基板に形成されたノッチまたはオリフラを検出して基板のノッチまたはオリフラを一定の位置に揃えるものである。   Further, a substrate transfer machine 26, a notch aligner 28, and a support tool 30 (boat) are disposed in the housing 12. The substrate transfer machine 26 includes an arm 32 that can take out, for example, five substrates. By moving this arm 32, the pod 16 placed at the position of the pod opener 22, the notch aligner 28, and the support 30. Transfer the substrate between. The notch aligner 28 detects notches or orientation flats formed on the substrate and aligns the notches or orientation flats of the substrate at a certain position.

図2において、反応炉40が示されている。この反応炉40は、SiC製の反応管42を有する。この反応管42は、上部が密閉された円筒状に形成され、下部がフランジ状に形成されて、内部が反応室43になっている。この反応管42の下部には石英製のアダプタ44が配置され、このアダプタ44により反応管42が支持されている。また、アダプタ44を除いた反応管42の周囲には、ヒータ46が配置されている。   In FIG. 2, a reactor 40 is shown. This reaction furnace 40 has a reaction tube 42 made of SiC. The reaction tube 42 is formed in a cylindrical shape with the upper part sealed, the lower part is formed in a flange shape, and the inside is a reaction chamber 43. A quartz adapter 44 is disposed below the reaction tube 42, and the reaction tube 42 is supported by the adapter 44. A heater 46 is disposed around the reaction tube 42 excluding the adapter 44.

前述した支持具30は反応管42内に挿入される。反応管42の下方は、支持具30を挿入するために開放され、この開放部分は炉口キャップ48がアダプタ44に当接することにより密閉されるようにしてある。炉口キャップ48と支持具30との間には、支持具30の下方に設けられたSiC製の第1の断熱部50と、この第1の断熱部50の下方に設けられた石英製の第2の断熱部52とが介在している。支持具30は、多数枚の基板54を略水平状態で隙間をもって多数段に支持し、反応管42内に装填される。   The aforementioned support 30 is inserted into the reaction tube 42. The lower part of the reaction tube 42 is opened to insert the support tool 30, and this open part is sealed by the furnace port cap 48 coming into contact with the adapter 44. Between the furnace cap 48 and the support 30, a first heat insulating portion 50 made of SiC provided below the support 30 and a quartz made of quartz provided below the first heat insulating portion 50. The second heat insulating part 52 is interposed. The support 30 supports a large number of substrates 54 in a substantially horizontal state with a plurality of steps with gaps, and is loaded into the reaction tube 42.

アダプタ44には、該アダプタ44と一体にガス供給口56とガス排気口58とが形成されている。ガス供給口56にはガス導入管60が、ガス排気口58には排気管62がそれぞれ接続されている。アダプタ44の内部には垂直方向に向かうガス導入経路が設けられ、その上部にはノズル取付孔64が上方に開口するように形成されている。このノズル取付孔64は、ガス供給口56とガス導入経路を介して接続されている。また、このノズル取付孔64にはノズル66が挿入固定されている。すなわち、アダプタ44の上面にノズル66が接続されることとなる。   The adapter 44 is formed with a gas supply port 56 and a gas exhaust port 58 integrally with the adapter 44. A gas introduction pipe 60 is connected to the gas supply port 56, and an exhaust pipe 62 is connected to the gas exhaust port 58. A gas introduction path extending in the vertical direction is provided inside the adapter 44, and a nozzle mounting hole 64 is formed in the upper portion so as to open upward. The nozzle mounting hole 64 is connected to the gas supply port 56 via a gas introduction path. A nozzle 66 is inserted and fixed in the nozzle mounting hole 64. That is, the nozzle 66 is connected to the upper surface of the adapter 44.

この構成により、ノズル接続部は熱で変形しにくく、また破損されにくい。また、ノズル66とアダプタ44の組立て、解体が容易になるというメリットもある。ガス導入管60からガス供給口56に導入された処理ガスは、ノズル66を介して反応管42内に供給される。ノズル66は、反応管42の内壁に沿って基板配列領域の上方(支持具30の上方)まで延びるように構成される。このノズル66は、例えば内径が10mm、長さが1000mmである。   With this configuration, the nozzle connection portion is not easily deformed by heat and is not easily damaged. Further, there is an advantage that the assembly and disassembly of the nozzle 66 and the adapter 44 are facilitated. The processing gas introduced from the gas introduction pipe 60 to the gas supply port 56 is supplied into the reaction pipe 42 through the nozzle 66. The nozzle 66 is configured to extend along the inner wall of the reaction tube 42 to above the substrate arrangement region (above the support tool 30). The nozzle 66 has an inner diameter of 10 mm and a length of 1000 mm, for example.

