JPH08234107A - Zoom lens having long back focus - Google Patents

Zoom lens having long back focus

Info

Publication number
JPH08234107A
JPH08234107A JP6001895A JP6001895A JPH08234107A JP H08234107 A JPH08234107 A JP H08234107A JP 6001895 A JP6001895 A JP 6001895A JP 6001895 A JP6001895 A JP 6001895A JP H08234107 A JPH08234107 A JP H08234107A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6001895A
Other languages
Japanese (ja)
Other versions
JP3519815B2 (en
Inventor
Katsuhiro Takada
勝啓 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP06001895A priority Critical patent/JP3519815B2/en
Publication of JPH08234107A publication Critical patent/JPH08234107A/en
Application granted granted Critical
Publication of JP3519815B2 publication Critical patent/JP3519815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To provide a small-sized zoom lens which is a lens system to be used for electronic cameras formed by using image pickup tubes, solid-state image pickup elements, etc., has high optical performance and has a back focus large enough to allow the insertion of optical elements, such as filters, between the lens system and the image pickup element. CONSTITUTION: This zoom lens consists, successively from an object side, a first lens group G1 which is held stationary at the time of zooming and is positive, a second lens group G2 which moves monotonously along the optical axis at the time of zooming and is negative, a third lens group G3 which moves forward and backward along the optical axis at the time of zooming and is positive or negative and a fourth lens group G4 which moves forward and backward along the optical axis at the time of zooming and is positive. The third lens group G3 is the lens system of the long back focus consisting of, successively from the object side, a positive first lens component and a second lens component of a combined lens of a biconcave lens and a biconvex or negative meniscus lens which is convex on the object side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像管や固体撮像素子
等を用いた電子カメラ特に近年の高精細画像を取込む用
途に適している画素数の多い撮像素子を用いた電子カメ
ラに最適な高い光学性能を有し、バックフォーカスの長
いズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is most suitable for an electronic camera using an image pickup tube, a solid-state image pickup device, etc. The present invention relates to a zoom lens having high optical performance and a long back focus.

【0002】[0002]

【従来の技術】一般に、電子カメラは撮像面積の小さな
撮像管や固体撮像素子を用いて光学像を電子信号に変換
するために、これに用いる撮像レンズとしては明るいレ
ンズ系が必要になる。又レンズ系と撮像素子との間に、
ローパスフィルターや赤外線カットフィルターなどの光
学部材や、RGB三原色それぞれの画像をそれぞれの撮
像素子で受光するいわゆる多板式電子カメラのように、
それぞれの撮像素子に光束を導く、いわゆる色分解プリ
ズム等の光学素子を配置する必要が生じ、焦点距離に比
較して大きなバックフォーカスが必要になる。
2. Description of the Related Art Generally, an electronic camera uses an image pickup tube having a small image pickup area or a solid-state image pickup device to convert an optical image into an electronic signal, and therefore, a bright lens system is required as an image pickup lens used for this. Also, between the lens system and the image sensor,
Like optical members such as low-pass filters and infrared cut filters, and so-called multi-panel electronic cameras that receive images of each of the three primary colors of RGB with their respective image sensors.
It is necessary to dispose an optical element such as a so-called color separation prism that guides a light beam to each image pickup element, and a large back focus is required as compared with the focal length.

【0003】更に、これらカメラにおいては、動画像を
撮影する用途が多く、撮影レンズとして高変倍率のズー
ムレンズを用いるのが一般的である。
Further, in these cameras, there are many applications for photographing moving images, and it is general to use a zoom lens having a high zoom ratio as a photographing lens.

【0004】特に、近年の製造技術の発展により、撮像
範囲の大きさに比べて画素数の非常に多い固体撮像素子
が開発され、例えばハイビジョン映像のように高精細な
画像を得ることが可能になった。そのために、撮像レン
ズも、この撮像素子の性能を十分に引き出し得るような
極めて高い光学性能を有するズームレンズが必要になっ
て来た。又、固体撮像素子が小型になり、例えば固体撮
像素子の各画素の大きさが小さくなる程、高い解像力が
必要になり、撮像レンズ系に対する光学性能の要求はま
すます高くなって来ている。
In particular, with the recent development of manufacturing technology, a solid-state image pickup device having a large number of pixels compared to the size of the image pickup range has been developed, and it becomes possible to obtain a high-definition image such as a high-definition image. became. Therefore, as for the image pickup lens, a zoom lens having an extremely high optical performance that can sufficiently bring out the performance of the image pickup element has been required. Further, as the solid-state image pickup device becomes smaller, for example, as the size of each pixel of the solid-state image pickup device becomes smaller, higher resolution is required, and the demand for optical performance of the image pickup lens system is becoming higher and higher.

【0005】このような要求を満足するズームレンズと
して、特開昭62−153913号や特開平1−126
614号、特開平6−56453号の各公報に記載され
ている従来例が知られている。
As a zoom lens satisfying such requirements, Japanese Patent Laid-Open Nos. 62-153913 and 1-126 are known.
Conventional examples described in Japanese Patent Laid-Open No. 614 and JP-A-6-56453 are known.

【0006】一方、カムコーダー用等の、主として小型
化を目的とするズームレンズとして、物体側から順に、
正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第
2レンズ群と、負の屈折力を持つ第3レンズ群と、正の
屈折力を持つ第4レンズ群とよりなる4群ズームレンズ
や、物体側から順に、正の屈折力を持つ第1レンズ群
と、負の屈折力を持つ第2レンズ群と、正の屈折力を持
つ第3レンズ群と、正の屈折力を持つ第4レンズ群から
なる4群ズームレンズが知られている。これらタイプの
4群ズームレンズは、群構成が簡単であって小型化に適
しているが、高い光学性能のレンズ系を得ることは困難
であって、ハイビジョン映像のように高精細な画像を得
ることを目的とするズームレンズとしては不適当であ
る。このような高精細な画像を得ることを目的とするズ
ームレンズの従来例としては、特開平6−175022
号等が知られているのみである。
On the other hand, as a zoom lens mainly for miniaturization, such as for a camcorder, the zoom lens is arranged in order from the object side.
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. A group zoom lens, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power in order from the object side. There is known a four-group zoom lens including a fourth lens group having These types of 4-group zoom lenses have a simple group configuration and are suitable for downsizing, but it is difficult to obtain a lens system with high optical performance, and a high-definition image such as a high-definition image can be obtained. It is unsuitable as a zoom lens for the purpose. As a conventional example of a zoom lens for obtaining such a high-definition image, there is Japanese Patent Laid-Open No. 6-175022.
No. etc. are only known.

【0007】[0007]

【発明が解決しようとする課題】一般に、高い光学性能
を得るためには、光線をできるだけ少しづつ多くの回数
屈折させて結像させることにより、各屈折面での収差の
発生量が少なくなるようにすることが考えられるが、こ
の場合、必然的に多くの枚数のレンズが必要になり、そ
の結果、レンズ系が大型になる欠点があった。
Generally, in order to obtain high optical performance, a light ray is refracted as little as possible as many times as possible to form an image, so that the amount of aberration generated on each refracting surface is reduced. However, in this case, a large number of lenses are inevitably required, and as a result, the lens system becomes large.

【0008】また、ズームレンズの場合、移動群が多い
ため、ズーミングに伴う収差変動が生ずる。そのため、
理想的には、各レンズ群において、収差が良好に補正さ
れていれば、ズーミングの際の収差変動は生じないが、
広角端から望遠端にかけて、レンズ系中の光線の通り方
は、必ずしも一定ではないため、若干の収差が残存す
る。ズームレンズにおいて、高い光学性能を達成しよう
とすると、この残存収差による収差変動を無視すること
が出来ない。したがって、ズームレンズにおいては、構
成するレンズ枚数を増やして広角端から望遠端にかけて
レンズ群を複雑な移動をさせて、収差変動を補正するよ
うにするために、レンズ系が大型化する。
Further, in the case of a zoom lens, since there are many moving groups, aberration variation occurs due to zooming. for that reason,
Ideally, in each lens group, if aberrations are corrected well, aberration fluctuations will not occur during zooming,
From the wide-angle end to the telephoto end, the path of the light rays in the lens system is not always constant, so some aberration remains. When it is attempted to achieve high optical performance in a zoom lens, the aberration fluctuation due to this residual aberration cannot be ignored. Therefore, in the zoom lens, the number of lenses to be configured is increased, the lens group is complicatedly moved from the wide-angle end to the telephoto end, and the aberration variation is corrected, so that the lens system becomes large.

【0009】一方、近年ハイビジョン等の高精細画像を
取込むカメラが一般化し、多くの分野で利用されるよう
になり、様々な条件化で利用する必要性から撮影カメラ
やレンズ系を小型化する要求が強くなっている。
On the other hand, in recent years, cameras for capturing high-definition images such as high-definition have become common, and have come to be used in many fields, and it is necessary to use them under various conditions, so that the photographing camera and lens system are downsized. The demand is growing.

【0010】前述の従来のズームレンズのうち、特公昭
62−153913号、特開平1−126614号、特
開平6−56453号公報等に記載されているズームレ
ンズは、高精細な画像を取込むために、高い光学性能を
達成したレンズ系である。しかし、例えば特開平1−1
26614号公報に記載されているズームレンズは、二
つのコンペンセータを設け、五つのレンズ群より構成さ
れるズームレンズで、群構成が複雑である。また特開平
6−175022号公報に記載されているズームレンズ
は、4群ズームレンズで、少ない群構成で高い光学性能
を有するレンズ系であるが、色分解プリズム等の光学素
子を配置するためにはバックフォーカスが十分長く確保
されているとはいえず、多くのタイプのカメラに利用し
得る撮像レンズとしては不十分である。
Among the conventional zoom lenses described above, the zoom lenses described in JP-B-62-153913, JP-A-1-126614, JP-A-6-56453 and the like capture high-definition images. Therefore, the lens system achieves high optical performance. However, for example, JP-A 1-1
The zoom lens disclosed in Japanese Patent No. 26614 is a zoom lens including two compensators and composed of five lens groups, and has a complicated group configuration. The zoom lens disclosed in Japanese Patent Laid-Open No. 6-175022 is a 4-group zoom lens, which is a lens system having high optical performance with a small group configuration. It cannot be said that the back focus is secured long enough, and is insufficient as an imaging lens that can be used in many types of cameras.

【0011】本発明は比較的簡単な構成であって、撮像
管や固体撮像素子等を用いた電子カメラ、特に近年の高
精細画像を取組む用途に適した画素数の多い撮像素子を
用いた電子カメラに最適な高い光学性能を有し、又各種
フィルター類等の光学素子をレンズ系と撮像素子との間
に挿入するのに十分なバックフォーカスを有する小型な
ズームレンズを提供するものである。
The present invention has a relatively simple structure, and an electronic camera using an image pickup tube, a solid-state image pickup device, etc. It is intended to provide a compact zoom lens having a high optical performance most suitable for a camera and having a back focus sufficient for inserting an optical element such as various filters between a lens system and an image pickup element.

【0012】[0012]

【課題を解決するための手段】本発明のズームレンズ
は、物体側から順に、正の屈折力を持ちズーミングの際
に固定の第1レンズ群と、負の屈折力を持ちズーミング
に際して光軸に沿って単調に移動する第2レンズ群と、
正又は負の屈折力を持ちズーミングに際して光軸に沿っ
て前後に移動する第3レンズ群と、正の屈折力を持ちズ
ーミングに際して光軸に沿って前後に移動する第4レン
ズ群とからなり、第3レンズ群が物体側から順に、正の
屈折力の第1レンズ成分と両凹形状の負レンズと両凸又
は物体側に凸面を向けたメニスカス形状の正レンズとを
順に接合した全体として負の屈折力を持つ第2レンズ成
分とにて構成されている。
A zoom lens according to the present invention comprises, in order from the object side, a first lens group having a positive refracting power and fixed during zooming, and a negative lens having a negative refracting power on the optical axis during zooming. A second lens group that moves monotonically along
A third lens group having positive or negative refracting power and moving back and forth along the optical axis during zooming, and a fourth lens group having positive refracting power and moving back and forth along the optical axis during zooming, The third lens group has, in order from the object side, a first lens component having a positive refractive power, a biconcave negative lens, and a biconvex or meniscus-shaped positive lens having a convex surface facing the object side, which are cemented in order as a whole. And a second lens component having a refracting power of.

【0013】比較的簡単な構成の電子撮像用ズームレン
ズとしては、前述のように、物体側より順に、ズーミン
グに際して固定の正の第1レンズ群と、負のバリエータ
ーの第2レンズ群と、負のコンペンセーターの第3レン
ズ群と、ズーミングの際に固定の正のリレー群の第4レ
ンズ群とよりなる4群ズームレンズ又は物体側より順
に、ズーミングに際して固定の正の第1レンズ群と、負
のバリエーターの第2レンズ群と、ズーミングに際し固
定の正の第3レンズ群と、コンペンセーターの役割を持
つ正の第4レンズ群とからなる4群ズームレンズが知ら
れている。
As described above, as a zoom lens for electronic imaging having a relatively simple structure, as described above, in order from the object side, a positive first lens group that is fixed during zooming, a second lens group that is a negative variator, and a negative lens group are used. The fourth lens group of the compensator of the third lens group and the fourth lens group of the positive relay group fixed at the time of zooming, or in order from the object side, the positive first lens group fixed at the time of zooming, There is known a four-group zoom lens including a second lens group of a negative variator, a positive third lens group fixed during zooming, and a positive fourth lens group having a role of a compensator.

【0014】一方、バックフォーカスを大にするために
物体側から順に、負,正のいわゆるレトロフォーカスタ
イプにすることが望ましく、しかも負、正共にパワーを
強くすることが好ましい。
On the other hand, in order to increase the back focus, it is desirable to use a so-called retrofocus type of negative and positive in order from the object side, and it is preferable to increase the power of both negative and positive.

【0015】前記の二つのタイプの4群ズームレンズの
うち、バックフォーカスを大にするためには、前者のタ
イプが望ましい。つまり後者のタイプのズームレンズ
は、負の第2レンズ群のパワーを強くする以外にはバッ
クフォーカスを大にすることが出来ず、収差が劣化す
る。一方前者のタイプの4群ズームレンズでは、第2レ
ンズ群のほかコンペンセーターの第3レンズ群が負の屈
折力であるため、負のパワーをこれら二つのレンズ群に
分散できるので、収差を悪化させずにバックフォーカス
を確保出来るため有利である。しかし前者のタイプの4
群ズームレンズは、リレー群が固定であるために、リレ
ー群で発生する収差変動を十分補正するためには、広角
端から望遠端にかけて、リレー群を通過する光束の変化
をなくさなければならず、そのためには、第1レンズ群
乃至第3レンズ群の負担が大きくなるか、或いはリレー
群を構成するレンズ枚数を増やしてのリレー群での極め
て高度な収差補正が必要になり、いずれの場合もレンズ
系が大型になり好ましくない。
Of the two types of four-group zoom lenses described above, the former type is preferable in order to increase the back focus. That is, in the latter type of zoom lens, the back focus cannot be increased except for increasing the power of the negative second lens group, and the aberration is deteriorated. On the other hand, in the former type of 4-group zoom lens, since the third lens group of the compensator has a negative refractive power in addition to the second lens group, the negative power can be dispersed to these two lens groups, so that the aberration is deteriorated. This is advantageous because the back focus can be secured without doing so. But the former type 4
Since the group zoom lens has a fixed relay group, in order to sufficiently correct aberration fluctuations that occur in the relay group, it is necessary to eliminate changes in the light flux that passes through the relay group from the wide-angle end to the telephoto end. However, for that purpose, the load on the first lens group to the third lens group becomes large, or extremely advanced aberration correction in the relay group by increasing the number of lenses forming the relay group becomes necessary. Also in this case, the lens system becomes large, which is not preferable.

【0016】本発明は、前記のように、物体側から順
に、ズーミングに際して固定の正の第1レンズ群と、負
の第2レンズ群と、正又は負の第3レンズ群と、正の第
4レンズ群とにて構成し、変倍機能を主として第2レン
ズ群と第4レンズ群とに又コンペンセーター機能を第3
レンズ群と第4レンズ群とに分担させた構成にしてい
る。ここで本発明のズームレンズにおける各レンズ群の
移動方法を詳細に説明する。第1レンズ群は、ズーミン
グに際して固定である。又第2レンズ群は、広角端から
望遠端へかけてのズーミングに際して、物体側から像側
へ単調に移動する。更に第3レンズ群と第4レンズ群
は、ともに広角端から望遠端へのズーミングに際して像
側から物体側へ移動した後に逆に物体側から像側へ移動
するようにした。このようにすることにより、第2レン
ズ群を比較的小さな負のパワーとして収差の発生を抑制
しつつ大きな変倍比、大きなバックフォーカスを確保す
るようにした。
As described above, according to the present invention, in order from the object side, the positive first lens group, the negative second lens group, the positive or negative third lens group, and the positive third lens group which are fixed during zooming are arranged in order. The second lens group and the fourth lens group mainly have a variable power function, and the third lens group has a compensator function.
The lens group and the fourth lens group are shared. Here, a method of moving each lens group in the zoom lens of the present invention will be described in detail. The first lens group is fixed during zooming. The second lens group moves monotonically from the object side to the image side during zooming from the wide-angle end to the telephoto end. Furthermore, both the third lens group and the fourth lens group move from the image side to the object side during zooming from the wide-angle end to the telephoto end, and then move from the object side to the image side. By doing so, it is possible to secure a large zoom ratio and a large back focus while suppressing the occurrence of aberration by making the second lens group have a relatively small negative power.

【0017】又第1レンズ群のレンズ口径が大になると
レンズ系の重心が前に偏り、撮影時のカメラの保持の点
等から好ましくない。これをさけるためには、入射瞳位
置を出来るだけ物体側へ寄せることが望ましい。また電
子撮像素子へは、光線が出来る限り垂直に入射すること
が望ましい。そのため、射出瞳位置は、出来る限り遠く
に位置することが望ましい。しがたって、本発明のズー
ムレンズにおいては、絞りを第2レンズ群と第3レンズ
群の間、もしくは第3レンズ群と第4レンズ群との間に
位置せしめることが望ましい。
Further, when the lens aperture of the first lens group becomes large, the center of gravity of the lens system is biased forward, which is not preferable in terms of holding the camera at the time of photographing. In order to avoid this, it is desirable to move the entrance pupil position as close to the object side as possible. Further, it is desirable that the light rays enter the electronic image pickup device as vertically as possible. Therefore, it is desirable that the exit pupil position be located as far as possible. Therefore, in the zoom lens of the present invention, it is desirable to position the diaphragm between the second lens group and the third lens group or between the third lens group and the fourth lens group.

【0018】又、色分解プリズム等の光学素子を、レン
ズ系と撮像素子との間に配置する場合、軸上物点から出
た光束は、収束光束としてこの光学素子に入射する。そ
のため光学素子にて正の軸上色収差が発生する。この色
収差は、レンズ系のFナンバーが小さい程又光学素子の
厚さが厚い程大になる。特にこの色収差は、ハイビジョ
ン等の高精細な画像を取込む用途の撮影レンズの場合無
視出来ない程度に大きくなる。
When an optical element such as a color separation prism is arranged between the lens system and the image pickup element, the light beam emitted from the on-axis object point enters this optical element as a convergent light beam. Therefore, positive axial chromatic aberration occurs in the optical element. This chromatic aberration increases as the F-number of the lens system decreases and the thickness of the optical element increases. In particular, this chromatic aberration becomes so large that it cannot be ignored in the case of a taking lens for the purpose of capturing a high-definition image such as high-definition.

【0019】一方、撮像素子を用いる場合、射出瞳は出
来る限り遠くに位置する必要があり、前記の光学素子に
より発生する倍率の色収差は十分小である。
On the other hand, when an image pickup element is used, the exit pupil must be located as far as possible, and the chromatic aberration of magnification generated by the above optical element is sufficiently small.

【0020】以上の理由から、ズームレンズと光学素子
との全体の色収差を十分良好に補正するためには、光学
素子にて発生する正の軸上色収差を打ち消すための負の
軸上色収差をレンズ系において発生させると共に、レン
ズ系の倍率の色収差を十分に補正する必要がある。
For the above reasons, in order to satisfactorily correct the entire chromatic aberration of the zoom lens and the optical element, the negative axial chromatic aberration for canceling the positive axial chromatic aberration generated in the optical element is used in the lens. It is necessary to sufficiently correct the chromatic aberration of the magnification of the lens system while causing it in the system.

