JP4685399B2 - Objective lens with correction mechanism - Google Patents

Objective lens with correction mechanism Download PDF

Info

Publication number
JP4685399B2
JP4685399B2 JP2004285558A JP2004285558A JP4685399B2 JP 4685399 B2 JP4685399 B2 JP 4685399B2 JP 2004285558 A JP2004285558 A JP 2004285558A JP 2004285558 A JP2004285558 A JP 2004285558A JP 4685399 B2 JP4685399 B2 JP 4685399B2
Authority
JP
Japan
Prior art keywords
lens
group
flob
objective lens
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004285558A
Other languages
Japanese (ja)
Other versions
JP2006119159A (en
Inventor
豊治 榛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004285558A priority Critical patent/JP4685399B2/en
Publication of JP2006119159A publication Critical patent/JP2006119159A/en
Application granted granted Critical
Publication of JP4685399B2 publication Critical patent/JP4685399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、実視野が広く、操作性のよい、補正環を有する顕微鏡対物レンズに関するものである。     The present invention relates to a microscope objective lens having a correction ring with a wide real field of view and good operability.

従来、広い実視野での観察を行なうためには、実体顕微鏡が用いられている。その1例として、図34に示すような構成の単対物型の実体顕微鏡がある。この図34に示す実体顕微鏡は、単一の対物レンズ11と、左右の変倍光学系12と左右の接眼レンズ13とにて構成され、観察者の左右の眼14にて実体観察が行なわれる。この実体顕微鏡は、対物レンズの直径が大であるものの、対物レンズの像側は、視差のある像を形成するために、瞳の一部の光束を使用するのみの複数の結像光学系が用いられる。そのため、像が暗くなるという問題があった。 この問題点を解消して明るい像を得るために、対物レンズからの光束のすべてを使用し、明るい蛍光像が得られる顕微鏡が望まれる。     Conventionally, a stereomicroscope has been used to perform observation in a wide real field of view. As an example, there is a single-objective stereomicroscope configured as shown in FIG. The stereomicroscope shown in FIG. 34 includes a single objective lens 11, left and right variable magnification optical systems 12, and left and right eyepieces 13, and the stereoscopic observation is performed with the left and right eyes 14 of the observer. . Although this stereomicroscope has a large objective lens diameter, the image side of the objective lens has a plurality of imaging optical systems that only use a part of the light beam of the pupil to form a parallax image. Used. Therefore, there is a problem that the image becomes dark. In order to solve this problem and obtain a bright image, a microscope that uses all of the light flux from the objective lens and obtains a bright fluorescent image is desired.

このように、大きな光束を使用する光学系は、NAも大になる。     As described above, an optical system that uses a large luminous flux has a large NA.

実体顕微鏡の対物レンズで、高い倍率のレンズ系は焦点距離が40〜60nmで、0.4を超えるNAを有することになる。このような対物レンズは、水中等の液体中の物体を観察する場合、液体による収差が発生して、像が著しく劣化する。このような対物レンズにおいては、像の劣化を抑えるための収差補正機構が望まれる。     An objective lens of a stereomicroscope, a high magnification lens system has a focal length of 40 to 60 nm and an NA exceeding 0.4. In such an objective lens, when an object in a liquid such as water is observed, an aberration due to the liquid is generated, and the image is significantly deteriorated. In such an objective lens, an aberration correction mechanism for suppressing image deterioration is desired.

このような、収差補正機構を備えた従来の対物レンズとして、次の各文献に記載された対物レンズが知られている。
特公平4−26448号公報 特開平10−133118号公報 上記文献のうち、特許文献1に記載されている対物レンズは、物体側から順に、凹面を物体側に向けたメニスカス例レンズを有し、正の屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レンズ群と、接合面を持ち合成で負の屈折力を持つ第3レンズ群とからなり、物体と対物レンズの間にある透明物体による収差を補正するために第3レンズ群を移動させる。
As conventional objective lenses having such an aberration correction mechanism, objective lenses described in the following documents are known.
Japanese Patent Publication No. 4-26448 Among the above documents, the objective lens described in Patent Document 1 has a meniscus example lens with a concave surface facing the object side in order from the object side, and has a positive refractive power. It consists of one lens group, a second lens group having a positive refractive power, and a third lens group having a cemented surface and a combined negative refractive power, and aberration caused by a transparent object between the object and the objective lens. The third lens group is moved for correction.

また、特許文献2に記載されている対物レンズは、物体側から順に、正の屈折力の第1レンズ群と、物体側から正、負、正の3枚接合レンズで構成され屈折力の小さい第2レンズ群と、負の屈折力の第3レンズ群から構成され、第2レンズ群を光軸方向に移動させて収差補正を行なっている。     In addition, the objective lens described in Patent Document 2 includes, in order from the object side, a first lens group having a positive refractive power and a positive, negative, and positive three-piece cemented lens from the object side, and has a small refractive power. The lens is composed of a second lens group and a third lens group having a negative refractive power, and aberration correction is performed by moving the second lens group in the optical axis direction.

これら従来例の欠点は、収差補正をすると焦点位置が変わり焦点調整するため、像の良さを比較するのに2つの作業を行なうことになるので、作業性が悪い。     The disadvantages of these conventional examples are that the focal position changes and the focus is adjusted when aberration correction is performed, so that two operations are performed to compare the quality of the images, so that the workability is poor.

本発明は、同じ倍率の対物レンズに比べて実視野が広く明るい像が得られ収差補正が可能で操作性のよい収差補正機構を備えた対物レンズを提供するものである。     The present invention provides an objective lens having an aberration correction mechanism that is capable of correcting aberrations and has good operability with a wide real field of view compared to an objective lens having the same magnification.

本発明の対物レンズは、物体からの光束をアフォーカル光束として射出するもので、最大実視野径が15mm以上で、最大開口数をNAmax、全系の焦点距離をFLob、全長をDobとした時に下記条件(1)、(2)を満足するレンズ系で、物体側から順に、複数のレンズよりなり正の屈折力を有する第1群と、メニスカス形状の接合レンズからなる第2群と、像側から正レンズと強い凹面を像側に向けたメニスカスレンズ成分を含み正の屈折力を有する第3群とからなり、第2群の焦点距離をFL2、第2群のリレー倍率をβ2とした時この第2群が下記条件(3)、(4)を満足し、第2群を光軸方向に移動させることによって、収差の発生量を変化させることを特徴としている。     The objective lens of the present invention emits a light beam from an object as an afocal light beam. When the maximum real field diameter is 15 mm or more, the maximum numerical aperture is NAmax, the focal length of the entire system is FLob, and the total length is Dob. In a lens system that satisfies the following conditions (1) and (2), in order from the object side, a first group that includes a plurality of lenses and has a positive refractive power, a second group that includes a meniscus cemented lens, and an image A third lens unit having a positive refractive power from the side and a meniscus lens component with a strong concave surface facing the image side and having a positive refractive power, the focal length of the second unit being FL2, and the relay magnification of the second unit being β2. This second group satisfies the following conditions (3) and (4), and the second group is moved in the optical axis direction to change the amount of aberration generated.

(1) NAmax×FLob≧15(mm)
(2) 0.3≦FLob/Dob≦0.6
(3) FL2/FLob≧10
(4) 0.9≦β2≦1.1
尚、上記の記載中、メニスカスレンズ成分等のレンズ成分とは、その前後が空気間隔にて区切られた単体レンズや接合レンズ等を指し、後も同様の意味にて使用する。
(1) NAmax × FLob ≧ 15 (mm)
(2) 0.3 ≦ FLob / Dob ≦ 0.6
(3) FL2 / FLob ≧ 10
(4) 0.9 ≦ β2 ≦ 1.1
In the above description, a lens component such as a meniscus lens component refers to a single lens or a cemented lens in which the front and rear thereof are separated by an air interval, and will be used in the same meaning later.

本発明の対物レンズは、次に述べる顕微鏡に用いるものである。つまり物体からの光束を受けてアフォーカル光束を射出する対物レンズと、対物レンズより射出するアフォーカル光束を結像するズーム光学系を含んだ結像光学系にて結像し、結像された像を接眼レンズにより拡大して目視するか、あるいは、接像素子を結像面に配置して撮像する実体顕微鏡において用いられる対物レンズである。 そして本発明の対物レンズは、前記のような構成の光学系である。     The objective lens of the present invention is used for a microscope described below. In other words, an image is formed by an imaging optical system including an objective lens that receives a light beam from an object and emits an afocal light beam and a zoom optical system that forms an afocal light beam emitted from the objective lens. This is an objective lens used in a stereomicroscope that images an image by magnifying it with an eyepiece lens or that images an image by placing an image-receiving element on the imaging surface. The objective lens of the present invention is an optical system having the above configuration.

前記の通りの構成の本発明の対物レンズにおいて、条件(1)を満足しないとつまりNAmax×FLobの値が条件(1)の下限値の15を下回ると十分明るい蛍光が得られない。また条件(2)において、FLob/Dobの値が下限値の0.3を下回ると対物レンズの全長が長くなり、他の対物レンズとの同焦が保ちにくくなる。また上限値の0.6を上回ると対物レンズの全長が短くなり、補正のために必要な複数のレンズの配置が困難になり、その結果十分な収差補正ができなくなる。     In the objective lens of the present invention configured as described above, if the condition (1) is not satisfied, that is, if the value of NAmax × Flob is below the lower limit of 15 of the condition (1), sufficiently bright fluorescence cannot be obtained. In the condition (2), if the value of FLob / Dob is less than the lower limit of 0.3, the entire length of the objective lens becomes long, and it becomes difficult to maintain the same focus with other objective lenses. If the upper limit of 0.6 is exceeded, the total length of the objective lens becomes short, making it difficult to arrange a plurality of lenses necessary for correction, and as a result, sufficient aberration correction cannot be performed.

また、条件(3)、(4)は、前記球面収差の発生量を変化させるために移動させる第2群の焦点距離及び倍率を規定するための条件である。     Conditions (3) and (4) are conditions for defining the focal length and magnification of the second group to be moved to change the amount of spherical aberration generated.

これら条件のうち、条件(3)の範囲より外れると、つまりFL2/FLobの値が10を下回ると第2群の移動量が大になるため、対物レンズ内のレンズを配置できる範囲が狭くなり十分なレンズ数を配置できないので良い解像が得られない。     Among these conditions, if the value is outside the range of condition (3), that is, if the value of FL2 / Flob is less than 10, the amount of movement of the second group becomes large, so the range in which the lens in the objective lens can be arranged becomes narrow. Since a sufficient number of lenses cannot be arranged, good resolution cannot be obtained.

また、条件(4)は、第2群の倍率を規定するもので、条件(4)の範囲を外れると即ち、倍率β2が条件(4)の下限値の0.9を下回るかあるいは上限値1.1を超えると、球面収差補正時の像面の移動量が増大し、最良像への調整が困難になる。     Condition (4) defines the magnification of the second group. If the condition (4) is out of the range of condition (4), the magnification β2 is less than the lower limit value 0.9 of condition (4) or the upper limit value. If the ratio exceeds 1.1, the amount of movement of the image plane when correcting spherical aberration increases, and adjustment to the best image becomes difficult.

以上述べた本発明の対物レンズにおいて、第2群の移動による補正の際に、第2群の移動量を小さくし、球面収差補正時の像面の移動を小さくして、球面収差補正時の像面移動が実用上ほぼ一定であるとみなせるようにするためには、第2群の接合メニスカスレンズを物体側に凸面を向けた形状とし、条件(3)、(4)の代わりに下記条件(3−1)、(4−1)を満足するようにすることが望ましい。     In the objective lens of the present invention described above, when the correction is performed by the movement of the second group, the amount of movement of the second group is reduced, the movement of the image plane during spherical aberration correction is reduced, and the correction during spherical aberration correction is performed. In order to make it possible to consider that the image plane movement is practically constant, the second group cemented meniscus lens has a shape with a convex surface facing the object side, and instead of the conditions (3) and (4), the following conditions are satisfied. It is desirable to satisfy (3-1) and (4-1).

