JP2003098438A - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JP2003098438A
JP2003098438A JP2001293397A JP2001293397A JP2003098438A JP 2003098438 A JP2003098438 A JP 2003098438A JP 2001293397 A JP2001293397 A JP 2001293397A JP 2001293397 A JP2001293397 A JP 2001293397A JP 2003098438 A JP2003098438 A JP 2003098438A
Authority
JP
Japan
Prior art keywords
lens
lens group
refracting power
microscope objective
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001293397A
Other languages
Japanese (ja)
Inventor
Tomohiko Yamahiro
知彦 山広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001293397A priority Critical patent/JP2003098438A/en
Publication of JP2003098438A publication Critical patent/JP2003098438A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microscope objective lens of an intermediate magnification and high numerical aperture of a wide correction range with respect to a fluctuation in the thickness of cover glass at a high numerical aperture. SOLUTION: The microscope objective lens is arranged, successively from the object side, a first lens group G1 of positive refracting power of a meniscus shape of which the concave face is directed to the object side, a second lens group G2 of positive refracting power as a whole having a plurality of cemented lenses including a cemented lens of positive refracting power bonded together with a biconvex lens Lp1, a biconcave lens Ln1 and a convex lens Lp2 and a third lens group G3 consisting of a cemented lens along of weak refracting power of a meniscus shape bonded together with a biconvex lens Lp3 and a concave lens Ln2 and satisfies the following relations 0.35<; |r1|/F<0.7, F2/F>; 1.5, |F3|/F>; 17 where F is the focal length of the entire system, r1 is the radius of curvature of the lens face closest to the object, F2 as the focal length of the second lens group G2 and F3 is the focal length of the third lens group G3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は顕微鏡対物レンズ
に関し、特にカバーガラスの厚さのばらつきが原因で発
生する収差変動を補正できる補正環付顕微鏡対物レンズ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope objective lens, and more particularly, it relates to a microscope objective lens with a correction ring capable of correcting variation in aberration caused by variation in thickness of cover glass.

【0002】[0002]

【従来の技術】顕微鏡対物レンズはカバーガラスやガラ
スシャーレ等の厚さは一定であるとして設計されてい
る。したがって、設計値以外のカバーガラスやガラスシ
ャーレを用いて顕微鏡観察した場合、球面収差等が発生
し結像性能が劣化する。
2. Description of the Related Art A microscope objective lens is designed such that a cover glass, a glass petri dish and the like have a constant thickness. Therefore, when observed under a microscope using a cover glass or a glass petri dish other than the designed value, spherical aberration or the like occurs and the imaging performance deteriorates.

【0003】この結像性能の劣化は、開口数NA(Nu
meric Aperture)が大きくなる程顕著に
なる。
This deterioration of the imaging performance is caused by the numerical aperture NA (Nu
The larger the mercy Aperture, the more remarkable.

【0004】ところで、細胞培養及び遺伝子操作等のバ
イオテクノロジー分野における顕微鏡観察ではガラスシ
ャ−レを用いることが多い。
By the way, a glass dish is often used for microscopic observation in the field of biotechnology such as cell culture and gene manipulation.

【0005】ガラスシャーレの厚さは1mm程度で一般に
使用されるカバーガラスの厚さ(0.17mm)と比べて厚
い。したがって、球面収差等が発生し結像性能の劣化が
生じ易いため、収差補正範囲が広く、しかも作動距離が
長い顕微鏡対物レンズが必要になる。
The thickness of the glass petri dish is about 1 mm, which is thicker than the thickness (0.17 mm) of the cover glass generally used. Therefore, spherical aberration or the like is likely to occur and the imaging performance is likely to deteriorate, so that a microscope objective lens having a wide aberration correction range and a long working distance is required.