【0021】本発明のズームレンズは、第2レンズ群は
主として変倍作用を有し比較的強い負のパワーを有する
ため、通常正の軸上色収差と負の倍率の色収差が発生す
る。そのためこの第2レンズ群にて負の軸上色収差を発
生させるためには、このレンズ群を極めて複雑な構成に
しなければならず、好ましくない。また第1レンズ群
は、広角端から望遠端へかけての光線高の変動が最も大
きく、第1レンズ群での残存収差が大きいとズーミング
に際しての収差変動を補正することが出来なくなる。そ
のため、第1レンズ群は、諸収差を十分補正しておかな
ければならず、前記の光学素子で発生する正の軸上色収
差を打消すだけの負の軸上色収差を発生させることは好
ましくない。又、前述のように絞りを第2レンズ群と第
3レンズ群あるいは第3レンズ群と第4レンズ群の間に
配置した場合、第4レンズ群にて負の軸上色収差を発生
させると同時に負の倍率の色収差が発生する。この場
合、特に広角端において第2レンズ群と第4レンズ群と
で発生する負の倍率の色収差が大になる。これを補正す
るためには、第3レンズ群にて正の倍率の色収差を発生
させなければならないが、第3レンズ群は軸外主光線高
が低いため、前記の負の倍率の色収差を打消すだけの正
の倍率の色収差を発生させることは困難である。
In the zoom lens of the present invention, since the second lens group mainly has a variable power and has a relatively strong negative power, normally positive axial chromatic aberration and negative chromatic aberration occur. Therefore, in order to generate the negative axial chromatic aberration in this second lens group, this lens group must have an extremely complicated structure, which is not preferable. Further, in the first lens group, the fluctuation of the ray height from the wide angle end to the telephoto end is the largest, and if the residual aberration in the first lens group is large, it becomes impossible to correct the aberration fluctuation during zooming. Therefore, the first lens group must be sufficiently corrected for various aberrations, and it is not preferable to generate negative axial chromatic aberration sufficient to cancel the positive axial chromatic aberration generated in the optical element. . When the diaphragm is arranged between the second lens group and the third lens group or between the third lens group and the fourth lens group as described above, negative axial chromatic aberration is generated in the fourth lens group and at the same time. Chromatic aberration of negative magnification occurs. In this case, especially at the wide-angle end, chromatic aberration of negative magnification that occurs in the second lens group and the fourth lens group becomes large. In order to correct this, chromatic aberration of positive magnification must be generated in the third lens group, but since the third lens group has a low off-axis chief ray height, chromatic aberration of negative magnification described above is generated. It is difficult to generate chromatic aberration with a positive magnification that only erases it.

【0022】又、第3レンズ群は、前述のように軸外主
光線高が低く、軸上色収差が発生するようにしても倍率
の色収差の発生は比較的小さく抑えることが出来、又、
他のレンズ群にて補正することが可能である。したがっ
て、第3レンズ群にて、前記のレンズ系と撮像素子との
間に配置された光学素子で発生する正の軸上色収差を打
ち消すだけの負の軸上色収差を発生させることが出来
る。
Further, in the third lens group, the off-axis chief ray height is low as described above, and even if axial chromatic aberration occurs, the occurrence of lateral chromatic aberration can be suppressed to a relatively small level.
It is possible to correct with other lens groups. Therefore, in the third lens group, it is possible to generate negative axial chromatic aberration sufficient to cancel the positive axial chromatic aberration generated in the optical element arranged between the lens system and the image pickup element.

【0023】このように、光学素子にて発生する正の軸
上色収差を補正するためには、ズームレンズ中の第3レ
ンズ群にて負の軸上色収差を発生させることが好まし
い。
As described above, in order to correct the positive axial chromatic aberration generated in the optical element, it is preferable to generate the negative axial chromatic aberration in the third lens group in the zoom lens.

【0024】この第3レンズ群にて負の軸上色収差を発
生させるためには、第3レンズ群を正のパワーにすれば
よい。しかし第3レンズ群を大きな正のパワーにする
と、レンズ系のバックフォーカスを確保することが困難
になる。したがって、この第3レンズ群を全体として負
のパワー又は弱い正のパワーとし、しかも負の軸上色収
差が発生するようにする必要がある。
In order to generate a negative axial chromatic aberration in this third lens group, the third lens group should have a positive power. However, if the third lens group has a large positive power, it becomes difficult to secure the back focus of the lens system. Therefore, it is necessary to make the third lens group have a negative power or a weak positive power as a whole, and to generate a negative axial chromatic aberration.

【0025】そのために、本発明では、球面収差等の諸
収差の補正も考慮して、第3レンズ群を前記の通り、物
体側から順に、正レンズ成分の第1レンズ成分と、負レ
ンズ成分の第2レンズ成分とにて構成し、そのうちの第
2レンズ成分を両凹レンズと物体側に凸面を向けた正レ
ンズとの接合レンズにて構成した。これによって、第3
レンズ群を第1レンズ成分、第2レンズ成分のパワーを
弱くしながら負の軸上色収差を発生するようにした。
Therefore, in the present invention, in consideration of correction of various aberrations such as spherical aberration, as described above, the third lens group is arranged in order from the object side, that is, the first lens component of the positive lens component and the negative lens component. The second lens component is composed of a cemented lens of a biconcave lens and a positive lens having a convex surface facing the object side. By this, the third
The lens groups are configured to generate negative axial chromatic aberration while weakening the powers of the first lens component and the second lens component.

【0026】ここで、第3レンズ群を物体側より負のレ
ンズ成分と正のレンズ成分の順に配置すると、正のレン
ズ成分での軸上光線高が高くなり球面収差の発生が大に
なり好ましくない。したがって、本発明のズームレンズ
では、第3レンズ群を物体側より順に、正の第1レンズ
成分と負の第2レンズ成分にて構成した。また、両レン
ズ成分を単レンズにて構成すると、第3レンズ群全体と
して負の軸上色収差を発生させるためには、正のパワー
が強くなり好ましくない。又負の第2レンズ成分を物体
側から正レンズと負レンズの順に接合すると、適切な負
の軸上色収差を発生させた時に各屈折面で発生する諸収
差が大になり、又高次の収差が発生するので好ましくな
い。
If the third lens unit is arranged in this order from the object side in the order of the negative lens component and the positive lens component, the axial ray height in the positive lens component will be high and spherical aberration will be large, which is preferable. Absent. Therefore, in the zoom lens of the present invention, the third lens unit is composed of, in order from the object side, the positive first lens component and the negative second lens component. Further, if both lens components are composed of a single lens, the positive power becomes strong in order to generate the negative axial chromatic aberration in the entire third lens group, which is not preferable. If the negative second lens component is cemented in order from the object side to the positive lens and the negative lens, various aberrations generated on each refracting surface when an appropriate negative axial chromatic aberration is generated become large, Aberration occurs, which is not preferable.

【0027】上記の負の軸上色収差を効果的に発生させ
るためには、第3レンズ群の第2レンズ成分の接合面を
正のパワーにし、この接合面にて負の軸上色収差が発生
するようにすることが好ましい。そのためには、前記第
2レンズ成分の負レンズを低屈折率低分散、正レンズを
高屈折率高分散とすればよい。つまり下記条件(1),
(2)を満足すればよい。
In order to effectively generate the above-mentioned negative axial chromatic aberration, the cemented surface of the second lens component of the third lens unit is made to have a positive power, and the negative axial chromatic aberration is generated at this cemented surface. It is preferable to do so. For that purpose, the negative lens of the second lens component may have a low refractive index and low dispersion, and the positive lens may have a high refractive index and high dispersion. That is, the following condition (1),
It suffices to satisfy (2).

【0028】(1) n32n <n32p (2) ν32p <ν32n ただし、n32n ,n32p は夫々第3レンズ群第2レンズ
成分の負レンズおよび正レンズの屈折率、ν32n ,ν
32p は夫々第3レンズ群第2レンズ成分の負レンズおよ
び正レンズのアッベ数である。
(1) n 32n <n 32p (2) ν 32p32n where n 32n and n 32p are the refractive indices of the negative lens and the positive lens of the second lens component of the third lens group, ν 32n and ν, respectively.
32p is the Abbe number of the negative lens and the positive lens of the second lens component of the third lens group, respectively.

【0029】この条件(1)又は条件(2)を満足しな
いといずれもレンズ系の正の軸上色収差を十分良好に補
正し得なくなり好ましくない。
If either the condition (1) or the condition (2) is not satisfied, the positive axial chromatic aberration of the lens system cannot be sufficiently corrected, which is not preferable.

【0030】前述の通り、本発明のズームレンズの第3
レンズ群は負のパワーもしくは弱い正のパワーを持つよ
うにして、レンズ系のバックフォーカスを確保するよう
にしている。この第3レンズ群のパワーが下記条件
(3)の範囲内になるようにすれば一層好ましい。
As described above, the third aspect of the zoom lens of the present invention.
The lens group has a negative power or a weak positive power to ensure the back focus of the lens system. It is more preferable that the power of the third lens group be within the range of the following condition (3).

【0031】 (3) −0.30<fw /f3 <0.10 ただし、fw は広角端における全系の焦点距離、f3
第3レンズ群の焦点距離である。
[0031] (3) -0.30 <f w / f 3 <0.10 However, f w is a focal length of the entire system at the wide angle end, f 3 is the focal length of the third lens group.

【0032】条件(3)の上限の0.10を越えると、
第3レンズ群の正のパワーが強くなりすぎて、バックフ
ォーカスを確保することが困難になる。また下限の−
0.30を越えると第3レンズ群の負のパワーが強くな
りすぎて第2レンズ群との負のパワーの配分から第2レ
ンズ群の負のパワーが小さくなりすぎてレンズの全長が
大になる。
When the upper limit of 0.10 to condition (3) is exceeded,
The positive power of the third lens group becomes too strong, and it becomes difficult to secure the back focus. The lower limit of −
If it exceeds 0.30, the negative power of the third lens group becomes too strong, and the negative power of the second lens group becomes too small due to the distribution of the negative power with the second lens group, and the total lens length becomes large. Become.

【0033】本発明のズームレンズにおいて、更に高度
な収差補正を実現するためには、第4レンズ群を物体側
から順に、全体として正の屈折力を有する第41レンズ
群と、全体として正の屈折力を有する第42レンズ群と
より構成し、第41レンズ群を少なくとも1枚の物体側
に凹面を向けた正のメニスカスレンズと少なくとも1枚
の物体側に凹面を向けた負のメニスカスレンズ又は負の
屈折力の強い方の面を物体側に向けた両凹レンズとを含
み、第42レンズ群は、少なくとも1枚の正レンズと少
なくとも1枚の負レンズを含み、下記条件(4),
(5)を満足することが望ましい。
In the zoom lens of the present invention, in order to realize a higher degree of aberration correction, the fourth lens group is arranged in order from the object side, the 41st lens group having a positive refracting power as a whole, and a positive lens group as a whole. A positive meniscus lens having a concave surface facing the object side and at least a negative meniscus lens having a concave surface facing the object side; or A biconcave lens having a surface having a strong negative refractive power facing the object side, and the 42nd lens group includes at least one positive lens and at least one negative lens, and the following condition (4):
It is desirable to satisfy (5).

【0034】(4) 0<f42/f41<0.90 (5) 0.10<fw /f42<0.50 ただし、f41,f42は夫々第4レンズ群の第41レンズ
群および第42レンズ群の焦点距離である。
(4) 0 <f 42 / f 41 <0.90 (5) 0.10 < fw / f 42 <0.50 where f 41 and f 42 are the 41st lens of the 4th lens group, respectively. It is a focal length of the lens unit and the 42nd lens unit.

【0035】本発明のズームレンズにおいて、絞りを第
3レンズ群と第4レンズ群の間に配置した場合、第3レ
ンズ群にて負の軸上色収差を発生させると、正の倍率の
色収差が発生し第2レンズ群で発生する負の倍率の色収
差を補正する作用が生ずる。しかし、この場合、レンズ
系と撮像素子との間に配置したプリズム等の光学素子で
発生する正の軸上色収差を第3レンズ群にて補正しよう
とすると正の倍率の色収差が大になりすぎて補正過剰に
なってしまう。そのため、第4レンズ群で比較的小さな
負の軸上色収差と負の倍率の色収差を発生させて、第3
レンズ群と第4レンズ群の両方で前記の光学素子で発生
する正の軸上色収差を補正することが好ましい。そのた
めには、第4レンズ群では、正のレンズ群としてのパワ
ーの大きさに比較して小さい負の軸上色収差と負の倍率
の色収差とを発生させることが必要である。
In the zoom lens of the present invention, when a diaphragm is arranged between the third lens group and the fourth lens group, if negative axial chromatic aberration is generated in the third lens group, chromatic aberration of positive magnification will occur. The action of correcting the chromatic aberration of negative magnification that is generated and is generated in the second lens group occurs. However, in this case, if an attempt is made to correct the positive axial chromatic aberration generated by an optical element such as a prism arranged between the lens system and the image pickup element by the third lens group, the chromatic aberration of positive magnification becomes too large. Will be overcorrected. Therefore, a relatively small negative axial chromatic aberration and negative chromatic aberration of negative magnification are generated in the fourth lens group, and
It is preferable that both the lens group and the fourth lens group correct the positive axial chromatic aberration generated in the optical element. For that purpose, it is necessary for the fourth lens group to generate negative axial chromatic aberration and negative chromatic aberration of negative magnification, which are smaller than the power of the positive lens group.

【0036】又、本発明のズームレンズにおいて、絞り
を第2レンズ群と第3レンズ群との間に配置した場合、
第3レンズ群では、負の軸上色収差と負の倍率色収差と
が発生する。第3レンズ群を構成する各レンズのパワー
配置によって色収差の大きさを制御することが可能であ
るが、この第3レンズ群で発生する倍率の色収差が比較
的大きくなった場合、第4レンズ群で正の倍率の色収差
を発生させる必要が生ずる。また、第3レンズ群にて発
生する倍率の色収差を十分小さく補正できたとすると、
第4レンズ群においても倍率の色収差を十分小さく補正
しなければならない。したがって、第4レンズ群で正の
軸上色収差と正の倍率の色収差を発生させるか、又は正
のレンズ群のパワーに比較して小さな負の軸上色収差と
負の倍率の色収差を発生させることが必要になる。
In the zoom lens of the present invention, when the diaphragm is arranged between the second lens group and the third lens group,
In the third lens group, negative axial chromatic aberration and negative lateral chromatic aberration occur. It is possible to control the magnitude of chromatic aberration by the power arrangement of each lens constituting the third lens group. However, when the chromatic aberration of magnification generated in this third lens group becomes relatively large, the fourth lens group Therefore, it becomes necessary to generate chromatic aberration of positive magnification. If the chromatic aberration of magnification that occurs in the third lens group can be corrected to be sufficiently small,
Also in the fourth lens group, the chromatic aberration of magnification must be corrected to be sufficiently small. Therefore, positive axial chromatic aberration and chromatic aberration of positive magnification are generated in the fourth lens group, or negative axial chromatic aberration and negative chromatic aberration of small magnification are generated in comparison with the power of the positive lens group. Will be required.

【0037】したがって、第4レンズ群に負レンズを配
置して正の軸上色収差と正の倍率の色収差を発生させ、
正レンズで発生する色収差を補正もしくは過剰補正する
ことが必要になるが、第4レンズ群内の像側の領域では
軸外主光線の光線高が高いため、倍率の色収差の発生が
極めて大きくなるため強い負のパワーを配置するのは好
ましくない。しかし、第4レンズ群内の物体側の領域で
は、軸外光線高が低いため倍率の色収差を十分補正する
ことが困難である。そのため、第4レンズ群を物体側か
ら順に正の第41レンズ群と正の第42レンズ群とにて
構成し、第41レンズ群と第42レンズ群に分散して負
のパワーを配置するのがよい。この場合、第41レンズ
群には発散光束が入射するため諸収差の悪化を防止する
ためには、物体側に凹面を向けた正のメニスカスレンズ
と、物体側に凹面を向けた負のメニスカスレンズまたは
負の屈折力の強い面を物体側へ向けた両凹レンズを含む
ことが望ましい。
Therefore, a negative lens is arranged in the fourth lens group to generate positive axial chromatic aberration and positive chromatic aberration, and
It is necessary to correct or excessively correct the chromatic aberration generated by the positive lens, but in the image side region of the fourth lens group, the ray height of the off-axis chief ray is high, so that the chromatic aberration of magnification is extremely large. Therefore, it is not preferable to place strong negative power. However, it is difficult to sufficiently correct lateral chromatic aberration in the object-side region of the fourth lens group because the off-axis ray height is low. Therefore, the fourth lens group is configured by the positive 41st lens group and the positive 42nd lens group in order from the object side, and the negative power is arranged by being distributed to the 41st lens group and the 42nd lens group. Is good. In this case, since a divergent light beam is incident on the 41st lens group, in order to prevent deterioration of various aberrations, a positive meniscus lens having a concave surface facing the object side and a negative meniscus lens having a concave surface facing the object side are provided. Alternatively, it is desirable to include a biconcave lens with the surface having a strong negative refractive power facing the object side.

【0038】条件(4),(5)は、第4レンズ群を二
つの正のパワーに分割する際のパワー配分を規定するも
のである。
Conditions (4) and (5) define the power distribution when the fourth lens group is divided into two positive powers.

【0039】条件(4)の下限を越えると第4レンズ群
の第41レンズ群のパワーが小さくなり、第4レンズ群
の第42レンズ群のパワーが大きくなるため、バックフ
ォーカスを確保するためには望ましいが、第4レンズ群
の第42レンズ群に正のパワーが集まりすぎるためにペ
ッツバール和が悪化し、特に広角端でのメリディオナル
像面の変動が大きく、また特にg線の球面収差が補正困
難になる。また上限を越えると、第4レンズ群の第41
レンズ群のパワーが大きく、第4レンズ群の第42レン
ズ群のパワーが小さくなるため、バックフォーカスを確
保することが困難である。また、第4レンズ群の第41
レンズ群のパワーが大になるとこの第41レンズ群を構
成する負レンズのパワーが小になり、第4レンズ群で発
生する負の軸上色収差、倍率の色収差が大になり補正が
困難になる。 条件(5)において、fw /f42が下限
の0.10を越えて小さな値になると、第4レンズ群の
第42レンズ群のパワーが小さくなり、そのため結像に
必要な正のパワーを第4レンズ群の第41レンズ群にて
確保しなければならなくなり、諸収差特にペッツバール
和が悪化し、又第4レンズ群の第42レンズ群中の負の
パワーを小さくしなければならずレンズ系が大型化する
と共に歪曲収差の補正が困難になる。又fw /f42が条
件(5)の上限の0.50を越えて大きな値になると、
第4レンズ群の第42レンズ群のパワーが大になり、第
4レンズ群の第41レンズ群が弱い正のパワーかあるい
は負のパワーになる。この場合、バックフォーカスの確
保には有利であるが、第42レンズ群に正のパワーが集
まりすぎることになり、ペッツバール和が悪化し特に広
角端でのメリディオナル像面の変動が大になり、また、
特にg線の球面収差が大になり補正が困難になる。
When the value goes below the lower limit of the condition (4), the power of the 41st lens group of the 4th lens group becomes small, and the power of the 42nd lens group of the 4th lens group becomes large. Therefore, in order to secure the back focus. Is preferable, but the Petzval sum is deteriorated because the positive power is excessively collected in the 42nd lens group of the 4th lens group, the meridional image surface is largely fluctuated particularly at the wide-angle end, and particularly the g-line spherical aberration is corrected. It will be difficult. If the upper limit is exceeded, the 41st lens unit of the 4th lens unit
Since the power of the lens group is large and the power of the 42nd lens group of the 4th lens group is small, it is difficult to secure the back focus. In addition, the 41st lens of the 4th lens group
When the power of the lens group becomes large, the power of the negative lens constituting this 41st lens group becomes small, and the negative axial chromatic aberration and the chromatic aberration of magnification that occur in the 4th lens group become large, which makes correction difficult. . In the condition (5), when f w / f 42 becomes smaller than the lower limit of 0.10, the power of the 42nd lens group of the 4th lens group becomes small, so that the positive power required for image formation is reduced. It must be ensured by the 41st lens group of the 4th lens group, various aberrations, especially Petzval sum, deteriorate, and the negative power in the 42nd lens group of the 4th lens group must be reduced. As the system becomes larger, it becomes difficult to correct distortion. When f w / f 42 exceeds the upper limit of 0.50 of condition (5) and becomes a large value,
The power of the 42nd lens group of the 4th lens group becomes large, and the 41st lens group of the 4th lens group has a weak positive power or negative power. In this case, it is advantageous to secure the back focus, but the positive power is excessively collected in the 42nd lens group, the Petzval sum is deteriorated, and the fluctuation of the meridional image surface becomes large especially at the wide-angle end, and ,
In particular, the spherical aberration of the g-line becomes large, which makes correction difficult.

【0040】更に第4レンズ群の第41レンズ群の正の
パワーと負のパワーの配分に関して以下の条件を満足す
ることが望ましい。
Furthermore, it is desirable that the following conditions be satisfied regarding the distribution of the positive power and the negative power of the 41st lens unit of the 4th lens unit.

