JP4683889B2 - FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL - Google Patents

FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL Download PDF

Info

Publication number
JP4683889B2
JP4683889B2 JP2004281670A JP2004281670A JP4683889B2 JP 4683889 B2 JP4683889 B2 JP 4683889B2 JP 2004281670 A JP2004281670 A JP 2004281670A JP 2004281670 A JP2004281670 A JP 2004281670A JP 4683889 B2 JP4683889 B2 JP 4683889B2
Authority
JP
Japan
Prior art keywords
support substrate
gas flow
fuel cell
distance
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004281670A
Other languages
Japanese (ja)
Other versions
JP2005183362A (en
Inventor
和人 松上
雅人 西原
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004281670A priority Critical patent/JP4683889B2/en
Publication of JP2005183362A publication Critical patent/JP2005183362A/en
Application granted granted Critical
Publication of JP4683889B2 publication Critical patent/JP4683889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池セル及びその製法並びに燃料電池に関し、特に、7kW未満の家庭用、店舗用として好適に用いられる分散型発電用の燃料電池セル及びその製法並びに燃料電池に関するものである。   The present invention relates to a fuel cell, a method for producing the same, and a fuel cell, and more particularly to a fuel cell for distributed power generation suitably used for homes and stores of less than 7 kW, a method for producing the same, and a fuel cell.

近年、次世代エネルギーとして、セルスタックを収納容器内に収納した燃料電池が種々提案されている。
Recently, as a next-generation energy, fuel cells have been proposed for accommodating the cell Luz tuck storage container.

図5は、従来の固体電解質形燃料電池の燃料電池セル1を示すもので、燃料電池セル1は、軸長方向に複数のガス流路3を有する多孔質の支持体を兼ねた扁平な空気極からなる内側電極1a上の外周面に、緻密質な固体電解質1b、多孔質な燃料極からなる外側電極1cが順次形成されている。また、固体電解質1b、外側電極1cから露出した内側電極1aには、外側電極1cに接続しないようにインターコネクタ1dが設けられ、内側電極1aと電気的に接続している。   FIG. 5 shows a fuel cell 1 of a conventional solid oxide fuel cell. The fuel cell 1 is flat air that also serves as a porous support having a plurality of gas flow paths 3 in the axial direction. A dense solid electrolyte 1b and an outer electrode 1c made of a porous fuel electrode are sequentially formed on the outer peripheral surface of the inner electrode 1a made of an electrode. The inner electrode 1a exposed from the solid electrolyte 1b and the outer electrode 1c is provided with an interconnector 1d so as not to be connected to the outer electrode 1c, and is electrically connected to the inner electrode 1a.

このような燃料電池セル1では形状を扁平状とすることにより、燃料電池セル1当たりの発電部の面積を増加させることができ、発電量を増加させることができる。   In such a fuel cell 1, by making the shape flat, the area of the power generation unit per fuel cell 1 can be increased, and the amount of power generation can be increased.

燃料電池は、上記燃料電池セル1を収納容器内に複数収納して構成され、例えば、内側電極1a内部に酸素ガス注入管5を通じて酸素含有ガスを供給し、外側電極1cの外側に燃料ガス(水素)を供給して約1000℃で発電される。   The fuel cell is configured by storing a plurality of the fuel cells 1 in a storage container. For example, an oxygen-containing gas is supplied to the inside of the inner electrode 1a through an oxygen gas injection pipe 5 and a fuel gas ( Hydrogen is supplied to generate electricity at about 1000 ° C.

この燃料電池セル1の内側電極1aと固体電解質1b、外側電極1cが重なり合っている部分が発電部であり、この発電部で発生した電流は内側電極1aを電流経路とし、インターコネクタ1dを介して他の燃料電池セル1へと接続される。
特開昭63−261678号公報
A portion where the inner electrode 1a, the solid electrolyte 1b, and the outer electrode 1c of the fuel cell 1 overlap each other is a power generation unit, and the current generated in the power generation unit uses the inner electrode 1a as a current path and passes through an interconnector 1d. It is connected to another fuel cell 1.
JP-A 63-261678

このような燃料電池セル1の内側電極1aは長尺形状をなすため、一般的に押出成形などで成形され、乾燥工程、仮焼工程を経て作製されるが、このような押出成形で成形された内側電極1aの成形体は乾燥工程、仮焼工程において、内側電極1aの側面とガス流路3との間A、ガス流路3間Bに割れが発生する傾向にあり、信頼性を十分に確保できないといった問題があった。   Since the inner electrode 1a of such a fuel battery cell 1 has a long shape, it is generally formed by extrusion molding or the like, and is manufactured through a drying process and a calcining process. The molded body of the inner electrode 1a tends to crack between the side surface of the inner electrode 1a and the gas flow path 3 and between the gas flow paths 3 in the drying process and the calcining process, and has sufficient reliability. There was a problem that could not be secured.

即ち、押出成形で成形された内側電極1aの成形体は、乾燥工程での水分の蒸発や、仮焼工程での有機バインダー成分の分解に伴い収縮が発生する。ガス流路3間距離が短い場合には、成形体外表面が収縮するよりも、成形体内部にあるガス流路3間が先に収縮するため、割れが発生しやすいという問題があった。   That is, the molded body of the inner electrode 1a formed by extrusion molding contracts with evaporation of moisture in the drying process and decomposition of the organic binder component in the calcination process. When the distance between the gas flow paths 3 is short, there is a problem that cracks are likely to occur because the space between the gas flow paths 3 inside the molded body contracts earlier than the outer surface of the molded body contracts.

特に、ガス供給量を増加させるべくガス流路3の径を大きくしたり、電流経路を短くすべく内側電極1aの厚みを薄くしたりすると、内側電極1aに割れが発生しやすいという問題があった。   In particular, if the diameter of the gas flow path 3 is increased to increase the gas supply amount, or the inner electrode 1a is decreased in thickness to shorten the current path, the inner electrode 1a is likely to be cracked. It was.

従来においては、上記観点については何ら考慮されていなかったため、燃料電池セルの製造歩留まりが低かった。さらに、作製された燃料電池セルでも、ガス流路間の距離と、ガス流路から支持基板までの距離との関係、及びガス流路から支持基板までの距離とガス流路から支持基板の側面までの距離との関係については何ら考慮されておらず、このため最適な支持基板構造が得られていなかった。   Conventionally, since the above viewpoint has not been taken into consideration, the production yield of fuel cells has been low. Further, even in the manufactured fuel cell, the relationship between the distance between the gas flow paths and the distance from the gas flow path to the support substrate, and the distance from the gas flow path to the support substrate and the side surface of the support substrate from the gas flow path No consideration was given to the relationship with the distance to the distance, and therefore an optimal support substrate structure was not obtained.

本発明は、最適な支持基板構造を有する燃料電池セル及び燃料電池を提供すること、及び製造歩留まりの高い燃料電池セルの製法を提供することを目的とする。   An object of this invention is to provide the fuel cell and fuel cell which have the optimal support substrate structure, and to provide the manufacturing method of a fuel cell with a high manufacturing yield.