【0006】これに対し、厚さのばらつきが原因で発生
する収差に応じて顕微鏡対物レンズ内のレンズの間隔を
変えて収差変動を補正する、いわゆる補正環を備える顕
微鏡対物レンズが特開平9−292571号公報や特開
平10−142510号公報等に記載されている。
On the other hand, a microscope objective lens provided with a so-called correction ring, which corrects aberration fluctuations by changing the distance between lenses in the microscope objective lens according to the aberration caused by the variation in thickness, is disclosed in Japanese Patent Laid-Open No. H9-9-9. No. 292571 and Japanese Patent Laid-Open No. 10-142510.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開平9−2
92571号公報に記載されている顕微鏡対物レンズの
開口数は0.85と大きいが、カバーガラスの厚さが
0.17mmで補正範囲が0.1mmと小さく、また高
倍率(60×)であるため、視野範囲が狭くなるという
問題がある。
However, JP-A-9-2
The numerical aperture of the microscope objective lens described in Japanese Patent No. 92571 is as large as 0.85, but the thickness of the cover glass is 0.17 mm, the correction range is small as 0.1 mm, and the magnification is high (60 ×). Therefore, there is a problem that the field of view becomes narrow.

【0008】一方、特開平10−142510号公報に
記載されている顕微鏡対物レンズのカバーガラスの厚さ
は1.2mmで補正範囲が2mmと大きいが、開口数が
0.55と小さく、高倍率(40×)であるため、やは
り視野範囲が狭くなるという問題がある。
On the other hand, the cover glass of the microscope objective lens disclosed in Japanese Patent Laid-Open No. 10-142510 has a thickness of 1.2 mm and a large correction range of 2 mm, but has a small numerical aperture of 0.55 and a high magnification. Since it is (40 ×), there is still a problem that the field of view is narrowed.

【0009】この発明はこのような事情に鑑みてなされ
たもので、その課題は高開口数でカバーガラスの厚さの
変動に対して補正範囲の広い中倍率高開口数の顕微鏡対
物レンズを提供することである。
The present invention has been made in view of the above circumstances, and its object is to provide a microscope objective lens having a high numerical aperture and a wide correction range with respect to a variation in the thickness of the cover glass, and a medium magnification and a high numerical aperture. It is to be.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明は、物体側に凹面を向けたメニス
カス形状の正屈折力の第1レンズ群G1と、光軸方向に
移動可能であり、両凸レンズ、両凹レンズ及び凸レンズ
を貼り合せた正屈折力の接合レンズを含む複数の接合レ
ンズを有し、全体で正屈折力の第2レンズ群G2と、物
体側に凸面を向け、両凸レンズ及び凹レンズを貼り合せ
たメニスカス形状の屈折力が弱い接合レンズ単体から成
る第3レンズ群G3とを物体側から順に配置し、Fを全
系の焦点距離、r1を最も物体側のレンズ面の曲率半
径、F2を第2レンズ群G2の焦点距離、F3を第3レ
ンズ群G3の焦点距離としたとき、以下の条件式を満た
すことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a meniscus-shaped first lens group G1 having a positive refracting power with a concave surface facing the object side, and moved in the optical axis direction. It is possible to have a plurality of cemented lenses including a biconvex lens, a biconcave lens, and a cemented lens having a positive refracting power in which convex lenses are cemented together, and a second lens group G2 having a positive refracting power as a whole and a convex surface facing the object side , A third lens group G3 consisting of a meniscus-shaped cemented lens unit having a weak refractive power, in which a biconvex lens and a concave lens are attached, are arranged in order from the object side, F is the focal length of the entire system, and r1 is the lens on the most object side. When the radius of curvature of the surface, F2 is the focal length of the second lens group G2, and F3 is the focal length of the third lens group G3, the following conditional expressions are satisfied.