反応炉40において、1200°C以上の高温での処理を可能とするため、反応管42は上述したようにSiC製としてある。例えば後述するSIMOX(Separation by Implanted Oxygen)ウエハ製造のためのアニール処理温度は、1350°C以上である。一方、基板が支持された支持具30の下方に位置する第1の断熱部50を石英製とすると、処理温度が1350°C以上である場合、石英がクリープ現象を起こして変形してしまうおそれがある。   In the reaction furnace 40, the reaction tube 42 is made of SiC as described above in order to enable processing at a high temperature of 1200 ° C. or higher. For example, the annealing temperature for manufacturing a SIMOX (Separation by Implanted Oxygen) wafer described later is 1350 ° C. or higher. On the other hand, if the first heat insulating portion 50 located below the support 30 on which the substrate is supported is made of quartz, when the processing temperature is 1350 ° C. or higher, the quartz may cause a creep phenomenon and deform. There is.

石英製の第1の断熱部50が変形すると、第1の断熱部50による断熱効果が低下するので、炉口キャップ48が高温になる。炉口キャップ48が高温になると、炉口部のシール材料であり耐熱温度が例えば250°CであるOリングが溶けて、炉口キャップ48による遮蔽性が失われる。さらに、Oリングが溶けて炉口部の遮蔽性が失われると、支持具30が倒れて破損したり、支持具30に支持された基板が破損する可能性がある。そこで、第1の断熱部50をSiC製にすることにより、反応管42における処理温度が1350°C以上であっても、第1の断熱部50が断熱性を維持するようにされている。   When the first heat insulating portion 50 made of quartz is deformed, the heat insulating effect by the first heat insulating portion 50 is lowered, and the furnace port cap 48 becomes high temperature. When the furnace port cap 48 reaches a high temperature, the O-ring, which is a seal material for the furnace port part and has a heat-resistant temperature of, for example, 250 ° C. melts, and the shielding by the furnace port cap 48 is lost. Furthermore, if the O-ring melts and the shielding property of the furnace port portion is lost, the support tool 30 may fall down and be damaged, or the substrate supported by the support tool 30 may be damaged. Therefore, by making the first heat insulating portion 50 made of SiC, the first heat insulating portion 50 maintains heat insulating properties even when the processing temperature in the reaction tube 42 is 1350 ° C. or higher.

次に上述したように構成された熱処理装置10の作用について説明する。
まず、ポッドステージ14に複数枚の基板を収容したポッド16がセットされると、ポッド搬送装置18によりポッド16をポッドステージ14からポッド棚20へ搬送し、このポッド棚20にストックする。次に、ポッド搬送装置18により、このポッド棚20にストックされたポッド16をポッドオープナ22に搬送してセットし、このポッドオープナ22によりポッド16の蓋を開き、基板枚数検知器24によりポッド16に収容されている基板の枚数を検知する。
Next, the operation of the heat treatment apparatus 10 configured as described above will be described.
First, when a pod 16 containing a plurality of substrates is set on the pod stage 14, the pod 16 is transferred from the pod stage 14 to the pod shelf 20 by the pod transfer device 18 and stocked on the pod shelf 20. Next, the pod 16 stocked on the pod shelf 20 is transported and set to the pod opener 22 by the pod transport device 18, the lid of the pod 16 is opened by the pod opener 22, and the pod 16 is detected by the substrate number detector 24. The number of substrates accommodated in the sensor is detected.

次に、基板移載機26により、ポッドオープナ22の位置にあるポッド16から基板を取り出し、ノッチアライナ28に移載する。このノッチアライナ28においては、基板を回転させながら、ノッチを検出し、検出した情報に基づいて複数枚の基板のノッチを同じ位置に整列させる。次に、基板移載機26により、ノッチアライナ28から基板を取り出し、支持具30に移載する。   Next, the substrate is transferred from the pod 16 at the position of the pod opener 22 by the substrate transfer machine 26 and transferred to the notch aligner 28. The notch aligner 28 detects notches while rotating the substrates, and aligns the notches of the plurality of substrates at the same position based on the detected information. Next, the substrate is transferred from the notch aligner 28 by the substrate transfer machine 26 and transferred to the support 30.