本発明者等は、ガス流路間の距離とガス流路から支持基板成形体の主面までの距離との関係、及びガス流路から支持基板成形体の主面までの距離とガス流路から支持基板成形体の側面までの距離との関係が一定の関係を満足する場合には、製造工程中において、支持基板成形体の側面とガス流路との間、ガス流路間における割れを防止できることを見出した。また、作製された燃料電池セルでは、ガス流路内のガスを、ガス流路から支持基板を介して固体電解質に十分供給でき、また、起動停止を繰り返した際にも割れ発生の少ないことを見出し、本発明に至った。   The inventors have described the relationship between the distance between the gas flow paths and the distance from the gas flow path to the main surface of the support substrate molded body, and the distance from the gas flow path to the main surface of the support substrate molded body and the gas flow path. When the relationship from the distance from the side surface of the support substrate molded body to the side surface of the support substrate satisfies a certain relationship, cracks between the side surface of the support substrate molded body and the gas flow path and between the gas flow paths occur during the manufacturing process. I found out that it can be prevented. Further, in the manufactured fuel cell, the gas in the gas flow path can be sufficiently supplied from the gas flow path to the solid electrolyte via the support substrate, and the occurrence of cracks is small even when the start and stop are repeated. The headline and the present invention were reached.

即ち、本発明の燃料電池セルは、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された多孔質の支持基板を有し、該支持基板上に固体電解質、電極を形成してなる燃料電池セルであって、前記ガス流路から前記支持基板の主面までの距離をL1、前記ガス流路間の距離をL2、前記支持基板の側面側に位置する前記ガス流路から前記支持基板の側面までの距離をL3としたとき、L2>L1、L3>L1を満足することを特徴とする。
That is, the fuel battery cell of the present invention has a cross-sectional shape composed of arc-shaped portions provided at both ends in the width direction and a pair of flat portions connecting these arc-shaped portions, and a plurality of gas flows having a circular cross-section. A fuel cell having a porous support substrate formed so that a passage passes through in the axial length direction, and a solid electrolyte and an electrode are formed on the support substrate, and the support substrate from the gas flow path L2> L1 where L1 is the distance to the main surface of the substrate, L2 is the distance between the gas channels, and L3 is the distance from the gas channel located on the side surface of the support substrate to the side surface of the support substrate. , L3> L1 is satisfied.

このような燃料電池セルでは、ガス流路から支持基板の主面までの距離が薄くなるため、支持基板に設けられる固体電解質までの距離が短くなり、ガス流路内のガスを固体電解質に十分に供給することが可能となり、また、ガス流路間の距離が長いため、支持基板の主面間のガス流路間を介して電流が直線状に流れることができ、電流経路を短くすることができ、発電特性を向上できる。また、ガス流路と支持基板の側面との距離が長いため、その部分の強度を十分に得ることができ、起動停止を繰り返しても割れの発生を抑制できる。
In such a fuel cell, since the distance from the gas flow path to the main surface of the support substrate is thin, the distance to the solid electrolyte provided on the support substrate is shortened, and the gas in the gas flow path is sufficient for the solid electrolyte. In addition, since the distance between the gas flow paths is long, the current can flow in a straight line between the gas flow paths between the main surfaces of the support substrate, and the current path is shortened. Power generation characteristics can be improved. In addition, since the distance between the gas flow path and the side surface of the support substrate is long, the strength of that portion can be sufficiently obtained, and the occurrence of cracks can be suppressed even if the start and stop are repeated.

本発明の燃料電池セルの製法は、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された多孔質の支持基板を有し、該支持基板上に固体電解質、電極を形成してなる燃料電池セルの製法であって、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された支持基板成形体を形成する工程を具備するとともに、前記支持基板成形体が、前記ガス流路から前記支持基板成形体の主面までの距離をL11、前記ガス流路間の距離をL12、前記支持基板成形体の側面側に位置する前記ガス流路から前記支持基板成形体の側面までの距離をL13としたとき、L12>L11、L13>L11を満足することを特徴とする。
The fuel cell manufacturing method of the present invention has a cross-sectional shape composed of arc-shaped portions provided at both ends in the width direction and a pair of flat portions that connect these arc-shaped portions, and a plurality of gas flows having a circular cross-section. A method of manufacturing a fuel cell having a porous support substrate formed by penetrating a passage in an axial length direction, and forming a solid electrolyte and an electrode on the support substrate, wherein a cross-sectional shape is a width direction A support substrate molded body formed of an arc-shaped portion provided at both ends and a pair of flat portions that connect these arc-shaped portions, and a plurality of gas passages having a circular cross section are formed through the axial length direction. with including a step of forming the support substrate compact is, the distance L11 from the gas flow path to the main surface of the supporting substrate molded body, the distance between the gas flow path L12, the support substrate molded body The support substrate is formed from the gas flow channel located on the side of the substrate When the distance to the side surface of the body is L13 , L12> L11 and L13> L11 are satisfied.

このような燃料電池セルの製法では、ガス流路から支持基板成形体の主面までの距離をL11、ガス流路間の距離をL12、前記支持基板成形体の側面側に位置する前記ガス流路から前記支持基板成形体の側面までの距離をL13としたとき、L12>L11、L13>L11とすることで、乾燥工程等による収縮がガス流路間よりも外表面(ガス流路から支持基板の主面まで)から先に起こるため、ガス流路間に発生する収縮による引っ張り応力を緩和することができ、割れの発生を抑制できる。また、収縮が最も早く進行する外周側面(ガス流路から支持基板成形体の側面まで)に収縮により発生する応力を、乾燥収縮を遅くすることにより緩和することができ、ガス流路と支持基板成形体の側面との間に発生する割れを抑制できる。
In such a fuel cell manufacturing method, the distance from the gas flow path to the main surface of the support substrate molded body is L11, the distance between the gas flow paths is L12 , and the gas flow located on the side surface side of the support substrate molded body is When the distance from the path to the side surface of the support substrate molded body is L13 , the shrinkage due to the drying process or the like is caused by the drying process or the like on the outer surface (supported from the gas flow path) by setting L12> L11 and L13> L11. Since this occurs first from the main surface of the substrate, the tensile stress due to the contraction generated between the gas flow paths can be relaxed, and the occurrence of cracks can be suppressed. In addition, the stress generated by the shrinkage on the outer peripheral side surface (from the gas flow path to the side surface of the support substrate molded body) where the shrinkage proceeds most quickly can be alleviated by slowing the drying shrinkage. Cracks occurring between the side surfaces of the molded body can be suppressed.