(3−1) FL2/FLob≧20
(4−1) 0.96≦β2≦1.02
また、本発明の対物レンズにおいて、諸収差、特に色収差を良好に補正するためには、第3群を物体側から順に、正の接合レンズとメニスカスレンズと凸レンズの三つのレンズ成分にて構成し、下記条件(5)、(6)、(7)を満足することが望ましい。
(3-1) FL2 / Flob ≧ 20
(4-1) 0.96 ≦ β2 ≦ 1.02
Further, in the objective lens of the present invention, in order to satisfactorily correct various aberrations, particularly chromatic aberration, the third lens unit is composed of three lens components in order from the object side: a positive cemented lens, a meniscus lens, and a convex lens. Desirably, the following conditions (5), (6), and (7) are satisfied.

(5) 0.6≦|r32i/FLob|≦1.1
(6) 0.6≦|r31c/FLob|≦1.3
(7) |ν31o−ν31i|≧37
ただし、r31cは第3群の物体側の接合レンズの接合面の曲率半径、r32iは第3群の物体側から2番目のレンズであるメニスカスレンズの像側の面の曲率半径、ν31o、ν31iは夫々第3群の物体側の接合レンズの物体側のレンズおよび像側のレンズでの硝材のアッベ数である。
(5) 0.6 ≦ | r32i / Flob | ≦ 1.1
(6) 0.6 ≦ | r31c / Flob | ≦ 1.3
(7) | ν31o−ν31i | ≧ 37
Here, r31c is the radius of curvature of the cemented surface of the cemented lens on the object side of the third group, r32i is the radius of curvature of the image side surface of the meniscus lens that is the second lens from the object side of the third group, and ν31o and ν31i are It is the Abbe number of the glass material in the object side lens and the image side lens of the third group object side cemented lens, respectively.

条件(5)は、第3群の2番目のレンズ(メニスカスレンズ成分)の像側の面の曲率半径を規定する条件であって、|r32i/FLob|の値がこの条件(5)の下限値の0.6を下回ると、球面収差の高次収差の発生が大になり収差補正が困難になると同時にレンズ全体が大型化し操作性が悪くなる。また|r32i/FLob|の値が条件(5)の上限値の1.1を上回ると、球面収差の補正が困難になる。     Condition (5) is a condition that defines the radius of curvature of the image side surface of the second lens (meniscus lens component) of the third group, and the value of | r32i / Flob | is the lower limit of condition (5). When the value is less than 0.6, the generation of higher-order aberrations of spherical aberration becomes large, making it difficult to correct aberrations, and at the same time, the entire lens becomes large and the operability becomes poor. If the value of | r32i / Flob | exceeds the upper limit of 1.1 of the condition (5), it is difficult to correct spherical aberration.

また、条件(6)は、第3群の接合レンズの接合面の曲率半径を規定するもので、|r31c/FLob|の値が条件(6)の下限値の0.6を下回ると接合面の曲率が強くなりそのため接合レンズの肉厚が大になる。その結果、対物レンズの所望の全長の内にレンズを配置するためには、レンズ枚数を少なくせざるを得ず、良好な収差補正が困難になる。また、上限値の1.3を超えると軸上色収差の補正が困難になる。     Condition (6) defines the radius of curvature of the cemented surface of the third group cemented lens. When the value of | r31c / Flob | is less than the lower limit of 0.6 in condition (6), the cemented surface And the thickness of the cemented lens is increased. As a result, in order to dispose the lens within the desired overall length of the objective lens, the number of lenses must be reduced, making it difficult to correct aberrations satisfactorily. If the upper limit of 1.3 is exceeded, it will be difficult to correct longitudinal chromatic aberration.

また、条件(7)は物体側の接合レンズの両レンズのアッベ数を規定するもので、|ν31o−ν31i|の値が下限値の37を下回ると軸上色収差の補正が困難になる。     Condition (7) defines the Abbe number of both lenses of the cemented lens on the object side. If the value of | ν31o−ν31i | is below the lower limit of 37, it is difficult to correct axial chromatic aberration.

更に、本発明の対物レンズにおいて、軸外収差を良好に補正するためには、第1群を物体側から順に、正レンズと接合レンズとにて構成し、下記条件(8)、(9)、(10)を満足するようにすることが好ましい。     Furthermore, in the objective lens of the present invention, in order to correct off-axis aberration satisfactorily, the first group is composed of a positive lens and a cemented lens in order from the object side, and the following conditions (8), (9) , (10) is preferably satisfied.

(8) FL12/FLob≧4
(9) 0.9≦|r12c/FLob|≦2
(10) |ν12o−ν12i|≧37
ただし、FL12は第1群の像側に配置された接合レンズの焦点距離、r12cは前記接合レンズの接合面の曲率半径、ν12o、ν12iは夫々前記接合レンズの物体側のレンズおよび像側のレンズの硝材のアッベ数である。
(8) FL12 / FLob ≧ 4
(9) 0.9 ≦ | r12c / Flob | ≦ 2
(10) | ν12o−ν12i | ≧ 37
Where FL12 is the focal length of the cemented lens disposed on the image side of the first group, r12c is the radius of curvature of the cemented surface of the cemented lens, and ν12o and ν12i are the object side lens and the image side lens of the cemented lens, respectively. Abbe number of glass material.

これら条件のうち、条件(8)は第1群の像側に配置された接合レンズの焦点距離を規定するもので、この条件(8)を外れると即ち、FL12/FLobの値が下限値の4を下回ると、像面湾曲の補正が困難になる。     Among these conditions, the condition (8) defines the focal length of the cemented lens disposed on the image side of the first group. If the condition (8) is not satisfied, the value of FL12 / Flob is the lower limit value. If it is less than 4, correction of curvature of field becomes difficult.

また、条件(9)は、第1群の像側の接合レンズの接合面の曲率半径を規定する条件である。この条件(9)において、|r12c/FLob|の値が下限値の0.9を下回るとレンズの肉厚が増大し、対物レンズの所望の全長内に配置し得るレンズ枚数が少なくなり、収差補正が困難になる。また条件(9)の上限値の2を超えると
更に、条件(10)は第1群の前記接合レンズの物体側および像側のレンズの硝材のアッベ数の差異を規定するもので、この条件(10)の範囲を超えると、つまり、|ν12o−ν12i|の値が条件(10)の上限値の37を下回ると倍率の色収差の補正が困難になる。
Condition (9) is a condition that defines the radius of curvature of the cemented surface of the cemented lens on the image side of the first group. Under this condition (9), if the value of | r12c / Flob | is less than the lower limit of 0.9, the thickness of the lens increases, and the number of lenses that can be disposed within the desired overall length of the objective lens decreases, resulting in aberrations. Correction becomes difficult. When the upper limit of 2 of the condition (9) is exceeded, the condition (10) further defines the difference in the Abbe number of the glass material of the object side image lens and the image side lens of the first group. If the range of (10) is exceeded, that is, if the value of | ν12o−ν12i | is less than the upper limit of 37 in the condition (10), it is difficult to correct chromatic aberration of magnification.

本発明の対物レンズは、実視野が広く、NAが大で明るいレンズ系であって、物体と対物レンズの間に透明な液体が存在する時の球面収差の発生を第2群の移動により良好に補正し得るもので、しかも操作性が良いという効果を奏する。     The objective lens according to the present invention is a bright lens system with a wide real field of view, a large NA, and the occurrence of spherical aberration when there is a transparent liquid between the object and the objective lens by moving the second group. It is possible to correct the above, and the operability is good.

本発明の対物レンズは、図31に示すような構成の顕微鏡に用いられる。この図31において、1は実体顕微鏡、2は対物レンズ、3はアフォーカル変倍光学系、4は結像光学系で、この図示する例では目視より拡大観察を行なうために接眼レンズ5が用いられている。しかし、接眼レンズ5を用いずに、結像光学系の結像面に撮像素子を配置して撮像してもよい。     The objective lens of the present invention is used in a microscope having a configuration as shown in FIG. In FIG. 31, 1 is a stereomicroscope, 2 is an objective lens, 3 is an afocal variable magnification optical system, and 4 is an imaging optical system. In the illustrated example, the eyepiece 5 is used for performing magnified observation from the viewpoint. It has been. However, an image pickup device may be arranged on the image forming surface of the image forming optical system without using the eyepiece lens 5.

この図31に示す顕微鏡1は、対物レンズ2により物体よりの光束をアフォーカル光束として射出させ、それをアフォーカル変倍光学系に入射させて結像光学系4にて結像し接眼レンズ5により物体像を観察する。     In the microscope 1 shown in FIG. 31, a light beam from an object is emitted as an afocal light beam by an objective lens 2, is incident on an afocal variable magnification optical system, and is imaged by an imaging optical system 4 to form an eyepiece 5 Observe the object image.

ここで用いるアフォーカルズーム光学系は、図32に示す通りの構成である。つまり、対物レンズ側より順に、第1群AG1、第2群AG2、第3群AG3、第4群AG4、第5群AG5、第6群AG6の六つのレンズ群よりなり、図32の(A)、(B)、(C)のように第2群AG2、第3群AG3、第4群AG4を光軸に沿って移動することにより変倍を行なう。     The afocal zoom optical system used here has a configuration as shown in FIG. In other words, in order from the objective lens side, the first lens group AG1, the second lens group AG2, the third lens group AG3, the fourth lens group AG4, the fifth lens group AG5, and the sixth lens group AG6 are composed of six lens groups. ), (B), and (C), zooming is performed by moving the second group AG2, the third group AG3, and the fourth group AG4 along the optical axis.

更に、例えば図33に示すような構成の結像光学系をアフォーカルズーム光学系の後方に配置することにより物体像を形成するようにしている。     Further, for example, an object image is formed by disposing an imaging optical system configured as shown in FIG. 33 behind the afocal zoom optical system.

本発明の対物レンズは、このような顕微鏡にて用いられるもので、後に示す各実施例に示す構成の光学系である。     The objective lens of the present invention is used in such a microscope, and is an optical system having a configuration shown in each example described later.

そして、前述のように、本発明の実施例はその像側に図2、図3に示すアフォーカルズーム光学系と結像光学系と配置して用いられる。     As described above, the embodiment of the present invention is used by arranging the afocal zoom optical system and the imaging optical system shown in FIGS. 2 and 3 on the image side.

ここで用いられるアフォーカルズーム光学系、結像光学系の一例として次のデータを有する光学系がある。

アフォーカルズーム光学系
1 =143.584 D1 =6.5 N1 =1.43875 V1 =94.93
2 =-151.471 D2 =4.5 N2 =1.67300 V2 =38.15
3 =-406.964 D3 =0.5
4 =86.266 D4 =7 N3 =1.43875 V3 =94.93
5 =-182.860 D5 =4 N4 =1.67300 V4 =38.15
6 =-627.529 D6 (可変)
7 =289.274 D7 =5.6 N5 =1.73800 V5 =32.26
8 =-40.355 D8 =3 N6 =1.77250 V6 =49.60
9 =42.167 D9 =3.2
10=-172.814 D10 =2.8 N7 =1.77250 V7 =49.60
11=22.430 D11=4.5 N8 =1.73800 V8 =32.26
12=267.473 D12 (可変)
13=-38.998 D13=2.8 N9 =1.67790 V9 =55.34
14=-112.304 D14 (可変)
15=-104.447 D15=4.5 N10=1.43875 V10=94.93
16=-37.846 D16 (可変)
17=86.418 D17=4.5 N11=1.43875 V11=94.93
18=-96.570 D18 (可変)
19=-62.848 D19=3.5 N12=1.67790 V12=55.34
20=-174.072

結像光学系
21 =69.845 D21 =9.98 N13 =1.49700 V13 =81.54
22 =-54.633 D22 =4.65 N14 =1.80610 V14 =40.92
23 =-172.571 D23 =9.58
24 =60.898 D24 =11.43 N15 =1.83400 V15 =37.16
25 =-82.872 D25 =5.76 N16 =1.65412 V16 =39.68
26 =31.904 D26 =126.94

FL 56.0 177.0 560.0
6 6.000 49.684 65.362
12 63.114 19.430 3.752
14 33.132 30.751 4.429
16 27.652 25.599 8.000
18 3.200 7.634 51.555

ただし、R1 ,R2,・・・は各レンズ面の曲率半径、D1,D2,・・・は各レンズの肉厚およびレンズ間隔、N1,N2,・・・は各レンズの屈折率、V1,V2,・・・は各レンズのアッベ数である。
An example of the afocal zoom optical system and the imaging optical system used here is an optical system having the following data.