このようにして、1バッチ分の基板を支持具30に移載すると、例えば700°C程度の温度に設定された反応炉40内に複数枚の基板を装填した支持具30を装入し、炉口キャップ48により反応管42内を密閉する。次に、炉内温度を熱処理温度まで昇温させて、ガス導入管60からガス導入口56及びノズル66を介して反応管42内に処理ガスを導入する。処理ガスには、窒素、アルゴン、水素、酸素等が含まれる。基板を熱処理する際、基板は例えば1350°C程度以上の温度に加熱される。第1の断熱部50及び第2の断熱部52は、熱処理における反応管42内の熱を断熱し、炉口キャップ48の温度が上昇しないようにする。   In this way, when one batch of substrates is transferred to the support tool 30, for example, the support tool 30 loaded with a plurality of substrates is loaded into the reaction furnace 40 set to a temperature of about 700 ° C. The inside of the reaction tube 42 is sealed with the furnace port cap 48. Next, the furnace temperature is raised to the heat treatment temperature, and the processing gas is introduced into the reaction tube 42 from the gas introduction tube 60 through the gas introduction port 56 and the nozzle 66. The processing gas includes nitrogen, argon, hydrogen, oxygen, and the like. When heat-treating the substrate, the substrate is heated to a temperature of about 1350 ° C. or more, for example. The 1st heat insulation part 50 and the 2nd heat insulation part 52 insulate the heat in the reaction tube 42 in heat processing, and keep the temperature of the furnace port cap 48 from rising.

基板の熱処理が終了すると、例えば炉内温度を700°C程度の温度に降温した後、支持具30を反応炉40からアンロードし、支持具30に支持された全ての基板が冷えるまで、支持具30を所定位置で待機させる。次に、待機させた支持具30の基板が所定温度まで冷却されると、基板移載機26により、支持具30から基板を取り出し、ポッドオープナ22にセットされている空のポッド16に搬送して収容する。次に、ポッド搬送装置18により、基板が収容されたポッド16をポッド棚20に搬送し、さらにポッドステージ14に搬送して完了する。   When the heat treatment of the substrate is completed, for example, after the temperature in the furnace is lowered to a temperature of about 700 ° C., the support 30 is unloaded from the reaction furnace 40 and is supported until all the substrates supported by the support 30 are cooled. The tool 30 is put on standby at a predetermined position. Next, when the substrate of the support 30 that has been waiting is cooled to a predetermined temperature, the substrate transfer machine 26 takes out the substrate from the support 30 and transports it to the empty pod 16 set in the pod opener 22. And accommodate. Next, the pod carrying device 18 carries the pod 16 containing the substrate to the pod shelf 20 and further to the pod stage 14 to complete.

次に上記第1の断熱部50及び第2の断熱部52について詳述する。
図3において、反応管42内で断熱する第1の断熱部50及び第2の断熱部52の第一例が示されている。
この第一例においては、第1の断熱部50は、複数のSiC製断熱板68からなり、例えば支持具30に支持された基板54に対して平行に支持されている。SiC製断熱板68は、例えば厚さが約3mmであるSi含侵型の円板状SiC部材であり、ヒータ46からの輻射光を遮ることにより断熱する。また、SiC製断熱板68は、石英製の部材よりも熱容量が小さく、板状に形成されているので、反応管42内の温度制御における応答の遅れを低減することができる。
第2の断熱部52は、例えば厚さが約3mmの複数の円板状部材である石英製断熱板70からなり、例えばSiC製断熱板68に対して平行に支持されている。
Next, the 1st heat insulation part 50 and the 2nd heat insulation part 52 are explained in full detail.
In FIG. 3, the 1st example of the 1st heat insulation part 50 and the 2nd heat insulation part 52 which insulate in the reaction tube 42 is shown.
In the first example, the first heat insulating portion 50 is composed of a plurality of SiC heat insulating plates 68 and is supported in parallel to the substrate 54 supported by the support tool 30, for example. The SiC heat insulating plate 68 is, for example, a Si-impregnated disk-shaped SiC member having a thickness of about 3 mm, and insulates by radiating light from the heater 46. Further, since the SiC heat insulating plate 68 has a smaller heat capacity than the quartz member and is formed in a plate shape, it is possible to reduce a delay in response in temperature control in the reaction tube 42.
The second heat insulating portion 52 includes a quartz heat insulating plate 70 which is a plurality of disk-shaped members having a thickness of about 3 mm, for example, and is supported in parallel to the SiC heat insulating plate 68, for example.

SiC製断熱板68,68間のピッチは、石英製断熱板70,70間のピッチよりも大きくされている。SiCは輻射光の透過がほとんどなく断熱性に優れているので、図3(a)に示すように、SiC製断熱板68,68間のピッチをある程度大きくしても、複数枚のSiC製断熱板68により断続的に輻射光を遮ることができるためである。なお、図3(a)では、SiC製断熱板68,68間のピッチを石英製断熱板70,70間のピッチの4倍以上としている。   The pitch between the SiC heat insulating plates 68 and 68 is larger than the pitch between the quartz heat insulating plates 70 and 70. Since SiC hardly transmits radiation and has excellent heat insulation properties, as shown in FIG. 3 (a), even if the pitch between the SiC heat insulating plates 68, 68 is increased to some extent, a plurality of SiC heat insulating materials are used. This is because the radiation can be interrupted intermittently by the plate 68. In FIG. 3A, the pitch between the SiC heat insulating plates 68 and 68 is set to be four times or more the pitch between the quartz heat insulating plates 70 and 70.