また、本発明の燃料電池セルの製法は、L11が0.5mm以上であることが望ましい。このような燃料電池セルの製法では、支持基板成形体の収縮にともない外表面(ガス流路から支持基板成形体の主面まで)に発生する、応力による割れの発生を抑制できる。   Moreover, as for the manufacturing method of the fuel battery cell of this invention, it is desirable that L11 is 0.5 mm or more. In such a fuel cell manufacturing method, it is possible to suppress the occurrence of cracking due to stress that occurs on the outer surface (from the gas flow path to the main surface of the support substrate molded body) as the support substrate molded body contracts.

本発明の燃料電池は、上記した燃料電池セルを収納容器内に複数収納してなることを特徴とする。このような燃料電池では、燃料電池セルの発電特性を向上でき、しかも破損を防止できるため、信頼性に優れた発電特性の良好な燃料電池を提供できる。   The fuel cell of the present invention is characterized in that a plurality of the above-described fuel cells are accommodated in a storage container. In such a fuel cell, the power generation characteristics of the fuel battery cell can be improved and damage can be prevented, so that a fuel cell with excellent reliability and power generation characteristics can be provided.

本発明の燃料電池セルでは発電特性を向上でき、劣化や破損を低減できる。また、本発明の燃料電池セルの製法では、製造工程中における破損を防止し、製造歩留まりを向上できる。   In the fuel cell of the present invention, power generation characteristics can be improved, and deterioration and breakage can be reduced. Moreover, in the manufacturing method of the fuel cell of the present invention, damage during the manufacturing process can be prevented, and the manufacturing yield can be improved.

本発明の燃料電池セルは、図1に示すように、断面が板状で、全体的に見て板状で、かつ柱状の多孔質な導電性支持体(以下、支持基板)33aを具備するもので、この支持基板33aの平坦な一方側主面と両端の弧状の側面を覆うように、多孔質な燃料側電極33bが設けられており、さらにこの燃料側電極33bを覆うように緻密質な固体電解質33cが積層されており、この固体電解質33cの上には酸素側電極33dが順次積層されている。また、前記酸素側電極33dと反対側の支持基板33aの平坦な他方側主面には中間膜33e、インターコネクタ33f、P型半導体33gが順次積層されている。   As shown in FIG. 1, the fuel cell of the present invention has a plate-like cross section, a plate shape as a whole, and a columnar porous conductive support (hereinafter referred to as a support substrate) 33a. Therefore, a porous fuel side electrode 33b is provided so as to cover the flat main surface of the support substrate 33a and the arc-shaped side surfaces at both ends, and the fuel substrate electrode 33b is further densely covered. A solid electrolyte 33c is stacked, and an oxygen side electrode 33d is sequentially stacked on the solid electrolyte 33c. An intermediate film 33e, an interconnector 33f, and a P-type semiconductor 33g are sequentially stacked on the flat main surface of the other side of the support substrate 33a opposite to the oxygen side electrode 33d.

また、本発明の燃料電池セルは、全体的に見て板状でかつ柱状であり、その内部の支持基板33aには断面円形の6個のガス流路34が軸長(長さ)方向に形成されている。   The fuel cell of the present invention is plate-like and columnar as a whole, and six gas flow paths 34 having a circular cross section are provided in the axial length (length) direction on the support substrate 33a inside. Is formed.

即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部Bと、これらの弧状部Bを連結する一対の平坦部Aとから構成されており、一対の平坦部Aは平坦であり、ほぼ平行に形成されている。これらの燃料電池セル33の平坦部Aのうち一方は、支持基板33aの一方側主面上に燃料側電極33b、固体電解質33c、酸素側電極33dを形成して構成され、他方の平坦部Aは、支持基板33aの他方側主面上に中間膜33e、インターコネクタ33f、P型半導体33gを形成して構成されている。   That is, the fuel cell 33 has a cross-sectional shape including an arc-shaped portion B provided at both ends in the width direction and a pair of flat portions A that connect these arc-shaped portions B. It is flat and formed substantially in parallel. One of the flat portions A of these fuel cells 33 is configured by forming a fuel side electrode 33b, a solid electrolyte 33c, and an oxygen side electrode 33d on one main surface of the support substrate 33a, and the other flat portion A. Is configured by forming an intermediate film 33e, an interconnector 33f, and a P-type semiconductor 33g on the other main surface of the support substrate 33a.

固体電解質33cは、支持基板33aの一方側主面から両側の側面を介して他方側主面にまで延設され、インターコネクタ33fと重畳している。   The solid electrolyte 33c extends from one main surface of the support substrate 33a to the other main surface via the side surfaces on both sides, and overlaps the interconnector 33f.

燃料側電極33b、固体電解質33c、酸素側電極33dが重なり合っている部分が発電部である。この発電部分は弧状部Bにまで形成されていてもかまわない。なお、燃料電池セル33において、平坦部Aに形成された発電部が主たる発電部である。   The portion where the fuel side electrode 33b, the solid electrolyte 33c, and the oxygen side electrode 33d overlap is the power generation unit. This power generation portion may be formed up to the arcuate portion B. In the fuel cell 33, the power generation part formed in the flat part A is the main power generation part.

なお、弧状部Bは、発電に伴う加熱や冷却に伴い発生する熱応力を緩和するため、曲面となっていることが望ましい。   In addition, it is desirable that the arc-shaped portion B has a curved surface in order to relieve the thermal stress generated due to heating and cooling accompanying power generation.

また、支持基板33aの長径寸法(弧状部を形成する支持基板の側面間距離)は15〜40mm、短径寸法(平坦部を形成する主面間距離)が2〜10mmであることが望ましい。なお、支持基板33aの形状は板状と表現しているが、長径寸法および短径寸法が変化することにより楕円状あるいは扁平状とも表現できる。   In addition, it is desirable that the major dimension of the support substrate 33a (the distance between the side surfaces of the support substrate that forms the arc-shaped portion) is 15 to 40 mm, and the minor diameter dimension (the distance between the main surfaces that forms the flat portion) is 2 to 10 mm. In addition, although the shape of the support substrate 33a is expressed as a plate shape, it can also be expressed as an elliptical shape or a flat shape by changing the major axis dimension and the minor axis dimension.

支持基板33aの厚みが薄くなるほど、割れが発生しやすいため、支持基板33aの主面間の距離が、特に8mm以下、さらには5mm以下の場合に本発明を用いると効果的である。   As the thickness of the support substrate 33a is reduced, cracks are more likely to occur. Therefore, it is effective to use the present invention when the distance between the main surfaces of the support substrate 33a is 8 mm or less, further 5 mm or less.