【0041】 (6) −0.40<Σ(fw /f41n )<−0.03 ただし、f41n は第4レンズ群の第41レンズ群の負レ
ンズの焦点距離である。
[0041] (6) -0.40 <Σ (f w / f 41n) <- 0.03 , however, f 41n is the focal length of the negative lens in the first lens subunit of the fourth lens group.

【0042】この条件(6)は、第4レンズ群の第41
レンズ群の負のパワーの総和を規定するもので、下限の
−0.40を越えると第4レンズ群の第41レンズ群の
正のパワーが小さくなり、その分第3レンズ群で確保す
る必要がある。そのために特に基準波長以外での球面収
差のバランスが崩れ、長波長域では正の球面収差が又短
波長域では負の球面収差が大きくなる。また上限0.0
3を越えると、第4レンズ群内の負のパワーが小さくな
るためバックフォーカスの確保が困難になり、また第4
レンズ群で発生する軸上色収差、倍率の色収差が負の方
向へ移動するために、特に広角端での第2レンズ群で発
生する負の倍率の色収差を補正することが困難である。
This condition (6) applies to the 41st lens of the 4th lens group.
It defines the total sum of the negative powers of the lens groups. When the lower limit of -0.40 is exceeded, the positive power of the 41st lens group of the 4th lens group becomes small, and it is necessary to secure it by the 3rd lens group. There is. As a result, the balance of spherical aberrations other than the reference wavelength is lost, and positive spherical aberration becomes large in the long wavelength region and negative spherical aberration becomes large in the short wavelength region. The upper limit is 0.0
When it exceeds 3, the negative power in the fourth lens group becomes small, so that it becomes difficult to secure the back focus.
Since the axial chromatic aberration and the chromatic aberration of magnification that occur in the lens unit move in the negative direction, it is difficult to correct the chromatic aberration of negative magnification that occurs in the second lens unit especially at the wide-angle end.

【0043】更に第4レンズ群の第41レンズ群におい
て、諸収差を悪化させずに効果的に正の軸上色収差を発
生させるためには、第4レンズ群の第41レンズ群を、
物体側から順に、正,負の構成にするのが望ましい。具
体的には、この第4レンズ群の第41レンズ群は、物体
側から順に、物体側に凹面を向けた正のメニスカスレン
ズと、少なくとも1枚の正レンズからなる第1レンズ成
分と、物体側に凹面を向けた負のメニスカスレンズの第
2レンズ成分とにて構成すればよい。
Further, in the 41st lens group of the 4th lens group, in order to effectively generate positive axial chromatic aberration without deteriorating various aberrations, the 41st lens group of the 4th lens group is
It is desirable to have positive and negative configurations in order from the object side. Specifically, the 41st lens group of the 4th lens group includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side, a first lens component including at least one positive lens, and an object It may be configured with the second lens component of the negative meniscus lens with the concave surface facing the side.

【0044】しかし第3レンズ群で発生する負の軸上色
収差が比較的大きいと、第4レンズ群で大きな正の軸上
色収差と倍率の色収差を発生させねばならず、第4レン
ズ群を上記のような構成にした場合、第41レンズ群の
第2レンズ成分に強いパワーの負レンズが必要になり、
他の諸収差の悪化をまねく。そのため、第4レンズ群の
第41レンズ群を物体側より順に、負正負の構成にし、
負のパワーを分散させれば、バックフォーカスの確保に
有利であり、また諸収差を悪化させずに正の軸上色収差
と倍率の色収差とを発生させることが出来る。
However, if the negative axial chromatic aberration produced by the third lens group is relatively large, then the fourth lens group must produce large positive axial chromatic aberration and chromatic aberration of magnification. In the case of such a configuration, a negative lens having a strong power is required for the second lens component of the 41st lens group,
It causes deterioration of other aberrations. Therefore, the 41st lens group of the 4th lens group is arranged in order from the object side to have a negative positive negative polarity,
Dispersing the negative power is advantageous for ensuring the back focus, and it is possible to generate positive axial chromatic aberration and lateral chromatic aberration without deteriorating various aberrations.

【0045】具体的には、第4レンズ群の第41レンズ
群は、物体側から順に、少なくとも1枚の物体側に凹面
を向けた負レンズからなる第1レンズ成分と、像側に凸
面を向けた正のメニスカスレンズまたは正の屈折力の強
い面を像側に向けた両凸形状の正レンズを少なくとも1
枚含み正レンズからなる第2レンズ成分と、物体側に凹
面を向けた負のメニスカスレンズからなる第3レンズ成
分とにて構成することが望ましい。
Specifically, the forty-first lens group of the fourth lens group has, in order from the object side, a first lens component consisting of at least one negative lens having a concave surface facing the object side and a convex surface facing the image side. At least one positive meniscus lens facing the lens or a biconvex positive lens with a surface having a strong positive refractive power facing the image side.
It is preferable that the second lens component is composed of a positive lens including a single lens and the third lens component is composed of a negative meniscus lens having a concave surface facing the object side.

【0046】本発明のズームレンズにおいて、諸収差を
さらに良好に補正するためには、下記条件(7),
(8)を満足することが望ましい。
In the zoom lens of the present invention, the following conditions (7),
It is desirable to satisfy (8).

【0047】 (7) 0.05<fw /f1 <0.15 (8) −0.70<fw /f2 <−0.30 ただしf1 ,f2 は夫々第1レンズ群、第2レンズ群の
焦点距離である。
[0047] (7) 0.05 <f w / f 1 <0.15 (8) -0.70 <f w / f 2 <-0.30 However f 1, f 2 are respectively the first lens group, It is the focal length of the second lens group.

【0048】fw /f1 が条件(7)の下限値の0.0
5を越えて小さくなると、第1レンズ群で十分に光束を
集束光束に変えることが出来ず、そのため第2レンズ群
のパワーを弱くしないと第3レンズ群以降での収差発生
量が大になり好ましくない。これをさけるため第2レン
ズ群のパワーを弱くすると、レンズ系を大きな変倍比に
するためには、第2レンズ群の移動量が大になり、レン
ズ系が大型化する。これを避けるために第4レンズ群の
パワーを大にして大きな変倍比を確保しようとすると、
第4レンズ群で発生する色収差を補正することが困難に
なる。また、fw /f1 が条件(7)の上限値の0.1
5を越えて大きな値になると、第1レンズ群のパワーが
強くなりすぎて、第2レンズ群のパワーを強くしないと
バックフォーカスを確保出来なくなる。このように第2
レンズ群のパワーを強くするとペッツバール和が補正過
剰となり、又特に広角端での倍率の色収差が大になり、
ズーミングの際の変動が大になる。
F w / f 1 is 0.0, which is the lower limit of the condition (7).
If it becomes smaller than 5, the first lens group cannot sufficiently convert the light flux into a focused light flux. Therefore, unless the power of the second lens group is weakened, the amount of aberration generated in the third lens group and thereafter becomes large. Not preferable. If the power of the second lens group is weakened to avoid this, the amount of movement of the second lens group becomes large and the lens system becomes large in order to make the lens system have a large zoom ratio. In order to avoid this, if the power of the fourth lens group is increased to secure a large zoom ratio,
It becomes difficult to correct the chromatic aberration generated in the fourth lens group. Further, f w / f 1 is 0.1, which is the upper limit of the condition (7).
When the value exceeds 5 and becomes large, the power of the first lens group becomes too strong, and the back focus cannot be secured unless the power of the second lens group is made strong. Second like this
When the power of the lens group is increased, the Petzval sum is overcorrected, and the chromatic aberration of magnification becomes large especially at the wide-angle end,
Greater fluctuation during zooming.

【0049】fw /f2 が条件(8)の下限値の−0.
70を越えて小さくなると、第2レンズ群の負のパワー
が大きくなりすぎてペッツバール和が補正過剰になり、
又特に広角端での倍率の色収差が大になり、ズーミング
に際しての変動が大になる。又fw /f2 が条件(8)
の上限値の−0.30より大になると、第2レンズ群の
パワーが小さくなりすぎて大きな変倍比のレンズ系にす
るためには、レンズ系が大型化するか、又は第4レンズ
群のパワーを強くしてレンズ系の変倍比を大にしようと
すると第4レンズ群で発生する色収差が大になり補正で
きなくなる。
F w / f 2 is the lower limit of the condition (8) −0.
When it becomes smaller than 70, the negative power of the second lens group becomes too large and the Petzval sum is overcorrected,
In addition, the chromatic aberration of magnification becomes large especially at the wide-angle end, and the fluctuation during zooming becomes large. Also, f w / f 2 is the condition (8)
When the value exceeds the upper limit value of −0.30, the power of the second lens group becomes too small and the lens system becomes large in size in order to obtain a lens system having a large zoom ratio, or the fourth lens group. If the power of is increased to increase the variable power ratio of the lens system, the chromatic aberration generated in the fourth lens group becomes large and correction cannot be performed.

【0050】また本発明のズームレンズにおいて、諸収
差の補正バランスを向上させ、更に高性能な光学系を達
成するためには、以下の諸条件のいずれかを単独で、又
は任意の組合わせとして満足することが望ましい。
In the zoom lens of the present invention, in order to improve the correction balance of various aberrations and achieve a higher performance optical system, any one of the following conditions may be used alone or in any combination. It is desirable to be satisfied.

【0051】(1’) n32p −n32n >0.05 (2’) ν32n −ν32p >20 (3’) −0.25<fw /f3 <0.07 (4’) 0<f42/f41<0.80 (5’) 0.15<fw /f42<0.40 (6’) −0.35<Σfw /f41n <−0.03 (7’) 0.07<fw /f1 <0.13 (8’) −0.65<fw /f2 <−0.40 更に、上記の条件(3’)、(4’)、及び(5’)の
各々を単独でまたは任意の組合わせとして次に示す限定
した範囲とすることにより、特に第3レンズ群と第4レ
ンズ群の第41レンズ群、第42レンズ群での収差補正
のバランスを良くすることが出来る。
[0051] (1 ') n 32p -n 32n > 0.05 (2') ν 32n -ν 32p> 20 (3 ') -0.25 <f w / f 3 <0.07 (4') 0 <f 42 / f 41 <0.80 (5 ') 0.15 <f w / f 42 <0.40 (6') -0.35 <Σf w / f 41n <-0.03 (7 ') 0.07 <f w / f 1 < 0.13 (8 ') -0.65 <f w / f 2 <-0.40 further, the above condition (3'), (4 ') and (5 By setting each of () independently or as an arbitrary combination within the following limited range, the aberration correction balance particularly in the 41st lens group and the 42nd lens group of the third lens group and the fourth lens group Can be improved.

【0052】 (3”) −0.15<fw /f3 <0.07 (4”) 0<f42/f41<0.60 (5”) −0.35<Σ(fw /f41n )<−0.
10
[0052] (3 ") -0.15 <f w / f 3 <0.07 (4") 0 <f 42 / f 41 <0.60 (5 ") -0.35 <Σ (f w / f 41n ) <− 0.
10

【0053】実施例1 f=9.003 〜25.461〜71.999 ,Fナンバー=2.0 2ω=50.081°〜18.243°〜6.437 ° r1 =145.8232 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =90.5174 d2 =4.8326 n2 =1.45720 ν2 =90.31 r3 =-61802.0252 d3 =0.1000 r4 =68.5326 d4 =4.9088 n3 =1.43985 ν3 =94.97 r5 =289.2693 d5 =0.1000 r6 =45.2183 d6 =4.7684 n4 =1.43985 ν4 =94.97 r7 =110.2733 d7 =D1 (可変) r8 =130.0005 d8 =1.5000 n5 =1.69401 ν5 =54.84 r9 =17.9333 d9 =5.7785 r10=-77.2818 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=26.0959 d11=3.3382 n7 =1.85504 ν7 =23.78 r12=87.2042 d12=2.0422 r13=-57.7479 d13=1.2000 n8 =1.65376 ν8 =56.15 r14=137.8726 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=53.5876 d16=2.8000 n9 =1.57098 ν9 =71.30 r17=-74.0937 d17=3.2700 r18=-26.1734 d18=1.5740 n10=1.65425 ν10=58.52 r19=32.1163 d19=4.2818 n11=1.80680 ν11=22.60 r20=1464.1882 d20=D4 (可変) r21=-35.5567 d21=1.2000 n12=1.85649 ν12=32.28 r22=-1525.8582 d22=0.4033 r23=-131.9150 d23=3.0000 n13=1.58566 ν13=46.33 r24=-25.8275 d24=0.1000 r25=178.4315 d25=3.0000 n14=1.57098 ν14=71.30 r26=-70.7083 d26=2.0231 r27=-68.2584 d27=3.9158 n15=1.57098 ν15=71.30 r28=-66.9715 d28=0.1000 r29=-1182.0414 d29=3.8514 n16=1.57098 ν16=71.30 r30=-108.3802 d30=0.1000 r31=48.3274 d31=3.4092 n17=1.57098 ν17=71.30 r32=-514.8558 d32=0.1000 r33=36.7340 d33=1.5000 n18=1.85504 ν18=23.78 r34=20.1027 d34=6.6448 n19=1.57098 ν19=71.30 r35=-310.0257 d35=D5 (可変) r36=∞ d36=33.0000 n20=1.61170 ν20=46.44 r37=∞ d37=13.2000 n21=1.51825 ν21=64.15 r38=∞ f 9.0029 25.4610 71.9991 D1 1.4000 25.9019 42.3117 D2 42.1651 17.6633 1.2534 D3 4.6101 2.3406 5.2577 D4 9.8059 6.8659 1.5098 D5 2.0000 7.2103 9.6484 n32p −n32n =0.15255 ,ν32n −ν32p =35.92 ,fw /f1 =0.1103 fw /f2 =-0.5680 ,fw /f3 =-0.0084 ,f42/f41=0.3065 fw /f42=0.2562,Σ(fw /f41n )=-0.2117 Example 1 f = 9.003 to 25.461 to 71.999, F number = 2.0 2ω = 50.081 ° to 18.243 ° to 6.437 ° r 1 = 145.8232 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 90.5174 d 2 = 4.8326 n 2 = 1.45720 ν 2 = 90.31 r 3 = -61802.0252 d 3 = 0.1000 r 4 = 68.5326 d 4 = 4.9088 n 3 = 1.43985 ν 3 = 94.97 r 5 = 289.2693 d 5 = 0.1000 r 6 = 45.2183 d 6 4.7684 n 4 = 1.43985 ν 4 = 94.97 r 7 = 110.2733 d 7 = D 1 (variable) r 8 = 130.0005 d 8 = 1.5000 n 5 = 1.69401 ν 5 = 54.84 r 9 = 17.9333 d 9 = 5.7785 r 10 = -77.2818 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 26.0959 d 11 = 3.3382 n 7 = 1.85504 ν 7 = 23.78 r 12 = 87.2042 d 12 = 2.0422 r 13 = -57.7479 d 13 = 1.2000 n 8 = 1.65376 ν 8 = 56.15 r 14 = 137.8726 d 14 = D 2 (variable) r 15 = ∞ (aperture) d 15 = D 3 (variable) r 16 = 53.5876 d 16 = 2.8000 n 9 = 1.57098 ν 9 = 71.3 0 r 17 = -74.0937 d 17 = 3.2700 r 18 = -26.1734 d 18 = 1.5740 n 10 = 1.65425 ν 10 = 58.52 r 19 = 32.1163 d 19 = 4.2818 n 11 = 1.80680 ν 11 = 22.60 r 20 = 1464.1882 d 20 = D 4 (variable) r 21 = -35.5567 d 21 = 1.2000 n 12 = 1.85649 ν 12 = 32.28 r 22 = -1525.8582 d 22 = 0.4033 r 23 = -131.9150 d 23 = 3.0000 n 13 = 1.58566 ν 13 = 46.33 r 24 = -25.8275 d 24 = 0.1000 r 25 = 178.4315 d 25 = 3.0000 n 14 = 1.57098 ν 14 = 71.30 r 26 = -70.7083 d 26 = 2.0231 r 27 = -68.2584 d 27 = 3.9158 n 15 = 1.57098 ν 15 = 71.30 r 28 = -66.9715 d 28 = 0.1000 r 29 = -1182.0414 d 29 = 3.8514 n 16 = 1.57098 ν 16 = 71.30 r 30 = -108.3802 d 30 = 0.1000 r 31 = 48.3274 d 31 = 3.4092 n 17 = 1.57098 ν 17 = 71.30 r 32 = -514.8558 d 32 = 0.1000 r 33 = 36.7340 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 20.1027 d 34 = 6.6448 n 19 = 1.57098 ν 19 = 71.30 r 35 = -310.0257 d 35 = D 5 ( variable) r 36 = ∞ d 36 = 33.0000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 9.0029 25.4610 71.9991 D 1 1.4000 25.9019 42.3117 D 2 42.1651 17.6633 1.2534 D 3 4.6101 2.3406 5.2577 D 4 9.8059 6.8659 1.5098 D 5 2.0000 7.2103 9.6484 n 32p -n 32n = 0.15255, ν 32n -ν 32p = 35.92, f w / f 1 = 0.1103 f w / f 2 = -0.5680, f w / f 3 = -0.0084, f 42 / f 41 = 0.3065 f w / f 42 = 0.2562, Σ (f w / f 41n ) =-0.2117

【0054】実施例2 f=8.999 〜25.462〜71.999 ,Fナンバー=2.0 2ω=49.989°〜18.287°〜6.440 ° r1 =152.1078 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =92.7850 d2 =5.0417 n2 =1.45720 ν2 =90.31 r3 =-8434.2837 d3 =0.1000 r4 =67.5271 d4 =4.9566 n3 =1.43985 ν3 =94.97 r5 =284.0311 d5 =0.1000 r6 =44.0992 d6 =4.7865 n4 =1.43985 ν4 =94.97 r7 =103.2640 d7 =D1 (可変) r8 =120.0204 d8 =1.5000 n5 =1.69401 ν5 =54.84 r9 =17.9629 d9 =5.6218 r10=-60.7234 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=25.5098 d11=3.0593 n7 =1.85504 ν7 =23.78 r12=74.2896 d12=1.9001 r13=-88.8881 d13=1.2000 n8 =1.65376 ν8 =56.15 r14=201.7392 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=47.2843 d16=2.8000 n9 =1.57098 ν9 =71.30 r17=-115.4330 d17=2.9944 r18=-24.4366 d18=1.6853 n10=1.65425 ν10=58.52 r19=29.8853 d19=4.2812 n11=1.80680 ν11=22.60 r20=199.7227 d20=D4 (可変) r21=-49.8342 d21=3.0000 n12=1.58566 ν12=46.33 r22=-22.3568 d22=0.1000 r23=-1320.2311 d23=3.0000 n13=1.57098 ν13=71.30 r24=-74.5661 d24=2.1080 r25=-23.2929 d25=1.2000 n14=1.85649 ν14=32.28 r26=-58.3296 d26=0.4328 r27=-82.0999 d27=3.9979 n15=1.57098 ν15=71.30 r28=-38.8330 d28=0.1000 r29=-726.2143 d29=3.9509 n16=1.57098 ν16=71.30 r30=-57.6117 d30=0.1000 r31=103.4079 d31=3.6463 n17=1.57098 ν17=71.30 r32=-146.5860 d32=0.1000 r33=35.3066 d33=1.5000 n18=1.85504 ν18=23.78 r34=21.4002 d34=6.6753 n19=1.57098 ν19=71.30 r35=-135.9502 d35=D5 (可変) r36=∞ d36=33.0000 n20=1.61170 ν20=46.44 r37=∞ d37=13.2000 n21=1.51825 ν21=64.15 r38=∞ f 8.9992 25.4624 71.9992 D1 1.4000 26.1738 42.2625 D2 42.1721 17.3974 1.3095 D3 4.4969 2.5422 5.2558 D4 9.6962 6.9004 1.4000 D5 2.0000 6.7516 9.5373 n32p −n32n =0.15255 ,ν32n −ν32p =35.92 ,fw /f1 =0.1100 fw /f2 =-0.5324 ,fw /f3 =-0.0626 ,f42/f41=0.0350 fw /f42=0.3623,Σ(fw /f41n )=-0.1956 Example 2 f = 8.999 to 25.462 to 71.999, F number = 2.0 2ω = 49.989 ° to 18.287 ° to 6.440 ° r 1 = 152.1078 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 92.7850 d 2 = 5.0417 n 2 = 1.45720 ν 2 = 90.31 r 3 = -8434.2837 d 3 = 0.1000 r 4 = 67.5271 d 4 = 4.9566 n 3 = 1.43985 ν 3 = 94.97 r 5 = 284.0311 d 5 = 0.1000 r 6 = 44.0992 d 6 4.7865 n 4 = 1.43985 ν 4 = 94.97 r 7 = 103.2640 d 7 = D 1 (variable) r 8 = 120.0204 d 8 = 1.5000 n 5 = 1.69401 ν 5 = 54.84 r 9 = 17.9629 d 9 = 5.6218 r 10 = -60.7234 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 25.5098 d 11 = 3.0593 n 7 = 1.85504 ν 7 = 23.78 r 12 = 74.2896 d 12 = 1.9001 r 13 = -88.8881 d 13 = 1.2000 n 8 = 1.65 8 = 56.15 r 14 = 201.7392 d 14 = D 2 (variable) r 15 = ∞ (aperture) d 15 = D 3 (variable) r 16 = 47.2843 d 16 = 2.8000 n 9 = 1.57098 ν 9 = 71.30 r 17 = -115.4330 d 17 = 2.9944 r 18 = -24.4366 d 18 = 1.6853 n 10 = 1.65425 ν 10 = 58.52 r 19 = 29.8853 d 19 = 4.2812 n 11 = 1.80680 ν 11 = 22.60 r 20 = 199.7227 d 20 = D 4 (variable) r 21 = -49.8342 d 21 = 3.0000 n 12 = 1.58566 v 12 = 46.33 r 22 = -22.3568 d 22 = 0.1000 r 23 = -1320.2311 d 23 = 3.0000 n 13 = 1.57098 v 13 = 71.30 r 24 = -74.5661 d 24 = 2.1080 r 25 = -23.2929 d 25 = 1.2000 n 14 = 1.85649 ν 14 = 32.28 r 26 = -58.3296 d 26 = 0.4328 r 27 = -82.0999 d 27 = 3.9979 n 15 = 1.57098 ν 15 = 71.30 r 28 = -38.8330 d 28 = 0.1000 r 29 = -726.2143 d 29 = 3.9509 n 16 = 1.57098 ν 16 = 71.30 r 30 = -57.6117 d 30 = 0.1000 r 31 = 103.4079 d 31 = 3.6463 n 17 = 1.57098 ν 17 = 71.30 r 32 = -146.5860 d 32 = 0.1000 r 33 = 35.3066 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 21.4002 d 34 = 6.6753 n 19 = 1.57098 ν 19 = 71.30 r 35 = -135.9502 d 35 = D 5 (variable) r 36 = ∞ d 36 = 33.0000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 8.9992 25.4624 71.9992 D 1 1.4000 26.1738 42.2625 D 2 42.1721 17.3974 1.3095 D 3 4.4969 2.5422 5.2558 D 4 9.6962 6.9004 1.4000 D 5 2.0000 6.7516 9.5373 n 32p −n 32n = 0.15255, ν 32n −ν 32p = 35.92, f w / f 1 = 0.1100 w / f 2 = -0.5324, f w / f 3 = -0.0626, f 42 / f 41 = 0.0350 f w / f 42 = 0.3623, Σ (f w / f 41n) = - 0.1956