また、図3(b)に示すように、例えば反応管42において1350°C以上で熱処理をする際に、SiC製断熱板68,68間で処理ガスの対流が生じないように、SiC製断熱板68,68間のピッチが設定されることにより、SiC製断熱板68,68間に処理ガス(気体)による断熱層が形成される。処理ガスによる断熱層は、ヒータ46からの輻射光による熱をSiC製断熱板68と共に遮ることができる。なお、図3(b)では、SiC製断熱板68,68間のピッチを石英製断熱板70,70間のピッチの2倍以上としている。   Also, as shown in FIG. 3B, for example, when heat treatment is performed at 1350 ° C. or higher in the reaction tube 42, SiC heat insulation is prevented so that convection of the processing gas does not occur between the SiC heat insulation plates 68, 68. By setting the pitch between the plates 68, 68, a heat insulating layer made of a processing gas (gas) is formed between the SiC heat insulating plates 68, 68. The heat insulating layer made of the processing gas can block the heat generated by the radiation from the heater 46 together with the SiC heat insulating plate 68. In FIG. 3B, the pitch between the SiC heat insulating plates 68 and 68 is set to be twice or more the pitch between the quartz heat insulating plates 70 and 70.

第2の断熱部52においては、第1の断熱部50の断熱効果によって基板54の周囲よりも温度が低くされているので、石英製断熱板70により、第1の断熱部50を透過したヒータ46からの輻射光を遮ることができる。また、石英製断熱板70は、熱容量がSiC製の部材よりも大きく、反応管42内の熱を受け止めて炉口キャップ48の温度が上昇しないようにしている。   In the second heat insulating portion 52, the temperature is lower than the surroundings of the substrate 54 due to the heat insulating effect of the first heat insulating portion 50, so the heater that has passed through the first heat insulating portion 50 by the quartz heat insulating plate 70. The radiation light from 46 can be blocked. Further, the heat insulating plate 70 made of quartz has a heat capacity larger than that of a member made of SiC, and receives heat in the reaction tube 42 so that the temperature of the furnace port cap 48 does not rise.

なお、第1の断熱部50及び第2の断熱部52において、SiC製断熱板68,68間のピッチと石英製断熱板70,70間のピッチとが同一ピッチである場合に対し、SiC製断熱板68の枚数を減らしてSiC製断熱板68,68間のピッチを石英製断熱板70,70間のピッチよりも大きくしても、第1の断熱部50及び第2の断熱部52による断熱効果が同等であることが実験により確認されている。   In addition, in the 1st heat insulation part 50 and the 2nd heat insulation part 52, compared with the case where the pitch between the SiC heat insulation boards 68 and 68 and the pitch between the quartz heat insulation boards 70 and 70 are the same pitch, it is made of SiC. Even if the number of the heat insulating plates 68 is reduced so that the pitch between the SiC heat insulating plates 68 and 68 is larger than the pitch between the quartz heat insulating plates 70 and 70, the first heat insulating portion 50 and the second heat insulating portion 52 Experiments have confirmed that the heat insulation effect is equivalent.

したがって、SiC製断熱板68の枚数を減らしてSiC製断熱板68,68間のピッチを石英製断熱板70,70間のピッチより大きくすることにより、断熱効果を得つつ、第1の断熱部50の軽量化及びコストダウン並びに反応管42内の低熱容量化を図ることができる。   Therefore, by reducing the number of the SiC heat insulating plates 68 and making the pitch between the SiC heat insulating plates 68 and 68 larger than the pitch between the quartz heat insulating plates 70 and 70, the first heat insulating portion is obtained while obtaining a heat insulating effect. 50 can be reduced in weight and cost, and the heat capacity in the reaction tube 42 can be reduced.

図4において、反応管42内で断熱する第1の断熱部50及び第2の断熱部52の第二例が示されている。
この第二例においては、第1の断熱部50は、複数のSiC製断熱板72からなり、例えば支持具30に支持された基板54に対して平行に支持されている。
なお、第二例において、図3に示した第一例と実質的に同一部分については、図面に同一番号を付してある。
In FIG. 4, the 2nd example of the 1st heat insulation part 50 and the 2nd heat insulation part 52 which heat-insulate in the reaction tube 42 is shown.
In the second example, the first heat insulating portion 50 is composed of a plurality of SiC heat insulating plates 72 and is supported in parallel to the substrate 54 supported by the support tool 30, for example.
In the second example, parts that are substantially the same as those in the first example shown in FIG.