Afocal zoom optical system R 1 = 143.584 D 1 = 6.5 N 1 = 1.43875 V 1 = 94.93
R 2 = -151.471 D 2 = 4.5 N 2 = 1.67300 V 2 = 38.15
R 3 = -406.964 D 3 = 0.5
R 4 = 86.266 D 4 = 7 N 3 = 1.43875 V 3 = 94.93
R 5 = -182.860 D 5 = 4 N 4 = 1.67300 V 4 = 38.15
R 6 = -627.529 D 6 (variable)
R 7 = 289.274 D 7 = 5.6 N 5 = 1.73800 V 5 = 32.26
R 8 = -40.355 D 8 = 3 N 6 = 1.77250 V 6 = 49.60
R 9 = 42.167 D 9 = 3.2
R 10 = -172.814 D 10 = 2.8 N 7 = 1.77250 V 7 = 49.60
R 11 = 22.430 D 11 = 4.5 N 8 = 1.73800 V 8 = 32.26
R 12 = 267.473 D 12 (variable)
R 13 = -38.998 D 13 = 2.8 N 9 = 1.67790 V 9 = 55.34
R 14 = -112.304 D 14 (variable)
R 15 = -104.447 D 15 = 4.5 N 10 = 1.43875 V 10 = 94.93
R 16 = -37.846 D 16 (variable)
R 17 = 86.418 D 17 = 4.5 N 11 = 1.43875 V 11 = 94.93
R 18 = -96.570 D 18 (variable)
R 19 = -62.848 D 19 = 3.5 N 12 = 1.67790 V 12 = 55.34
R 20 = -174.072

Imaging optical system R 21 = 69.845 D 21 = 9.98 N 13 = 1.49700 V 13 = 81.54
R 22 = -54.633 D 22 = 4.65 N 14 = 1.80610 V 14 = 40.92
R 23 = -172.571 D 23 = 9.58
R 24 = 60.898 D 24 = 11.43 N 15 = 1.83400 V 15 = 37.16
R 25 = -82.872 D 25 = 5.76 N 16 = 1.65412 V 16 = 39.68
R 26 = 31.904 D 26 = 126.94

FL 56.0 177.0 560.0
D 6 6.000 49.684 65.362
D 12 63.114 19.430 3.752
D 14 33.132 30.751 4.429
D 16 27.652 25.599 8.000
D 18 3.200 7.634 51.555

However, R 1, R 2, ··· is the radius of curvature of each lens surface, D 1, D 2, ··· wall thickness and lens distance of each lens, N 1, N 2, ··· each lens , V 1 , V 2 ,... Are Abbe numbers of the respective lenses.

また、FLはアフォーカルズーム光学系と結像光学系の合成の焦点距離で、この焦点距離FLが56mm,177mm,560mmの時のアフォーカルズーム光学系の可変間隔D6,D12,D14,D16,D18 は上記データに示す通りである。ここで、図32の(A)、(B)、(C)が夫々焦点距離FLが上記の値の時に対応する。
尚、データ中長さの単位はmmである。
FL is the combined focal length of the afocal zoom optical system and the imaging optical system. The variable distances D 6 , D 12 , D 14 of the afocal zoom optical system when the focal length FL is 56 mm, 177 mm, 560 mm. , D 16 , D 18 are as shown in the above data. Here, (A), (B), and (C) of FIG. 32 correspond to the case where the focal length FL is the above value.
The unit of length in the data is mm.

本発明の対物レンズと共に用いられる上記のアフォーカルズーム光学系と結像光学系との間隔は、対物レンズがこの間で周辺光量を維持できるように50mm〜100mmの間の値にすることが好ましい。次に述べる各実施例の対物レンズは、いずれも上記間隔を80mmに設定してある。     The distance between the afocal zoom optical system and the imaging optical system used together with the objective lens of the present invention is preferably set to a value between 50 mm and 100 mm so that the objective lens can maintain the peripheral light amount during this period. In the objective lenses of the following embodiments, the interval is set to 80 mm.

本発明の実施例1の対物レンズは、図1A、図1B、図1C、図1Dに示す通りの構成である。これら図のうち、図1Aはアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mmの時、図1Bは同光学系の合成焦点距離FL=177mmのとき、図1Cは同光学系の合成焦点距離FL=560mmのときの図である。また、図1Dは同光学系の合成焦点距離FL=560mmで物体と対物レンズの間に透明液体である水Lが存在する時で、その厚さが最大である時の球面収差の悪化を補正するために第2群を移動させた時の構成を示す図である。     The objective lens of Example 1 of the present invention has a configuration as shown in FIGS. 1A, 1B, 1C, and 1D. Among these figures, FIG. 1A shows the case where the focal length FL = 56 mm of the combined afocal zoom optical system and imaging optical system, FIG. 1B shows the case where the combined focal length FL = 177 mm of the optical system, and FIG. It is a figure in case the synthetic | combination focal distance FL = 560mm of a system. Also, FIG. 1D corrects the deterioration of spherical aberration when the thickness is the maximum when water L, which is a transparent liquid, exists between the object and the objective lens with the combined focal length FL = 560 mm of the optical system. It is a figure which shows a structure when the 2nd group is moved in order to do.

この実施例1の対物レンズは、これら図に示すように、正レンズ(r1〜r2)と負レンズ(r3〜r4)と正レンズ(r4〜r5)を接合した接合レンズ成分(r3〜r5)よりなる第1群G1と、正レンズ(r6〜r7)と負レンズ(r7〜r8)とを貼り合わせた物体側に凸面を向けたメニスカス形状の接合レンズ成分(r6〜r8)よりなる第2群G2と、正レンズ(r9〜r10)と負レンズ(r10〜r11)とを貼り合わせた正の接合レンズ成分(r9〜r11)と正レンズ(r12〜r13)と負レンズ(r13〜r14)とを貼り合わせた強い凹面を像側に向けたメニスカス形状の接合レンズ成分(r12〜r14)と凸レンズ(r15〜r16)よりなる第3群G3とにて構成されたレンズ系である。そして、第2群G2を移動することにより透明な液体による球面収差の悪化を補正している。 As shown in these drawings, the objective lens of Example 1 is a cemented lens in which a positive lens (r 1 to r 2 ), a negative lens (r 3 to r 4 ), and a positive lens (r 4 to r 5 ) are cemented. A meniscus shape having a convex surface facing the object side in which the first group G1 composed of the components (r 3 to r 5 ), the positive lens (r 6 to r 7 ) and the negative lens (r 7 to r 8 ) are bonded together. Positive cemented lens component (r 9 ) obtained by bonding the second lens group G2 composed of the cemented lens components (r 6 to r 8 ), the positive lens (r 9 to r 10 ), and the negative lens (r 10 to r 11 ). ˜r 11 ), a positive lens (r 12 ˜r 13 ), and a negative lens (r 13 ˜r 14 ), and a meniscus cemented lens component (r 12 ˜r 14 ) having a strong concave surface facing the image side. And a third lens group G3 composed of convex lenses (r 15 to r 16 ). Then, the deterioration of spherical aberration due to the transparent liquid is corrected by moving the second group G2.

この実施例1は、前記のような構成で、下記データを有する。

1 =∞ d1 =14.1 n1 =1.48749 ν1 =70.23
2 =-32.668 d2 =0.5
3 =-157.804 d3 =5.5 n2 =1.673 ν2 =38.15
4 =59.000 d4 =17.9 n3 =1.43875 ν3 =94.93
5 =-49.931 d5 (可変)
6 =71.717 d6 =9.6 n4 =1.497 ν4 =81.54
7 =∞ d7 =5.5 n5 =1.6134 ν5 =44.27
8 =90.764 d8 (可変)
9 =∞ d9 =11.7 n6 =1.43875 ν6 =94.93
10=-52.032 d10=5.5 n7 =1.673 ν7 =38.15
11=-97.657 d11 =0.5
12=61.047 d12=15.5 n8 =1.738 ν8 =32.26
13=116.067 d13=7.3 n9 =1.8061 ν9 =40.92
14=53.243 d14=7.5
15=∞ d15=5.2 n10 =1.48749 ν10 =70.23
16=-77.238

水深 d58
0 1.2 13.5
5mm 8.77 5.93

WD=21mm
FLob=55mm
視野数=22
NAmax=0.4
Dob=121mm
FL2=1582.63mm
β2=0.9977
FL12=655.3mm
NAmax×FLob=22
FLob/Dob=0.45
FL2/FLob=28.8
|r32i/FLob|=0.97
|r31c/FLob|=0.946
|ν31o−ν31i|=56.8
FL12/FLob=11.91
|r12c/FLob|=1.07
|ν12o−ν12i|=56.8

ただし、r1,r2,・・・は各レンズ面の曲率半径、d1,d2,・・・は各レンズの肉厚およびレンズ間隔、n1,n2,・・・は各レンズの屈折率、ν1,ν2,・・・は各レンズのアッベ数である。またWDは作動距離である。
Example 1 has the following configuration and the following data.

r 1 = ∞ d 1 = 14.1 n 1 = 1.48749 ν 1 = 70.23
r 2 = −32.668 d 2 = 0.5
r 3 = −157.804 d 3 = 5.5 n 2 = 1.673 ν 2 = 38.15
r 4 = 59.000 d 4 = 17.9 n 3 = 1.43875 ν 3 = 94.93
r 5 = -49.931 d 5 (variable)
r 6 = 71.717 d 6 = 9.6 n 4 = 1.497 ν 4 = 81.54
r 7 = ∞ d 7 = 5.5 n 5 = 1.6134 ν 5 = 44.27
r 8 = 90.764 d 8 (variable)
r 9 = ∞ d 9 = 11.7 n 6 = 1.43875 ν 6 = 94.93
r 10 = -52.032 d 10 = 5.5 n 7 = 1.673 ν 7 = 38.15
r 11 = -97.657 d 11 = 0.5
r 12 = 61.047 d 12 = 15.5 n 8 = 1.738 ν 8 = 32.26
r 13 = 116.067 d 13 = 7.3 n 9 = 1.8061 ν 9 = 40.92
r 14 = 53.243 d 14 = 7.5
r 15 = ∞ d 15 = 5.2 n 10 = 1.48749 ν 10 = 70.23
r 16 = -77.238

Water depth d 5 d 8
0 1.2 13.5
5 mm 8.77 5.93

WD = 21mm
FLob = 55mm
Number of fields = 22
NAmax = 0.4
Dob = 121mm
FL2 = 1582.63mm
β2 = 0.9997
FL12 = 655.3mm
NAmax × Flob = 22
FLob / Dob = 0.45
FL2 / Flob = 28.8
| R32i / Flob | = 0.97
| R31c / Flob | = 0.946
| Ν31o−ν31i | = 56.8
FL12 / FLob = 11.91
| R12c / Flob | = 1.07
| Ν12o−ν12i | = 56.8

However, r 1, r 2, ··· is the radius of curvature of each lens surface, d 1, d 2, ··· wall thickness and lens distance of each lens, n 1, n 2, ··· each lens , Ν 1 , ν 2 ,... Are Abbe numbers of the respective lenses. WD is a working distance.

この実施例1は、第2群G2を移動させて間隔d5,d8をデータ中に示すように変化させて、透明液体の存在による球面収差の悪化を補正している。この第2群G2の移動による近軸像面の移動はほとんどない。また、第2群G2は接合レンズ一つのみからなる簡単な構成であり、補正時の操作性が極めてよい。 In the first embodiment, the second group G2 is moved to change the distances d 5 and d 8 as shown in the data to correct the deterioration of the spherical aberration due to the presence of the transparent liquid. There is almost no movement of the paraxial image plane due to the movement of the second group G2. Further, the second group G2 has a simple configuration consisting of only one cemented lens, and the operability during correction is very good.

また、対物レンズによる色にじみを小さくするためには、凸レンズに異常分散ガラスを用いることが望ましい。そのため第3群G3に少なくとも1枚、軸外補正のためには第1群G1に1枚、また移動する第2群G2に1枚以上異常分散ガラスを用いることが望ましい。この実施例1の異常分散ガラスは、物体側から数えて、第3レンズ、第4レンズ、第6レンズである。     Further, in order to reduce color bleeding by the objective lens, it is desirable to use anomalous dispersion glass for the convex lens. Therefore, it is desirable to use at least one anomalous dispersion glass for the third group G3, one for the first group G1 for off-axis correction, and one or more anomalous dispersion glass for the moving second group G2. The anomalous dispersion glass of Example 1 is a third lens, a fourth lens, and a sixth lens when counted from the object side.