【0011】 0.35<|r1|/F<0.7 (1) F2/F>1.5 (2) |F3|/F>17 (3)[0011]           0.35 <| r1 | / F <0.7 (1)           F2 / F> 1.5 (2)          | F3 | / F> 17 (3)

【0012】請求項2記載の発明は、請求項1記載の顕
微鏡対物レンズにおいて、前記第2レンズ群G2に含ま
れる正屈折力の接合レンズを構成する前記両凸レンズ及
び凸レンズのアッベ数をνdp、前記両凹レンズのアッベ
数をνdnとし、第3レンズ群G3の最も物体側の曲率半
径をRC1、最も像側の曲率半径をRC2としたとき、
以下の条件を満たすことを特徴とする。
According to a second aspect of the present invention, in the microscope objective lens according to the first aspect, the Abbe numbers of the biconvex lens and the convex lens included in the second lens group G2 and having a positive refracting power are νdp, When the Abbe number of the biconcave lens is νdn, the most object-side radius of curvature of the third lens group G3 is RC1, and the most image-side radius of curvature is RC2,
It is characterized by satisfying the following conditions.

【0013】 νdp-νdn>35 (4) 0.22<(RC1-RC2)/(RC1+RC2)<0.35 (5)[0013]           νdp-νdn> 35 (4)           0.22 <(RC1-RC2) / (RC1 + RC2) <0.35 (5)

【0014】[0014]

【発明の実施形態】以下、この発明の実施の形態を図面
に基いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】顕微鏡対物レンズは、第1レンズ群G1
と、第2レンズ群G2と、第3レンズ群G3とを物体側
から順に配置してある(図1及び図2参照)。
The microscope objective lens includes a first lens group G1.
The second lens group G2 and the third lens group G3 are sequentially arranged from the object side (see FIGS. 1 and 2).

【0016】第1レンズ群G1は物体側に凹面を向けた
メニスカス形状の正屈折力で構成され、この配置により
特に球面収差の発生を最小限に抑えつつ、標本からの発
散光束をある程度収斂気味にすることができる。
The first lens group G1 is composed of a meniscus-shaped positive refracting power with a concave surface facing the object side. With this arrangement, the occurrence of spherical aberration is minimized, and the divergent light beam from the sample tends to converge to some extent. Can be

【0017】条件式(1)は第1レンズ群G1の最も物
体側の曲率半径を規定する。この条件を外れて小さくな
ると、凹面の作用が強くなり、ペッツバール和が小さく
なり過ぎ、像面湾曲が補正過剰になるだけでなく、発散
作用も強くなるため、高次の球面収差が補正過剰になり
過ぎて、後方のレンズ群による補正が困難になる。
Conditional expression (1) defines the radius of curvature of the first lens group G1 closest to the object side. If the value deviates from this condition and becomes smaller, the concave surface becomes stronger, the Petzval sum becomes too small, and not only the field curvature becomes overcorrected but also the divergence becomes strong, so high-order spherical aberration becomes overcorrected. It becomes too much, and the correction by the lens group at the rear becomes difficult.

【0018】逆に、この条件を外れて大きくなると、ペ
ッツバール和が大きくなり、像面補正が困難になる。
On the other hand, if the value exceeds this condition and becomes large, the Petzval sum becomes large and it becomes difficult to correct the image plane.

【0019】第1レンズ群G1によって収斂気味になっ
た発散光束は第2レンズ群G2に入射する。第2レンズ
群G2は、両凸レンズLp1、両凹レンズLn1、凸レ
ンズLp2の順に貼合された正屈折力の3枚接合レンズ
を含んだ複数の接合レンズを有し、標本のカバーガラス
10及び第1レンズ群G1で発生した球面収差や軸上色
収差を補正する。
The divergent light flux that has converged by the first lens group G1 enters the second lens group G2. The second lens group G2 includes a plurality of cemented lenses including a biconvex lens Lp1, a biconcave lens Ln1, and a convex lens Lp2, which are cemented in this order, and includes a cemented lens with three lenses. The spherical aberration and the axial chromatic aberration generated in the lens group G1 are corrected.

【0020】第2レンズ群G2は光軸方向に移動可能で
ある。この第2レンズ群G2を光軸方向に移動すること
により、第1レンズ群G1から第2レンズ群G2へ入射
した発散光束の入射する高さhが変化し、球面収差を補
正することができる。
The second lens group G2 is movable in the optical axis direction. By moving the second lens group G2 in the optical axis direction, the incident height h of the divergent light flux incident from the first lens group G1 to the second lens group G2 changes, and spherical aberration can be corrected. .