【0055】実施例3 f=8.995 〜25.463〜71.999 ,Fナンバー=2.0 2ω=49.916°〜18.284°〜6.437 ° r1 =150.7079 d1 =2.5000 n1 =1.84281 ν1 =21.00 r2 =96.4869 d2 =5.0999 n2 =1.45720 ν2 =90.31 r3 =55624.1680 d3 =0.1000 r4 =67.9123 d4 =4.9743 n3 =1.43985 ν3 =94.97 r5 =279.3658 d5 =0.1000 r6 =44.2522 d6 =4.7933 n4 =1.43985 ν4 =94.97 r7 =104.7758 d7 =D1 (可変) r8 =124.5373 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =18.0241 d9 =5.6876 r10=-67.0984 d10=1.2000 n6 =1.60520 ν6 =65.48 r11=32.2992 d11=0.1000 r12=29.1214 d12=3.0517 n7 =1.84281 ν7 =21.00 r13=79.5017 d13=1.8814 r14=-102.4919 d14=1.2000 n8 =1.65425 ν8 =58.52 r15=230.4498 d15=D2 (可変) r16=∞(絞り) d16=D3 (可変) r17=37.6438 d17=2.8000 n9 =1.57098 ν9 =71.30 r18=-235.8532 d18=3.1202 r19=-25.8267 d19=1.6736 n10=1.69979 ν10=55.52 r20=22.8481 d20=4.2370 n11=1.75702 ν11=25.14 r21=156.4186 d21=D4 (可変) r22=-50.6939 d22=3.0000 n12=1.59911 ν12=39.21 r23=-22.3869 d23=0.1000 r24=-10720.3059 d24=3.0000 n13=1.57098 ν13=71.30 r25=-70.8766 d25=2.0832 r26=-23.1822 d26=1.2000 n14=1.87987 ν14=35.26 r27=-65.8048 d27=0.4135 r28=-97.7950 d28=3.9806 n15=1.57098 ν15=71.30 r29=-38.4883 d29=0.1000 r30=1311.7663 d30=3.9346 n16=1.57098 ν16=71.30 r31=-57.7807 d31=0.1000 r32=89.3259 d32=3.7747 n17=1.57098 ν17=71.30 r33=-151.3823 d33=0.1000 r34=37.5112 d34=1.5000 n18=1.85504 ν18=23.78 r35=21.4437 d35=7.0792 n19=1.57098 ν19=71.30 r36=-112.5533 d36=D5 (可変) r37=∞ d37=33.0000 n20=1.61170 ν20=46.44 r38=∞ d38=13.2000 n21=1.51825 ν21=64.15 r39=∞ f 8.9953 25.4634 71.9994 D1 1.4000 26.3095 42.2318 D2 42.1921 17.2815 1.3610 D3 4.3914 2.6638 5.2600 D4 9.7056 6.8905 1.4000 D5 2.0000 6.5440 9.4365 n32p −n32n =0.05723 ,ν32n −ν32p =30.38 ,fw /f1 =0.1100 fw /f2 =-0.5147 ,fw /f3 =-0.0862 ,f42/f41=0.0097 fw /f42=0.3795,Σ(fw /f41n )=-0.2182 Example 3 f = 8.995 to 25.463 to 71.999, F number = 2.0 2ω = 49.916 ° to 18.284 ° to 6.437 ° r 1 = 150.7079 d 1 = 2.5000 n 1 = 1.84281 ν 1 = 21.00 r 2 = 96.4869 d 2 = 5.0999 n 2 = 1.45720 ν 2 = 90.31 r 3 = 55624.1680 d 3 = 0.1000 r 4 = 67.9123 d 4 = 4.9743 n 3 = 1.43985 ν 3 = 94.97 r 5 = 279.3658 d 5 = 0.1000 r 6 = 44.2522 d 6 = 4.73 n 4 = 1.43985 ν 4 = 94.97 r 7 = 104.7758 d 7 = D 1 (variable) r 8 = 124.5373 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 18.0241 d 9 = 5.6876 r 10 = -67.0984 d 10 = 1.2000 n 6 = 1.60520 ν 6 = 65.48 r 11 = 32.2992 d 11 = 0.1000 r 12 = 29.1214 d 12 = 3.0517 n 7 = 1.84281 ν 7 = 21.00 r 13 = 79.5017 d 13 = 1.8814 r 14 = -102.4919 d 14 = 1.2000 n 8 = 1.65425 ν 8 = 58.52 r 15 = 230.4498 d 15 = D 2 (variable) r 16 = ∞ (diaphragm) d 16 = D 3 (variable) r 17 = 37.6438 d 17 = 2 .8000 n 9 = 1.57098 ν 9 = 71.30 r 18 = -235.8532 d 18 = 3.1202 r 19 = -25.8267 d 19 = 1.6736 n 10 = 1.69979 ν 10 = 55.52 r 20 = 22.8481 d 20 = 4.2370 n 11 = 1.75702 ν 11 = 25.14 r 21 = 156.4186 d 21 = D 4 ( variable) r 22 = -50.6939 d 22 = 3.0000 n 12 = 1.59911 ν 12 = 39.21 r 23 = -22.3869 d 23 = 0.1000 r 24 = -10720.3059 d 24 = 3.0000 n 13 = 1.57098 ν 13 = 71.30 r 25 = -70.8766 d 25 = 2.0832 r 26 = -23.1822 d 26 = 1.2000 n 14 = 1.87987 ν 14 = 35.26 r 27 = -65.8048 d 27 = 0.4135 r 28 = -97.7950 d 28 = 3.9806 n 15 = 1.57098 ν 15 = 71.30 r 29 = -38.4883 d 29 = 0.1000 r 30 = 1311.7663 d 30 = 3.9346 n 16 = 1.57098 ν 16 = 71.30 r 31 = -57.7807 d 31 = 0.1000 r 32 = 89.3259 d 32 = 3.7747 n 17 = 1.57098 ν 17 = 71.30 r 33 = -151.3823 d 33 = 0.1000 r 34 = 37.5112 d 34 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 35 = 21.4437 d 35 = 7.0792 n 19 = 1.57098 ν 19 = 71.30 r 36 = -112.5533 d 36 = D 5 (variable) r 37 = ∞ d 37 = 33.0000 n 20 = 1.61170 ν 20 = 46.44 r 38 = ∞ d 38 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 39 = ∞ f 8.9953 25.4634 71.9994 D 1 1.4000 26.3095 42.2318 D 2 42.1921 17.2815 1.3610 D 3 4.3914 2.6638 5.2600 D 4 9.7056 6.8905 1.4000 D 5 2.0000 6.5440 9.4365 n 32p −n 32n = 0.05723, ν 32n −ν 32p , f w / f 1 = 0.1100 f w / f 2 = -0.5147, f w / f 3 = -0.0862, f 42 / f 41 = 0.0097 f w / f 42 = 0.3795, Σ (f w / f 41n) = -0.2182

【0056】実施例4 f=11.004〜31.110〜88.000 ,Fナンバー=2.0 2ω=55.600°〜20.571°〜7.253 ° r1 =178.7498 d1 =3.2000 n1 =1.84281 ν1 =21.00 r2 =115.9572 d2 =5.2820 n2 =1.43985 ν2 =94.97 r3 =-1182.4883 d3 =0.1000 r4 =86.2685 d4 =5.7184 n3 =1.43985 ν3 =94.97 r5 =333.1102 d5 =0.1000 r6 =52.6495 d6 =6.8154 n4 =1.43985 ν4 =94.97 r7 =116.2758 d7 =D1 (可変) r8 =77.0661 d8 =2.0000 n5 =1.60548 ν5 =60.70 r9 =20.2083 d9 =7.6232 r10=-74.6907 d10=1.5000 n6 =1.49845 ν6 =81.61 r11=33.5619 d11=4.7340 n7 =1.84281 ν7 =21.00 r12=76.8483 d12=2.6544 r13=-46.7574 d13=1.5000 n8 =1.60520 ν8 =65.48 r14=139.9542 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=61.2274 d16=3.8500 n9 =1.49845 ν9 =81.61 r17=-64.9332 d17=1.3611 r18=-27.2621 d18=1.5000 n10=1.65425 ν10=58.52 r19=39.8671 d19=4.4266 n11=1.81264 ν11=25.43 r20=-181.3907 d20=D4 (可変) r21=-139.4864 d21=1.5000 n12=1.85649 ν12=32.28 r22=158.6517 d22=0.6554 r23=-2148.8716 d23=3.4777 n13=1.61770 ν13=51.17 r24=-38.8299 d24=0.1000 r25=115.1586 d25=3.4027 n14=1.57098 ν14=71.30 r26=-60.5320 d26=0.9939 r27=-47.9618 d27=2.2031 n15=1.67766 ν15=32.10 r28=-138.1261 d28=0.1000 r29=5296.7511 d29=3.6524 n16=1.48915 ν16=70.20 r30=-88.8671 d30=0.1000 r31=68.5345 d31=3.3578 n17=1.57098 ν17=71.30 r32=-606.5419 d32=0.1000 r33=44.7907 d33=1.8000 n18=1.85504 ν18=23.78 r34=24.2239 d34=7.5078 n19=1.57098 ν19=71.30 r35=-278.6806 d35=D5 (可変) r36=∞ d36=33.0000 n20=1.61169 ν20=46.44 r37=∞ d37=13.2000 n21=1.51825 ν21=64.15 r38=∞ f 11.0043 31.1104 87.9997 D1 1.5000 29.7044 49.5945 D2 49.5948 21.3908 1.5000 D3 5.0097 2.7556 6.2413 D4 11.6551 7.9611 2.0932 D5 2.0000 7.9479 10.3305 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.1104 fw /f2 =-0.5911 ,fw /f3 =0.0095,f42/f41=0.4226 fw /f42=0.2645,Σ(fw /f41n )=-0.2278 Example 4 f = 11.004 to 31.110 to 88.000, F number = 2.0 2ω = 55.600 ° to 20.571 ° to 7.253 ° r 1 = 178.7498 d 1 = 3.2000 n 1 = 1.84281 ν 1 = 21.00 r 2 = 115.9572 d 2 = 5.2820 n 2 = 1.43985 ν 2 = 94.97 r 3 = -1182.4883 d 3 = 0.1000 r 4 = 86.2685 d 4 = 5.7184 n 3 = 1.43985 ν 3 = 94.97 r 5 = 333.1102 d 5 = 0.1000 r 6 = 52.6495 d 6 = 6.8154 n 4 = 1.43985 ν 4 = 94.97 r 7 = 116.2758 d 7 = D 1 (variable) r 8 = 77.0661 d 8 = 2.0000 n 5 = 1.60548 ν 5 = 60.70 r 9 = 20.2083 d 9 = 7.6232 r 10 = -74.6907 d 10 = 1.5000 n 6 = 1.49845 ν 6 = 81.61 r 11 = 33.5619 d 11 = 4.7340 n 7 = 1.84281 ν 7 = 21.00 r 12 = 76.8483 d 12 = 2.6544 r 13 = -46.7574 d 13 = 1.5000 n 8 = 1.60520 ν 8 = 65.48 r 14 = 139.9542 d 14 = D 2 (variable) r 15 = ∞ (aperture) d 15 = D 3 (variable) r 16 = 61.2274 d 16 = 3.8500 n 9 = 1.49845 ν 9 = 81.61 r 17 = -64.9332 d 17 = 1.3611 r 18 = -27.2621 d 18 = 1.5000 n 10 = 1.65425 ν 10 = 58.52 r 19 = 39.8671 d 19 = 4.4266 n 11 = 1.81264 ν 11 = 25.43 r 20 = -181.3907 d 20 = D 4 (Variable) r 21 = -139.4864 d 21 = 1.5000 n 12 = 1.85649 ν 12 = 32.28 r 22 = 158.6517 d 22 = 0.6554 r 23 = -2148.8716 d 23 = 3.4777 n 13 = 1.61770 ν 13 = 51.17 r 24 = -38.8299 d 24 = 0.1000 r 25 = 115.1586 d 25 = 3.4027 n 14 = 1.57098 ν 14 = 71.30 r 26 = -60.5320 d 26 = 0.9939 r 27 = -47.9618 d 27 = 2.2031 n 15 = 1.67766 ν 15 = 32.10 r 28 = -138.1261 d 28 = 0.1000 r 29 = 5296.7511 d 29 = 3.6524 n 16 = 1.48915 ν 16 = 70.20 r 30 = -88.8671 d 30 = 0.1000 r 31 = 68.5345 d 31 = 3.3578 n 17 = 1.57098 ν 17 = 71.30 r 32 = -606.5419 d 32 = 0.1000 r 33 = 44.7907 d 33 = 1.8000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 24.2239 d 34 = 7.5078 n 19 = 1.57098 ν 19 = 71.30 r 35 = -278.6806 d 35 = D 5 (variable) r 36 = ∞ d 36 = 33.0000 n 20 = 1.61169 ν 20 = 46.44 r 37 = ∞ d 37 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 11.0043 31.1104 87.9997 D 1 1.5000 29.7044 49.5945 D 2 49.5948 21.3908 1.5000 D 3 5.0097 2.7556 6.2413 D 4 11.6551 7.9611 2.0932 D 5 2.0000 7.9479 10.3305 n 32p −n 32n = 0.15839, ν 32n −ν 32p = 33.09, f w / f 1 = 0.1104 w / f 2 = -0.5911, f w / f 3 = 0.0095, f 42 / f 41 = 0.4226 f w / f 42 = 0.2645, Σ (f w / f 41n) = - 0.2278

【0057】実施例5 f=9.027 〜25.471〜71.958 ,Fナンバー=2.0 2ω=49.998°〜18.234°〜6.443 ° r1 =140.4173 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =88.9774 d2 =4.8151 n2 =1.45720 ν2 =90.31 r3 =-16970.9304 d3 =0.1000 r4 =67.8805 d4 =4.8927 n3 =1.43985 ν3 =94.97 r5 =253.0108 d5 =0.1000 r6 =43.3688 d6 =4.7549 n4 =1.43985 ν4 =94.97 r7 =99.5581 d7 =D1 (可変) r8 =112.6250 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =16.8647 d9 =6.5590 r10=-47.7082 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=27.0971 d11=4.0087 n7 =1.84281 ν7 =21.00 r12=76.7508 d12=2.2508 r13=-54.0700 d13=1.2000 n8 =1.64648 ν8 =47.85 r14=-379.8740 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=58.2033 d16=2.8000 n9 =1.49845 ν9 =81.61 r17=-49.7295 d17=1.7351 r18=-24.9037 d18=1.5550 n10=1.65425 ν10=58.52 r19=31.9743 d19=4.2508 n11=1.81264 ν11=25.43 r20=-115.5952 d20=D4 (可変) r21=-58.6224 d21=1.2000 n12=1.85649 ν12=32.28 r22=169.3788 d22=0.5458 r23=-202.8153 d23=3.0000 n13=1.58566 ν13=46.33 r24=-27.2801 d24=0.1000 r25=167.0337 d25=3.0000 n14=1.57098 ν14=71.30 r26=-44.4329 d26=0.8475 r27=-34.2208 d27=1.9730 n15=1.67766 ν15=32.10 r28=-103.9462 d28=0.1000 r29=-185.7218 d29=3.5478 n16=1.48915 ν16=70.20 r30=-60.3914 d30=0.1000 r31=64.1378 d31=3.2047 n17=1.57098 ν17=71.30 r32=-404.2552 d32=0.1000 r33=38.4608 d33=1.5000 n18=1.85504 ν18=23.78 r34=22.1046 d34=5.8244 n19=1.57098 ν19=71.30 r35=-95.3577 d35=D5 (可変) r36=∞ d36=33.0000 n20=1.61170 ν20=46.44 r37=∞ d37=13.2000 n21=1.51825 ν21=64.15 r38=∞ f 9.0272 25.4706 71.9582 D1 1.4000 25.5472 42.3956 D2 42.1455 17.9989 1.1487 D3 4.7687 2.1606 5.2248 D4 9.9086 6.7891 1.4107 D5 2.0000 7.7272 10.0426 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.1108 fw /f2 =-0.6018 ,fw /f3 =0.0445,f42/f41=0.1168 fw /f42=0.2751,Σ(fw /f41n )=-0.2965 Example 5 f = 9.027 to 25.471 to 71.958, F number = 2.0 2ω = 49.998 ° to 18.234 ° to 6.443 ° r 1 = 140.4173 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 88.9774 d 2 = 4.8151 n 2 = 1.45720 ν 2 = 90.31 r 3 = -16970.9304 d 3 = 0.1000 r 4 = 67.8805 d 4 = 4.8927 n 3 = 1.43985 ν 3 = 94.97 r 5 = 253.0108 d 5 = 0.1000 r 6 = 43.3688 d 6 = 4.7549 n 4 = 1.43985 ν 4 = 94.97 r 7 = 99.5581 d 7 = D 1 (variable) r 8 = 112.6250 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 16.8647 d 9 = 6.5590 r 10 = -47.7082 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 27.0971 d 11 = 4.0087 n 7 = 1.84281 ν 7 = 21.00 r 12 = 76.7508 d 12 = 2.2508 r 13 = -54.0700 d 13 = 1.2000 n 8 = 1.64648 ν 8 = 47.85 r 14 = -379.8740 d 14 = D 2 (variable) r 15 = ∞ (aperture) d 15 = D 3 (variable) r 16 = 58.2033 d 16 = 2.8000 n 9 = 1.49845 ν 9 = 81.6 1 r 17 = -49.7295 d 17 = 1.7351 r 18 = -24.9037 d 18 = 1.5550 n 10 = 1.65425 ν 10 = 58.52 r 19 = 31.9743 d 19 = 4.2508 n 11 = 1.81264 ν 11 = 25.43 r 20 = -115.5952 d 20 = D 4 (variable) r 21 = -58.6224 d 21 = 1.2000 n 12 = 1.85649 ν 12 = 32.28 r 22 = 169.3788 d 22 = 0.5458 r 23 = -202.8153 d 23 = 3.0000 n 13 = 1.58566 ν 13 = 46.33 r 24 = -27.2801 d 24 = 0.1000 r 25 = 167.0337 d 25 = 3.0000 n 14 = 1.57098 ν 14 = 71.30 r 26 = -44.4329 d 26 = 0.8475 r 27 = -34.2208 d 27 = 1.9730 n 15 = 1.67766 ν 15 = 32.10 r 28 = -103.9462 d 28 = 0.1000 r 29 = -185.7218 d 29 = 3.5478 n 16 = 1.48915 ν 16 = 70.20 r 30 = -60.3914 d 30 = 0.1000 r 31 = 64.1378 d 31 = 3.2047 n 17 = 1.57098 ν 17 = 71.30 r 32 = -404.2552 d 32 = 0.1000 r 33 = 38.4608 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 22.1046 d 34 = 5.8244 n 19 = 1.57098 ν 19 = 71.30 r 35 = -95.3577 d 35 = D 5 (variable) r 36 = ∞ d 36 = 33.0000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 9.0272 25.4706 71.9582 D 1 1.4000 25.5472 42.3956 D 2 42.1455 17.9989 1.1487 D 3 4.7687 2.1606 5.2248 D 4 9.9086 6.7891 1.4107 D 5 2.0000 7.7272 10.0426 n 32p −n 32n = 0.15839, ν 32n −ν 32p = 33.09, f w / f 1 = 0.1108 w / f 2 = -0.6018, f w / f 3 = 0.0445, f 42 / f 41 = 0.1168 f w / f 42 = 0.2751, Σ (f w / f 41n) = - 0.2965