この実施例1は、データ中に記載するように、条件(1)、(2)、(3)、(4)、(3−1)、(4−1)、(5)、(6)、(7)、(8)、(9)、(10)を満足する。     In Example 1, as described in the data, the conditions (1), (2), (3), (4), (3-1), (4-1), (5), (6) , (7), (8), (9), and (10) are satisfied.

この実施例1の収差状況は、図6、図7、図8、図9、図10に示す通りである。これら収差図のうち、図6は球面収差、図7はコマ収差、図8は像面湾曲、図9は倍率の色収差である。またこれら図のうち(A)はアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、(B)は同光学系の合成焦点距離FL=177mm、(C)は同光学系の合成焦点距離FL=560mmのときの各収差図である。更に、図10はアフォーカルズーム光学系と結像光学系の合成焦点距離FL=560mmで物体と対物レンズの間に透明液体(水)が存在する場合で、水深が最大の時の球面収差である。この図10のうち(A0)は補正前の、(A1)は補正後の球面収差である。     The aberration status of Example 1 is as shown in FIGS. 6, 7, 8, 9, and 10. Among these aberration diagrams, FIG. 6 shows spherical aberration, FIG. 7 shows coma aberration, FIG. 8 shows field curvature, and FIG. 9 shows chromatic aberration of magnification. Of these figures, (A) shows the focal length FL = 56 mm of the combined afocal zoom optical system and imaging optical system, (B) shows the combined focal length FL = 177 mm of the optical system, and (C) shows the same optical system. FIG. 6 is an aberration diagram when a combined focal length FL is 560 mm. Further, FIG. 10 shows the spherical aberration when the water depth is maximum when the combined focal length FL = 560 mm of the afocal zoom optical system and the imaging optical system and a transparent liquid (water) exists between the object and the objective lens. is there. In FIG. 10, (A0) is the spherical aberration before correction, and (A1) is the spherical aberration after correction.

尚、これら収差図は、いずれもアフォーカルズーム光学系およびこれより間隔を80mmあけて配置した結像光学系を用いた時のものである。     Each of these aberration diagrams is obtained when an afocal zoom optical system and an imaging optical system arranged with an interval of 80 mm are used.

これら図6乃至図9より、実施例1の対物レンズは収差が良好に補正されており、又図10より物体と対物レンズの間に水が存在することにより、球面収差が悪化するが、第2群を移動させることにより悪化した球面収差は良好に補正されている。     6 to 9, the aberration of the objective lens of Example 1 is corrected well, and the spherical aberration deteriorates due to the presence of water between the object and the objective lens from FIG. The spherical aberration deteriorated by moving the second group is corrected well.

本発明の実施例2の対物レンズは、図2A、図2B、図2C、図2Dに示す通りの構成で、図2Aはアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、図2Bは同光学系の合成焦点距離FL=177mm、図2Cは同光学系の合成焦点距離FL=560mmのときの状態を示す。また、図2Dは同光学系の合成焦点距離FL=560mmで物体と対物レンズの間に透明液体である水Lが存在する場合であって、第2群2Gを移動して球面収差を補正した時の状態である。     The objective lens according to Example 2 of the present invention has a configuration as shown in FIGS. 2A, 2B, 2C, and 2D. FIG. 2A shows a focal length FL = 56 mm of the synthesis of the afocal zoom optical system and the imaging optical system. FIG. 2B shows a state when the synthetic focal length FL of the optical system is 177 mm, and FIG. 2C shows a state when the synthetic focal length FL of the optical system is 560 mm. FIG. 2D shows a case where water L, which is a transparent liquid, exists between the object and the objective lens with the combined focal length FL = 560 mm of the optical system, and the spherical aberration is corrected by moving the second group 2G. It is the state of time.

この実施例2の対物レンズは、図2A乃至図2Dに示すように実施例1と同様のレンズ構成で、下記データを有する。

1 =∞ d1 =13.7 n1 =1.48749 ν1 =70.23
2 =-33.032 d2 =0.5
3 =-205.305 d3 =5.5 n2 =1.738 ν2 =32.26
4 =62.678 d4 =17.8 n3 =1.497 ν3 =81.54
5 =-48.3451 d5 (可変)
6 =62.4329 d6 =9.6 n4 =1.497 ν4 =81.54
7 =∞ d7 =5.5 n5 =1.6134 ν5 =44.27
8 =77.1944 d8 (可変)
9 =∞ d9 =13.1 n6 =1.43875 ν6 =94.93
10=-49.702 d10=5.5 n7 =1.673 ν7 =38.15
11=-92.883 d11 =0.5
12=57.78 d12=15 n8 =1.738 ν8 =32.26
13=143.193 d13=6.7 n9 =1.7725 ν9 =49.6
14=48.408 d14=7
15=412.397 d15=5.3 n10 =1.43875 ν10 =94.93
16=-96.299

水深 d58
0 1.8 9.32
5mm 13.5 5.98

WD=21mm
FLob=50mm
視野数=22
NAmax=0.45
Dob=121mm
FL2=1573.11mm
β2=0.9977
FL12=261.2mm
NAmax×FLob=22.5
FLob/Dob=0.41
FL2/FLob=31.5
|r32i/FLob|=0.97
|r31c/FLob|=0.994
|ν31o−ν31i|=56.8
FL12/FLob=5.22
|r12c/FLob|=1.25
|ν12o−ν12i|=49.3

この実施例2の対物レンズは、第2群G2を移動させて間隔d5,d8を変化させて、球面収差の変動を補正している。
The objective lens of Example 2 has the same lens configuration as that of Example 1 as shown in FIGS. 2A to 2D and has the following data.

r 1 = ∞ d 1 = 13.7 n 1 = 1.48749 ν 1 = 70.23
r 2 = -33.032 d 2 = 0.5
r 3 = -205.305 d 3 = 5.5 n 2 = 1.738 ν 2 = 32.26
r 4 = 62.678 d 4 = 17.8 n 3 = 1.497 ν 3 = 81.54
r 5 = -48.3451 d 5 (variable)
r 6 = 62.4329 d 6 = 9.6 n 4 = 1.497 ν 4 = 81.54
r 7 = ∞ d 7 = 5.5 n 5 = 1.6134 ν 5 = 44.27
r 8 = 77.1944 d 8 (variable)
r 9 = ∞ d 9 = 13.1 n 6 = 1.43875 ν 6 = 94.93
r 10 = −49.702 d 10 = 5.5 n 7 = 1.673 ν 7 = 38.15
r 11 = -92.883 d 11 = 0.5
r 12 = 57.78 d 12 = 15 n 8 = 1.738 ν 8 = 32.26
r 13 = 143.193 d 13 = 6.7 n 9 = 1.7725 ν 9 = 49.6
r 14 = 48.408 d 14 = 7
r 15 = 412.397 d 15 = 5.3 n 10 = 1.43875 ν 10 = 94.93
r 16 = -96.299

Water depth d 5 d 8
0 1.8 9.32
5mm 13.5 5.98

WD = 21mm
FLob = 50mm
Number of fields = 22
NAmax = 0.45
Dob = 121mm
FL2 = 1573.11mm
β2 = 0.9997
FL12 = 261.2mm
NAmax x FLob = 22.5
FLob / Dob = 0.41
FL2 / FLob = 31.5
| R32i / Flob | = 0.97
| R31c / Flob | = 0.994
| Ν31o−ν31i | = 56.8
FL12 / FLob = 5.22
| R12c / Flob | = 1.25
| Ν12o−ν12i | = 49.3

In the objective lens of Example 2, the variation of spherical aberration is corrected by moving the second group G2 to change the distances d 5 and d 8 .

この実施例2の対物レンズは、実施例1と同様のレンズ構成であるが、実施例1より焦点距離が短く、倍率が高いレンズ系である。そのために、物体と対物レンズとの間に透明液体が存在する場合の球面収差の劣化はより大である。しかし第2群G2の移動によって球面収差を良好に補正し得る。またこの第2群G2の移動による近軸像面の移動はほとんどない。またこの実施例2も、色にじみを防止するためには、実施例1と同様に異常分散ガラスを各群に設けているが、特に第3群G3に二つの異常分散ガラスを用いている。この実施例2の異常分散ガラスは、物体側から数えて、第3レンズ、第4レンズ、第6レンズ、第10レンズである。     The objective lens of Example 2 has the same lens configuration as that of Example 1, but has a shorter focal length and higher magnification than Example 1. For this reason, the deterioration of spherical aberration is greater when a transparent liquid exists between the object and the objective lens. However, the spherical aberration can be favorably corrected by the movement of the second group G2. Further, there is almost no movement of the paraxial image plane due to the movement of the second group G2. In Example 2, in order to prevent color bleeding, anomalous dispersion glass is provided in each group in the same manner as in Example 1. In particular, two anomalous dispersion glasses are used for the third group G3. The anomalous dispersion glass of Example 2 is a third lens, a fourth lens, a sixth lens, and a tenth lens, counted from the object side.

この実施例2の対物レンズでは、前記データに示すように、条件(1)、(2)、(3)、(4)、(3−1)、(4−1)、(5)、(6)、(7)、(8)、(9)、(10)をすべて満足する。     In the objective lens of Example 2, as shown in the data, the conditions (1), (2), (3), (4), (3-1), (4-1), (5), ( 6), (7), (8), (9), (10) are all satisfied.

この実施例2も、その像側に図32、図33に示し、前記データを有するアフォーカルズーム光学系、結像光学系を配置して用いる。     Also in the second embodiment, an afocal zoom optical system and an imaging optical system having the data shown in FIGS. 32 and 33 are arranged and used on the image side.

この実施例2の収差状況は、図11、図12、図13、図14、図15に示す通りである。これら収差図のうち、図11は球面収差、図12はコマ収差、図13は像面湾曲、図14は倍率の色収差である。またこれら図11、図12、図13、図14のうち(A)はアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、(B)は同光学系の合成焦点距離FL=177mm、(C)は同光学系の合成焦点距離FL=560mmのときの収差図である。更に、図15はアフォーカルズーム光学系と結像光学系の合成焦点距離FL=560mmで物体と対物レンズの間に透明液体(水)が存在する時の球面収差であって、(A0)は水深が最大の時の水により悪化した球面収差、(A1)は第2群G2により補正した球面収差を示す。     The aberration status of Example 2 is as shown in FIGS. 11, 12, 13, 14, and 15. Among these aberration diagrams, FIG. 11 shows spherical aberration, FIG. 12 shows coma, FIG. 13 shows field curvature, and FIG. 14 shows chromatic aberration of magnification. 11, FIG. 12, FIG. 13 and FIG. 14, (A) is the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system, and (B) is the combined focal length FL of the same optical system. = 177 mm, (C) is an aberration diagram when the combined focal length FL of the same optical system is 560 mm. FIG. 15 is a spherical aberration when a transparent liquid (water) exists between the object and the objective lens at a combined focal length FL = 560 mm of the afocal zoom optical system and the imaging optical system, and (A0) is Spherical aberration deteriorated by water when the water depth is maximum, (A1) shows spherical aberration corrected by the second group G2.

これら収差図も対物レンズの像側にアフォーカルズーム光学系と結像光学系を配置した時のもので、アフォーカルズーム光学系と結像レンズとの間隔は80mmである。     These aberration diagrams are also obtained when the afocal zoom optical system and the imaging optical system are arranged on the image side of the objective lens, and the distance between the afocal zoom optical system and the imaging lens is 80 mm.

これら図11〜図14に示すように、実施例2の対物レンズは収差が良好に補正されている。また、図15に示すように、物体と対物レンズの間に水が存在して悪化した球面収差は、第2群G2の移動により良好に補正される。     As shown in FIGS. 11 to 14, the objective lens of Example 2 has its aberration corrected well. Further, as shown in FIG. 15, the spherical aberration that is deteriorated due to the presence of water between the object and the objective lens is favorably corrected by the movement of the second group G2.