また、支持基板33aには、図2に示すように、6個のガス流路34が軸長方向に貫通して形成されており、その開口端におけるガス流路34間距離L2は、乾燥収縮が外表面から起きるようにし、ガス流路間に発生する割れを防止すると言う点から1〜3mmとされている。また、最も支持基板33aの側面に近いガス流路34と支持基板33aの側面との距離L3は、乾燥収縮の起きる速度を緩和し、側面部に発生する割れを防止するという点から1〜3mmとされている。さらに、ガス流路34と支持基板33aの主面との距離L1は、外表面で発生する乾燥収縮による応力を緩和させるという点から0.5〜1mmとされている。   Further, as shown in FIG. 2, six gas passages 34 are formed in the support substrate 33a so as to penetrate in the axial direction, and the distance L2 between the gas passages 34 at the open end is determined by shrinkage in drying. Is caused to occur from the outer surface and is set to 1 to 3 mm from the viewpoint of preventing cracks generated between the gas flow paths. Further, the distance L3 between the gas flow path 34 closest to the side surface of the support substrate 33a and the side surface of the support substrate 33a is 1 to 3 mm from the viewpoint of relaxing the speed at which drying shrinkage occurs and preventing cracks occurring on the side surface portion. It is said that. Furthermore, the distance L1 between the gas flow path 34 and the main surface of the support substrate 33a is set to 0.5 to 1 mm from the viewpoint of relieving stress due to drying shrinkage generated on the outer surface.

そして、本発明の燃料電池セルでは、ガス流路34から支持基板33aの主面までの距離をL1、ガス流路34と隣接するガス流路34との間の距離をL2、ガス流路34から支持基板33aの側面までの距離をL3としたとき、L2>L1、L3>L1の関係を満足している。このような関係式を満足することにより、薄い支持基板33aのガス流路34間の距離L2が大きいため、その間を電流が直線状に流れることができ、インターコネクタ33fと酸素側電極33d間の電流経路を短くすることができる。また、ガス流路34間の距離L2よりも、ガス流路34から支持基板33aの主面までの距離L1が短いため、ガス流路34を流れる燃料ガスが、ガス流路34間で相互に流通するよりも、支持基板33aの主面へ流れやすくなり、支持基板33a、燃料電極33bを介して固体電解質33cへ十分に供給することができる。
In the fuel cell of the present invention, the distance from the gas flow path 34 to the main surface of the support substrate 33a is L1, the distance between the gas flow path 34 and the adjacent gas flow path 34 is L2 , and the gas flow path 34. When the distance from the side surface of the support substrate 33a to L3 is L3 , the relationship of L2> L1 and L3> L1 is satisfied. By satisfying such a relational expression, since the distance L2 between the gas flow paths 34 of the thin support substrate 33a is large, a current can flow in a straight line therebetween, and the distance between the interconnector 33f and the oxygen-side electrode 33d. The current path can be shortened. Further, since the distance L1 from the gas flow path 34 to the main surface of the support substrate 33a is shorter than the distance L2 between the gas flow paths 34, the fuel gas flowing through the gas flow path 34 is mutually exchanged between the gas flow paths 34. It is easier to flow to the main surface of the support substrate 33a than to circulate and can be sufficiently supplied to the solid electrolyte 33c via the support substrate 33a and the fuel electrode 33b.

さらに、ガス流路34から支持基板33aの側面までの距離L3がガス流路34と支持基板33aの主面との距離L1よりも長いため、燃料電池の起動停止を繰り返したとしても、側面部分におけるクラックを防止できる。さらには、このような燃料電池セルでは、高い燃料利用率で発電を行った場合でも、ガス流路出口付近の支持基板が劣化あるいは破損することが無い。
Furthermore , since the distance L3 from the gas flow path 34 to the side surface of the support substrate 33a is longer than the distance L1 between the gas flow path 34 and the main surface of the support substrate 33a, even if the start and stop of the fuel cell are repeated, the side surface portion Can prevent cracks. Furthermore, in such a fuel cell, even when power generation is performed at a high fuel utilization rate, the support substrate near the gas flow path outlet does not deteriorate or break.

尚、ガス流路34から支持基板33aの主面までの距離L1は、支持基板33aの主面に平行で、ガス流路34に接する直線と、支持基板33aの主面との距離を測定することにより得られる。また、ガス流路34間の距離L2は、それぞれに接する平行な直線(主面と直交)間の距離を測定することにより得られる。さらに、ガス流路34から支持基板33aの側面までの距離L3は、最も外側に位置するガス流路34と、支持基板33aの側面に接する平行な直線(主面と直交)間の距離を測定することにより得られる。   The distance L1 from the gas flow path 34 to the main surface of the support substrate 33a is parallel to the main surface of the support substrate 33a, and the distance between the straight line in contact with the gas flow path 34 and the main surface of the support substrate 33a is measured. Can be obtained. Further, the distance L2 between the gas flow paths 34 is obtained by measuring the distance between parallel straight lines (perpendicular to the main surface) in contact with each. Further, the distance L3 from the gas flow path 34 to the side surface of the support substrate 33a is a distance between the gas flow path 34 located on the outermost side and a parallel straight line (perpendicular to the main surface) contacting the side surface of the support substrate 33a. Can be obtained.

この支持基板33aは、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm及びPrから選ばれた1種以上からなる希土類元素酸化物と、Ni及び/又はNiOとを主成分とすることが望ましい。   This support substrate 33a is composed mainly of a rare earth element oxide composed of one or more selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm and Pr, and Ni and / or NiO. It is desirable to do.

支持基板33aとインターコネクタ33fの間に形成される中間膜33eは、Ni及び/またはNiOと希土類元素を含有するZrOを主成分とするものである。中間膜33e中のNi化合物のNi換算量は全量中35〜80体積%が望ましく、さらに50〜70体積%が望ましい。Niを35体積%以上とすることで、Niによる導電パスが増加し、中間膜33eの伝導度が向上し、電圧降下が小さくなる。また、Niを80体積%以下とすることで、支持基板33aとインターコネクタ33fの間の熱膨張係数差を小さくすることができ、両者の界面の亀裂が発生を抑制できる。 The intermediate film 33e formed between the support substrate 33a and the interconnector 33f is composed mainly of ZrO 2 containing Ni and / or NiO and a rare earth element. The Ni conversion amount of the Ni compound in the intermediate film 33e is preferably 35 to 80% by volume, more preferably 50 to 70% by volume, based on the total amount. By setting Ni to 35% by volume or more, the conductive path by Ni is increased, the conductivity of the intermediate film 33e is improved, and the voltage drop is reduced. Moreover, by making Ni 80 volume% or less, the thermal expansion coefficient difference between the support substrate 33a and the interconnector 33f can be made small, and generation | occurrence | production of the crack of both interface can be suppressed.

また、電位降下が小さくなるという点から中間膜33eの厚みは20μm以下が望ましく、さらに、10μm以下が望ましい。   In addition, the thickness of the intermediate film 33e is preferably 20 μm or less, and more preferably 10 μm or less from the viewpoint that the potential drop is reduced.