【0021】条件式(2)は第2レンズ群G2の適切な
屈折力の配分を規定している。この条件を外れて小さく
なると、第2レンズ群G2の収斂作用が強くなり過ぎ、
負の球面収差量が生じ、第1レンズ群G1で発生した球
面収差の補正が困難になる。
Conditional expression (2) defines an appropriate distribution of the refractive power of the second lens group G2. If this condition is exceeded and the size is reduced, the converging action of the second lens group G2 becomes too strong,
A negative spherical aberration amount is generated, and it becomes difficult to correct the spherical aberration generated in the first lens group G1.

【0022】条件式(4)は、第2レンズ群G2に含ま
れる正屈折力の3枚接合レンズの各正レンズと負レンズ
のアッベ数の差について適切な範囲を規定している。こ
の条件を外れて小さくなると、軸上色収差の補正が困難
になり、無理に補正しようとすると接合面の曲率半径が
小さくなりすぎて、高次の球面収差の発生を招くことに
なる。
Conditional expression (4) defines an appropriate range for the difference in Abbe number between the positive lens and the negative lens of the triplet cemented lens of positive refractive power included in the second lens group G2. If it is smaller than this condition, it becomes difficult to correct the axial chromatic aberration, and if it is attempted to correct it, the radius of curvature of the cemented surface becomes too small and high-order spherical aberration occurs.

【0023】第2レンズ群G2の正屈折力が大きくなる
と、補正環を操作したときに顕微鏡対物レンズ全系の焦
点距離が変化し、ピントが外れてしまう。
When the positive refractive power of the second lens group G2 becomes large, the focal length of the entire microscope objective lens system changes when the correction ring is operated, and the focus is lost.

【0024】第3レンズ群G3は、物体側に凸面を向
け、両凸レンズLp3、凹レンズLn2の順に貼合され
たメニスカス形状の弱い正又は負の屈折力の接合レンズ
単体から構成され、主に像面及び倍率色収差を補正す
る。
The third lens group G3 is composed of a meniscus-shaped cemented lens unit having a weak positive or negative refractive power, in which a biconvex lens Lp3 and a concave lens Ln2 are cemented in this order, with a convex surface facing the object side. Corrects lateral and lateral chromatic aberration.

【0025】条件式(3)は第3レンズ群G3の適切な
屈折力の配分を規定している。この条件を外れて小さく
なると、像面湾曲が発生する。
Conditional expression (3) defines an appropriate distribution of the refractive power of the third lens group G3. If this condition is exceeded and the size is reduced, field curvature will occur.

【0026】条件式(5)は第3レンズ群G3のメニス
カス形状を規定する。この条件を外れて小さくなると、
メリジオナル像面が負の方向に大きくなり過ぎるととも
に、内向性のコマ収差が発生する。逆に、この条件を外
れて大きくなると、メリジオナル像面が正の方向に大き
くなり過ぎるとともに、外向性のコマ収差が発生する。
Conditional expression (5) defines the meniscus shape of the third lens group G3. If it becomes smaller than this condition,
The meridional image plane becomes too large in the negative direction, and inward coma occurs. On the other hand, if this condition is exceeded, the meridional image surface becomes too large in the positive direction, and outward coma occurs.

【0027】[0027]

【実施例】図1はこの発明の第1実施例に係る顕微鏡対
物レンズのレンズ構成を示す図、図2はこの発明の第2
実施例に係る顕微鏡対物レンズのレンズ構成を示す図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a lens configuration of a microscope objective lens according to a first embodiment of the present invention, and FIG. 2 is a second view of the present invention.
It is a figure which shows the lens structure of the microscope objective lens which concerns on an Example.