【0058】実施例6 f=9.267 〜25.768〜72.026 ,Fナンバー=2.0 2ω=48.679°〜18.001°〜6.431 ° r1 =141.4469 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =88.4204 d2 =4.7971 n2 =1.45720 ν2 =90.31 r3 =14402.6077 d3 =0.1000 r4 =68.3129 d4 =4.8903 n3 =1.43985 ν3 =94.97 r5 =263.9446 d5 =0.1000 r6 =44.0755 d6 =4.7554 n4 =1.43985 ν4 =94.97 r7 =103.0901 d7 =D1 (可変) r8 =101.3520 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =17.0532 d9 =6.5214 r10=-51.6363 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=27.2398 d11=4.2110 n7 =1.84281 ν7 =21.00 r12=88.8964 d12=2.2608 r13=-49.3724 d13=1.2000 n8 =1.64648 ν8 =47.85 r14=-640.5589 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=60.1064 d16=2.8000 n9 =1.49845 ν9 =81.61 r17=-55.2486 d17=1.8668 r18=-24.6822 d18=1.5386 n10=1.65425 ν10=58.52 r19=35.9037 d19=4.2856 n11=1.81264 ν11=25.43 r20=-111.4255 d20=D4 (可変) r21=-70.0702 d21=1.2000 n12=1.85649 ν12=32.28 r22=202.5118 d22=0.5712 r23=-164.0556 d23=3.0000 n13=1.58566 ν13=46.33 r24=-25.2763 d24=0.1000 r25=174.6641 d25=3.0000 n14=1.57098 ν14=71.30 r26=-50.8538 d26=1.0172 r27=-30.9938 d27=1.9757 n15=1.67766 ν15=32.10 r28=-87.1312 d28=1.5184 r29=-197.3657 d29=3.5550 n16=1.48915 ν16=70.20 r30=-65.1624 d30=0.1000 r31=67.2524 d31=3.2391 n17=1.57098 ν17=71.30 r32=-542.8520 d32=0.1000 r33=40.6770 d33=1.5000 n18=1.85504 ν18=23.78 r34=23.0952 d34=5.8458 n19=1.57098 ν19=71.30 r35=-77.4624 d35=D5 (可変) r36=∞ d36=33.0000 n20=1.61170 ν20=46.44 r37=∞ d37=13.2000 n21=1.51825 ν21=64.15 r38=∞ f 9.2673 25.7684 72.0264 D1 1.4000 25.5454 42.4030 D2 42.1456 18.0017 1.1415 D3 4.7466 2.2143 5.1855 D4 9.9060 6.8033 1.4217 D5 2.0000 7.6331 10.0463 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.1127 fw /f2 =-0.6002 ,fw /f3 =0.0299,f42/f41=0.1715 fw /f42=0.2765,Σ(fw /f41n )=-0.2815 Example 6 f = 9.267 to 25.768 to 72.026, F number = 2.0 2ω = 48.679 ° to 18.001 ° to 6.431 ° r 1 = 141.4469 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 88.4204 d 2 = 4.7971 n 2 = 1.45720 ν 2 = 90.31 r 3 = 14402.6077 d 3 = 0.1000 r 4 = 68.3129 d 4 = 4.8903 n 3 = 1.43985 ν 3 = 94.97 r 5 = 263.9446 d 5 = 0.1000 r 6 = 44.0755 d 6 n 4 = 1.43985 ν 4 = 94.97 r 7 = 103.0901 d 7 = D 1 (variable) r 8 = 101.3520 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 17.0532 d 9 = 6.5214 r 10 = -51.6363 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 27.2398 d 11 = 4.2110 n 7 = 1.84281 ν 7 = 21.00 r 12 = 88.8964 d 12 = 2.2608 r 13 = -49.3724 d 13 = 1.2000 n 8 = 1.64648 ν 8 = 47.85 r 14 = -640.5589 d 14 = D 2 (variable) r 15 = ∞ (aperture) d 15 = D 3 (variable) r 16 = 60.1064 d 16 = 2.8000 n 9 = 1.49845 ν 9 = 81.6 1 r 17 = -55.2486 d 17 = 1.8668 r 18 = -24.6822 d 18 = 1.5386 n 10 = 1.65425 v 10 = 58.52 r 19 = 35.9037 d 19 = 4.2856 n 11 = 1.81264 v 11 = 25.43 r 20 = -111.4255 d 20 = D 4 (Variable) r 21 = -70.0702 d 21 = 1.2000 n 12 = 1.85649 ν 12 = 32.28 r 22 = 202.5118 d 22 = 0.5712 r 23 = −164.0556 d 23 = 3.0000 n 13 = 1.58566 ν 13 = 46.33 r 24 = -25.2763 d 24 = 0.1000 r 25 = 174.6641 d 25 = 3.0000 n 14 = 1.57098 ν 14 = 71.30 r 26 = -50.8538 d 26 = 1.0172 r 27 = -30.9938 d 27 = 1.9757 n 15 = 1.67766 ν 15 = 32.10 r 28 = -87.1312 d 28 = 1.5184 r 29 = -197.3657 d 29 = 3.5550 n 16 = 1.48915 ν 16 = 70.20 r 30 = -65.1624 d 30 = 0.1000 r 31 = 67.2524 d 31 = 3.2391 n 17 = 1.57098 ν 17 = 71.30 r 32 = -542.8520 d 32 = 0.1000 r 33 = 40.6770 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 23.0952 d 34 = 5.8458 n 19 = 1.57098 ν 19 = 71.30 r 35 -77.4624 d 35 = D 5 (variable) r 36 = ∞ d 36 = 33.0000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 13.2000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 9.2673 25.7684 72.0264 D 1 1.4000 25.5454 42.4030 D 2 42.1456 18.0017 1.1415 D 3 4.7466 2.2143 5.1855 D 4 9.9060 6.8033 1.4217 D 5 2.0000 7.6331 10.0463 n 32p -n 32n = 0.15839, ν 32n -ν 32p = 33.09, f w / f 1 = 0.1127 f w / f 2 = -0.6002, f w / f 3 = 0.0299, f 42 / f 41 = 0.1715 f w / f 42 = 0.2765, Σ (f w / f 41n) = - 0.2815

【0059】実施例7 f=7.022 〜24.245〜84.001 ,Fナンバー=2.0 2ω=61.864°〜19.075°〜5.507 ° r1 =136.3344 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =85.1617 d2 =4.8188 n2 =1.45720 ν2 =90.31 r3 =-838.1164 d3 =0.1000 r4 =67.7557 d4 =4.8748 n3 =1.43985 ν3 =94.97 r5 =297.5656 d5 =0.1000 r6 =41.5540 d6 =4.7423 n4 =1.43985 ν4 =94.97 r7 =98.7617 d7 =D1 (可変) r8 =95.9993 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =14.9789 d9 =6.7852 r10=-45.8782 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=25.1047 d11=4.1385 n7 =1.84281 ν7 =21.00 r12=73.3913 d12=2.2159 r13=-39.1057 d13=1.2000 n8 =1.60520 ν8 =65.48 r14=576.8239 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=57.7049 d16=2.8000 n9 =1.49845 ν9 =81.61 r17=-47.0008 d17=0.8630 r18=-21.9095 d18=1.4996 n10=1.65425 ν10=58.52 r19=32.3298 d19=4.1698 n11=1.81264 ν11=25.43 r20=-131.1763 d20=D4 (可変) r21=-99.9616 d21=1.2000 n12=1.85649 ν12=32.28 r22=365.3211 d22=0.4819 r23=-454.8400 d23=3.0000 n13=1.61770 ν13=51.17 r24=-29.5683 d24=0.1000 r25=129.4439 d25=3.0000 n14=1.57098 ν14=71.30 r26=-48.3303 d26=0.7012 r27=-32.3216 d27=1.8257 n15=1.67766 ν15=32.10 r28=-96.1285 d28=0.1000 r29=-423.0648 d29=3.3087 n16=1.48915 ν16=70.20 r30=-61.8069 d30=0.1000 r31=57.6576 d31=3.2000 n17=1.57098 ν17=71.30 r32=-538.1491 d32=0.1000 r33=37.7207 d33=1.5000 n18=1.85504 ν18=23.78 r34=19.6821 d34=5.8813 n19=1.57098 ν19=71.30 r35=-169.5462 d35=D5 (可変) r36=∞ d36=25.3000 n20=1.61170 ν20=46.44 r37=∞ d37=11.1000 n21=1.51825 ν21=64.15 r38=∞ f 7.0224 24.2449 84.0010 D1 1.4000 26.1876 42.2596 D2 42.2374 17.4498 1.3778 D3 4.8102 1.8600 5.3819 D4 9.9701 6.4733 1.5242 D5 2.0000 8.4469 9.8742 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.0944 fw /f2 =-0.5748 ,fw /f3 =0.0076,f42/f41=0.4125 fw /f42=0.2034,Σ(fw /f41n )=-0.1733 Example 7 f = 7.022 to 24.245 to 84.001, F number = 2.0 2ω = 61.864 ° to 19.075 ° to 5.507 ° r 1 = 136.3344 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 85.1617 d 2 = 4.8188 n 2 = 1.45720 ν 2 = 90.31 r 3 = -838.1164 d 3 = 0.1000 r 4 = 67.7557 d 4 = 4.8748 n 3 = 1.43985 ν 3 = 94.97 r 5 = 297.5656 d 5 = 0.1000 r 6 = 41.5540 d 6 = 4.7423 n 4 = 1.43985 ν 4 = 94.97 r 7 = 98.7617 d 7 = D 1 (variable) r 8 = 95.9993 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 14.9789 d 9 = 6.7852 r 10 = -45.8782 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 25.1047 d 11 = 4.1385 n 7 = 1.84281 ν 7 = 21.00 r 12 = 73.3913 d 12 = 2.2159 r 13 = -39.1057 d 13 = 1.2000 n 8 = 1.60520 8 = 65.48 r 14 = 576.8239 d 14 = D 2 ( variable) r 15 = ∞ (stop) d 15 = D 3 (variable) r 16 = 57.7049 d 16 = 2.8000 n 9 = 1.49845 ν 9 = 81.61 17 = -47.0008 d 17 = 0.8630 r 18 = -21.9095 d 18 = 1.4996 n 10 = 1.65425 ν 10 = 58.52 r 19 = 32.3298 d 19 = 4.1698 n 11 = 1.81264 ν 11 = 25.43 r 20 = -131.1763 d 20 = D 4 (variable) r 21 = -99.9616 d 21 = 1.2000 n 12 = 1.85649 ν 12 = 32.28 r 22 = 365.3211 d 22 = 0.4819 r 23 = -454.8400 d 23 = 3.0000 n 13 = 1.61770 ν 13 = 51.17 r 24 = - 29.5683 d 24 = 0.1000 r 25 = 129.4439 d 25 = 3.0000 n 14 = 1.57098 v 14 = 71.30 r 26 = -48.3303 d 26 = 0.7012 r 27 = -32.3216 d 27 = 1.8257 n 15 = 1.67766 v 15 = 32.10 r 28 = -96.1285 d 28 = 0.1000 r 29 = -423.0648 d 29 = 3.3087 n 16 = 1.48915 ν 16 = 70.20 r 30 = -61.8069 d 30 = 0.1000 r 31 = 57.6576 d 31 = 3.2000 n 17 = 1.57098 ν 17 = 71.30 r 32 = -538.1491 d 32 = 0.1000 r 33 = 37.7207 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 19.6821 d 34 = 5.8813 n 19 = 1.57098 ν 19 = 71.30 r 35 = -1 69.5462 d 35 = D 5 (variable) r 36 = ∞ d 36 = 25.3000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 11.1000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 7.0224 24.2449 84.0010 D 1 1.4000 26.1876 42.2596 D 2 42.2374 17.4498 1.3778 D 3 4.8102 1.8600 5.3819 D 4 9.9701 6.4733 1.5242 D 5 2.0000 8.4469 9.8742 n 32p -n 32n = 0.15839, ν 32n -ν 32p = 33.09, f w / f 1 = 0.0944 f w / f 2 = -0.5748, f w / f 3 = 0.0076, f 42 / f 41 = 0.4125 f w / f 42 = 0.2034, Σ (f w / f 41n) = - 0.1733

【0060】実施例8 f=7.003 〜24.254〜84.001 ,Fナンバー=2.0 2ω=61.907°〜19.044°〜5.490 ° r1 =146.2824 d1 =2.5000 n1 =1.84281 ν1 =21.00 r2 =93.5893 d2 =5.2000 n2 =1.45720 ν2 =90.31 r3 =-971.6065 d3 =0.1000 r4 =67.8139 d4 =5.0000 n3 =1.43985 ν3 =94.97 r5 =360.0745 d5 =0.1000 r6 =44.2204 d6 =4.8000 n4 =1.43985 ν4 =94.97 r7 =113.3784 d7 =D1 (可変) r8 =125.0652 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =16.7301 d9 =5.8313 r10=-57.1448 d10=1.2000 n6 =1.60520 ν6 =65.48 r11=29.0077 d11=0.1000 r12=26.1635 d12=3.2000 n7 =1.84281 ν7 =21.00 r13=85.0470 d13=1.9184 r14=-65.2017 d14=1.2000 n8 =1.65425 ν8 =58.52 r15=104.2200 d15=D2 (可変) r16=∞(絞り) d16=D3 (可変) r17=40.7143 d17=2.8000 n9 =1.57098 ν9 =71.30 r18=-186.6835 d18=1.7189 r19=-21.4608 d19=1.6873 n10=1.69979 ν10=55.52 r20=21.1637 d20=4.2457 n11=1.75724 ν11=27.69 r21=261.3456 d21=D4 (可変) r22=-57.7116 d22=3.0000 n12=1.59911 ν12=39.21 r23=-23.3427 d23=0.1000 r24=447.7101 d24=3.0000 n13=1.57098 ν13=71.30 r25=-59.3506 d25=1.8026 r26=-23.1676 d26=1.2000 n14=1.87987 ν14=35.26 r27=-57.0205 d27=0.4124 r28=-98.4112 d28=4.0000 n15=1.57098 ν15=71.30 r29=-37.5092 d29=0.1000 r30=2981.9622 d30=4.0000 n16=1.57098 ν16=71.30 r31=-56.1948 d31=0.1000 r32=104.2210 d32=4.0000 n17=1.57098 ν17=71.30 r33=-163.5388 d33=0.1000 r34=39.1136 d34=1.5000 n18=1.85504 ν18=23.78 r35=21.2235 d35=7.0310 n19=1.57098 ν19=71.30 r36=-97.4293 d36=D5 (可変) r37=∞ d37=25.3000 n20=1.61170 ν20=46.44 r38=∞ d38=11.1000 n21=1.51825 ν21=64.15 r39=∞ f 7.0033 24.2538 84.0008 D1 1.4000 26.7324 42.1681 D2 42.2746 16.9420 1.5066 D3 4.4893 2.4252 5.3509 D4 9.9953 6.3675 1.4000 D5 2.0000 7.6926 9.7338 n32p −n32n =0.05745 ,ν32n −ν32p =27.83 ,fw /f1 =0.0937 fw /f2 =-0.4940 ,fw /f3 =-0.0987 ,f42/f41=0.1344 fw /f42=0.2873,Σ(fw /f41n )=-0.1553 Example 8 f = 7.003 to 24.254 to 84.001, F number = 2.0 2ω = 61.907 ° to 19.044 ° to 5.490 ° r 1 = 146.2824 d 1 = 2.5000 n 1 = 1.84281 ν 1 = 21.00 r 2 = 93.5893 d 2 = 5.2000 n 2 = 1.45720 ν 2 = 90.31 r 3 = -971.6065 d 3 = 0.1000 r 4 = 67.8139 d 4 = 5.0000 n 3 = 1.43985 ν 3 = 94.97 r 5 = 360.0745 d 5 = 0.1000 r 6 = 44.2204 d 6 = 4.8000 n 4 = 1.43985 ν 4 = 94.97 r 7 = 113.3784 d 7 = D 1 (variable) r 8 = 125.0652 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 16.7301 d 9 = 5.8313 r 10 = -57.1448 d 10 = 1.2000 n 6 = 1.60520 ν 6 = 65.48 r 11 = 29.0077 d 11 = 0.1000 r 12 = 26.1635 d 12 = 3.2000 n 7 = 1.84281 ν 7 = 21.00 r 13 = 85.0470 d 13 = 1.9184 r 14 = -65.2017 d 14 = 1.2000 n 8 = 1.65425 ν 8 = 58.52 r 15 = 104.2200 d 15 = D 2 ( variable) r 16 = ∞ (stop) d 16 = D 3 (variable) r 17 = 40.7143 d 17 = 2.8 000 n 9 = 1.57098 ν 9 = 71.30 r 18 = -186.6835 d 18 = 1.7189 r 19 = -21.4608 d 19 = 1.6873 n 10 = 1.6979 ν 10 = 55.52 r 20 = 21.1637 d 20 = 4.2457 n 11 = 1.75724 ν 11 = 27.69 r 21 = 261.3456 d 21 = D 4 (variable) r 22 = -57.7116 d 22 = 3.0000 n 12 = 1.59911 ν 12 = 39.21 r 23 = -23.3427 d 23 = 0.1000 r 24 = 447.7101 d 24 = 3.0000 n 13 = 1.57098 v 13 = 71.30 r 25 = -59.3506 d 25 = 1.8026 r 26 = -23.1676 d 26 = 1.2000 n 14 = 1.87987 v 14 = 35.26 r 27 = -57.0205 d 27 = 0.4124 r 28 = -98.4112 d 28 = 4.0000 n 15 = 1.57098 ν 15 = 71.30 r 29 = -37.5092 d 29 = 0.1000 r 30 = 2981.9622 d 30 = 4.0000 n 16 = 1.57098 ν 16 = 71.30 r 31 = -56.1948 d 31 = 0.1000 r 32 = 104.2210 d 32 = 4.0000 n 17 = 1.57098 ν 17 = 71.30 r 33 = -163.5388 d 33 = 0.1000 r 34 = 39.1136 d 34 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 35 = 21.2235 d 35 = 7.0310 n 19 1.57098 ν 19 = 71.30 r 36 = -97.4293 d 36 = D 5 ( variable) r 37 = ∞ d 37 = 25.3000 n 20 = 1.61170 ν 20 = 46.44 r 38 = ∞ d 38 = 11.1000 n 21 = 1.51825 ν 21 = 64.15 r 39 = ∞ f 7.0033 24.2538 84.0008 D 1 1.4000 26.7324 42.1681 D 2 42.2746 16.9420 1.5066 D 3 4.4893 2.4252 5.3509 D 4 9.9953 6.3675 1.4000 D 5 2.0000 7.6926 9.7338 n 32p −n 32n = 0.05745, ν 32n −ν 32p = 27.83 w / f 1 = 0.0937 f w / f 2 = -0.4940, f w / f 3 = -0.0987, f 42 / f 41 = 0.1344 f w / f 42 = 0.2873, Σ (f w / f 41n) = - 0.1553