SiC製断熱板72は、例えばCVD(Chemical Vapor Deposition)により形成された厚さが1mm以下の高純度SiCの円板状部材であり、Si含侵型のSiC製断熱板68と同様に、ヒータ46からの輻射光を遮ることにより断熱する。また、SiC製断熱板72の厚さは、石英製断熱板70の厚さよりも薄く、また第一例におけるSi含侵型のSiC製断熱板68よりも薄くなっている。   The SiC heat insulating plate 72 is a high purity SiC disk-shaped member having a thickness of 1 mm or less formed by, for example, CVD (Chemical Vapor Deposition), and, similar to the Si-impregnated SiC heat insulating plate 68, the heater Insulate by blocking the radiation from 46. Further, the thickness of the SiC heat insulating plate 72 is thinner than the thickness of the quartz heat insulating plate 70, and is thinner than the Si-impregnated SiC heat insulating plate 68 in the first example.

このように、第1の断熱部50及び第2の断熱部52において、SiC製断熱板72の厚さを石英製断熱板70の厚さよりも薄く、またSi含侵型のSiC製断熱板68よりも薄くしても、第1の断熱部50及び第2の断熱部52による断熱効果が同等であることが実験により確認されている。
したがって、第1の断熱部50及び第2の断熱部52の第二例は、断熱効果を保持しつつ、第一例よりも第1の断熱部50の軽量化及び反応管42内の低熱容量化を図ることができる。
As described above, in the first heat insulating portion 50 and the second heat insulating portion 52, the thickness of the SiC heat insulating plate 72 is smaller than the thickness of the quartz heat insulating plate 70, and the Si impregnated SiC heat insulating plate 68. Even if it is made thinner, it has been confirmed by experiments that the heat insulating effects by the first heat insulating part 50 and the second heat insulating part 52 are equivalent.
Therefore, in the second example of the first heat insulating part 50 and the second heat insulating part 52, while maintaining the heat insulating effect, the first heat insulating part 50 is lighter than the first example and the heat capacity in the reaction tube 42 is lower. Can be achieved.

図5において、反応管42内で断熱する第1の断熱部50及び第2の断熱部52の第三例の詳細が示されている。
この第三例においては、第1の断熱部50は、複数のSiC製断熱板72からなり、例えば支持具30に支持された基板54に対して平行に支持されている。SiC製断熱板72は、第二例と同様、例えばCVDにより形成された厚さが1mm以下の高純度SiCの円板状部材であり、石英製断熱板70の厚さよりも薄くなっている。第2の断熱部52は、第一例、第二例と同様、複数の石英製断熱板70からなり、例えばSiC製断熱板72に対して平行に支持されたSiC製断熱板72の枚数以上の石英製断熱板70により形成される。
なお、第三例において、図3に示した第一例及び図4に示した第二例と実質的に同一部分については、図面に同一番号を付してある。
In FIG. 5, details of a third example of the first heat insulating portion 50 and the second heat insulating portion 52 that are thermally insulated in the reaction tube 42 are shown.
In the third example, the first heat insulating portion 50 is composed of a plurality of SiC heat insulating plates 72 and is supported in parallel to the substrate 54 supported by the support tool 30, for example. Similar to the second example, the SiC heat insulating plate 72 is a high purity SiC disk-shaped member having a thickness of 1 mm or less formed by CVD, for example, and is thinner than the thickness of the quartz heat insulating plate 70. The second heat insulating portion 52 is composed of a plurality of quartz heat insulating plates 70 as in the first and second examples. For example, the second heat insulating portion 52 is equal to or more than the number of SiC heat insulating plates 72 supported in parallel to the SiC heat insulating plate 72. The quartz heat insulating plate 70 is used.
Note that, in the third example, the same reference numerals are given to the same portions as those in the first example shown in FIG. 3 and the second example shown in FIG.

上述したように、SiC製断熱板72は、厚さaが1mm以下の高純度SiCの円板状部材であり、厚さcの石英製断熱板70よりも薄くされている。また、SiC製断熱板72,72間のピッチbは、石英製断熱板70,70間のピッチdよりも大きくされており、且つ、反応管42において1350°C以上で熱処理をする際に、SiC製断熱板72,72間で処理ガスの対流が生じないように設定されている。したがって、反応管42において1350°C以上で熱処理をする際に、SiC製断熱板72,72間に処理ガスによる断熱層が形成される。処理ガスによる断熱層は、ヒータ46からの輻射光による熱をSiC製断熱板72と共に遮ることができる。   As described above, the SiC heat insulating plate 72 is a disk member of high purity SiC having a thickness a of 1 mm or less, and is thinner than the quartz heat insulating plate 70 having a thickness c. Further, the pitch b between the heat insulating plates 72 and 72 made of SiC is larger than the pitch d between the heat insulating plates 70 and 70 made of quartz, and when the heat treatment is performed at 1350 ° C. or higher in the reaction tube 42, It is set so that convection of the processing gas does not occur between the SiC heat insulating plates 72, 72. Accordingly, when heat treatment is performed at 1350 ° C. or higher in the reaction tube 42, a heat insulating layer is formed between the heat insulating plates 72 and 72 made of SiC. The heat insulating layer made of the processing gas can block the heat generated by the radiation from the heater 46 together with the SiC heat insulating plate 72.