【0028】(第1実施例)表1に第1実施例の数値例
を示す。この実施例において、riは物体側より順に第i
番目のレンズ面の曲率半径、d0は作動距離、diは物体側
より順に第i番目のレンズの厚さ及び空気間隔、ndiとν
iは各々物体側より順に第i番目のレンズのガラスのd線
(λ=587.56nm)に対する屈折率とアッベ数である。ま
た、βは拡大倍率である。
(First Embodiment) Table 1 shows numerical examples of the first embodiment. In this embodiment, ri is the i-th order from the object side.
The radius of curvature of the th lens surface, d0 is the working distance, di is the thickness and air gap of the i th lens in order from the object side, ndi and ν
i is the d-line of the glass of the i-th lens in order from the object side
It is the refractive index and Abbe number for (λ = 587.56 nm). Further, β is a magnification.

【0029】[0029]

【表1】実施例1 [Table 1] Example 1

【0030】この実施例におけるカバーガラスの厚さCG
が1.0mm、0.8mm、1.2mmの場合の第2レンズ群G2の移
動による作動距離d0及び空気間隔d4,d12の変化量を以下
の表2に示す(単位mm)。
Thickness CG of the cover glass in this example
Table 2 below shows the amount of change in the working distance d0 and the air distances d4, d12 due to the movement of the second lens group G2 in the case of 1.0 mm, 0.8 mm, and 1.2 mm (unit: mm).

【0031】[0031]

【表2】 [Table 2]

【0032】なお、表2から分るようにこの顕微鏡対物
レンズの補正範囲は0.4mmである。
As can be seen from Table 2, the correction range of this microscope objective lens is 0.4 mm.

【0033】図3はカバーガラスの厚さCGが1.0mmの場
合における第1実施例の球面収差を示す収差図、図4は
カバーガラスの厚さCGが0.8mmの場合における第1実施例
の球面収差を示す収差図、図5はカバーガラスの厚さCG
が1.2mmの場合における第1実施例の球面収差を示す収差
図である。
FIG. 3 is an aberration diagram showing spherical aberration of the first embodiment when the cover glass thickness CG is 1.0 mm, and FIG. 4 is of the first embodiment when the cover glass thickness CG is 0.8 mm. Fig. 5 is an aberration diagram showing spherical aberration. Fig. 5 shows the thickness CG of the cover glass.
FIG. 9 is an aberration diagram showing spherical aberration of the first example when is 1.2 mm.

【0034】図3〜図5において、実線、破線、一点鎖
線及び二点鎖線は、それぞれd線(λ=587.56nm)、C線
(λ=656.28nm)、F線(λ=486.13nm)及びg線(λ=435.84n
m)を示す。また、図3〜図5において、縦軸はNAを示
し、横軸は収差を示す。
In FIGS. 3 to 5, the solid line, broken line, dash-dotted line and dash-dotted line are d line (λ = 587.56 nm) and C line, respectively.
(λ = 656.28nm), F line (λ = 486.13nm) and g line (λ = 435.84n)
m) is shown. 3 to 5, the vertical axis represents NA and the horizontal axis represents aberration.

【0035】各収差図から明らかなように、この第1実
施例によれば、厚さの異なるカバーガラスに対して、球
面収差が良好に補正される。また、中倍率(20×)であ
るため、広い視野範囲が得られる。
As is clear from the aberration diagrams, according to the first embodiment, the spherical aberration is satisfactorily corrected for the cover glasses having different thicknesses. Also, since it has a medium magnification (20 ×), a wide field of view can be obtained.

【0036】(第2実施例)次にこの発明の第3実施例
の数値例を表3に示す。各符号は第1実施例と同様であ
るので、その説明を省略する。
(Second Embodiment) Table 3 shows numerical values of the third embodiment of the present invention. Since each reference numeral is the same as that in the first embodiment, its description is omitted.

【0037】[0037]

【表3】実施例2 Table 3 Example 2

【0038】この実施例におけるカバーガラスの厚さCG
が1.0mm、0.8mm、1.2mmの場合の第2レンズ群G2の移
動による作動距離d0及び空気間隔d3,d12の変化量を以下
の表4に示す(単位mm)。
Thickness CG of the cover glass in this example
Table 4 below shows the amount of change in the working distance d0 and the air gaps d3, d12 due to the movement of the second lens group G2 in the case of 1.0 mm, 0.8 mm and 1.2 mm (unit: mm).