【0061】実施例9 f=7.155 〜24.465〜83.910 ,Fナンバー=2.0 2ω=60.893°〜18.904°〜5.512 ° r1 =136.9170 d1 =2.5000 n1 =1.81675 ν1 =22.62 r2 =86.4105 d2 =4.8770 n2 =1.45720 ν2 =90.31 r3 =-1105.8914 d3 =0.1000 r4 =67.2156 d4 =4.8718 n3 =1.43985 ν3 =94.97 r5 =321.6843 d5 =0.1000 r6 =41.9228 d6 =4.7359 n4 =1.43985 ν4 =94.97 r7 =97.6361 d7 =D1 (可変) r8 =96.0751 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =15.1537 d9 =6.8524 r10=-45.6173 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=25.2829 d11=4.1985 n7 =1.84281 ν7 =21.00 r12=72.8410 d12=2.2663 r13=-41.3982 d13=1.2000 n8 =1.60520 ν8 =65.48 r14=689.6540 d14=D2 (可変) r15=∞(絞り) d15=D3 (可変) r16=63.5969 d16=2.8000 n9 =1.49845 ν9 =81.61 r17=-43.9834 d17=0.8168 r18=-21.6087 d18=1.5183 n10=1.65425 ν10=58.52 r19=30.5604 d19=4.2066 n11=1.81264 ν11=25.43 r20=-154.8455 d20=D4 (可変) r21=-92.6100 d21=1.2000 n12=1.85649 ν12=32.28 r22=244.1506 d22=0.5289 r23=-1252.7705 d23=3.0000 n13=1.61770 ν13=51.17 r24=-29.3060 d24=0.1000 r25=101.7847 d25=3.0000 n14=1.48915 ν14=70.20 r26=-46.0196 d26=0.6517 r27=-30.7276 d27=1.8614 n15=1.67766 ν15=32.10 r28=-89.4379 d28=0.1000 r29=553.7467 d29=3.3387 n16=1.48915 ν16=70.20 r30=-56.8903 d30=0.1000 r31=48.3949 d31=3.2000 n17=1.48915 ν17=70.20 r32=-270.6782 d32=0.1000 r33=34.7963 d33=1.5000 n18=1.85504 ν18=23.78 r34=19.3652 d34=5.8936 n19=1.48915 ν19=70.20 r35=-124.7933 d35=D5 (可変) r36=∞ d36=25.3000 n20=1.61170 ν20=46.44 r37=∞ d37=11.1000 n21=1.51825 ν21=64.15 r38=∞ f 7.1553 24.4649 83.9096 D1 1.4000 26.1841 42.2536 D2 42.2501 17.4676 1.3959 D3 4.8383 1.9240 5.3889 D4 9.9995 6.5228 1.5229 D5 2.0000 8.3892 9.9268 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.0956 fw /f2 =-0.5729 ,fw /f3 =-0.0006 ,f42/f41=0.3241 fw /f42=0.2185,Σ(fw /f41n )=-0.1937 Example 9 f = 7.155 to 24.465 to 83.910, F number = 2.0 2ω = 60.893 ° to 18.904 ° to 5.512 ° r 1 = 136.9170 d 1 = 2.5000 n 1 = 1.81675 ν 1 = 22.62 r 2 = 86.4105 d 2 = 4.8770 n 2 = 1.45720 ν 2 = 90.31 r 3 = -1105.8914 d 3 = 0.1000 r 4 = 67.2156 d 4 = 4.8718 n 3 = 1.43985 ν 3 = 94.97 r 5 = 321.6843 d 5 = 0.1000 r 6 = 41.9228 d 6 = 4.7359 n 4 = 1.43985 ν 4 = 94.97 r 7 = 97.6361 d 7 = D 1 (variable) r 8 = 96.0751 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 15.1537 d 9 = 6.8524 r 10 = -45.6173 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 25.2829 d 11 = 4.1985 n 7 = 1.84281 ν 7 = 21.00 r 12 = 72.8410 d 12 = 2.2663 r 13 = -41.3982 d 13 = 1.2000 n 8 = 1.60520 8 = 65.48 r 14 = 689.6540 d 14 = D 2 ( variable) r 15 = ∞ (stop) d 15 = D 3 (variable) r 16 = 63.5969 d 16 = 2.8000 n 9 = 1.49845 ν 9 = 81.61 17 = -43.9834 d 17 = 0.8168 r 18 = -21.6087 d 18 = 1.5183 n 10 = 1.65425 ν 10 = 58.52 r 19 = 30.5604 d 19 = 4.2066 n 11 = 1.81264 ν 11 = 25.43 r 20 = -154.8455 d 20 = D 4 (variable) r 21 = -92.6100 d 21 = 1.2000 n 12 = 1.85649 ν 12 = 32.28 r 22 = 244.1506 d 22 = 0.5289 r 23 = -1252.7705 d 23 = 3.0000 n 13 = 1.61770 ν 13 = 51.17 r 24 = - 29.3060 d 24 = 0.1000 r 25 = 101.7847 d 25 = 3.0000 n 14 = 1.48915 ν 14 = 70.20 r 26 = -46.0196 d 26 = 0.6517 r 27 = -30.7276 d 27 = 1.8614 n 15 = 1.67766 ν 15 = 32.10 r 28 = -89.4379 d 28 = 0.1000 r 29 = 553.7467 d 29 = 3.3387 n 16 = 1.48915 ν 16 = 70.20 r 30 = -56.8903 d 30 = 0.1000 r 31 = 48.3949 d 31 = 3.2000 n 17 = 1.48915 ν 17 = 70.20 r 32 = -270.6782 d 32 = 0.1000 r 33 = 34.7963 d 33 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 34 = 19.3652 d 34 = 5.8936 n 19 = 1.48915 ν 19 = 70.20 r 35 =- 124.7933 d 35 = D 5 (variable) r 36 = ∞ d 36 = 25.3000 n 20 = 1.61170 ν 20 = 46.44 r 37 = ∞ d 37 = 11.1000 n 21 = 1.51825 ν 21 = 64.15 r 38 = ∞ f 7.1553 24.4649 83.9096 D 1 1.4000 26.1841 42.2536 D 2 42.2501 17.4676 1.3959 D 3 4.8383 1.9240 5.3889 D 4 9.9995 6.5228 1.5229 D 5 2.0000 8.3892 9.9268 n 32p -n 32n = 0.15839, ν 32n -ν 32p = 33.09, f w / f 1 = 0.0956 f w / f 2 = -0.5729, f w / f 3 = -0.0006, f 42 / f 41 = 0.3241 f w / f 42 = 0.2185, Σ (f w / f 41n) = - 0.1937

【0062】実施例10 f=9.036 〜25.501〜71.999 ,Fナンバー=2.0 2ω=50.638°〜17.879°〜6.349 ° r1 =131.8451 d1 =2.5000 n1 =1.85504 ν1 =23.78 r2 =88.0849 d2 =4.5274 n2 =1.48915 ν2 =70.20 r3 =1681.9312 d3 =0.1000 r4 =119.3273 d4 =4.8890 n3 =1.43985 ν3 =94.97 r5 =-592.3035 d5 =0.1000 r6 =54.5541 d6 =4.9646 n4 =1.43985 ν4 =94.97 r7 =93.3891 d7 =D1 (可変) r8 =78.9576 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =19.4022 d9 =8.7988 r10=-25.6474 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=48.8813 d11=0.2105 r12=38.3508 d12=4.6080 n7 =1.84281 ν7 =21.00 r13=162.9271 d13=D2 (可変) r14=∞(絞り) d14=D3 (可変) r15=44.5857 d15=2.8000 n8 =1.43985 ν8 =94.97 r16=-299.4193 d16=2.3703 r17=-16.1949 d17=1.5000 n9 =1.62508 ν9 =53.20 r18=32.8795 d18=5.0744 n10=1.84281 ν10=21.00 r19=276.5631 d19=D4 (可変) r20=-37.0690 d20=3.0000 n11=1.49845 ν11=81.61 r21=-16.3675 d21=0.1000 r22=-283.3894 d22=3.0000 n12=1.57098 ν12=71.30 r23=-33.9268 d23=0.9710 r24=-22.8177 d24=2.0000 n13=1.76859 ν13=26.55 r25=-33.0829 d25=0.1000 r26=190.2420 d26=5.9951 n14=1.57098 ν14=71.30 r27=-65.7782 d27=0.1000 r28=25.4244 d28=1.5000 n15=1.85504 ν15=23.78 r29=17.9389 d29=5.4604 n16=1.49845 ν16=81.61 r30=-99.8569 d30=D5 (可変) r31=∞ d31=33.0000 n17=1.61168 ν17=46.44 r32=∞ d32=13.2000 n18=1.51825 ν18=64.15 r33=∞ f 9.0358 25.5008 71.9989 D1 1.4000 32.2919 54.7379 D2 54.4864 23.5944 1.1487 D3 5.5254 2.0555 1.8798 D4 2.0360 1.5162 1.4107 D5 2.0000 5.9893 6.2715 n32p −n32n =0.21773 ,ν32n −ν32p =32.20 ,fw /f1 =0.0893 fw /f2 =-0.4343 ,fw /f3 =-0.2004 ,f42/f41=0.7439 fw /f42=0.2725,Σ(fw /f41n )=-0.0864 Example 10 f = 9.036 to 25.501 to 71.999, F number = 2.0 2ω = 50.638 ° to 17.879 ° to 6.349 ° r 1 = 131.8451 d 1 = 2.5000 n 1 = 1.85504 ν 1 = 23.78 r 2 = 88.0849 d 2 = 4.5274 n 2 = 1.48915 ν 2 = 70.20 r 3 = 1681.9312 d 3 = 0.1000 r 4 = 119.3273 d 4 = 4.8890 n 3 = 1.43985 ν 3 = 94.97 r 5 = -592.3035 d 5 = 0.1000 r 6 = 54.5541 d 6 4.9646 n 4 = 1.43985 ν 4 = 94.97 r 7 = 93.3891 d 7 = D 1 (variable) r 8 = 78.9576 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 19.4022 d 9 = 8.7988 r 10 = -25.6474 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 48.8813 d 11 = 0.2105 r 12 = 38.3508 d 12 = 4.6080 n 7 = 1.84281 ν 7 = 21.00 r 13 = 162.9271 d 13 = D 2 (variable) r 14 = ∞ (stop) d 14 = D 3 (variable) r 15 = 44.5857 d 15 = 2.8000 n 8 = 1.43985 ν 8 = 94.97 r 16 = -299.4193 d 16 = 2.3703 r 17 = -16.1949 d 17 1.5000 n 9 = 1.62508 ν 9 = 53.20 r 18 = 32.8795 d 18 = 5.0744 n 10 = 1.84281 ν 10 = 21.00 r 19 = 276.5631 d 19 = D 4 ( variable) r 20 = -37.0690 d 20 = 3.0000 n 11 = 1.49845 v 11 = 81.61 r 21 = -16.3675 d 21 = 0.1000 r 22 = -283.3894 d 22 = 3.0000 n 12 = 1.57098 v 12 = 71.30 r 23 = -33.9268 d 23 = 0.9710 r 24 = -22.8177 d 24 = 2.0000 n 13 = 1.76859 ν 13 = 26.55 r 25 = -33.0829 d 25 = 0.1000 r 26 = 190.2420 d 26 = 5.9951 n 14 = 1.57098 ν 14 = 71.30 r 27 = -65.7782 d 27 = 0.1000 r 28 = 25.4244 d 28 = 1.5000 n 15 = 1.85504 ν 15 = 23.78 r 29 = 17.9389 d 29 = 5.4604 n 16 = 1.49845 ν 16 = 81.61 r 30 = -99.8569 d 30 = D 5 (variable) r 31 = ∞ d 31 = 33.0000 n 17 = 1.61168 ν 17 = 46.44 r 32 = ∞ d 32 = 13.2000 n 18 = 1.51825 ν 18 = 64.15 r 33 = ∞ f 9.0358 25.5008 71.9989 D 1 1.4000 32.2919 54.7379 D 2 54.4864 23.5944 1.1487 D 3 5.52 54 2.0555 1.8798 D 4 2.0360 1.5162 1.4107 D 5 2.0000 5.9893 6.2715 n 32p -n 32n = 0.21773, ν 32n -ν 32p = 32.20, f w / f 1 = 0.0893 f w / f 2 = -0.4343, f w / f 3 = -0.2004, f 42 / f 41 = 0.7439 f w / f 42 = 0.2725, Σ (f w / f 41n) = - 0.0864

【0063】実施例11 f=9.008 〜25.499〜72.000 ,Fナンバー=2.0 2ω=49.368°〜18.198°〜6.423 ° r1 =135.2340 d1 =2.5000 n1 =1.84281 ν1 =21.00 r2 =89.8690 d2 =5.5914 n2 =1.43985 ν2 =94.97 r3 =-2424.8261 d3 =0.1000 r4 =62.5584 d4 =5.1383 n3 =1.43985 ν3 =94.97 r5 =322.3434 d5 =0.1000 r6 =44.8533 d6 =5.2432 n4 =1.43985 ν4 =94.97 r7 =105.7142 d7 =D1 (可変) r8 =58.2529 d8 =1.5000 n5 =1.69974 ν5 =56.49 r9 =17.1142 d9 =6.3067 r10=-50.1323 d10=1.2000 n6 =1.57098 ν6 =71.30 r11=32.5452 d11=3.8858 n7 =1.84281 ν7 =21.00 r12=98.2711 d12=1.7246 r13=-42.3395 d13=1.2000 n8 =1.57098 ν8 =71.30 r14=-617.1230 d14=D2 (可変) r15=130.4158 d15=2.8000 n9 =1.49845 ν9 =81.61 r16=-48.3741 d16=3.5968 r17=-18.2382 d17=1.5550 n10=1.65425 ν10=58.52 r18=28.4284 d18=2.9233 n11=1.81264 ν11=25.43 r19=-1296.3792 d19=D3 (可変) r20=∞(絞り) d20=D4 (可変) r21=1174.2678 d21=1.2000 n12=1.85504 ν12=23.78 r22=98.5353 d22=0.5458 r23=-192.9060 d23=3.0000 n13=1.58547 ν13=59.36 r24=-27.7205 d24=0.1000 r25=137.9285 d25=3.0000 n14=1.57098 ν14=71.30 r26=-59.4159 d26=10.1687 r27=-37.7650 d27=1.8000 n15=1.67882 ν15=29.25 r28=-60.5864 d28=0.1000 r29=-282.2635 d29=5.5000 n16=1.49845 ν16=81.61 r30=-60.7652 d30=0.1000 r31=68.6130 d31=5.5000 n17=1.57098 ν17=71.30 r32=-79.2517 d32=1.5000 n18=1.85504 ν18=23.78 r33=-123.3612 d33=0.1000 r34=48.7551 d34=5.5000 n19=1.57098 ν19=71.30 r35=-33.1127 d35=1.5000 n20=1.85504 ν20=23.78 r36=-59.8194 d36=D5 (可変) r37=∞ d37=25.3000 n21=1.61169 ν21=46.44 r38=∞ d38=11.1000 n22=1.51825 ν22=64.15 r39=∞ f 9.0076 25.4994 71.9996 D1 1.4000 24.4807 39.3443 D2 34.8531 10.3337 1.4000 D3 5.8912 7.3296 1.4000 D4 4.4708 1.4000 1.7910 D5 2.0000 5.0712 4.6797 n32p −n32n =0.15839 ,ν32n −ν32p =33.09 ,fw /f1 =0.1191 fw /f2 =-0.5350 ,fw /f3 =-0.1241 ,f42/f41=0.5736 fw /f42=0.3025,Σ(fw /f41n )=-0.1306 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズのe線の屈折率、ν1 ,ν
2 ,・・・ は各レンズのd線のアッベ数である。
Example 11 f = 9.008 to 25.499 to 72.000, F number = 2.0 2ω = 49.368 ° to 18.198 ° to 6.423 ° r 1 = 135.2340 d 1 = 2.5000 n 1 = 1.84281 ν 1 = 21.00 r 2 = 89.8690 d 2 = 5.5914 n 2 = 1.43985 ν 2 = 94.97 r 3 = -2424.8261 d 3 = 0.1000 r 4 = 62.5584 d 4 = 5.1383 n 3 = 1.43985 ν 3 = 94.97 r 5 = 322.3434 d 5 = 0.1000 r 6 = 44.8533 d 6 = 5.2432 n 4 = 1.43985 ν 4 = 94.97 r 7 = 105.7142 d 7 = D 1 (variable) r 8 = 58.2529 d 8 = 1.5000 n 5 = 1.69974 ν 5 = 56.49 r 9 = 17.1142 d 9 = 6.3067 r 10 = -50.1323 d 10 = 1.2000 n 6 = 1.57098 ν 6 = 71.30 r 11 = 32.5452 d 11 = 3.8858 n 7 = 1.84281 ν 7 = 21.00 r 12 = 98.2711 d 12 = 1.7246 r 13 = -42.3395 d 13 = 1.2000 n 8 = 1.57098 ν 8 = 71.30 r 14 = -617.1230 d 14 = D 2 (variable) r 15 = 130.4158 d 15 = 2.8000 n 9 = 1.49845 ν 9 = 81.61 r 16 = -48.3741 d 16 = 3.5968 r 17 = -18. 2382 d 17 = 1.5550 n 10 = 1.65425 ν 10 = 58.52 r 18 = 28.4284 d 18 = 2.9233 n 11 = 1.81264 ν 11 = 25.43 r 19 = -1296.3792 d 19 = D 3 (variable) r 20 = ∞ (diaphragm) d 20 = D 4 (variable) r 21 = 1174.2678 d 21 = 1.2000 n 12 = 1.85504 ν 12 = 23.78 r 22 = 98.5353 d 22 = 0.5458 r 23 = -192.9060 d 23 = 3.0000 n 13 = 1.58547 ν 13 = 59.36 r 24 = -27.7205 d 24 = 0.1000 r 25 = 137.9285 d 25 = 3.0000 n 14 = 1.57098 ν 14 = 71.30 r 26 = -59.4159 d 26 = 10.1687 r 27 = -37.7650 d 27 = 1.8000 n 15 = 1.67882 ν 15 = 29.25 r 28 = -60.5864 d 28 = 0.1000 r 29 = -282.2635 d 29 = 5.5000 n 16 = 1.49845 v 16 = 81.61 r 30 = -60.7652 d 30 = 0.1000 r 31 = 68.6 130 d 31 = 5.5000 n 17 = 1.57098 v 17 = 71.30 r 32 = -79.2517 d 32 = 1.5000 n 18 = 1.85504 ν 18 = 23.78 r 33 = -123.3612 d 33 = 0.1000 r 34 = 48.7551 d 34 = 5.5000 n 19 = 1.57098 ν 19 = 71.30 35 = -33.1127 d 35 = 1.5000 n 20 = 1.85504 ν 20 = 23.78 r 36 = -59.8194 d 36 = D 5 ( variable) r 37 = ∞ d 37 = 25.3000 n 21 = 1.61169 ν 21 = 46.44 r 38 = ∞ d 38 = 11.1000 n 22 = 1.51825 ν 22 = 64.15 r 39 = ∞ f 9.0076 25.4994 71.9996 D 1 1.4000 24.4807 39.3443 D 2 34.8531 10.3337 1.4000 D 3 5.8912 7.3296 1.4000 D 4 4.4708 1.4000 1.7910 D 5 2.0000 5.0712 4.6797 n 32p -n 32n = 0.15839, ν 32n -ν 32p = 33.09 , f w / f 1 = 0.1191 f w / f 2 = -0.5350, f w / f 3 = -0.1241, f 42 / f 41 = 0.5736 f w / f 42 = 0.3025, Σ (f w / f 41n ) =-0.1306 where r 1 , r 2 , ... Are the radii of curvature of the respective lens surfaces, d
1 , d 2 , ... Is the thickness of each lens and the lens interval, n
1 , n 2 , ... Are the refractive indices of each lens at the e-line, ν 1 , ν
2 , ... are Abbe numbers of d-line of each lens.

【0064】実施例1のレンズ系は、図1に示す通りの
レンズ構成で、物体側から順に、正の屈折力の第1レン
ズ群G1 と負の屈折力の第2レンズ群G2 と、絞りS
と、負の屈折力の第3レンズ群G3 と、正の屈折力の第
4レンズ群G4 とからなり、レンズ系と撮像素子との間
に色分解プリズムや各種フィルター等の光学素子を表わ
すガラスブロックを配置してある。
The lens system of Example 1 has a lens configuration as shown in FIG. 1, and comprises, in order from the object side, a first lens group G 1 having a positive refractive power and a second lens group G 2 having a negative refractive power. , Aperture S
When, a third lens group G 3 having a negative refractive power and a positive refractive power a fourth lens group G 4 Prefecture of the optical element such as a color separation prism or various filters between the lens system and the imaging device The glass block shown is arranged.