中希土類元素や重希土類元素の酸化物の熱膨張係数は、固体電解質33cのYを含有するZrOの熱膨張係数より小さく、Niとのサーメット材としての支持基板33aの熱膨張係数を固体電解質33cの熱膨張係数に近づけることができ、固体電解質33cの割れや、固体電解質33cの燃料側電極33bからの剥離を抑制できる。熱膨張係数が小さい重希土類元素酸化物を用いることで、支持基板33a中のNiを多くでき、導電性支持体33aの電気伝導度を上げることができるという点からも重希土類元素酸化物を用いることが望ましい。 The thermal expansion coefficient of the medium rare earth element or heavy rare earth element oxide is smaller than the thermal expansion coefficient of ZrO 2 containing Y 2 O 3 of the solid electrolyte 33c, and the thermal expansion coefficient of the support substrate 33a as a cermet material with Ni. Can be brought close to the thermal expansion coefficient of the solid electrolyte 33c, and cracking of the solid electrolyte 33c and separation of the solid electrolyte 33c from the fuel side electrode 33b can be suppressed. By using a heavy rare earth element oxide having a small thermal expansion coefficient, the amount of Ni in the support substrate 33a can be increased, and the heavy rare earth element oxide is also used from the viewpoint that the electrical conductivity of the conductive support 33a can be increased. It is desirable.

なお、軽希土類元素のLa、Ce、Pr、Ndの酸化物は、希土類元素酸化物の熱膨張係数の総和が固体電解質33cの熱膨張係数未満である範囲であれば、中希土類元素、重希土類元素に加えて含有されていても何ら問題はない。   The light rare earth elements La, Ce, Pr, and Nd oxides may be medium rare earth elements, heavy rare earth elements as long as the sum of the thermal expansion coefficients of the rare earth element oxides is less than the thermal expansion coefficient of the solid electrolyte 33c. There is no problem even if it is contained in addition to the elements.

また、精製途中の安価な複数の希土類元素を含む複合希土類元素酸化物を用いることにより原料コストを大幅に下げることができる。その場合も、複合希土類元素酸化物の熱膨張係数は固体電解質33cの熱膨張係数未満であることが望ましい。   Moreover, the raw material cost can be significantly reduced by using a complex rare earth element oxide containing a plurality of inexpensive rare earth elements in the course of purification. Also in that case, it is desirable that the thermal expansion coefficient of the complex rare earth element oxide is less than the thermal expansion coefficient of the solid electrolyte 33c.

また、インターコネクタ33f表面に、例えば、遷移金属ペロブスカイト型酸化物からなるP型半導体33gを設けることが望ましい。インターコネクタ33f表面に直接金属の集電部材を配して集電すると非オーム接触により、電位降下が大きくなる。オーム接触をし、電位降下を少なくするためには、インターコネクタ33fにP型半導体33gを接続する必要があり、P型半導体である遷移金属ペロブスカイト型酸化物を用いることが望ましい。遷移金属ペロブスカイト型酸化物としては、ランタン−マンガン系酸化物、ランタン−鉄系酸化物、ランタン−コバルト系酸化物、又は、それらの複合酸化物の少なくとも一種からなることが望ましい。   Further, it is desirable to provide a P-type semiconductor 33g made of, for example, a transition metal perovskite oxide on the surface of the interconnector 33f. When a metal current collecting member is disposed directly on the surface of the interconnector 33f to collect current, the potential drop increases due to non-ohmic contact. In order to make ohmic contact and reduce the potential drop, it is necessary to connect the P-type semiconductor 33g to the interconnector 33f, and it is desirable to use a transition metal perovskite oxide that is a P-type semiconductor. The transition metal perovskite oxide is preferably made of at least one of a lanthanum-manganese oxide, a lanthanum-iron oxide, a lanthanum-cobalt oxide, or a composite oxide thereof.

支持基板33aの主面に設けられた燃料側電極33bは、Niと希土類元素が固溶したZrOとから構成される。この燃料側電極33bの厚みは1〜30μmであることが望ましい。燃料側電極33bの厚みを1μm以上とすることで、燃料側電極33bとしての3層界面が十分に形成される。また、燃料側電極33bの厚みを30μm以下とすることで固体電解質33cとの熱膨張差による界面剥離を防止できる。 The fuel side electrode 33b provided on the main surface of the support substrate 33a is composed of Ni and ZrO 2 in which a rare earth element is dissolved. The thickness of the fuel side electrode 33b is desirably 1 to 30 μm. By setting the thickness of the fuel side electrode 33b to 1 μm or more, a three-layer interface as the fuel side electrode 33b is sufficiently formed. Further, by setting the thickness of the fuel side electrode 33b to 30 μm or less, it is possible to prevent interface peeling due to a difference in thermal expansion from the solid electrolyte 33c.

この燃料側電極33bの主面に設けられた固体電解質33cは、3〜15モル%のY等の希土類元素を含有した部分安定化あるいは安定化ZrOからなる緻密なセラミックスから構成される。希土類元素としては、安価であるという点からYもしくはYbが望ましい。 The solid electrolyte 33c provided on the main surface of the fuel side electrode 33b is made of a dense ceramic made of partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of a rare earth element such as Y. As the rare earth element, Y or Yb is desirable because it is inexpensive.

固体電解質33cの厚みは、10〜100μmであることが望ましい。固体電解質33cの厚みを10μm以上とすることで、ガス透過を防止できる。また、固体電解質33cの厚みを100μm以下にすることで、抵抗成分の増加を抑制できる。   The thickness of the solid electrolyte 33c is desirably 10 to 100 μm. Gas permeation can be prevented by setting the thickness of the solid electrolyte 33c to 10 μm or more. Moreover, the increase in a resistance component can be suppressed by making the thickness of the solid electrolyte 33c into 100 micrometers or less.

また、酸素側電極33dは、遷移金属ペロブスカイト型酸化物のランタン−マンガン系酸化物、ランタン−鉄系酸化物、ランタン−コバルト系酸化物、または、それらの複合酸化物の少なくとも一種の多孔質の導電性セラミックスから構成されている。酸素側電極33dは、800℃程度の中温域での電気伝導性が高いという点から(La,Sr)(Fe,Co)O系が望ましい。酸素側電極33dの厚みは、集電性という点から30〜100μmであることが望ましい。 The oxygen side electrode 33d is made of a lanthanum-manganese oxide, lanthanum-iron oxide, lanthanum-cobalt oxide of a transition metal perovskite oxide, or at least one porous oxide of a composite oxide thereof. It is composed of conductive ceramics. The oxygen side electrode 33d is preferably a (La, Sr) (Fe, Co) O 3 system in terms of high electrical conductivity in the middle temperature range of about 800 ° C. The thickness of the oxygen-side electrode 33d is desirably 30 to 100 μm from the viewpoint of current collection.

インターコネクタ33fは、支持基板33aの内外の燃料ガス、酸素含有ガスの漏出を防止するため緻密体とされており、また、インターコネクタ33fの内外面は、燃料ガス、酸素含有ガスと接触するため、耐還元性、耐酸化性を有している。   The interconnector 33f is a dense body for preventing leakage of fuel gas and oxygen-containing gas inside and outside the support substrate 33a, and the inner and outer surfaces of the interconnector 33f are in contact with the fuel gas and oxygen-containing gas. It has reduction resistance and oxidation resistance.