【0039】[0039]

【表4】 [Table 4]

【0040】なお、表4から分るようにこの顕微鏡対物
レンズの補正範囲は0.4mmである。
As can be seen from Table 4, the correction range of this microscope objective lens is 0.4 mm.

【0041】図6はカバーガラスの厚さCGが1.0mmの場
合における第2実施例の球面収差を示す収差図、図7は
カバーガラスの厚さCGが0.8mmの場合における第2実施
例の球面収差を示す収差図、図8はカバーガラスの厚さ
CGが1.2mmの場合における第2実施例の球面収差を示す
収差図である。
FIG. 6 is an aberration diagram showing the spherical aberration of the second embodiment when the cover glass thickness CG is 1.0 mm, and FIG. 7 is the second embodiment when the cover glass thickness CG is 0.8 mm. Fig. 8 is an aberration diagram showing spherical aberration, and Fig. 8 shows the thickness of the cover glass.
FIG. 8 is an aberration diagram showing spherical aberration of the second example when CG is 1.2 mm.

【0042】図6〜図8において、実線、破線、一点鎖
線及び二点鎖線は、それぞれd線(λ=587.56nm)、C線
(λ=656.28nm)、F線(λ=486.13nm)及びg線(λ=435.84n
m)を示す。また、図6〜図8において、縦軸はNAを示
し、横軸は収差を示す。
6 to 8, solid line, broken line, dash-dotted line and dash-dotted line are d line (λ = 587.56 nm) and C line, respectively.
(λ = 656.28nm), F line (λ = 486.13nm) and g line (λ = 435.84n)
m) is shown. 6 to 8, the vertical axis represents NA and the horizontal axis represents aberration.

【0043】各収差図から明らかなようにこの第2実施
例によれば、厚さの異なるカバーガラスに対して、球面
収差が良好に補正される。また、中倍率(20×)である
ため、広い視野範囲が得られる。
As is clear from each aberration diagram, according to the second embodiment, spherical aberration is favorably corrected for cover glasses having different thicknesses. Also, since it has a medium magnification (20 ×), a wide field of view can be obtained.

【0044】また、第1実施例及び第2実施例における
条件式(1)〜(5)の数値例を以下の表5に示す。
Table 5 below shows numerical examples of the conditional expressions (1) to (5) in the first and second embodiments.

【0045】[0045]

【表5】 [Table 5]

【0046】更に、本発明の実施例は全て無限遠設計で
あり、以下の表6に示す構成の結像レンズと組合せて使
用される。表6において、diは物体側より順に第i番目
のレンズの厚さ及び空気間隔、ndiとνiは各々物体側よ
り順に第i番目のレンズのガラスのd線(λ=587.56nm)に
対する屈折率とアッベ数である。
Further, the embodiments of the present invention are all designed at infinity, and are used in combination with the imaging lens having the configuration shown in Table 6 below. In Table 6, di is the thickness and air distance of the i-th lens in order from the object side, and ndi and νi are the refractive indices of the glass of the i-th lens in order from the object side with respect to the d line (λ = 587.56 nm). And Abbe number.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】以上説明したようにこの発明によれば、
高開口数でカバーガラスの厚さの変動に対して補正範囲
の広い中倍率高開口数の顕微鏡対物レンズを提供するこ
とができる。
As described above, according to the present invention,
It is possible to provide a microscope objective with a high numerical aperture and a wide range of correction for variations in the thickness of the cover glass, and a medium-magnification high numerical aperture microscope lens.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の第1実施例に係る顕微鏡対物
レンズのレンズ構成を示す図である。
FIG. 1 is a diagram showing a lens configuration of a microscope objective lens according to a first example of the present invention.

【図2】図2はこの発明の第2実施例に係る顕微鏡対物
レンズのレンズ構成を示す図である。
FIG. 2 is a diagram showing a lens configuration of a microscope objective lens according to a second example of the present invention.