【0065】又各レンズ群は、第1レンズ群G1 が物体
側から順に、凸面を物体側に向けた負のメニスカスレン
ズと物体側に正の屈折力が強い方の面を向けた正レンズ
とを貼合わせた接合レンズと、凸面を物体側に向けた正
のメニスカスレンズ2枚とからなり、第2レンズ群G2
が、物体側から順に、凸面を物体側に向けた負のメニス
カスレンズと、両凹レンズと凸面を物体側に向けた正の
メニスカスレンズとの接合レンズと、物体側に負の屈折
力が強い方の面を向けた負レンズとからなり、第3レン
ズ群G3 が、物体側から順に、両凸レンズよりなる正の
屈折力の第1レンズ成分と両凹レンズと物体側に正の屈
折力が強い方の面を向けた正レンズとを貼合わせた接合
レンズよりなる負の屈折力の第2レンズ成分とよりな
り、第4レンズ群G4 が、物体側から順に、正の屈折力
の第41レンズ群G41 と正の屈折力の第42レンズ群
42からなっていて、第41レンズ群G41は物体から順
に、物体側に負の屈折力の強い方の面を向けた負レンズ
と、凹面を物体側に向けた正のメニスカスレンズと、像
側に正の屈折力の強い方の面を向けた正レンズと、凹面
を物体側に向けた正のメニスカスレンズからなり、第4
2レンズ群G42は、物体側から順に、像側に正の屈折力
の強い方の面を向けた正レンズと、物体側に正の屈折力
の強い方の面を向けた正レンズと、凸面を物体側に向け
た負のメニスカスレンズと物体側に正の屈折力の強い方
の面を向けた正レンズとを貼り合わせた接合レンズとに
て構成されている。
In each lens group, the first lens group G 1 is, in order from the object side, a negative meniscus lens whose convex surface faces the object side, and a positive lens whose positive refractive power surface faces the object side. The second lens group G 2 is composed of a cemented lens in which is cemented together with 2 and a positive meniscus lens whose convex surface faces the object side.
However, in order from the object side, a negative meniscus lens with a convex surface facing the object side, a cemented lens with a biconcave lens and a positive meniscus lens with a convex surface facing the object side, and a lens with a strong negative refractive power on the object side The third lens group G 3 includes, in order from the object side, the first lens component of positive refracting power composed of a biconvex lens, the biconcave lens, and the positive refracting power to the object side. The second lens component G 4 has a negative refracting power and is made up of a cemented lens in which a positive lens having one surface facing the other surface is cemented. It is composed of a lens group G 41 and a forty-second lens group G 42 having a positive refractive power, and the 41st lens group G 41 is a negative lens having a surface having a negative refractive power strong toward the object side in order from the object. , A positive meniscus lens with a concave surface facing the object side, and one with a strong positive refractive power on the image side A positive meniscus lens with the concave surface facing the object side,
The second lens group G 42 includes, in order from the object side, a positive lens having a surface having a strong positive refractive power facing the image side, and a positive lens having a surface having a strong positive refractive power facing the object side. It is composed of a negative meniscus lens having a convex surface facing the object side and a cemented lens in which a positive lens having a positive refractive power surface facing the object side is bonded to each other.

【0066】又、第1レンズ群G1 と絞りSとはズーミ
ングに際して固定である。又第2レンズ群G2 は、広角
端から望遠端へのズーミングに際して物体側から像側へ
単調に移動する。更に第3レンズ群G3 は広角端から望
遠端へのズーミングに際して像側から物体側へ移動して
中間焦点距離を過ぎた後に極値点を持ち、その後に像側
へ移動する。又第4レンズ群G4 は第3レンズ群G3
同様の動きをするが第3レンズ群G3 よりも望遠側にて
極値点をとる。
Further, the first lens group G 1 and the diaphragm S are fixed during zooming. The second lens group G 2 monotonously moves from the object side to the image side during zooming from the wide-angle end to the telephoto end. Further, the third lens group G 3 moves from the image side to the object side during zooming from the wide-angle end to the telephoto end, has an extreme point after passing the intermediate focal length, and then moves to the image side. The fourth lens group G 4 taking extreme point at the telephoto side than is the same motion as the third lens group G 3 third lens group G 3.

【0067】この実施例1は、8倍の変倍比を持つが、
第2レンズ群G2 にて約4.6倍、第4レンズ群G4
て約1.7倍の変倍比を分担しているため、第2レンズ
群G2 が比較的弱い屈折力であるにもかかわらず大きな
変倍比であり、又長いバックフォーカスを持ち、しかも
極めて高い光学性能を有している。
Although the first embodiment has a variable power ratio of 8 times,
Since the second lens group G 2 shares a zoom ratio of about 4.6 times and the fourth lens group G 4 about 1.7 times, the second lens group G 2 has a relatively weak refractive power. However, it has a large zoom ratio, a long back focus, and extremely high optical performance.

【0068】中間焦点距離における各レンズ群および光
学素子で発生するe線に対するC線とF線の色収差は、
下記の表の通りである。
The chromatic aberrations of the C line and the F line with respect to the e line generated in each lens unit and the optical element at the intermediate focal length are
It is as shown in the table below.

【0069】 軸上色収差係数 倍率の色収差係数 第1レンズ群 -0.00284 0.00622 第2レンズ群 0.01896 -0.02259 第3レンズ群 -0.11359 -0.01061 第4レンズ群 0.04480 0.01554 プリズム等 0.05314 0.00398 トータル 0.00047 -0.00745 この表に示す通り、この実施例1のズームレンズは、第
3レンズ群G3 が負の屈折力を持つにも拘らず、色収差
が大きく負に発生するようにし、逆に第4レンズ群G4
が正の屈折力を持つにもかかわらず正の色収差を発生す
るように構成されていることがわかる。又、前記の表か
らわかるように、第3レンズ群G3 は、軸上色収差に比
較して倍率の色収差の発生が少なく、一方第4レンズ群
4 は、第3レンズ群G3 よりも軸上色収差の発生量が
小さいにもかかわらず、倍率の色収差は大きく発生して
おり、これらのバランスによって広角端から望遠端にい
たるまで軸上色収差、倍率の色収差ともに良好に補正さ
れている。
Axial chromatic aberration coefficient Magnification chromatic aberration coefficient First lens group -0.00284 0.00622 Second lens group 0.01896 -0.02259 Third lens group -0.11359 -0.01061 Fourth lens group 0.04480 0.01554 Prism etc. 0.05314 0.00398 Total 0.00047 -0.00745 In this table As shown, in the zoom lens of Example 1, the chromatic aberration is largely negatively generated even though the third lens group G 3 has a negative refractive power, and conversely, the fourth lens group G 4 is used.
It can be seen that is configured to generate positive chromatic aberration despite having a positive refractive power. Further, as can be seen from the above table, the third lens group G 3 has less chromatic aberration of magnification as compared with the axial chromatic aberration, while the fourth lens group G 4 is less than the third lens group G 3. Although the amount of axial chromatic aberration is small, a large amount of chromatic aberration of magnification is generated, and by the balance between these, both axial chromatic aberration and lateral chromatic aberration are well corrected from the wide-angle end to the telephoto end.

【0070】このように第3レンズ群G3 で発生させる
負の軸上色収差の大きさにより第4レンズ群G4 に含ま
れる負レンズの屈折力配分および構成を制御し、第4レ
ンズ群G4 で発生する軸上色収差を正の値から負の値ま
での適切な値をとるようにしている。
As described above, the distribution and configuration of the refractive power of the negative lenses included in the fourth lens group G 4 are controlled by the magnitude of the negative axial chromatic aberration produced by the third lens group G 3 , and the fourth lens group G 4 is controlled. The axial chromatic aberration generated in 4 is set to an appropriate value from a positive value to a negative value.

【0071】この実施例1の収差状況は、図12、図1
3、図14に示す通りである。
The aberrations of the first embodiment are shown in FIGS.
3, as shown in FIG.

【0072】実施例2は、図2に示すレンズ構成で、第
4レンズ群G4 の構成が実施例1と相違している。つま
り第4レンズ群は、第41レンズ群G41が、物体側より
順に、凹面を物体側に向けた正のメニスカスレンズと、
像側に正の屈折力の強い方の面を向けた正レンズと、凹
面を物体側に向けた負のメニスカスレンズからなり又第
42レンズ群G42が、物体側より順に、像側に正の屈折
力の強い方の面を向けた正レンズを2枚と、物体側に正
の屈折力が強い方の面を向けた正レンズと、凸面を物体
側に向けた負のメニスカスレンズと物体側に正の屈折力
の強い方の面を向けた正レンズとを貼り合わせた接合レ
ンズとよりなっている。
The second embodiment has the lens structure shown in FIG. 2, and the fourth lens group G 4 is different from the first embodiment. That is, in the fourth lens group, the forty-first lens group G 41 includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side,
It is composed of a positive lens whose positive refractive power is directed toward the image side and a negative meniscus lens whose concave surface is directed toward the object side. The 42nd lens group G 42 is arranged in order from the object side toward the image side. , Two positive lenses with the surface with the stronger refractive power, the positive lens with the surface with the positive refractive power facing the object side, and the negative meniscus lens with the convex surface facing the object side and the object It is composed of a cemented lens in which a positive lens having a surface having a strong positive refractive power is directed to the side and a positive lens is attached.

【0073】この実施例2のズームレンズの収差状況
は、図15、図16、図17に示す通りである。
The aberrations of the zoom lens of the second embodiment are as shown in FIGS. 15, 16 and 17.

【0074】実施例3は、図3に示す構成のズームレン
ズで、実施例2と第2レンズ群G2 の構成が異なってい
る。つまり第2レンズ群G2 は、物体側から順に、凸面
を物体側に向けた負のメニスカスレンズと、両凹レンズ
と、凸面を物体側に向けた正のメニスカスレンズと、物
体側に負の屈折力の強い方の面を向けた負レンズとから
構成されている。
The third embodiment is a zoom lens having the construction shown in FIG. 3, and the constructions of the second lens group G 2 are different from those of the second embodiment. That is, the second lens group G 2 includes, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens, a positive meniscus lens having a convex surface directed toward the object side, and a negative refraction toward the object side. It is composed of a negative lens with the side with stronger power.

【0075】この実施例3のズームレンズの収差状況
は、図18、図19、図20に示す通りである。
The aberrations of the zoom lens of the third embodiment are as shown in FIGS. 18, 19 and 20.

【0076】実施例4は、図4に示す構成のズームレン
ズで、実施例1と第3レンズ群G3 が正の屈折力を持っ
ている点と、第4レンズ群G4 の構成が異なっている点
とで相違している。即ち、第4レンズ群G4 は、第41
レンズ群G41が物体側から順に、物体側に負の屈折力の
強い方の面を向けた負レンズと、像側に正の屈折力の強
い方の面を向けた正レンズ2枚と、凹面を物体側に向け
た負のメニスカスレンズからなり、第42レンズ群G42
が、物体側から順に、像側に正の屈折力の強い方の面を
向けた正レンズと、物体側に正の屈折力の強い方の面を
向けた正レンズと、凸面を物体側に向けた負のメニスカ
スレンズと物体側に正の屈折力の強い方の面を向けた正
レンズとを貼合わせた接合レンズとより構成されてい
る。
The fourth embodiment is a zoom lens having the configuration shown in FIG. 4, and is different from the first embodiment in that the third lens group G 3 has a positive refracting power and the configuration of the fourth lens group G 4 is different. It is different from that. That is, the fourth lens group G 4 includes
The lens group G 41 includes, in order from the object side, a negative lens having a surface having a strong negative refractive power facing the object side, and two positive lenses having a surface having a strong positive refractive power facing the image side. A negative meniscus lens having a concave surface directed toward the object side. The 42nd lens group G 42
, In order from the object side, a positive lens with the positive refractive power surface facing the image side, a positive lens with the positive refractive power surface facing the object side, and a convex surface facing the object side. It is composed of a cemented lens in which a negative meniscus lens directed to it and a positive lens having a surface having a strong positive refractive power directed to the object side are bonded together.

【0077】この実施例4は、第3レンズ群G3 が正の
屈折力を持っているため、バックフォーカスの長いズー
ムレンズとするためと第4レンズ群G4 で正の色収差を
発生させるために、第4レンズ群G4 を、第41レンズ
群G41が負正負の構成としている。そのため、特に広角
端において第4レンズ群G4 で発生する正の倍率の色収
差が大になり、又広角端の画角が約55.6°と実施例
1乃至実施例3に比較して広いにもかかわらず、広角端
から望遠端にいたるまで倍率の色収差が良好に補正され
ている。
In Example 4, since the third lens group G 3 has a positive refractive power, a zoom lens having a long back focus is used and a positive chromatic aberration is generated in the fourth lens group G 4. In addition, the fourth lens group G 4 and the forty-first lens group G 41 are configured to be negative, positive, and negative. Therefore, the chromatic aberration of positive magnification that occurs in the fourth lens group G 4 becomes large especially at the wide-angle end, and the angle of view at the wide-angle end is about 55.6 °, which is wider than in Examples 1 to 3. Nevertheless, lateral chromatic aberration is well corrected from the wide-angle end to the telephoto end.

【0078】この実施例4のズームレンズの収差状況
は、図21、図22、図23に示す通りである。
The aberrations of the zoom lens of the fourth embodiment are as shown in FIGS. 21, 22 and 23.

【0079】実施例5、実施例6のズームレンズは、夫
々図5、図6に示す通りの構成で、いずれも実施例4と
同様の構成である。
The zoom lenses of Example 5 and Example 6 have the configurations as shown in FIGS. 5 and 6, respectively, and both have the same configurations as Example 4.

【0080】実施例5のズームレンズの収差状況は、図
24、図25、図26に示す通りであり、又実施例6の
ズームレンズの収差状況は、図27、図28、図29に
示す通りである。
The aberrations of the zoom lens of the fifth embodiment are as shown in FIGS. 24, 25 and 26, and the aberrations of the zoom lens of the sixth embodiment are shown in FIGS. 27, 28 and 29. On the street.

【0081】実施例7は、図7に示す構成で実施例4と
同様の構成であるが、各レンズ群特に第1レンズ群G1
と第2レンズ群G2 の屈折力を強めることによって、広
角端の画角が62°であって、変倍比が12と広画角で
高変倍比のズームレンズにした。
Example 7 has the same configuration as that of Example 4 in the configuration shown in FIG. 7, but each lens group, especially the first lens group G 1
By increasing the refracting power of the second lens group G 2 , the zoom lens has a wide angle of view of 62 ° and a wide angle of view of 12 and a high zoom ratio.

【0082】この実施例7の収差状況は、図30、図3
1、図32に示す通りである。
The aberrations of the seventh embodiment are shown in FIGS.
1, as shown in FIG.

【0083】実施例8は図8に示す通りの構成であっ
て、実施例3と同様の構成である。この実施例8は、各
レンズ群特に第1レンズ群G1 と第2レンズ群G2 の屈
折力を強くすることにより、広角端での画角が62°で
あって変倍比が12の高画角で高変倍比のズームレンズ
とした。
The eighth embodiment has a structure as shown in FIG. 8 and is the same as the third embodiment. In Example 8, by increasing the refracting power of each lens group, particularly the first lens group G 1 and the second lens group G 2 , the angle of view at the wide-angle end is 62 ° and the zoom ratio is 12. The zoom lens has a high angle of view and a high zoom ratio.

【0084】この実施例8の収差状況は、図33、図3
4、図35に示す通りである。
The aberrations of the eighth embodiment are shown in FIGS.
4, as shown in FIG.

【0085】実施例9は、図9に示す通りの構成のズー
ムレンズで、実施例7のズームレンズと同様の構成であ
るが、第3レンズ群の屈折力をほぼ0にした点で、実施
例7とは相違している。
Example 9 is a zoom lens having a configuration as shown in FIG. 9, and has the same configuration as the zoom lens of Example 7, except that the refracting power of the third lens group is substantially zero. This differs from Example 7.

【0086】この実施例9の収差状況は、図36、図3
7、図38に示す通りである。
The aberrations of the ninth embodiment are shown in FIGS.
7, as shown in FIG.

【0087】実施例10は、図10に示す通りの構成で
あって、物体側より順に、正の第1レンズ群G1 と負の
第2レンズ群G2 と絞りSと負の第3レンズ群G3 と正
の第4レンズ群G4 とにて構成されている。そして各レ
ンズ群は、第1レンズ群G1 が、物体側より順に、凸面
を物体側に向けた負のメニスカスレンズと物体側に正の
屈折力の強い方の面を向けた正レンズとを貼り合わせた
接合レンズと、物体側に正の屈折力の強い方の面を向け
た正レンズと、凸面を物体側に向けた正のメニスカスレ
ンズとにて、第2レンズ群G2 が物体側から順に、凸面
を物体側に向けた負のメニスカスレンズと、両凹レンズ
と、凸面を物体側に向けた正のメニスカスレンズとに
て、第3レンズ群G3が、物体側より順に、両凸レンズ
の正の第1レンズ成分と、両凹レンズと物体側に正の屈
折力の強い方の面を向けた正レンズとを貼り合わせた接
合レンズの負の第2レンズ成分とにて、又第4レンズ群
4 が、物体側から順に、正の第41レンズ群G41と正
の第42レンズ群G42とから構成されている。そして第
4レンズ群G4 は、第41レンズ群G41が、物体側より
順に、凹面を物体側へ向けた正のメニスカスレンズと、
像側に正の屈折力の強い方の面を向けた正レンズと、凹
面を物体側に向けた負のメニスカスレンズとからなり、
第42レンズ群G42が、物体側より順に、像側に正の屈
折力の強い方の面を向けた正レンズと、凸面を物体側に
向けた負のメニスカスレンズと物体側に正の屈折力の強
い方の面を向けた正レンズとを貼り合わせた接合レンズ
よりなっている。
The tenth embodiment has a construction as shown in FIG. 10, and in order from the object side, the positive first lens group G 1 , the negative second lens group G 2 , the diaphragm S, and the negative third lens. It is composed of a group G 3 and a positive fourth lens group G 4 . In each lens group, the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface directed to the object side and a positive lens having a surface having a strong positive refractive power directed to the object side. The second lens group G 2 includes the cemented lens, the positive lens with the surface having a strong positive refractive power facing the object side, and the positive meniscus lens with the convex surface facing the object side. From the object side, the third lens group G 3 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. And the negative second lens component of the cemented lens in which the biconcave lens and the positive lens with the positive refractive power facing the object side are cemented together, lens group G 4, in order from the object side, a positive first lens subunit G 41 positive 42 Les And a's group G 42 Prefecture. In the fourth lens group G 4 , the 41st lens group G 41 includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side,
It consists of a positive lens with the positive refractive power facing the image side, and a negative meniscus lens with the concave surface facing the object side.
The 42nd lens group G 42 includes, in order from the object side, a positive lens having a positive refractive power surface facing the image side, a negative meniscus lens having a convex surface facing the object side, and positive refraction toward the object side. It is made up of a cemented lens in which a positive lens with the stronger surface of the lens is attached.

【0088】この実施例10は、実施例中最も少ないレ
ンズ枚数にて構成した例であって、第3レンズ群G3
負の屈折力を増大させ、第4レンズ群G4 の第41レン
ズ群G41と第42レンズ群G42との正の屈折力を均等配
分に近い屈折力配分にすることによって収差を良好に補
正するようにした。
The tenth embodiment is an example in which the number of lenses is the smallest in the tenth embodiment, the negative refracting power of the third lens group G 3 is increased, and the 41st lens of the fourth lens group G 4 is used. Aberrations are satisfactorily corrected by making the positive refractive powers of the group G 41 and the 42nd lens group G 42 close to even distribution.

【0089】この実施例10の収差状況は、図40、図
41、図42に示す通りである。
The aberrations of the tenth embodiment are as shown in FIGS. 40, 41 and 42.

【0090】実施例11は、図11に示す通りの構成
で、物体側より順に、正の屈折力の第1レンズ群G1
と、負の屈折力の第2レンズ群G2 と、負の屈折力の第
3レンズ群G3 と、絞りSと、正の屈折力の第4レンズ
群G4 とよりなる。そして各レンズ群は、第1レンズ群
1 が、物体側より順に、凸面を物体側に向けた負のメ
ニスカスレンズと物体側に正の屈折力の強い方の面を向
けた正レンズとの接合レンズと、凸面を物体側に向けた
正のメニスカスレンズ2枚とよりなり、第2レンズ群G
2 が、物体側から順に、凸面を物体側に向けた負のメニ
スカスレンズと、両凹レンズと凸面を物体側に向けた正
のメニスカスレンズとの接合レンズと、物体側に負の屈
折力の強い方の面を向けた負レンズとからなり、第3レ
ンズ群G3が、物体側から順に、両凸レンズの正の第1
レンズ成分と、両凹レンズと物体側に正の屈折力の強い
方の面を向けた正レンズとの接合レンズの第2レンズ成
分とからなり、第4レンズ群G4 が正の屈折力を持つ第
41レンズ群G41と正の屈折力を持つ第42レンズ群G
42とから構成されている。そして第4レンズ群G4 の第
41レンズ群G41は、物体側から順に、像側に負の屈折
力の強い方の面を向けた負レンズと、像側に正の屈折力
の強い方の面を向けた正レンズ2枚と、凹面を物体側に
向けた負のメニスカスレンズとよりなり、又第42レン
ズ群G42は、物体側から順に、像側に正の屈折力の強い
方の面を向けた正レンズと、両凸レンズと物体側に凹面
を向けた負のメニスカスレンズとの接合レンズと、両凸
レンズと物体側に凹面を向けた負のメニスカスレンズと
の接合レンズとからなっている。
The eleventh embodiment has a configuration as shown in FIG. 11, and the first lens group G 1 having a positive refractive power is arranged in order from the object side.
A second lens group G 2 having a negative refractive power, a third lens group G 3 having a negative refractive power, a diaphragm S, and a fourth lens group G 4 having a positive refractive power. In each lens group, the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side and a positive lens having a surface having a strong positive refractive power directed toward the object side. The second lens group G includes a cemented lens and two positive meniscus lenses each having a convex surface directed toward the object side.
2 is, in order from the object side, a negative meniscus lens with a convex surface facing the object side, a cemented lens of a biconcave lens and a positive meniscus lens with a convex surface facing the object side, and a strong negative refractive power on the object side. The third lens group G 3 includes, in order from the object side, a positive first biconvex lens.
It is composed of a lens component and a second lens component of a cemented lens of a biconcave lens and a positive lens having a surface having a strong positive refractive power facing the object side, and the fourth lens group G 4 has a positive refractive power. The 41st lens group G 41 and the 42nd lens group G having a positive refractive power
It consists of 42 and. The 41st lens group G 41 of the 4th lens group G 4 includes, in order from the object side, a negative lens having a surface having a negative refractive power strong toward the image side and a lens having a positive refractive power strong toward the image side. Of two positive lenses and a negative meniscus lens having a concave surface facing the object side, and the 42nd lens group G 42 includes, in order from the object side, a lens having a strong positive refractive power toward the image side. Of the positive lens, a cemented lens of a biconvex lens and a negative meniscus lens with a concave surface facing the object side, and a cemented lens of a biconvex lens and a negative meniscus lens with a concave surface facing the object side. ing.