このインターコネクタ33fの厚みは、30〜200μmであることが望ましい。インターコネクタ33fの厚みを30μm以上とすることで、ガス透過を完全に防止でき、200μm以下とすることで、抵抗成分の増加を抑制できる。   The thickness of the interconnector 33f is desirably 30 to 200 μm. By setting the thickness of the interconnector 33f to 30 μm or more, gas permeation can be completely prevented, and by setting it to 200 μm or less, an increase in resistance component can be suppressed.

このインターコネクタ33fの端部と固体電解質33cの端部との間には、シール性を向上すべく例えば、Niと、Yを固溶したZrOとからなる接合層を介在させても良い。 Between the end of the interconnector 33f and the end of the solid electrolyte 33c, for example, a bonding layer made of Ni and ZrO 2 in which Y 2 O 3 is dissolved is interposed in order to improve the sealing performance. Also good.

なお、上述した支持基板33aと、内側電極33bは、従来用いられている支持体を兼ねた内側電極に置き換えることが可能である。すなわち、支持基板33aと、内側電極33bとを、例えば、NiとYSZからなる燃料側電極等から形成してもよい。   The support substrate 33a and the inner electrode 33b described above can be replaced with a conventionally used inner electrode that also serves as a support. That is, you may form the support substrate 33a and the inner side electrode 33b from the fuel side electrode etc. which consist of Ni and YSZ, for example.

以上のような燃料電池セル33の製法について説明する。先ず、La、Ce、Pr、Ndの元素を除く希土類元素酸化物粉末とNi及び/又はNiO粉末を混合し、この混合粉末に、有機バインダーと、溶媒とを混合した支持基板材料を押出成形して、図3に示すような板状の支持基板成形体55を作製し、これを乾燥、脱脂する。   The manufacturing method of the fuel cell 33 as described above will be described. First, a rare earth element oxide powder excluding La, Ce, Pr, and Nd elements and Ni and / or NiO powder are mixed, and a support substrate material in which an organic binder and a solvent are mixed is extruded into the mixed powder. Then, a plate-like support substrate molded body 55 as shown in FIG. 3 is produced, and this is dried and degreased.

支持基板成形体55は、長径寸法(弧状部を形成する支持基板成形体55の側面間距離)は15〜40mm、短径寸法(平坦部を形成する主面間距離)が2.5〜12.5mmであることが望ましい。支持基板成形体55の厚みが薄くなるほど、割れが発生しやすいため、支持基板成形体55の主面間の距離が、特に10mm以下、さらには6.3mm以下の場合に本発明を用いると効果的である。   The support substrate molded body 55 has a major axis dimension (a distance between the side surfaces of the support substrate molded body 55 forming the arc-shaped portion) of 15 to 40 mm, and a minor axis dimension (a distance between main surfaces forming the flat portion) of 2.5 to 12. .5mm is desirable. As the thickness of the support substrate molded body 55 becomes thinner, cracks are more likely to occur. Therefore, the present invention is effective when the distance between the main surfaces of the support substrate molded body 55 is 10 mm or less, more preferably 6.3 mm or less. Is.

また、支持基板成形体55には、6個のガス流路34が軸長方向に形成されており、その開口端におけるガス流路34間距離L12は1.2〜3.8mmとされ、ガス流路34と支持基板成形体55の側面との距離L13は、1.2〜3.8mmとされ、ガス流路34と支持基板成形体55の主面との距離L11は、0.6〜1.3mmとされている。   Further, six gas flow paths 34 are formed in the axial direction in the support substrate molded body 55, and the distance L12 between the gas flow paths 34 at the opening ends is set to 1.2 to 3.8 mm. The distance L13 between the flow path 34 and the side surface of the support substrate molded body 55 is 1.2 to 3.8 mm, and the distance L11 between the gas flow path 34 and the main surface of the support substrate molded body 55 is 0.6 to It is set to 1.3 mm.

そして、支持基板成形体55において、ガス流路34から支持基板成形体55主面までの距離をL11、ガス流路34とガス流路34の間の距離をL12、ガス流路34から支持基板成形体55の側面までの距離をL13としたとき、L12>L11、L13>L11の関係を満足している。このような関係を満足することにより、乾燥等による収縮がガス流路間よりも外表面から先に起こるため、ガス流路間に発生する収縮による引っ張り応力を緩和することができ、乾燥工程で多発していたガス流路間の割れを抑制できる。また、乾燥等による収縮が最も早く進行する外周側面の、収縮により発生する応力を、乾燥収縮を遅くすることにより緩和することができ、乾燥工程で多発していたガス流路と側面との間に発生する割れを抑制できる。
In the support substrate molded body 55, the distance from the gas flow path 34 to the main surface of the support substrate molded body 55 is L11, the distance between the gas flow path 34 and the gas flow path 34 is L12 , and the gas flow path 34 to the support substrate. When the distance to the side surface of the molded body 55 is L13 , the relationship of L12> L11 and L13> L11 is satisfied. By satisfying such a relationship, the shrinkage due to drying or the like occurs earlier from the outer surface than between the gas flow paths, so the tensile stress due to the shrinkage generated between the gas flow paths can be relieved, and in the drying process It is possible to suppress the frequent cracks between the gas flow paths. In addition, the stress generated by the shrinkage on the outer peripheral side surface where shrinkage due to drying etc. proceeds the fastest can be alleviated by slowing the drying shrinkage, and between the gas flow path and the side surface frequently generated in the drying process. Can be prevented from cracking.

ここで、L11は0.6mm以上であることが望ましい。これにより支持基板成形体55の収縮にともない外表面に発生する割れを抑制できる。   Here, L11 is desirably 0.6 mm or more. Thereby, the crack which generate | occur | produces in the outer surface with the shrinkage | contraction of the support substrate molded object 55 can be suppressed.

また、乾燥条件は、室温で3日乾燥した後、80℃〜150℃の温度範囲で、2時間以上乾燥することが望ましい。さらに、乾燥後に、800〜1100℃の温度域で仮焼する。   Moreover, after drying at room temperature for 3 days, it is desirable to dry for 2 hours or more in a temperature range of 80 ° C. to 150 ° C. Furthermore, after drying, calcination is performed in a temperature range of 800 to 1100 ° C.

次に、Ni及び/又はNiO粉末と希土類元素が固溶したZrO粉末と有機バインダーと溶媒とを混合し、燃料側電極成形体となるスラリーを作製する。 Next, Ni and / or NiO powder, ZrO 2 powder in which a rare earth element is dissolved, an organic binder, and a solvent are mixed to produce a slurry that becomes a fuel-side electrode molded body.

次に、前記支持基板成形体の一方側主面に燃料側電極となるスラリーをメッシュ製版を用いて2〜10μm厚みになるように塗布し、80〜150℃の温度で乾燥する。   Next, the slurry used as a fuel side electrode is apply | coated to the thickness of 2-10 micrometers using the mesh platemaking on the one side main surface of the said support substrate molded object, and it dries at the temperature of 80-150 degreeC.