本発明の実施例3の対物レンズは、図3A、図3B、図3C、図3Dに示す通りの構成である。これら図のうち、図3Aはアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、図3Bは同光学系の合成焦点距離FL=177mm、図3Cは同光学系の合成焦点距離FL=560mm、また、図3Dはアフォーカルズーム光学系と結像光学系の合成焦点距離FL=560mmであって、物体と対物レンズの間に透明な液体(水)Lが存在する時で、その時の球面収差の悪化を補正するために第2群G2を移動させた時の構成を示す。     The objective lens of Example 3 of the present invention has a configuration as shown in FIGS. 3A, 3B, 3C, and 3D. Of these figures, FIG. 3A shows the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system, FIG. 3B shows the combined focal length FL = 177 mm of the optical system, and FIG. 3C shows the combined focal length of the optical system. The distance FL = 560 mm, and FIG. 3D shows the case where the combined focal length FL = 560 mm of the afocal zoom optical system and the imaging optical system, and there is a transparent liquid (water) L between the object and the objective lens. The configuration when the second group G2 is moved in order to correct the deterioration of the spherical aberration at that time is shown.

この実施例3は、図示するように実施例1、2と同様のレンズ構成であり、そのデータは下記の通りである。

1 =-612.777 d1 =12.5 n1 =1.58913 ν1 =61.14
2 =-34.804 d2 =0.5
3 =-229.065 d3 =5.5 n2 =1.738 ν2 =32.26
4 =67.361 d4 =17.9 n3 =1.497 ν3 =81.54
5 =-48.375 d5 (可変)
6 =55.44 d6 =9.65 n4 =1.497 ν4 =81.54
7 =∞ d7 =5.5 n5 =1.6134 ν5 =44.27
8 =67.172 d8 (可変)
9 =523.772 d9 =13.1 n6 =1.43875 ν6 =94.93
10=-41.9 d10=5.5 n7 =1.673 ν7 =38.15
11=-89.561 d11=0.5
12=55.292 d12=14.6 n8 =1.738 ν8 =32.26
13=186.57 d13=8.1 n9 =1.7725 ν9 =49.6
14=44.624 d14=7.05
15=232.844 d15=5.2 n10 =1.43875 ν10 =94.93
16=-112.321

水深 d58
0 1.8 9.21
5mm 13.5 6.19

WD=21.1mm
FLob=45.5mm
視野数=22
NAmax=0.5
Dob=120.9mm
FL2=1563.22mm
β2=0.9910
FL12=228.181mm
NAmax×FLob=22.5
FLob/Dob=0.376
FL2/FLob=34.4
|r32i/FLob|=0.98
|r31c/FLob|=0.921
|ν31o−ν31i|=56.8
FL12/FLob=5.01
|r12c/FLob|=1.48
|ν12o−ν12i|=49.3

上記データより明らかなように、本発明の実施例3は、第2群G2を移動させて間隔d5,d8をデータに示すように変化させて、球面収差の補正を行なっている。
The third embodiment has the same lens configuration as the first and second embodiments as shown in the figure, and the data is as follows.

r 1 = −612.777 d 1 = 12.5 n 1 = 1.58913 ν 1 = 61.14
r 2 = −34.804 d 2 = 0.5
r 3 = -229.065 d 3 = 5.5 n 2 = 1.738 ν 2 = 32.26
r 4 = 67.361 d 4 = 17.9 n 3 = 1.497 ν 3 = 81.54
r 5 = -48.375 d 5 (variable)
r 6 = 55.44 d 6 = 9.65 n 4 = 1.497 ν 4 = 81.54
r 7 = ∞ d 7 = 5.5 n 5 = 1.6134 ν 5 = 44.27
r 8 = 67.172 d 8 (variable)
r 9 = 523.772 d 9 = 13.1 n 6 = 1.43875 ν 6 = 94.93
r 10 = -41.9 d 10 = 5.5 n 7 = 1.673 ν 7 = 38.15
r 11 = -89.561 d 11 = 0.5
r 12 = 55.292 d 12 = 14.6 n 8 = 1.738 ν 8 = 32.26
r 13 = 186.57 d 13 = 8.1 n 9 = 1.7725 ν 9 = 49.6
r 14 = 44.624 d 14 = 7.05
r 15 = 232.844 d 15 = 5.2 n 10 = 1.43875 ν 10 = 94.93
r 16 = −112.321

Water depth d 5 d 8
0 1.8 9.21
5mm 13.5 6.19

WD = 21.1mm
FLob = 45.5mm
Number of fields = 22
NAmax = 0.5
Dob = 120.9mm
FL2 = 1563.22mm
β2 = 0.9910
FL12 = 228.181mm
NAmax x FLob = 22.5
FLob / Dob = 0.376
FL2 / Flob = 34.4
| R32i / Flob | = 0.98
| R31c / Flob | = 0.922
| Ν31o−ν31i | = 56.8
FL12 / FLob = 5.01
| R12c / Flob | = 1.48
| Ν12o−ν12i | = 49.3

As is apparent from the above data, the third embodiment of the present invention corrects spherical aberration by moving the second group G2 and changing the distances d 5 and d 8 as shown in the data.

この実施例3は、実施例2よりも焦点距離が更に短く、倍率が一層高いレンズ系である。しかし、第2群G2の移動により球面収差の劣化が補正され、また移動による軸上像面の移動もほとんどない。また、コマ収差の補正のため、最も物体側の面を凹面にしてある。     The third embodiment is a lens system having a shorter focal length and higher magnification than the second embodiment. However, the movement of the second group G2 corrects the deterioration of the spherical aberration, and there is almost no movement of the on-axis image plane due to the movement. Further, the most object-side surface is concave for correcting coma aberration.

この実施例3は、データに示すように、条件(1)、(2)、(3)、(4)、(3−1)、(4−1)、(5)、(6)、(7)、(8)、(9)、(10)を満足する。     In Example 3, as shown in the data, the conditions (1), (2), (3), (4), (3-1), (4-1), (5), (6), ( 7), (8), (9), and (10) are satisfied.

この実施例3の対物レンズも、図32、図33に示す構成で、前に記載したデータを有するアフォーカルズーム光学系と結像光学系をその像側に配置して使用する。     The objective lens of Example 3 also has the configuration shown in FIGS. 32 and 33 and uses the afocal zoom optical system and the imaging optical system having the data described above arranged on the image side.

この実施例3の収差状況は、図16、図17、図18、図19、図20に示す通りである。これら収差図のうち、図16は球面収差、図17はコマ収差、図18は像面湾曲、図19は倍率の色収差である。またこれら図のうち(A)はアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、(B)は同光学系の合成焦点距離FL=177mm、(C)は同光学系の合成焦点距離FL=560mmで物体と対物レンズの間に透明液体が存在しない時の収差図である。また図20は、アフォーカルズーム光学系と結像光学系の合成焦点距離が560mmで、物体と対物レンズの間に透明液体(水)が存在し、水深が最大の時の球面収差図である。図20において、(A0)は水が存在する時の補正前、(A1)は第2群G2による補正後の球面収差である。     The aberration status of Example 3 is as shown in FIG. 16, FIG. 17, FIG. 18, FIG. Of these aberration diagrams, FIG. 16 shows spherical aberration, FIG. 17 shows coma, FIG. 18 shows field curvature, and FIG. 19 shows chromatic aberration of magnification. Of these figures, (A) shows the focal length FL = 56 mm of the combined afocal zoom optical system and imaging optical system, (B) shows the combined focal length FL = 177 mm of the optical system, and (C) shows the same optical system. FIG. 6 is an aberration diagram when a transparent liquid is not present between the object and the objective lens at a combined focal length FL of 560 mm. FIG. 20 is a spherical aberration diagram when the combined focal length of the afocal zoom optical system and the imaging optical system is 560 mm, transparent liquid (water) exists between the object and the objective lens, and the water depth is maximum. . In FIG. 20, (A0) is the spherical aberration before correction when water is present, and (A1) is the spherical aberration after correction by the second group G2.

これら収差図(図16、図17、図18、図19、図20)も、対物レンズの像側にアフォーカルズーム光学系と結像光学系を配置した時の収差図で、アフォーカルズーム光学系と結像レンズとの間隔は80mmである。     These aberration diagrams (FIGS. 16, 17, 18, 19, and 20) are also aberration diagrams when the afocal zoom optical system and the imaging optical system are arranged on the image side of the objective lens. The distance between the system and the imaging lens is 80 mm.

これら図に示すように、本発明の実施例3の対物レンズは、諸収差が良好に補正されている。また、図20に示すように、第2群を移動することにより、物体と対物レンズの間に水が存在することによる球面収差の悪化は良好に補正し得る。この実施例3にも色収差を良好に補正するため異常分散ガラスを使用している。異常分散ガラスは、物体側から数えて、第3レンズ、第4レンズ、第6レンズ、第10レンズである。     As shown in these figures, the objective lens of Example 3 of the present invention has various aberrations corrected well. Further, as shown in FIG. 20, by moving the second group, it is possible to satisfactorily correct the deterioration of spherical aberration due to the presence of water between the object and the objective lens. Also in Example 3, an anomalous dispersion glass is used to satisfactorily correct chromatic aberration. The anomalous dispersion glass is a third lens, a fourth lens, a sixth lens, and a tenth lens, counted from the object side.

本発明の実施例4の対物レンズは、図4A、図4B、図4C、図4Dに示す通りの構成である。これら図のうち、図4Aはアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、図4Bは同光学系の合成焦点距離FL=177mm、図4Cは同光学系の合成焦点距離FL=560mmのときで、いずれも物体と対物レンズの間に液体が存在しない時の状態を示す。また、図4Dは同光学系の合成焦点距離FL=560mmであって、物体と対物レンズの間に透明な液体Lが存在する場合で、その際発生する球面収差を補正するために第2群G2を移動させた時の図である。     The objective lens of Example 4 of the present invention has a configuration as shown in FIGS. 4A, 4B, 4C, and 4D. Of these figures, FIG. 4A shows the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system, FIG. 4B shows the combined focal length FL = 177 mm of the optical system, and FIG. 4C shows the combined focal length of the optical system. When the distance is FL = 560 mm, both show the state when no liquid exists between the object and the objective lens. FIG. 4D shows the case where the composite focal length FL of the optical system is FL = 560 mm and there is a transparent liquid L between the object and the objective lens, and the second group is used to correct the spherical aberration generated at that time. It is a figure when G2 is moved.

この実施例4の対物レンズは、これら図に示すようにカバーガラスである平行平面板(r1〜r2)と平凸レンズ(r2〜r3)を貼り合わせたレンズ成分(r1〜r3)と負レンズ(r4〜r5)と正レンズ(r5〜r6)とを貼り合わせた接合レンズ成分(r4〜r6)よりなる第1群G1と、正レンズ(r7〜r8)と負レンズ(r8〜r9)とを接合した物体側が凸面のメニスカス形状の接合レンズ成分(r7〜r9)の第2群G2と、正レンズ(r10〜r11)と負レンズ(r11〜r12)とを貼り合わせた接合レンズ成分(r10〜r12)と正レンズ(r13〜r14)と負レンズ(r14〜r15)とを接合した物体側が強い凹面のメニスカス形状の接合レンズ成分(r13〜r15)と凸レンズ(r16〜r17)よりなる第3群G3とにて構成されたレンズ系である。この実施例の対物レンズは、図4Dに示すように第2群G2を移動させて、透明液体による球面収差の変動を補正している。 As shown in these drawings, the objective lens of Example 4 has lens components (r 1 to r) in which a plane parallel plate (r 1 to r 2 ) that is a cover glass and a plano-convex lens (r 2 to r 3 ) are bonded together. 3 ), a negative lens (r 4 to r 5 ), a positive lens (r 5 to r 6 ) and a cemented lens component (r 4 to r 6 ), and a first lens group G1 and a positive lens (r 7 ˜r 8 ) and the negative lens (r 8 ˜r 9 ) and the second lens group G2 of the meniscus cemented lens component (r 7 ˜r 9 ) having a convex object side and the positive lens (r 10 ˜r 11). ) And a negative lens (r 11 to r 12 ), a cemented lens component (r 10 to r 12 ), a positive lens (r 13 to r 14 ), and a negative lens (r 14 to r 15 ) a third group G3 a cemented lens component of strong concave surface of a meniscus shape an object side (r 13 ~r 15) consisting of a convex lens (r 16 ~r 17) A lenses system configuration Te. In the objective lens of this embodiment, as shown in FIG. 4D, the second group G2 is moved to correct the variation of spherical aberration due to the transparent liquid.