【図3】図3はカバーガラスの厚さCGが1.0mmの場合に
おける第1実施例の球面収差を示す収差図である。
FIG. 3 is an aberration diagram showing spherical aberration of the first example when the thickness CG of the cover glass is 1.0 mm.

【図4】図4はカバーガラスの厚さCGが0.8mmの場合に
おける第1実施例の球面収差を示す収差図である。
FIG. 4 is an aberration diagram showing spherical aberration of the first example when the thickness CG of the cover glass is 0.8 mm.

【図5】図5はカバーガラスの厚さCGが1.2mmの場合に
おける第1実施例の球面収差を示す収差図である。
FIG. 5 is an aberration diagram showing spherical aberration of the first example when the cover glass thickness CG is 1.2 mm.

【図6】図6はカバーガラスの厚さCGが1.0mmの場合に
おける第2実施例の球面収差を示す収差図である。
FIG. 6 is an aberration diagram showing spherical aberration of the second example when the thickness CG of the cover glass is 1.0 mm.

【図7】図7はカバーガラスの厚さCGが0.8mmの場合に
おける第2実施例の球面収差を示す収差図である。
FIG. 7 is an aberration diagram showing spherical aberration of the second example when the thickness CG of the cover glass is 0.8 mm.

【図8】図8はカバーガラスの厚さCGが1.2mmの場合に
おける第2実施例の球面収差を示す収差図である。
FIG. 8 is an aberration diagram showing spherical aberration of the second example when the cover glass thickness CG is 1.2 mm.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 Lp1 両凸レンズ Lp2 凸レンズ Lp3 両凸レンズ Ln1 両凹レンズ Ln2 凹レンズ G1 first lens group G2 Second lens group G3 Third lens group Lp1 biconvex lens Lp2 convex lens Lp3 biconvex lens Ln1 biconcave lens Ln2 concave lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側に凹面を向けたメニスカス形状の
正屈折力の第1レンズ群G1と、光軸方向に移動可能で
あり、両凸レンズ、両凹レンズ及び凸レンズを貼り合せ
た正屈折力の接合レンズを含む複数の接合レンズを有
し、全体で正屈折力の第2レンズ群G2と、物体側に凸
面を向け、両凸レンズ及び凹レンズを貼り合せたメニス
カス形状の屈折力が弱い接合レンズ単体から成る第3レ
ンズ群G3とを物体側から順に配置し、Fを全系の焦点
距離、r1を最も物体側のレンズ面の曲率半径、F2を
第2レンズ群G2の焦点距離、F3を第3レンズ群G3
の焦点距離としたとき、以下の条件式を満たすことを特
徴とする顕微鏡対物レンズ。 0.35<|r1|/F<0.7 F2/F>1.5 |F3|/F>17
1. A meniscus-shaped first lens unit G1 having a positive refracting power with a concave surface facing the object side, and a biconvex lens, a biconcave lens, and a positive lens having a positive refracting power which are movable in the optical axis direction. A meniscus-shaped cemented lens unit having a plurality of cemented lenses, including a cemented lens, and a second lens group G2 having a positive refracting power as a whole, and a biconvex lens and a concave lens bonded to each other And a third lens group G3 consisting of 3 in order from the object side, F is the focal length of the entire system, r1 is the radius of curvature of the lens surface closest to the object side, F2 is the focal length of the second lens group G2, and F3 is 3 lens group G3
A microscope objective lens characterized by satisfying the following conditional expression when the focal length is 0.35 <| r1 | / F <0.7 F2 / F> 1.5 | F3 | / F> 17
【請求項2】 前記第2レンズ群G2に含まれる正屈折
力の接合レンズを構成する前記両凸レンズ及び凸レンズ
のアッベ数をνdp、前記両凹レンズのアッベ数をνdnと
し、第3レンズ群G3の最も物体側の曲率半径をRC
1、最も像側の曲率半径をRC2としたとき、以下の条
件を満たすことを特徴とする請求項1記載の顕微鏡対物
レンズ。 νdp-νdn>35 0.22<(RC1-RC2)/(RC1+RC2)<0.35
2. The Abbe number of the biconvex lens and the convex lens forming the cemented lens of positive refracting power included in the second lens group G2 is νdp, the Abbe number of the biconcave lens is νdn, and the third lens group G3 The radius of curvature on the most object side is RC
1. The microscope objective lens according to claim 1, wherein the following conditions are satisfied, where RC2 is the radius of curvature closest to the image side. νdp-νdn> 35 0.22 <(RC1-RC2) / (RC1 + RC2) <0.35
JP2001293397A 2001-09-26 2001-09-26 Microscope objective lens Withdrawn JP2003098438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293397A JP2003098438A (en) 2001-09-26 2001-09-26 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293397A JP2003098438A (en) 2001-09-26 2001-09-26 Microscope objective lens