次に、希土類元素が固溶したZrO粉末と、有機バインダーと、溶媒を混合した固体電解質材料を用いてシート状の固体電解質成形体を作製する。次に、前記固体電解質成形体の一方側に前記燃料側電極となるスラリーを、焼成後5〜15μmの厚みになるように塗布し、前記支持基板成形体の一方側主面に形成された燃料側電極となる塗布膜に、固体電解質成形体の燃料側電極となる塗布膜が当接するように、かつ、固体電解質成形体の両端面が、他方側主面で所定間隔をおいて離間するように覆い巻き付け、80〜150℃の温度で乾燥する。 Next, a sheet-like solid electrolyte molded body is prepared using a solid electrolyte material in which a rare earth element is solid-solved ZrO 2 powder, an organic binder, and a solvent. Next, a slurry to be the fuel side electrode is applied to one side of the solid electrolyte molded body so as to have a thickness of 5 to 15 μm after firing, and the fuel formed on the one side main surface of the support substrate molded body The coating film serving as the fuel-side electrode of the solid electrolyte molded body is in contact with the coating film serving as the side electrode, and both end surfaces of the solid electrolyte molded body are spaced apart from each other at a predetermined interval on the other main surface. Wrap around and dry at a temperature of 80-150 ° C.

次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒を混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製する。   Next, a sheet-like interconnector molded body is prepared using an interconnector material in which a lanthanum-chromium oxide powder, an organic binder, and a solvent are mixed.

次に、Ni及び/又はNiO粉末、希土類元素が固溶したZrO粉末、有機バインダー、溶媒を混合した中間膜成形体となるスラリーを作製し、前記インターコネクタ成形体の片方の面に塗布する。 Next, a slurry to be an intermediate film molded body in which Ni and / or NiO powder, ZrO 2 powder in which a rare earth element is solid-solved, an organic binder, and a solvent is mixed is prepared and applied to one surface of the interconnector molded body. .

次に、このシート状のインターコネクタ成形体にスラリーを塗布した面が、露出した支持基板成形体に当接するよう積層する。   Next, the sheet-like interconnector molded body is laminated so that the surface on which the slurry is applied comes into contact with the exposed support substrate molded body.

これにより、支持基板成形体の一方側主面に、燃料側電極成形体、固体電解質成形体を順次積層するとともに、他方側主面に中間膜成形体、インターコネクタ成形体が積層された積層成形体を作製する。なお、各成形体はドクターブレードによるシート成形や印刷、スラリーディップ、スプレーによる吹き付けなどにより作製することができ、または、これらの組み合わせにより作製してもよい。   Thereby, while laminating the fuel side electrode molded body and the solid electrolyte molded body sequentially on the one side main surface of the support substrate molded body, the intermediate film molded body and the interconnector molded body are laminated on the other side main surface. Create a body. In addition, each molded object can be produced by sheet | seat shaping | molding by a doctor blade, printing, slurry dip, spraying by spraying, etc., or may be produced by a combination thereof.

次に、積層成形体を脱脂処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成する。   Next, the multilayer molded body is degreased and cofired at 1300 to 1600 ° C. in an oxygen-containing atmosphere.

次に、P型半導体である遷移金属ペロブスカイト型酸化物粉末と、溶媒とを混合し、ペーストを作製し、前記積層体をこのペースト中に浸漬し、固体電解質33b、インターコネクタ33fの表面にそれぞれ酸素側電極成形体、P型半導体成形体をディッピングにより形成するか、または、直接スプレー塗布し、1000〜1300℃で焼き付けることにより、本発明の燃料電池セル33を作製できる。   Next, a transition metal perovskite oxide powder, which is a P-type semiconductor, and a solvent are mixed to prepare a paste, and the laminate is dipped in the paste, and is respectively placed on the surfaces of the solid electrolyte 33b and the interconnector 33f. The fuel cell 33 of the present invention can be produced by forming the oxygen-side electrode molded body and the P-type semiconductor molded body by dipping, or by direct spray coating and baking at 1000 to 1300 ° C.

なお、燃料電池セル33は、酸素含有雰囲気での焼成により、支持基板33a、燃料側電極33b、中間膜33e中のNi成分が、NiOとなっているため、その後、支持基板33a側から還元性の燃料ガスを流し、NiOを800〜1000℃で還元処理する。また、この還元処理は発電時に行ってもよい。   In addition, since the Ni component in the support substrate 33a, the fuel-side electrode 33b, and the intermediate film 33e is NiO by firing in the oxygen-containing atmosphere, the fuel battery cell 33 is subsequently reduced from the support substrate 33a side. Then, NiO is reduced at 800 to 1000 ° C. Further, this reduction process may be performed during power generation.

セルスタックは、図4に示すように、複数の燃料電池セル33を複数集合せしめてなり、一方の燃料電池セル33と他方の燃料電池セル33との間に、金属フェルト及び/又は金属板からなる集電部材43を介在させ、一方の燃料電池セル33の支持基板33aを、該支持基板33aに設けられた中間膜33e、インターコネクタ33f、P型半導体33g、集電部材43を介して他方の燃料電池セル33の酸素側電極33dに電気的に接続して構成されている。   As shown in FIG. 4, the cell stack is formed by assembling a plurality of fuel cells 33, and a metal felt and / or a metal plate is interposed between one fuel cell 33 and the other fuel cell 33. The supporting substrate 33a of one fuel cell 33 is interposed between the intermediate film 33e, the interconnector 33f, the P-type semiconductor 33g, and the collecting member 43 provided on the supporting substrate 33a. The fuel cell 33 is electrically connected to the oxygen side electrode 33d.

集電部材43は、耐熱性、耐酸化性、電気伝導性という点から、Pt、Ag、Ni基合金、Fe−Cr鋼合金の少なくとも一種からなることが望ましい。なお、符号42は、燃料電池セルを直列に接続するための導電部材である。   The current collecting member 43 is preferably made of at least one of Pt, Ag, Ni-base alloy, and Fe—Cr steel alloy from the viewpoint of heat resistance, oxidation resistance, and electrical conductivity. Reference numeral 42 denotes a conductive member for connecting the fuel cells in series.

本発明の燃料電池は、図4のセルスタックを、収納容器内に収納して構成されている。この収納容器には、外部から水素等の燃料ガス及び空気等の酸素含有ガスを燃料電池セル33に導入する導入管が設けられており、燃料電池セル33が所定温度に加熱されることにより発電し、使用された燃料ガス、酸素含有ガスは混合されて燃焼され、収納容器外に排出される。   The fuel cell of the present invention is configured by storing the cell stack of FIG. 4 in a storage container. This storage container is provided with an introduction pipe for introducing a fuel gas such as hydrogen and an oxygen-containing gas such as air into the fuel cell 33 from the outside, and the fuel cell 33 is heated to a predetermined temperature to generate power. The used fuel gas and oxygen-containing gas are mixed and burned, and discharged out of the storage container.