このように、第1の断熱部50及び第2の断熱部52において、SiC製断熱板72の厚さを石英製断熱板70の厚さよりも薄くし、更にSiC製断熱板72,72間のピッチを石英製断熱板70,70間のピッチより大きくしても、第1の断熱部50及び第2の断熱部52による断熱効果が同等であることが実験により確認されている。
したがって、第三例は、断熱効果を保持しつつ第一例、第二例よりも第1の断熱部50の軽量化及び反応管42内の低熱容量化を図ることができる。
Thus, in the 1st heat insulation part 50 and the 2nd heat insulation part 52, the thickness of the heat insulation board 72 made from SiC is made thinner than the thickness of the heat insulation board 70 made from quartz, and also between the heat insulation boards 72, 72 made from SiC. It has been experimentally confirmed that even if the pitch is larger than the pitch between the quartz heat insulating plates 70, 70, the heat insulating effect by the first heat insulating portion 50 and the second heat insulating portion 52 is equivalent.
Therefore, the third example can reduce the weight of the first heat insulating portion 50 and lower the heat capacity in the reaction tube 42 than the first and second examples while maintaining the heat insulating effect.

本発明の熱処理装置は、基板の製造工程にも適用することができる。   The heat treatment apparatus of the present invention can also be applied to a substrate manufacturing process.

SOI(Silicon On Insulator)ウエハの一種であるSIMOXウエハの製造工程の一工程に本発明の熱処理装置を適用する例について説明する。   An example in which the heat treatment apparatus of the present invention is applied to one step of a manufacturing process of a SIMOX wafer which is a kind of SOI (Silicon On Insulator) wafer will be described.

まずイオン注入装置等により単結晶シリコンウエハ内へ酸素イオンをイオン注入する。その後、酸素イオンが注入されたウエハを上記実施形態の熱処理装置を用いて、例えばAr、O雰囲気のもと、1300°C〜1400°C、例えば1350°C以上の高温でアニールする。これらの処理により、ウエハ内部にSiO層が形成された(SiO層が埋め込まれた)SIMOXウエハが作製される。 First, oxygen ions are implanted into the single crystal silicon wafer by an ion implantation apparatus or the like. Thereafter, the wafer into which oxygen ions are implanted is annealed at a high temperature of 1300 ° C. to 1400 ° C., for example, 1350 ° C. or higher, for example, in an Ar, O 2 atmosphere using the heat treatment apparatus of the above embodiment. By these processes, a SIMOX wafer in which the SiO 2 layer is formed inside the wafer (the SiO 2 layer is embedded) is manufactured.

また、SIMOXウエハの他、水素アニールウエハとArアニールウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。この場合、ウエハを本発明の熱処理装置を用いて、水素雰囲気中もしくはAr雰囲気中で1200°C程度以上の高温でアニールすることとなる。これによりIC(集積回路)が作られるウエハ表面層の結晶欠陥を低減することができ、結晶の完全性を高めることができる。   In addition to the SIMOX wafer, the heat treatment apparatus of the present invention can be applied to one step of the manufacturing process of the hydrogen anneal wafer and the Ar anneal wafer. In this case, the wafer is annealed at a high temperature of about 1200 ° C. or higher in a hydrogen atmosphere or an Ar atmosphere using the heat treatment apparatus of the present invention. As a result, crystal defects in the wafer surface layer on which an IC (integrated circuit) is formed can be reduced, and crystal integrity can be improved.

また、この他、エピタキシャルウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。   In addition, the heat treatment apparatus of the present invention can be applied to one step of the epitaxial wafer manufacturing process.

本発明の熱処理装置は、半導体装置の製造工程にも適用することも可能である。
特に、比較的高い温度で行う熱処理工程、例えば、ウェット酸化、ドライ酸化、水素燃焼酸化(パイロジェニック酸化)、HCl酸化等の熱酸化工程や、硼素(B)、リン(P)、砒素(As)、アンチモン(Sb)等の不純物(ドーパント)を半導体薄膜に拡散する熱拡散工程等に適用するのが好ましい。
The heat treatment apparatus of the present invention can also be applied to a semiconductor device manufacturing process.
In particular, a heat treatment process performed at a relatively high temperature, for example, a thermal oxidation process such as wet oxidation, dry oxidation, hydrogen combustion oxidation (pyrogenic oxidation), HCl oxidation, boron (B), phosphorus (P), arsenic (As ), An antimony (Sb) or other impurity (dopant) is preferably applied to a thermal diffusion process for diffusing the semiconductor thin film.