Publications (1)

Publication Number Publication Date
JP2003098438A true JP2003098438A (en) 2003-04-03

Family

ID=19115195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293397A Withdrawn JP2003098438A (en) 2001-09-26 2001-09-26 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP2003098438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119159A (en) * 2004-09-30 2006-05-11 Olympus Corp .objective lens with correction mechanism
JP2010513968A (en) * 2006-12-22 2010-04-30 アイシス イノベイシヨン リミテツド Focus adjustment device and focus adjustment method
WO2012070445A1 (en) * 2010-11-25 2012-05-31 ソニー株式会社 Optical unit and image pick-up device
US10162160B2 (en) 2015-12-25 2018-12-25 Olympus Corporation Microscope objective

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119159A (en) * 2004-09-30 2006-05-11 Olympus Corp .objective lens with correction mechanism
JP4685399B2 (en) * 2004-09-30 2011-05-18 オリンパス株式会社 Objective lens with correction mechanism
JP2010513968A (en) * 2006-12-22 2010-04-30 アイシス イノベイシヨン リミテツド Focus adjustment device and focus adjustment method
US8498048B2 (en) 2006-12-22 2013-07-30 Isis Innovations Limited Focusing apparatus and method
US9638909B2 (en) 2006-12-22 2017-05-02 Isis Innovation Limited Focusing apparatus and method
WO2012070445A1 (en) * 2010-11-25 2012-05-31 ソニー株式会社 Optical unit and image pick-up device
JP2012113149A (en) * 2010-11-25 2012-06-14 Sony Corp Optical unit and imaging apparatus
CN103221867A (en) * 2010-11-25 2013-07-24 索尼公司 Optical unit and image pick-up device
KR101925647B1 (en) 2010-11-25 2018-12-05 소니 주식회사 Optical unit and image pick-up device
US10162160B2 (en) 2015-12-25 2018-12-25 Olympus Corporation Microscope objective

Similar Documents

Publication Publication Date Title
US7253972B2 (en) Telephoto lens system
JP5885537B2 (en) Microscope objective lens
US8199408B2 (en) Immersion microscope objective lens
JPH06281864A (en) Immersion objective lens for microscope
US20210199920A1 (en) Endoscope optical system, endoscope, image pickup unit and endoscope insertion device
JP2012083789A (en) Microscope objective lens
US5940220A (en) Microscope objective lens with variable correction of aberrations imparted by transparent body between the specimen and the objective lens
JP3454935B2 (en) Microscope objective lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP2000330014A (en) Large-aperture lens
JP2000321490A (en) Photographic lens
JP2002341249A (en) Liquid immersion system microscopic objective lens
JP7290190B2 (en) Objectives, optics and microscopes
JPH103037A (en) Zoom lens
US10162160B2 (en) Microscope objective
JP2003098438A (en) Microscope objective lens
JP4646551B2 (en) Microscope objective lens
JPH10333044A (en) Microscope objective lens
JP3944099B2 (en) Immersion microscope objective lens
JPH06160721A (en) High magnification microscope objective lens
JPH08338946A (en) Zoom lens
JPH10133119A (en) Microscope objective lens
JPH085916A (en) Zoom lens
JPH11249024A (en) Objective lens for microscope
JP2000039561A (en) Objective lens for microscope

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202