この実施例4の対物レンズのデータを次に示す。

1 =∞ d1 =1 n1 =1.51633 ν1 =64.14
2 =∞ d2 =13.1 n2 =1.497 ν2 =81.54
3 =-34.091 d3 =0.5
4 =-327.131 d4 =5.5 n3 =1.738 ν3 =32.26
5 =69.411 d5 =17.6 n4 =1.497 ν4 =81.54
6 =-49.142 d6 (可変)
7 =56.124 d7 =9.65 n5 =1.497 ν5 =81.54
8 =∞ d8 =5.5 n6 =1.6134 ν6 =44.27
9 =67.348 d9 (可変)
10=367.241 d10 =12.9 n7 =1.43875 ν7 =94.99
11=-42.204 d11=5.5 n8 =1.673 ν8 =38.15
12=-86.888 d12 =0.5
13=52.08 d13=15 n9 =1.738 ν9 =32.26
14=-10000 d14=6.7 n10=1.7859 ν10=44.2
15=42.599 d15=7.05
16=238.505 d16=5.2 n11=1.43875 ν11=94.93
17=-127.05

水深 d69
0 1 5.9
5mm 10.3 5.4

WD=21mm
FLob=45.5mm
視野数=22
NAmax=0.5
Dob=121mm
FL2=1843.69mm
β2=0.9814
FL12=195.43mm
NAmax×FLob=22.5
FLob/Dob=0.376
FL2/FLob=40.5
|r32i/FLob|=0.936
|r31c/FLob|=0.928
|ν31o−ν31i|=56.8
FL12/FLob=4.3
|r12c/FLob|=1.52
|ν12o−ν12i|=49.3

この実施例4の対物レンズは、第2群G2を移動させて間隔d6,d9を変化させて、物体と対物レンズの間に透明液体(水)が存在する時の球面収差の劣化を補正している。
The data of the objective lens of Example 4 is shown below.

r 1 = ∞ d 1 = 1 n 1 = 1.51633 ν 1 = 64.14
r 2 = ∞ d 2 = 13.1 n 2 = 1.497 ν 2 = 81.54
r 3 = -34.091 d 3 = 0.5
r 4 = -327.131 d 4 = 5.5 n 3 = 1.738 ν 3 = 32.26
r 5 = 69.411 d 5 = 17.6 n 4 = 1.497 ν 4 = 81.54
r 6 = -49.142 d 6 (variable)
r 7 = 56.124 d 7 = 9.65 n 5 = 1.497 ν 5 = 81.54
r 8 = ∞ d 8 = 5.5 n 6 = 1.6134 ν 6 = 44.27
r 9 = 67.348 d 9 (variable)
r 10 = 367.241 d 10 = 12.9 n 7 = 1.43875 ν 7 = 94.99
r 11 = −42.204 d 11 = 5.5 n 8 = 1.673 ν 8 = 38.15
r 12 = -86.888 d 12 = 0.5
r 13 = 52.08 d 13 = 15 n 9 = 1.738 ν 9 = 32.26
r 14 = −10000 d 14 = 6.7 n 10 = 1.7859 ν 10 = 44.2
r 15 = 42.599 d 15 = 7.05
r 16 = 238.505 d 16 = 5.2 n 11 = 1.43875 ν 11 = 94.93
r 17 = -127.05

Water depth d 6 d 9
0 1 5.9
5mm 10.3 5.4

WD = 21mm
FLob = 45.5mm
Number of fields = 22
NAmax = 0.5
Dob = 121mm
FL2 = 1843.69mm
β2 = 0.9814
FL12 = 195.43mm
NAmax x FLob = 22.5
FLob / Dob = 0.376
FL2 / FLob = 40.5
| R32i / Flob | = 0.936
| R31c / Flob | = 0.828
| Ν31o−ν31i | = 56.8
FL12 / FLob = 4.3
| R12c / Flob | = 1.52
| Ν12o−ν12i | = 49.3

In the objective lens of Example 4, the second group G2 is moved to change the distances d 6 and d 9 , thereby reducing the spherical aberration when a transparent liquid (water) exists between the object and the objective lens. It is corrected.

また、この実施例4は、データに示すように、条件(1)、(2)、(3)、(4)、(3−1)、(4−1)、(5)、(6)、(7)、(8)、(9)、(10)を満足する。     Further, in this Example 4, as shown in the data, the conditions (1), (2), (3), (4), (3-1), (4-1), (5), (6) , (7), (8), (9), and (10) are satisfied.

この実施例4の対物レンズは、軸上のg線の色が大きいため、写真撮影の場合等では、やや色にじみがあることがわかるようになる。これを除去するために異常分散ガラスを用いることが好ましい。しかし異常分散ガラスは、耐性が弱いので、物体側にカバーガラスを設けることが望ましい。この実施例4の異常分散ガラスは、物体側から数えて、第2レンズ、第4レンズ、第5レンズ、第7レンズ、第11レンズである。     In the objective lens of Example 4, since the color of the g-line on the axis is large, it can be seen that there is a slight color blur in the case of photography. In order to remove this, it is preferable to use anomalous dispersion glass. However, since anomalous dispersion glass has low resistance, it is desirable to provide a cover glass on the object side. The anomalous dispersion glass of Example 4 is a second lens, a fourth lens, a fifth lens, a seventh lens, and an eleventh lens, counted from the object side.

この実施例4では、収差補正時の近軸像面位置を物体側に4mm離れるようにしている。これにより、最大収差発生時には、収差補正を行なっていない状態での最良像位置が近軸像面と異なる位置になる。この実施例では、この点を考慮して透明液体が存在した時の第2群G2による収差補正を行なった時に最良像位置が変動しないようにしている。     In Example 4, the paraxial image plane position at the time of aberration correction is set 4 mm away from the object side. As a result, when the maximum aberration is generated, the best image position in a state where no aberration correction is performed is different from the paraxial image plane. In this embodiment, in consideration of this point, the best image position does not fluctuate when the aberration correction is performed by the second group G2 when the transparent liquid exists.

この実施例4の収差状況は、図21、図22、図23、図24、図25に示す通りである。そして図21は球面収差、図22はコマ収差、図23は像面湾曲、図24は倍率の色収差である。またこれら収差図のうち(A)はアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mmの時、(B)は同光学系の合成焦点距離FL=177mmの時、(C)は同光学系の合成焦点距離FL=560mmの時の収差図である。また図25は、アフォーカルズーム光学系と結像光学系の合成焦点距離が560mmの時で、物体と対物レンズの間に透明液体(水)が存在する場合の球面収差を示す。この図25において、(A0)は水深が最大の時の球面収差、(A1)はその時の第2群G2の移動による補正後の球面収差である。     The aberration status of Example 4 is as shown in FIG. 21, FIG. 22, FIG. 23, FIG. 24, and FIG. FIG. 21 shows spherical aberration, FIG. 22 shows coma, FIG. 23 shows field curvature, and FIG. 24 shows chromatic aberration of magnification. Of these aberration diagrams, (A) is when the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system, and (B) is (C) when the combined focal length FL of the optical system is 177 mm. ) Is an aberration diagram when the combined focal length FL of the same optical system is 560 mm. FIG. 25 shows spherical aberration when a transparent liquid (water) exists between the object and the objective lens when the combined focal length of the afocal zoom optical system and the imaging optical system is 560 mm. In FIG. 25, (A0) is the spherical aberration when the water depth is maximum, and (A1) is the spherical aberration after correction due to the movement of the second group G2 at that time.

以上の収差図は、アフォーカルズーム光学系と結像光学系を対物レンズの像側に配置した時のものである。またその時のアフォーカルズーム光学系と結像レンズとの間隔は80mmである。     The above aberration diagrams are obtained when the afocal zoom optical system and the imaging optical system are arranged on the image side of the objective lens. At that time, the distance between the afocal zoom optical system and the imaging lens is 80 mm.

これら図21乃至図24の収差図から明らかなように、本発明の実施例4の対物レンズは、諸収差が良好に補正されている。また、図25から物体と対物レンズの間に透明な液体が存在する場合も、第2群G2の移動により球面収差を良好に補正し得る。     As apparent from the aberration diagrams of FIGS. 21 to 24, the objective lens of Example 4 of the present invention has various aberrations corrected satisfactorily. Also, from FIG. 25, when a transparent liquid exists between the object and the objective lens, the spherical aberration can be favorably corrected by the movement of the second group G2.

本発明の実施例5の対物レンズは、図5A、図5B、図5C、図5Dに示す通りの構成である。これら図のうち、図5Aはアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、図5Bは同光学系の合成焦点距離FL=177mm、図5Cは同光学系の合成焦点距離FL=560mmにおける状態を示す図である。また、図5Dはアフォーカルズーム光学系と結像光学系の合成焦点距離FL=560mmであって、物体と対物レンズの間に透明な液体Lが存在し、それによる球面収差を補正するために第2群G2を移動させた状態を示す図である。     The objective lens of Example 5 of the present invention has a configuration as shown in FIGS. 5A, 5B, 5C, and 5D. Of these figures, FIG. 5A shows the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system, FIG. 5B shows the combined focal length FL = 177 mm of the optical system, and FIG. 5C shows the combined focal length of the optical system. It is a figure which shows the state in distance FL = 560mm. FIG. 5D shows the combined focal length FL = 560 mm of the afocal zoom optical system and the imaging optical system, and a transparent liquid L exists between the object and the objective lens, and the spherical aberration caused thereby is corrected. It is a figure which shows the state which moved 2nd group G2.

本発明の実施例5の対物レンズは、これら図に示すように、物体側より順に、負レンズ(r1〜r2)と正レンズ(r2〜r3)を接合した接合レンズ(r1〜r3)と負レンズ(r4〜r5)と正レンズ(r5〜r6)とを貼り合わせた接合レンズ(r4〜r6)との二つの接合レンズ成分よりなる第1群G1と、正レンズ(r7〜r8)と負レンズ(r8〜r9)とを貼り合わせた接合レンズ(r7〜r9)で凸面と物体に向けたメニスカス形状の接合レンズ成分の第2群G2と、正レンズ(r10〜r11)と負レンズ(r11〜r12)とを接合した接合レンズ(r10〜r12)と、正レンズ(r13〜r14)と負レンズ(r14〜r15)とを接合した接合レンズ(r13〜r15)であって、像側に強い凹面を向けた接合レンズ成分と凸レンズ(r16〜r17)とにて構成される第3群G3とにて構成されている。 As shown in these drawings, the objective lens of Example 5 of the present invention is a cemented lens (r 1 ) in which a negative lens (r 1 to r 2 ) and a positive lens (r 2 to r 3 ) are cemented in order from the object side. ˜r 3 ), a negative lens (r 4 ˜r 5 ), and a cemented lens (r 4 ˜r 6 ) obtained by bonding the positive lens (r 5 ˜r 6 ) together and G1, a positive lens (r 7 ~r 8) and a negative lens (r 8 ~r 9) and a bonded cemented lens (r 7 ~r 9) in the cemented lens component having a meniscus shape with the convex surface and the object a second group G2, a positive lens (r 10 ~r 11) and a negative lens (r 11 ~r 12) and the junction with the cemented lens (r 10 ~r 12), and a positive lens (r 13 ~r 14) a negative lens (r 14 ~r 15) and the junction with the cemented lens (r 13 ~r 15), a cemented lens component having a strong concave surface facing the image side and a convex lens Are composed of a third unit G3 consists in (r 16 ~r 17) and.