【0091】この実施例11は、絞りSを第3レンズ群
3 と第4レンズ群G4 との間に配置しているので、第
3レンズ群G3 では負の軸上色収差と正の倍率の色収差
が発生しており、他の実施例とは倍率の色収差の補正方
法が異なっている。そのため第4レンズ群G4 に負レン
ズを多く用いて倍率の色収差の発生を極力抑えるように
して十分に補正されるようにしている。また、このよう
に絞りSを第3レンズ群G3 と第4レンズ群G4 との間
に配置したために、第1レンズ群G1 の口径が、画角の
広い実施例である実施例4や実施例7のレンズ系に近い
大きさになっている。しかし逆に第3レンズ群G3 や第
4レンズ群G4 の口径は小さくなっており、絞り機構を
配置するのに有利な構成になっている。
In Example 11, since the diaphragm S is arranged between the third lens group G 3 and the fourth lens group G 4 , the third lens group G 3 has negative axial chromatic aberration and positive axial chromatic aberration. The chromatic aberration of magnification has occurred, and the method of correcting the chromatic aberration of magnification is different from the other examples. Therefore, a large number of negative lenses are used in the fourth lens group G 4 so as to suppress the occurrence of lateral chromatic aberration as much as possible so that the fourth lens group G 4 is sufficiently corrected. In addition, since the diaphragm S is arranged between the third lens group G 3 and the fourth lens group G 4 in this way, the aperture diameter of the first lens group G 1 is an example in which the angle of view is wide. The size is close to that of the lens system of Example 7. However, conversely, the apertures of the third lens group G 3 and the fourth lens group G 4 are small, which is an advantageous structure for disposing the diaphragm mechanism.

【0092】尚上記の各実施例の収差曲線図は、e線を
基本波長としている。
In the aberration curve diagrams of each of the above-mentioned examples, the e-line is the fundamental wavelength.

【0093】本発明のズームレンズにおいて、特許請求
の範囲の各請求項に記載するレンズ系のほか、次の各項
に記載するズームレンズも、本発明の目的を達成し得る
ものである。
In the zoom lens of the present invention, in addition to the lens system described in each of the claims, the zoom lens described in each of the following items can also achieve the object of the present invention.

【0094】(1)特許請求の範囲の請求項1に記載さ
れているレンズ系で、第4レンズ群が、物体側から順
に、全体として正の屈折力を有する第41レンズ群と、
全体として正の屈折力を有する第42レンズ群とからな
り、第41レンズ群が少なくとも1枚の物体側に凹面を
向けた正のメニスカスレンズと少なくとも1枚の物体側
に凹面を向けた負のメニスカスレンズまたは負の屈折力
の強い方の面を物体側に向けた両凹レンズとを含み、第
42レンズ群が少なくとも1枚の正レンズと少なくとも
1枚の負レンズを含んでいて、以下の条件(4)、
(5)を満足するバックフォーカスの長いズームレン
ズ。
(1) In the lens system described in claim 1, the fourth lens group has, in order from the object side, a forty-first lens group having a positive refracting power as a whole,
It is composed of a 42nd lens group having a positive refracting power as a whole, and the 41st lens group has a positive meniscus lens having a concave surface facing at least one object side and a negative meniscus lens having a concave surface facing at least one object side. A meniscus lens or a biconcave lens having a surface having a negative refractive power facing the object side, and the 42nd lens group includes at least one positive lens and at least one negative lens, (4),
A zoom lens with a long back focus that satisfies (5).

【0095】(4) 0<f42/f41<0.90 (5) 0.10<fw /f42<0.50 (2)前記の(1)の項に記載されているレンズ系で、
第4レンズ群の第41レンズ群が、物体側より順に、物
体側に凹面を向けた正のメニスカスレンズと少なくとも
1枚の正レンズの第1レンズ成分と、物体側に凹面を向
けた負のメニスカスレンズの第2レンズ成分とからなる
バックフォーカスの長いズームレンズ。
(4) 0 <f 42 / f 41 <0.90 (5) 0.10 < fw / f 42 <0.50 (2) The lens system described in the item (1) above. so,
The 41st lens group of the 4th lens group includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side, a first lens component of at least one positive lens, and a negative lens having a concave surface facing the object side. A zoom lens with a long back focus consisting of the second lens component of the meniscus lens.

【0096】(3)前記の(1)の項に記載されている
レンズ系で、第4レンズ群の第41レンズ群が、物体側
から順に、少なくとも1枚の物体側に凹面を向けた負レ
ンズからなる第1レンズ成分と像側に凸面を向けた正の
メニスカスレンズ又は正の屈折力の強い方の面を像側に
向けた両凸形状の正レンズを少なくとも含む正のレンズ
からなる第2レンズ成分と物体側に凹面を向けた負のメ
ニスカスレンズからなる第3レンズ成分とにて構成され
ているバックフォーカスの長いズームレンズ。
(3) In the lens system described in the item (1), the 41st lens group of the 4th lens group has, in order from the object side, a negative surface having a concave surface facing at least one object side. A first lens component comprising a lens and a positive lens including at least a positive meniscus lens having a convex surface directed toward the image side or a positive lens having at least a biconvex positive lens having a positive refractive power surface directed toward the image side; A zoom lens with a long back focus, which is composed of two lens components and a third lens component which is a negative meniscus lens having a concave surface facing the object side.

【0097】[0097]

【発明の効果】本発明によれば、比較的簡単なズーム構
成でありながら、撮像管や固体撮像素子等を用いた電子
カメラ、特に近年の高精細画像を取り込む用途に適した
画素数の多い撮像素子を用いた電子カメラに最適な、高
い光学性能を有し、光学系と撮像素子との間に、各種フ
ィルター類等の光学素子や光路分割用のプリズム等の光
学素子を挿入することの出来る大きなバックフォーカス
を有するズームレンズを得ることが出来る。
According to the present invention, an electronic camera using an image pickup tube, a solid-state image pickup device, and the like, which has a relatively simple zoom structure, has a large number of pixels suitable for use in capturing high-definition images in recent years. It has high optical performance, which is optimal for electronic cameras using image pickup devices, and it is possible to insert optical devices such as various filters and optical path splitting prisms between the optical system and the image pickup device. It is possible to obtain a zoom lens having a large back focus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例5の断面図FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】本発明の実施例6の断面図FIG. 6 is a sectional view of a sixth embodiment of the present invention.

【図7】本発明の実施例7の断面図FIG. 7 is a sectional view of a seventh embodiment of the present invention.

【図8】本発明の実施例8の断面図FIG. 8 is a sectional view of an eighth embodiment of the present invention.

【図9】本発明の実施例9の断面図FIG. 9 is a sectional view of a ninth embodiment of the present invention.

【図10】本発明の実施例10の断面図FIG. 10 is a sectional view of Example 10 of the present invention.

【図11】本発明の実施例11の断面図FIG. 11 is a sectional view of Embodiment 11 of the present invention.

【図12】本発明の実施例1の広角端における収差曲線
FIG. 12 is an aberration curve diagram at the wide-angle end according to Example 1 of the present invention.

【図13】本発明の実施例1の中間焦点距離における収
差曲線図
FIG. 13 is an aberration curve diagram for Example 1 of the present invention at an intermediate focal length.

【図14】本発明の実施例1の望遠端における収差曲線
FIG. 14 is an aberration curve diagram of Example 1 of the present invention at the telephoto end.

【図15】本発明の実施例2の広角端における収差曲線
FIG. 15 is an aberration curve diagram at the wide-angle end according to Example 2 of the present invention.

【図16】本発明の実施例2の中間焦点距離における収
差曲線図
FIG. 16 is an aberration curve diagram for Example 2 of the present invention at an intermediate focal length.

【図17】本発明の実施例2の望遠端における収差曲線
FIG. 17 is an aberration curve diagram for Example 2 of the present invention at the telephoto end.

【図18】本発明の実施例3の広角端における収差曲線
FIG. 18 is an aberration curve diagram for Example 3 of the present invention at the wide-angle end.

【図19】本発明の実施例3の中間焦点距離における収
差曲線図
FIG. 19 is an aberration curve diagram for Example 3 of the present invention at an intermediate focal length.

【図20】本発明の実施例3の望遠端における収差曲線
FIG. 20 is an aberration curve diagram for Example 3 of the present invention at the telephoto end.

【図21】本発明の実施例4の広角端における収差曲線
FIG. 21 is an aberration curve diagram at the wide-angle end according to Example 4 of the present invention.

【図22】本発明の実施例4の中間焦点距離における収
差曲線図
FIG. 22 is an aberration curve diagram for Example 4 of the present invention at an intermediate focal length.

【図23】本発明の実施例4の望遠端における収差曲線
FIG. 23 is an aberration curve diagram for Example 4 of the present invention at the telephoto end.

【図24】本発明の実施例5の広角端における収差曲線
FIG. 24 is an aberration curve diagram at the wide-angle end according to Example 5 of the present invention.

【図25】本発明の実施例5の中間焦点距離における収
差曲線図
FIG. 25 is an aberration curve diagram for Example 5 of the present invention at an intermediate focal length.

【図26】本発明の実施例5の望遠端における収差曲線
FIG. 26 is an aberration curve diagram for Example 5 of the present invention at the telephoto end.

【図27】本発明の実施例6の広角端における収差曲線
FIG. 27 is an aberration curve diagram at the wide-angle end according to Example 6 of the present invention.

【図28】本発明の実施例6の中間焦点距離における収
差曲線図
FIG. 28 is an aberration curve diagram for Example 6 of the present invention at an intermediate focal length.

【図29】本発明の実施例6の望遠端における収差曲線
FIG. 29 is an aberration curve diagram for Example 6 of the present invention at the telephoto end.

【図30】本発明の実施例7の広角端における収差曲線
FIG. 30 is an aberration curve diagram at the wide-angle end according to Example 7 of the present invention.

【図31】本発明の実施例7の中間焦点距離における収
差曲線図
FIG. 31 is an aberration curve diagram for Example 7 of the present invention at an intermediate focal length.

【図32】本発明の実施例7の望遠端における収差曲線
FIG. 32 is an aberration curve diagram for Example 7 of the present invention at the telephoto end.

【図33】本発明の実施例8の広角端における収差曲線
FIG. 33 is an aberration curve diagram at the wide-angle end according to Example 8 of the present invention.

【図34】本発明の実施例8の中間焦点距離における収
差曲線図
34 is an aberration curve diagram for Example 8 of the present invention at an intermediate focal length. FIG.

【図35】本発明の実施例8の望遠端における収差曲線
FIG. 35 is an aberration curve diagram for Example 8 of the present invention at the telephoto end.

【図36】本発明の実施例9の広角端における収差曲線
FIG. 36 is an aberration curve diagram at the wide-angle end according to Example 9 of the present invention.

【図37】本発明の実施例9の中間焦点距離における収
差曲線図
FIG. 37 is an aberration curve diagram at an intermediate focal length of Example 9 of the present invention.

【図38】本発明の実施例9の望遠端における収差曲線
FIG. 38 is an aberration curve diagram for Example 9 of the present invention at the telephoto end.

【図39】本発明の実施例10の広角端における収差曲
線図
FIG. 39 is an aberration curve diagram at the wide-angle end according to Example 10 of the present invention.

【図40】本発明の実施例10の中間焦点距離における
収差曲線図
FIG. 40 is an aberration curve diagram for Example 10 of the present invention at an intermediate focal length.

【図41】本発明の実施例10の望遠端における収差曲
線図
FIG. 41 is an aberration curve diagram for Example 10 of the present invention at the telephoto end.

【図42】本発明の実施例11の広角端における収差曲
線図
FIG. 42 is an aberration curve diagram at the wide-angle end according to Example 11 of the present invention.

【図43】本発明の実施例11の中間焦点距離における
収差曲線図
FIG. 43 is an aberration curve diagram at the intermediate focal length of Example 11 of the present invention.

【図44】本発明の実施例11の望遠端における収差曲
線図
FIG. 44 is an aberration curve diagram for Example 11 of the present invention at the telephoto end.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、正の屈折力を持ちズーミ
ングに際して固定である第1レンズ群と、負の屈折力を
持ちズーミングに際して光軸に沿って単調に移動する第
2レンズ群と、正又は負の屈折力を持ちズーミングに際
して光軸に沿って前後に移動する第3レンズ群と、正の
屈折力を持ちズーミングに際して光軸に沿って前後に移
動する第4レンズ群とよりなり、前記第3レンズ群が、
物体側より順に、正の屈折力を持つ第1レンズ成分と、
両凹形状の負レンズと両凸又は物体側に凸面を向けたメ
ニスカス形状の負レンズとを貼り合わせた全体として負
の屈折力の接合レンズの第2レンズ成分とより構成され
ているバックフォーカスの長いズームレンズ。
1. A first lens group having a positive refracting power and fixed during zooming, and a second lens group having a negative refracting power and monotonically moving along the optical axis during zooming, in order from the object side. A third lens group having positive or negative refracting power and moving back and forth along the optical axis during zooming, and a fourth lens group having positive refracting power and moving back and forth along the optical axis during zooming, The third lens group,
A first lens component having a positive refractive power in order from the object side;
A back focus composed of a second lens component of a cemented lens having a negative refracting power as a whole obtained by bonding a biconcave negative lens and a biconvex or meniscus negative lens having a convex surface facing the object side. Long zoom lens.
【請求項2】下記の条件(1),(2)を満足する請求
項1のバックフォーカスの長いズームレンズ。 (1) n32n <n32p (2) ν32p <ν32n ただし、n32p ,n32n は夫々第3レンズ群の第2レン
ズ成分の正レンズおよび負レンズの屈折率、ν32p ,ν
32n は夫々第3レンズ群の第2レンズ成分の正レンズお
よび負レンズのアッベ数である。
2. A zoom lens with a long back focus according to claim 1, which satisfies the following conditions (1) and (2). (1) n 32n <n 32p (2) ν 32p32n where n 32p and n 32n are the refractive indices of the positive lens and the negative lens of the second lens component of the third lens group, and ν 32p and ν, respectively.
32n is the Abbe number of the positive lens and the negative lens of the second lens component of the third lens group, respectively.
【請求項3】下記条件(3)を満足する請求項1又は2
のバックフォーカスの長いズームレンズ。 (3) −0.30<fw /f3 <0.10 ただし、fw は広角端における全系の焦点距離、f3
第3レンズ群の焦点距離である。
3. The method according to claim 1 or 2, which satisfies the following condition (3).
Long back focus zoom lens. (3) -0.30 <f w / f 3 <0.10 where the f w focal length, f 3 of the entire system at the wide angle end is the focal length of the third lens group.
JP06001895A 1995-02-24 1995-02-24 Zoom lens with long back focus Expired - Fee Related JP3519815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06001895A JP3519815B2 (en) 1995-02-24 1995-02-24 Zoom lens with long back focus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06001895A JP3519815B2 (en) 1995-02-24 1995-02-24 Zoom lens with long back focus

Publications (2)

Publication Number Publication Date
JPH08234107A true JPH08234107A (en) 1996-09-13
JP3519815B2 JP3519815B2 (en) 2004-04-19

Family

ID=13129912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06001895A Expired - Fee Related JP3519815B2 (en) 1995-02-24 1995-02-24 Zoom lens with long back focus

Country Status (1)

Country Link
JP (1) JP3519815B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121942A (en) * 1998-10-16 2000-04-28 Olympus Optical Co Ltd Zoom lens
JP2002169087A (en) * 2000-11-30 2002-06-14 Canon Inc Zoom lens and optical equipment using the same
JP2005181635A (en) * 2003-12-18 2005-07-07 Sony Corp Zoom lens and image pickup device
US7212350B2 (en) * 2005-03-24 2007-05-01 Fujinon Corporation Zoom optical system that includes a function of preventing blurring of an image
CN104076495A (en) * 2013-03-27 2014-10-01 佳能株式会社 Zoom lens and image pickup device including the same
JP2014232335A (en) * 2014-09-17 2014-12-11 リコーイメージング株式会社 Zoom lens system and electronic imaging apparatus including the same
JP2015045716A (en) * 2013-08-28 2015-03-12 株式会社リコー Zoom lens, imaging device and video camera for monitoring
JP2015049285A (en) * 2013-08-30 2015-03-16 株式会社リコー Zoom lens, imaging device, and video camera for monitoring
JP2015158642A (en) * 2014-02-25 2015-09-03 株式会社リコー Zoom lens, camera, and mobile information terminal device
CN107247324A (en) * 2017-07-27 2017-10-13 福建福光股份有限公司 Minimize high-resolution Penetrating Fog zoom lens
JP2020144206A (en) * 2019-03-06 2020-09-10 株式会社タムロン Zoom lens and image capturing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121942A (en) * 1998-10-16 2000-04-28 Olympus Optical Co Ltd Zoom lens
US6229962B1 (en) 1998-10-16 2001-05-08 Olympus Optical Co., Ltd. Zoom lens and camera using the same
JP2002169087A (en) * 2000-11-30 2002-06-14 Canon Inc Zoom lens and optical equipment using the same
JP4630451B2 (en) * 2000-11-30 2011-02-09 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP2005181635A (en) * 2003-12-18 2005-07-07 Sony Corp Zoom lens and image pickup device
US7212350B2 (en) * 2005-03-24 2007-05-01 Fujinon Corporation Zoom optical system that includes a function of preventing blurring of an image
CN104076495A (en) * 2013-03-27 2014-10-01 佳能株式会社 Zoom lens and image pickup device including the same
US9726866B2 (en) 2013-03-27 2017-08-08 Canon Kabushiki Kaisha Zoom lens and image pickup device including the same
JP2015045716A (en) * 2013-08-28 2015-03-12 株式会社リコー Zoom lens, imaging device and video camera for monitoring
JP2015049285A (en) * 2013-08-30 2015-03-16 株式会社リコー Zoom lens, imaging device, and video camera for monitoring
JP2015158642A (en) * 2014-02-25 2015-09-03 株式会社リコー Zoom lens, camera, and mobile information terminal device
JP2014232335A (en) * 2014-09-17 2014-12-11 リコーイメージング株式会社 Zoom lens system and electronic imaging apparatus including the same
CN107247324A (en) * 2017-07-27 2017-10-13 福建福光股份有限公司 Minimize high-resolution Penetrating Fog zoom lens
CN107247324B (en) * 2017-07-27 2019-12-24 福建福光股份有限公司 Miniaturized high-resolution fog-penetrating zoom lens
JP2020144206A (en) * 2019-03-06 2020-09-10 株式会社タムロン Zoom lens and image capturing device

Also Published As

Publication number Publication date
JP3519815B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
US4772106A (en) Compact zoom lens system
US20070263295A1 (en) Zoom lens system
JP3173277B2 (en) Zoom lens
JPH08248317A (en) Zoom lens
JP2002365548A (en) Zoom lens
JP3204703B2 (en) Zoom lens
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JP3231355B2 (en) Small zoom lens
JP4101992B2 (en) Compact high-magnification wide-angle zoom lens
JP3519815B2 (en) Zoom lens with long back focus
JPH0634885A (en) Zoom lens
JP2000275523A (en) Zoom lens system
JPH06289297A (en) Zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3445359B2 (en) Zoom lens
US20030189763A1 (en) Zoom lens and image pickup apparatus
JP3733355B2 (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JPH0634886A (en) Variable power lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3183047B2 (en) Zoom lens
JP3346622B2 (en) Zoom lens
JP2000214380A (en) Photographing lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130206

LAPS Cancellation because of no payment of annual fees