本発明の実施形態に係る熱処理装置を示す概略の斜視図である。1 is a schematic perspective view showing a heat treatment apparatus according to an embodiment of the present invention. 本発明の実施形態に係る熱処理装置に用いた反応炉を示す断面図である。It is sectional drawing which shows the reaction furnace used for the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた第1の断熱部及び第2の断熱部の第一例及びその周辺を示す断面図である。It is sectional drawing which shows the 1st example of the 1st heat insulation part used for the heat processing apparatus which concerns on embodiment of this invention, and a 2nd heat insulation part, and its periphery. 本発明の実施形態に係る熱処理装置に用いた第1の断熱部及び第2の断熱部の第二例及びその周辺を示す断面図である。It is sectional drawing which shows the 2nd example of the 1st heat insulation part used for the heat processing apparatus which concerns on embodiment of this invention, and a 2nd heat insulation part, and its periphery. 本発明の実施形態に係る熱処理装置に用いた第1の断熱部及び第2の断熱部の第三例の詳細を示す断面図である。It is sectional drawing which shows the detail of the 3rd example of the 1st heat insulation part used for the heat processing apparatus which concerns on embodiment of this invention, and a 2nd heat insulation part.

符号の説明Explanation of symbols

10 熱処理装置
26 基板移載機
30 支持具
40 反応炉
42 反応管
43 反応室
46 ヒータ
48 炉口キャップ
50 第1の断熱部
52 第2の断熱部
54 基板
56 ガス導入口
60 ガス導入管
66 ノズル
68 SiC製断熱板(Si含侵型)
70 石英製断熱板
72 SiC製断熱板(高純度SiC)
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 26 Substrate transfer machine 30 Support tool 40 Reaction furnace 42 Reaction tube 43 Reaction chamber 46 Heater 48 Furnace port cap 50 1st heat insulation part 52 2nd heat insulation part 54 Substrate 56 Gas introduction port 60 Gas introduction pipe 66 Nozzle 68 SiC insulation board (Si impregnation type)
70 Insulating board made of quartz 72 Insulating board made of SiC (high purity SiC)

Claims (2)

炉口が下端に設けられた反応室と、
この反応室内で基板を支持する支持具と、
この支持具の下方で第1のピッチをもって上下方向に設けられた複数の炭化珪素製断熱板と、
該複数の炭化珪素製断熱板の下方で第2のピッチをもって上下方向に設けられた複数の石英製断熱板と、
該複数の石英製断熱板の下方に設けられ前記反応室の炉口を閉塞する炉口キャップとを有し、
前記炭化珪素製断熱板の第1のピッチは、前記石英製断熱板の第2のピッチよりも大きく、前記炭化珪素製断熱板の厚さは、前記石英製断熱板の厚さよりも薄いことを特徴とする熱処理装置。
A reaction chamber with a furnace port at the lower end;
A support for supporting the substrate in the reaction chamber;
A plurality of silicon carbide heat insulating plates provided in a vertical direction with a first pitch below the support;
A plurality of quartz heat insulating plates provided in a vertical direction with a second pitch below the plurality of silicon carbide heat insulating plates;
A furnace port cap provided below the plurality of quartz heat insulating plates and closing the furnace port of the reaction chamber;
The first pitch of the silicon carbide heat insulating plate is larger than the second pitch of the quartz heat insulating plate, and the thickness of the silicon carbide heat insulating plate is smaller than the thickness of the quartz heat insulating plate. A heat treatment device characterized.
炉口が下端に設けられた反応室と、
この反応室内で基板を支持する支持具と、
この支持具の下方で上下方向に設けられた複数の炭化珪素製断熱板と、
該複数の炭化珪素製断熱板の下方で上下方向に設けられた複数の石英製断熱板と、
該複数の石英製断熱板の下方に設けられ前記反応室の炉口を閉塞する炉口キャップとを有し、
前記炭化珪素製断熱板の厚さは、前記石英製断熱板の厚さよりも薄いことを特徴とする熱処理装置。
A reaction chamber with a furnace port at the lower end;
A support for supporting the substrate in the reaction chamber;
A plurality of silicon carbide heat insulating plates provided in the vertical direction below the support,
A plurality of quartz heat insulating plates provided in the vertical direction below the plurality of silicon carbide heat insulating plates;
A furnace port cap provided below the plurality of quartz heat insulating plates and closing the furnace port of the reaction chamber;
The heat treatment apparatus according to claim 1, wherein a thickness of the silicon carbide heat insulating plate is smaller than a thickness of the quartz heat insulating plate.
JP2004204442A 2004-07-12 2004-07-12 Heat treatment equipment Active JP4700300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204442A JP4700300B2 (en) 2004-07-12 2004-07-12 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204442A JP4700300B2 (en) 2004-07-12 2004-07-12 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2006032386A JP2006032386A (en) 2006-02-02
JP4700300B2 true JP4700300B2 (en) 2011-06-15