この実施例5の対物レンズのデータを次に示す。

1 =∞ d1 =4 n1 =1.6779 ν1 =55.34
2 =81.396 d2 =21.1 n2 =1.603 ν2 =65.44
3 =-36.366 d3 =0.5
4 =-340.848 d4 =4.3 n3 =1.6134 ν3 =44.27
5 =45.418 d5 =16.8 n4 =1.497 ν4 =81.54
6 =-78.468 d6 (可変)
7 =49.61 d7 =10.8 n5 =1.497 ν5 =81.54
8 =∞ d8 =4.9 n6 =1.6134 ν6 =44.27
9 =57.831 d9 (可変)
10=176.375 d10 =13.5 n7 =1.43875 ν7 =94.93
11=-44.438 d11=5 n8 =1.673 ν8 =38.15
12=-102.463 d12 =0.5
13=45.86 d13=11.1 n9 =1.738 ν9 =32.26
14=∞ d14=5 n10=1.79952 ν10=42.22
15=39.134 d15=7.4
16=2075.463 d16=4.8 n11=1.43875 ν11=94.93
17=-103.994

水深 d69
0 1 5.79
5mm 10.3 5.51

WD=20mm
FLob=45.5mm
視野数=20
NAmax=0.5
Dob=121mm
FL2=1996.54mm
β2=0.9695
FL12=437.71mm
NAmax×FLob=22.5
FLob/Dob=0.376
FL2/FLob=43.9
|r32i/FLob|=0.86
|r31c/FLob|=0.998
|ν31o−ν31i|=56.8
FL12/FLob=9.62
|r12c/FLob|=1.52
|ν12o−ν12i|=37.3

この本発明の実施例5の対物レンズは、第2群G2を移動させてレンズ間隔d6,d9とをデータ中に示すように変化させて、物体と対物レンズの間に透明液体による球面収差の変動を補正している。
The data of the objective lens of Example 5 is shown below.

r 1 = ∞ d 1 = 4 n 1 = 1.6779 ν 1 = 55.34
r 2 = 81.396 d 2 = 21.1 n 2 = 1.603 ν 2 = 65.44
r 3 = −36.366 d 3 = 0.5
r 4 = -340.848 d 4 = 4.3 n 3 = 1.6134 ν 3 = 44.27
r 5 = 45.418 d 5 = 16.8 n 4 = 1.497 ν 4 = 81.54
r 6 = -78.468 d 6 (variable)
r 7 = 49.61 d 7 = 10.8 n 5 = 1.497 ν 5 = 81.54
r 8 = ∞ d 8 = 4.9 n 6 = 1.6134 ν 6 = 44.27
r 9 = 57.831 d 9 (variable)
r 10 = 176.375 d 10 = 13.5 n 7 = 1.43875 ν 7 = 94.93
r 11 = −44.438 d 11 = 5 n 8 = 1.673 ν 8 = 38.15
r 12 = −102.463 d 12 = 0.5
r 13 = 45.86 d 13 = 11.1 n 9 = 1.738 ν 9 = 32.26
r 14 = ∞ d 14 = 5 n 10 = 1.79952 ν 10 = 42.22
r 15 = 39.134 d 15 = 7.4
r 16 = 2075.463 d 16 = 4.8 n 11 = 1.43875 ν 11 = 94.93
r 17 = -103.994

Water depth d 6 d 9
0 1 5.79
5mm 10.3 5.51

WD = 20mm
FLob = 45.5mm
Number of fields = 20
NAmax = 0.5
Dob = 121mm
FL2 = 1996.54mm
β2 = 0.9695
FL12 = 437.71mm
NAmax x FLob = 22.5
FLob / Dob = 0.376
FL2 / FLob = 43.9
| R32i / Flob | = 0.86
| R31c / Flob | = 0.998
| Ν31o−ν31i | = 56.8
FL12 / FLob = 9.62
| R12c / Flob | = 1.52
| Ν12o−ν12i | = 37.3

In the objective lens according to Example 5 of the present invention, the second group G2 is moved to change the lens distances d 6 and d 9 as shown in the data, so that a spherical surface made of a transparent liquid is formed between the object and the objective lens. Aberration fluctuations are corrected.

また、この実施例5の対物レンズは、そのデータに示すように、条件(1)、(2)、(3)、(4)、(3−1)、(4−1)、(5)、(6)、(7)、(8)、(9)、(10)のすべての条件を満足する。     Further, in the objective lens of Example 5, as shown in the data, the conditions (1), (2), (3), (4), (3-1), (4-1), (5) , (6), (7), (8), (9), (10) are satisfied.

この実施例5は、実施例4よりも更に軸上色収差を小さくしたもので、そのため、最も物体側のレンズを接合レンズにした。この接合レンズの凸レンズに異常分散ガラスを用いたことにより、像面湾曲やコマ収差はやや悪くなるが、軸上色収差は一層良好に補正されている。この実施例5の異常分散ガラスは、物体側から数えて第4レンズ、第5レンズ、第7レンズ、第11レンズである。     In Example 5, axial chromatic aberration was further reduced as compared with Example 4. Therefore, the lens on the most object side was a cemented lens. By using anomalous dispersion glass for the convex lens of this cemented lens, curvature of field and coma are slightly worsened, but axial chromatic aberration is corrected more satisfactorily. The anomalous dispersion glass of Example 5 is a fourth lens, a fifth lens, a seventh lens, and an eleventh lens, counted from the object side.

この実施例5も、図32、図33に示す構成の光学系、前記の通りのデータを有するアフォーカルズーム光学系と結像光学系とをその像側に配置して使用する。     In the fifth embodiment, the optical system having the configuration shown in FIGS. 32 and 33, the afocal zoom optical system having the data as described above, and the imaging optical system are arranged on the image side and used.

この実施例5の収差状況は、図26、図27、図28、図29、図30に示す通りである。これら図において、図26は球面収差、図27はコマ収差、図28は像面湾曲、図29は倍率の色収差である。またこれら図において、(A)は図32、図33に示すアフォーカルズーム光学系と結像光学系の合成の焦点距離FL=56mm、(B)は同光学系の合成焦点距離FL=177mm、(C)は同光学系の合成焦点距離FL=560mmにおける状態を示す図である。また図30は、アフォーカルズーム光学系と結像光学系の合成焦点距離が560mmのであって、物体と対物レンズの間に透明液体(水)が存在する時の球面収差で、(A0)は水の存在による球面収差の変動の補正前、(A1)は補正後を示す。 これらの図26、図27、図28、図29、図30の収差図は、いずれも前記のアフォーカルズーム光学系と結像光学系を実施例5の対物レンズの像側に配置した時のもので、その時のアフォーカルズーム光学系と結像レンズとの間隔は80mmである。     The aberration status of Example 5 is as shown in FIG. 26, FIG. 27, FIG. 28, FIG. 29, and FIG. In these figures, FIG. 26 shows spherical aberration, FIG. 27 shows coma, FIG. 28 shows field curvature, and FIG. 29 shows chromatic aberration of magnification. In these drawings, (A) shows the combined focal length FL = 56 mm of the afocal zoom optical system and the imaging optical system shown in FIGS. 32 and 33, and (B) shows the combined focal length FL = 177 mm of the same optical system. (C) is a diagram showing a state of the optical system at a combined focal length FL = 560 mm. FIG. 30 is a spherical aberration when the combined focal length of the afocal zoom optical system and the imaging optical system is 560 mm and there is a transparent liquid (water) between the object and the objective lens, and (A0) is Before correction of the variation of the spherical aberration due to the presence of water, (A1) shows after correction. The aberration diagrams in FIGS. 26, 27, 28, 29, and 30 are obtained when the afocal zoom optical system and the imaging optical system are arranged on the image side of the objective lens of Example 5. In this case, the distance between the afocal zoom optical system and the imaging lens at that time is 80 mm.

これら収差図より、本発明の実施例5の対物レンズは、諸収差が良好に補正されている。また、物体と対物レンズの間に透明な液体が存在しても、第2群G2の移動により球面収差を十分良好に補正し得る。     From these aberration diagrams, the objective lens of Example 5 of the present invention has various aberrations corrected well. Even if a transparent liquid exists between the object and the objective lens, the spherical aberration can be corrected sufficiently well by the movement of the second group G2.

以上の各実施例の対物レンズは、前述のようにいずれも入射瞳径の大きいアフォーカルズーム光学系とその光束を結像させる結像光束と共に用いるもので、結像光学系により形成された像を接眼レンズを用いて拡大観察するために使用される。     As described above, the objective lenses of the above embodiments are used together with the afocal zoom optical system having a large entrance pupil diameter and the imaging light beam that forms an image of the light beam, and the image formed by the imaging optical system. Is used for magnifying observation using an eyepiece.

本発明の各実施例をこの対物レンズとして用いれば、接眼レンズの射出瞳径を大きくし易く、特に、倍率を低下した時、ヒトの瞳の2倍以上の瞳径にすることが可能である。このような像を観察するようにすれば、観察者が頭を動かすことにより物体を見る方向を変え得るので、これにより運動視差が得られる。したがって、片目での観察でも立体的情報が得られる。     If each embodiment of the present invention is used as this objective lens, it is easy to increase the exit pupil diameter of the eyepiece, and in particular, when the magnification is reduced, it is possible to make the pupil diameter more than twice that of the human pupil. . If such an image is observed, the viewing direction of the object can be changed by moving the head of the observer, so that motion parallax can be obtained. Therefore, three-dimensional information can be obtained even by observation with one eye.

更に、接眼レンズに光束が入射する前にハーフミラーにより光を分割してみる場合、眼幅を変えることにより、人の瞳にて決まる位置との間に差が生じ、これにより視差を作ることが可能になる。     Furthermore, when light is split by a half mirror before the light beam enters the eyepiece, changing the eye width creates a difference from the position determined by the human pupil, thereby creating parallax. Is possible.

この場合、眼幅を変化させる時に方向によって逆の立体になる。     In this case, when the eye width is changed, the solid is reversed depending on the direction.

本発明の対物レンズは、アフォーカルズーム光学系および結像光学系と共に使用されるもので、これにより撮像および実体観察が可能である。     The objective lens according to the present invention is used together with an afocal zoom optical system and an imaging optical system, and thus enables imaging and entity observation.

本発明の対物レンズは、実視野が広く、高NAで明るく、物体との間に透明液体が存在しても一つの接合レンズのみからなる第2群の移動により収差を簡単に補正し得る。     The objective lens of the present invention has a wide real field of view, is bright with a high NA, and can easily correct aberrations by moving the second group consisting of only one cemented lens even when a transparent liquid exists between the objective lens and the object.

また、前記光学系と共に用いた場合、広い視野での観察が可能であるため立体的観察が簡単に行ない得る。     Further, when used together with the above optical system, stereoscopic observation can be easily performed because observation with a wide field of view is possible.

合成の焦点距離56mmの時の実施例1の構成を示す図The figure which shows the structure of Example 1 at the time of synthetic | combination focal distance 56mm. 合成焦点距離177mmの時の実施例1の構成を示す図The figure which shows the structure of Example 1 at the time of synthetic | combination focal distance 177mm. 合成焦点距離560mmの時の実施例1の構成を示す図The figure which shows the structure of Example 1 at the time of synthetic | combination focal distance 560mm. 合成焦点距離560mmの時の収差補正のため第2群を移動させた状態における実施例1の構成を示す図The figure which shows the structure of Example 1 in the state which moved 2nd group for the aberration correction at the time of synthetic | combination focal distance 560mm. 合成の焦点距離56mmの時の実施例2の構成を示す図The figure which shows the structure of Example 2 at the time of synthetic | combination focal distance 56mm. 合成焦点距離177mmの時の実施例2の構成を示す図The figure which shows the structure of Example 2 at the time of synthetic | combination focal distance 177mm. 合成焦点距離560mmの時の実施例2の構成を示す図The figure which shows the structure of Example 2 at the time of synthetic | combination focal distance 560mm. 合成焦点距離560mmの時の収差補正のため第2群を移動させた状態における実施例2の構成を示す図The figure which shows the structure of Example 2 in the state which moved 2nd group for the aberration correction at the time of synthetic | combination focal distance 560mm. 合成の焦点距離56mmの時の実施例3の構成を示す図The figure which shows the structure of Example 3 at the time of synthetic | combination focal distance 56mm. 合成焦点距離177mmの時の実施例3の構成を示す図The figure which shows the structure of Example 3 at the time of synthetic | combination focal distance 177mm. 合成焦点距離560mmの時の実施例3の構成を示す図The figure which shows the structure of Example 3 at the time of synthetic | combination focal distance 560mm. 合成焦点距離560mmの時の収差補正のため第2群を移動させた状態における実施例3の構成を示す図The figure which shows the structure of Example 3 in the state which moved 2nd group for the aberration correction at the time of synthetic | combination focal distance 560mm. 合成の焦点距離56mmの時の実施例4の構成を示す図The figure which shows the structure of Example 4 at the time of synthetic | combination focal distance 56mm. 合成焦点距離177mmの時の実施例4の構成を示す図The figure which shows the structure of Example 4 at the time of synthetic | combination focal distance 177mm. 合成焦点距離560mmの時の実施例4の構成を示す図The figure which shows the structure of Example 4 at the time of synthetic | combination focal distance 560mm. 合成焦点距離560mmの時の収差補正のため第2群を移動させた状態における実施例4の構成を示す図The figure which shows the structure of Example 4 in the state which moved 2nd group for the aberration correction at the time of synthetic | combination focal distance 560mm. 合成の焦点距離56mmの時の実施例5の構成を示す図The figure which shows the structure of Example 5 at the time of synthetic | combination focal distance 56mm. 合成焦点距離177mmの時の実施例5の構成を示す図The figure which shows the structure of Example 5 at the time of synthetic | combination focal distance 177mm. 合成焦点距離560mmの時の実施例5の構成を示す図The figure which shows the structure of Example 5 at the time of synthetic | combination focal distance 560mm. 合成焦点距離560mmの時の収差補正のため第2群を移動させた状態における実施例5の構成を示す図The figure which shows the structure of Example 5 in the state which moved 2nd group for the aberration correction at the time of synthetic | combination focal distance 560mm. 実施例1の球面収差図Spherical aberration diagram of Example 1 実施例1のコマ収差図Comatic aberration diagram of Example 1 実施例1の像面湾曲図Field curvature diagram of Example 1 実施例1の倍率色収差図Chromatic aberration diagram of magnification in Example 1 実施例1の第2群による補正前と補正後の球面収差図Spherical aberration diagram before and after correction by the second lens group in Example 1 実施例2の球面収差図Spherical aberration diagram of Example 2 実施例2のコマ収差図Comatic aberration diagram of Example 2 実施例2の像面湾曲図Field curvature diagram of Example 2 実施例2の倍率色収差図Chromatic aberration diagram of magnification in Example 2 実施例2の第2群による補正前と補正後の球面収差図Spherical aberration diagram before and after correction by the second lens group in Example 2 実施例3の球面収差図Spherical aberration diagram of Example 3 実施例3のコマ収差図Comatic aberration diagram of Example 3 実施例3の像面湾曲図Field curvature diagram of Example 3 実施例3の倍率色収差図Magnification Aberration Diagram of Example 3 実施例3の第2群による補正前と補正後の球面収差図Spherical aberration diagram before and after correction by the second lens group in Example 3 実施例4の球面収差図Spherical aberration diagram of Example 4 実施例4のコマ収差図Comatic aberration diagram of Example 4 実施例4の像面湾曲図Field curvature diagram of Example 4 実施例4の倍率色収差図Magnification Aberration Diagram of Example 4 実施例4の第2群による補正前と補正後の球面収差図Spherical aberration diagram before and after correction by the second lens group in Example 4 実施例5の球面収差図Spherical aberration diagram of Example 5 実施例5のコマ収差図Comatic aberration diagram of Example 5 実施例5の像面湾曲図Field curvature diagram of Example 5 実施例5の倍率色収差図Magnification Aberration Diagram of Example 5 実施例5の第2群による補正前と補正後の球面収差図Spherical aberration diagram before and after correction by the second lens group in Example 5 本発明の対物レンズを用いた実体顕微鏡の構成を示す図The figure which shows the structure of the stereomicroscope using the objective lens of this invention 本発明の対物レンズと共に用いるアフォーカルズーム光学系の構成を示す図The figure which shows the structure of the afocal zoom optical system used with the objective lens of this invention 本発明の対物レンズと共に用いる結像レンズの構成を示す図The figure which shows the structure of the imaging lens used with the objective lens of this invention 従来の単対物実体顕微鏡の光学系の構成を示す図The figure which shows the structure of the optical system of the conventional single objective stereomicroscope

Claims (4)

物体からの光束をアフォーカル光束として射出し、最大の実視野径が15mm以上で、下記条件(1)、(2)を満足する対物レンズであって、物体側から順に、複数のレンズからなり正の屈折力を持つ第1群と、メニスカス形状の接合レンズからなる第2群と、像側から正レンズと強い凹面を像側に向けたメニスカスレンズを含み正の屈折力を有する第3群とからなり、下記条件(3)、(4)を満足し、第2群を光軸方向に移動させて、収差発生量を変えることを特徴とする補正機構付対物レンズ。
(1) NAmax×FLob≧15(mm)
(2) 0.3≦FLob/Dob≦0.6
(3) FL2/FLob≧10
(4) 0.9≦β2≦1.1
ただし、NAmaxは対物レンズの最大開口数、FLobは対物レンズの焦点距離、Dobは対物レンズの全長、FL2は第2群の焦点距離、β2は第2群の倍率である。
An objective lens that emits a luminous flux from an object as an afocal luminous flux and has a maximum actual field diameter of 15 mm or more and satisfies the following conditions (1) and (2). It consists of a plurality of lenses in order from the object side. A first group having a positive refractive power, a second group consisting of a meniscus cemented lens, and a third group having a positive refractive power from the image side and a meniscus lens having a strong concave surface facing the image side from the image side An objective lens with a correction mechanism that satisfies the following conditions (3) and (4) and moves the second group in the optical axis direction to change the aberration generation amount.
(1) NAmax × FLob ≧ 15 (mm)
(2) 0.3 ≦ FLob / Dob ≦ 0.6
(3) FL2 / FLob ≧ 10
(4) 0.9 ≦ β2 ≦ 1.1
Where NAmax is the maximum numerical aperture of the objective lens, FLob is the focal length of the objective lens, Dob is the total length of the objective lens, FL2 is the focal length of the second group, and β2 is the magnification of the second group.
前記第2群のメニスカス形状の接合レンズが物体側に凸面を向け、条件(3)、(4)の代わりに下記条件(3−1)、(4−1)を満足する請求項1の補正機構付対物レンズ。
(3−1) FL2/FLob≧20
(4−1) 0.96≦β2≦1.02
The correction of claim 1, wherein the second group meniscus cemented lens has a convex surface facing the object side, and satisfies the following conditions (3-1) and (4-1) instead of the conditions (3) and (4): Objective lens with mechanism.
(3-1) FL2 / Flob ≧ 20
(4-1) 0.96 ≦ β2 ≦ 1.02
前記第3群が物体側から順に、正の接合レンズとメニスカス形状のレンズ成分と凸レンズの三つのレンズ成分よりなり、下記条件(5)、(6)、(7)を満足する請求項1または2の補正機構付対物レンズ。
(5) 0.6≦|r32i/FLob|≦1.1
(6) 0.6≦|r31c/FLob|≦1.3
(7) |ν31o−ν31i|≧37
ただし、r32iは第3群の物体側から2番目のレンズであるメニスカスレンズの像側の面の曲率半径、r31cは第3群の物体側の接合レンズの接合面の曲率半径、ν31o、ν31iは夫々第3群の物体側の接合レンズの物体側のレンズおよび像側のレンズのアッベ数である。
The third group is composed of three lens components of a positive cemented lens, a meniscus lens component, and a convex lens in order from the object side, and satisfies the following conditions (5), (6), and (7): Objective lens with 2 correction mechanism.
(5) 0.6 ≦ | r32i / Flob | ≦ 1.1
(6) 0.6 ≦ | r31c / Flob | ≦ 1.3
(7) | ν31o−ν31i | ≧ 37
Here, r32i is the radius of curvature of the image side surface of the meniscus lens that is the second lens from the object side in the third group, r31c is the radius of curvature of the cemented surface of the cemented lens on the object side of the third group, and ν31o and ν31i are These are the Abbe numbers of the object-side lens and the image-side lens of the third-group object-side cemented lens, respectively.
前記第1群が、物体側から順に、正のレンズ成分と接合レンズとからなり、下記条件(8)、(9)、(10)を満足する請求項3の補正機構付対物レンズ。
(8) FL12/FLob≧4
(9) 0.9≦|r12c/FLob|≦2
(10) |ν12o−ν12i|≧37
ただし、FL12は第1群の2番目のレンズ成分の接合レンズの焦点距離、r12cは第1群の前記接合レンズの接合面の曲率半径、ν12o、ν12iは第1群の前記接合レンズの物体側のレンズおよび像側のレンズのアッベ数である。
The objective lens with a correction mechanism according to claim 3, wherein the first group includes a positive lens component and a cemented lens in order from the object side, and satisfies the following conditions (8), (9), and (10).
(8) FL12 / FLob ≧ 4
(9) 0.9 ≦ | r12c / Flob | ≦ 2
(10) | ν12o−ν12i | ≧ 37
Where FL12 is the focal length of the cemented lens of the second lens component of the first group, r12c is the radius of curvature of the cemented surface of the cemented lens of the first group, and ν12o and ν12i are the object side of the cemented lens of the first group. The Abbe number of the lens and the image side lens.
JP2004285558A 2004-09-30 2004-09-30 Objective lens with correction mechanism Active JP4685399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285558A JP4685399B2 (en) 2004-09-30 2004-09-30 Objective lens with correction mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285558A JP4685399B2 (en) 2004-09-30 2004-09-30 Objective lens with correction mechanism

Publications (2)

Publication Number Publication Date
JP2006119159A JP2006119159A (en) 2006-05-11
JP4685399B2 true JP4685399B2 (en) 2011-05-18

Family

ID=36537151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285558A Active JP4685399B2 (en) 2004-09-30 2004-09-30 Objective lens with correction mechanism

Country Status (1)

Country Link
JP (1) JP4685399B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526961B2 (en) * 2010-04-13 2014-06-18 株式会社ニコン Objective lens system for parallel stereo microscope, parallel stereo microscope
DE102014110208B4 (en) * 2014-07-21 2022-05-25 Leica Microsystems Cms Gmbh scanning microscope
CN111679400B (en) * 2020-06-22 2022-05-10 秦皇岛视听机械研究所有限公司 Detection lens only using three domestic optical materials and design method and application thereof
CN114967062B (en) * 2022-06-22 2023-05-02 浙江大学 Large-relative-aperture wide-spectrum optical system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100409A (en) * 1982-11-30 1984-06-09 Nippon Kogaku Kk <Nikon> Objective lens for microscope
JPH0882745A (en) * 1994-09-13 1996-03-26 Nikon Corp Objective lens system
JPH10142509A (en) * 1996-11-14 1998-05-29 Nikon Corp Microscope objective lens
JPH10333044A (en) * 1997-05-30 1998-12-18 Nikon Corp Microscope objective lens
JPH11249024A (en) * 1998-02-27 1999-09-17 Nikon Corp Objective lens for microscope
JP2003098438A (en) * 2001-09-26 2003-04-03 Nikon Corp Microscope objective lens
JP2003161887A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Microscope objective lens
JP2004184826A (en) * 2002-12-05 2004-07-02 Nikon Corp Objective lens for immersion microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100409A (en) * 1982-11-30 1984-06-09 Nippon Kogaku Kk <Nikon> Objective lens for microscope
JPH0882745A (en) * 1994-09-13 1996-03-26 Nikon Corp Objective lens system
JPH10142509A (en) * 1996-11-14 1998-05-29 Nikon Corp Microscope objective lens
JPH10333044A (en) * 1997-05-30 1998-12-18 Nikon Corp Microscope objective lens
JPH11249024A (en) * 1998-02-27 1999-09-17 Nikon Corp Objective lens for microscope
JP2003098438A (en) * 2001-09-26 2003-04-03 Nikon Corp Microscope objective lens
JP2003161887A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Microscope objective lens
JP2004184826A (en) * 2002-12-05 2004-07-02 Nikon Corp Objective lens for immersion microscope

Also Published As

Publication number Publication date
JP2006119159A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US7158314B2 (en) Imaging-optical system
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
JP2010060612A (en) Zoom lens and image pickup device including the same
JPH05142473A (en) Rear conversion lens
US5701196A (en) Stereomicroscope
JP4061152B2 (en) Zoom photography optics
US5852515A (en) Microscope objective and single objective type binocular stereomicroscope system
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3735909B2 (en) Retro focus lens
JP2012173491A (en) Objective lens for microscope and microscope device provided with objective lens
US4666258A (en) Afocal zoom lens system
JP4685399B2 (en) Objective lens with correction mechanism
JPH08234107A (en) Zoom lens having long back focus
JP4426236B2 (en) Endoscope objective optical system
JP3403235B2 (en) Inner focus type wide field eyepiece
JP2000105339A (en) Objective optical system for stereomicroscope
JP6816370B2 (en) Optical system and optical equipment
JP2014092681A (en) Image capturing lens
JP2001356266A (en) Zoom lens
JP2002207165A (en) Zoom optical system
WO2014042086A1 (en) Microscope objective lens, microscope objective lens unit and control method
JPH1195130A (en) Eyepiece
JP2006099130A (en) Zoom lens
JPH0821952A (en) Zoom lens for finite distance
JP3600770B2 (en) Display optical system in viewfinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4685399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350