Family

ID=35898411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204442A Active JP4700300B2 (en) 2004-07-12 2004-07-12 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4700300B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010165A (en) * 2007-06-28 2009-01-15 Hitachi Kokusai Electric Inc Substrate treating equipment and method of manufacturing semiconductor device
JP5562188B2 (en) * 2010-09-16 2014-07-30 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP6553065B2 (en) * 2014-09-25 2019-07-31 株式会社Kokusai Electric Substrate holder, substrate processing apparatus, and method of manufacturing semiconductor device
WO2017149663A1 (en) * 2016-03-01 2017-09-08 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, and recording medium
KR20190008101A (en) * 2017-07-14 2019-01-23 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, substrate retainer and method of manufacturing semiconductor device
JP6857156B2 (en) * 2017-07-14 2021-04-14 株式会社Kokusai Electric Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280420A (en) * 1991-03-07 1992-10-06 Toshiba Corp Heat treatment device
JPH06338473A (en) * 1993-05-27 1994-12-06 Kokusai Electric Co Ltd Longitudinal furnace of semiconductor manufacturing apparatus
JPH08316158A (en) * 1995-05-11 1996-11-29 Toshiba Ceramics Co Ltd Semiconductor wafer boat
JP2000150403A (en) * 1998-11-06 2000-05-30 Tokyo Electron Ltd Heat insulating cylinder and vertical heat-treating device
JP2001291670A (en) * 2000-04-10 2001-10-19 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus
JP2002343789A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Auxiliary heat-retention jig, its manufacturing method, wafer boat with heat insulator in plate form, vertical heat treatment equipment, method for modifying the same and method for manufacturing semiconductor device
JP2004047540A (en) * 2002-07-09 2004-02-12 Toshiba Corp Heat treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280420A (en) * 1991-03-07 1992-10-06 Toshiba Corp Heat treatment device
JPH06338473A (en) * 1993-05-27 1994-12-06 Kokusai Electric Co Ltd Longitudinal furnace of semiconductor manufacturing apparatus
JPH08316158A (en) * 1995-05-11 1996-11-29 Toshiba Ceramics Co Ltd Semiconductor wafer boat
JP2000150403A (en) * 1998-11-06 2000-05-30 Tokyo Electron Ltd Heat insulating cylinder and vertical heat-treating device
JP2001291670A (en) * 2000-04-10 2001-10-19 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus
JP2002343789A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Auxiliary heat-retention jig, its manufacturing method, wafer boat with heat insulator in plate form, vertical heat treatment equipment, method for modifying the same and method for manufacturing semiconductor device
JP2004047540A (en) * 2002-07-09 2004-02-12 Toshiba Corp Heat treatment apparatus

Also Published As

Publication number Publication date
JP2006032386A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US11049742B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and thermocouple support
JP4815352B2 (en) Heat treatment apparatus, substrate manufacturing method, substrate processing method, and semiconductor device manufacturing method
US7194199B2 (en) Stacked annealing system
JP5043826B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4887293B2 (en) Substrate processing apparatus, substrate manufacturing method, semiconductor device manufacturing method, and substrate processing method
WO2005069361A1 (en) Heat treatment device
JP4700300B2 (en) Heat treatment equipment
JP2007073865A (en) Heat treatment device
JP2007134518A (en) Heat treatment apparatus
JP2005101161A (en) Supporting tool for heat treatment, heat treatment apparatus, heat treatment method, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2004281674A (en) Heat treatment equipment and process for producing substrate
JP2006080294A (en) Method of manufacturing substrate
JP2006100303A (en) Substrate manufacturing method and heat treatment apparatus
JP4557499B2 (en) Substrate processing equipment
JP2009010165A (en) Substrate treating equipment and method of manufacturing semiconductor device
JP2008078459A (en) Substrate treating device
JP5010884B2 (en) Substrate processing apparatus, substrate transport method, and semiconductor integrated circuit device manufacturing method
JP2004281672A (en) Heat treatment equipment and method for manufacturing substrate
JP2010141202A (en) Substrate processing apparatus
JP2006261317A (en) Heat treatment apparatus and manufacturing method of substrate
JP2008078179A (en) Method of cleaning member
JP2008028306A (en) Heat treatment equipment
JP2006080178A (en) Manufacturing method of substrate
JP2005209723A (en) Substrate treatment device
JP2004296492A (en) Thermal treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R150 Certificate of patent or registration of utility model

Ref document number: 4700300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350