なお、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、内側電極を酸素側電極から形成してもよい。また、酸素側電極33dと固体電解質33cとの間に、反応防止層を形成してもよい。   In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, the inner electrode may be formed from an oxygen side electrode. Further, a reaction preventing layer may be formed between the oxygen side electrode 33d and the solid electrolyte 33c.

また、支持基板33aと内側電極33bを同じ組成で形成してもよく、例えば、NiとYを固溶したZrOを用いてもよい。この場合には、支持基板33aと内側電極33bとが、支持体を兼ねる内側電極に置き換えられることになる。 Further, the support substrate 33a and the inner electrode 33b may be formed with the same composition. For example, ZrO 2 in which Ni and Y 2 O 3 are dissolved may be used. In this case, the support substrate 33a and the inner electrode 33b are replaced with an inner electrode that also serves as a support.

先ず、NiO粉末をNi金属換算で48体積%、Y粉末を52体積%となるよう混合し、この混合物に、ポアー剤と、セルロース系バインダーからなる有機バインダーと、水からなる溶媒とを加え、混合した支持基板材料を押出成形して、図3に示すような板状の支持基板成形体を、各々の条件で30本作製した。 First, NiO powder is mixed to 48 volume% in terms of Ni metal, and Y 2 O 3 powder is mixed to 52 volume%, and this mixture is mixed with a pore agent, an organic binder composed of a cellulose-based binder, and a solvent composed of water. And the mixed support substrate material was extrusion molded to produce 30 plate-shaped support substrate molded bodies as shown in FIG. 3 under each condition.

なお、押出成形の際に、支持基板成形体のガス流路の位置関係を、L11、L12、L13が、表1に示す寸法になるよう変化させた。   In the extrusion molding, the positional relationship of the gas flow paths of the support substrate molded body was changed so that L11, L12, and L13 had the dimensions shown in Table 1.

ガス流路数は6個であり、その形状は断面円形とし、その直径を変化させ、また、支持基板成形体の厚みや支持基板成形体の側面間距離を変化させることにより、L11、L12、L13を変化させた。   The number of gas flow paths is 6, the shape is circular in cross section, the diameter is changed, and the thickness of the support substrate molded body and the distance between the side surfaces of the support substrate molded body are changed, so that L11, L12, L13 was changed.

これらの支持基板成形体を室温乾燥後、130℃の条件で乾燥した。この後、ガス流路間の割れ、支持基板成形体の側面における割れを目視にて観察し、その割合を表1に記載した。この後、焼成後に長さが200mmとなるように支持基板成形体を加工し、1000℃で仮焼した。   These support substrate molded bodies were dried at room temperature and then dried at 130 ° C. Then, the crack between gas flow paths and the crack in the side surface of a support substrate molded object were observed visually, and the ratio was described in Table 1. Thereafter, the support substrate molded body was processed so as to have a length of 200 mm after firing, and calcined at 1000 ° C.

次に、8YSZ粉末(Yを8モル含有するZrO)にアクリル系バインダーとトルエンを加え、固体電解質成形体となるスラリーを作製し、ドクターブレード法にてシート状の固体電解質成形体を作製した。 Next, an acrylic binder and toluene are added to 8YSZ powder (ZrO 2 containing 8 mol of Y 2 O 3 ) to produce a slurry that becomes a solid electrolyte molded body, and a sheet-shaped solid electrolyte molded body is obtained by a doctor blade method. Was made.

次に、NiO粉末を金属Ni換算量で48体積%、8YSZ粉末(Yを8モル含有するZrO)を52体積%となるように混合し、アクリル系バインダーとトルエンを加え、燃料側電極成形体となるスラリーを作製した。 Next, 48% by volume of NiO powder in terms of metallic Ni and 8YSZ powder (ZrO 2 containing 8 mol of Y 2 O 3 ) are mixed to 52% by volume, an acrylic binder and toluene are added, and fuel is added. The slurry used as the side electrode molded object was produced.

この燃料側電極成形体となるスラリーを、前記支持基板成形体の一方側主面の表面にメッシュ製版を用いて塗布し、130℃の温度で乾燥した。   The slurry to be the fuel-side electrode molded body was applied to the surface of one side main surface of the support substrate molded body using a mesh plate making and dried at a temperature of 130 ° C.

また、上記燃料側電極成形体となるスラリーを前記固体電解質成形体にスクリーン印刷し、130℃の温度で乾燥した。   Moreover, the slurry used as the said fuel side electrode molded object was screen-printed on the said solid electrolyte molded object, and it dried at the temperature of 130 degreeC.

次に、支持基板成形体に形成された燃料側電極成形体の塗布膜に、固体電解質成形体の燃料側電極となる塗布膜が当接し、その両端間が他方側主面で所定間隔をおいて離間するように巻き付け、乾燥した。   Next, the coating film to be the fuel-side electrode of the solid electrolyte molded body comes into contact with the coating film of the fuel-side electrode molded body formed on the support substrate molded body, and a gap between both ends of the coating film on the other side main surface is a predetermined interval. Then, it was wound so as to be separated and dried.

次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒を混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製した。   Next, a sheet-like interconnector molded body was prepared using an interconnector material in which a lanthanum-chromium oxide powder, an organic binder, and a solvent were mixed.

次に、Ni及び/又はNiO粉末、希土類元素が固溶したZrO粉末、有機バインダー、溶媒を混合した中間膜成形体となるスラリーを作製し、前記インターコネクタ成形体の片方の面に塗布した。 Next, a slurry to be an intermediate film molded body in which Ni and / or NiO powder, ZrO 2 powder in which a rare earth element is solid-solved, an organic binder, and a solvent was mixed was prepared and applied to one surface of the interconnector molded body. .

次に、このシート状のインターコネクタ成形体にスラリーを塗布した面が、露出した支持基板成形体に当接するよう積層し、この積層体を脱バインダー処理し、大気中にて1500℃で同時焼成した。   Next, the sheet-like interconnector molded body is laminated so that the surface on which the slurry is applied is in contact with the exposed support substrate molded body, and this laminated body is debindered and co-fired at 1500 ° C. in the atmosphere. did.

次に、La0.6Sr0.4Co0.2Fe0.8粉末と、ノルマルパラフィンからなる溶媒とから、酸素側電極スラリーを作製し、このスラリーを固体電解質に吹き付け、酸素側電極成形体を形成し、また、上記スラリーを焼成したインターコネクタ33fの外面に塗布し、1150℃で焼き付け、P型半導体33gを形成し、図1に示すような本発明の燃料電池セル33を作製した。 Next, an oxygen-side electrode slurry is prepared from La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder and a solvent composed of normal paraffin, and this slurry is sprayed on the solid electrolyte, An electrode molded body is formed, and the slurry is applied to the outer surface of the fired interconnector 33f and baked at 1150 ° C. to form a P-type semiconductor 33g. The fuel cell 33 of the present invention as shown in FIG. Produced.

燃料側電極33bと酸素側電極33dの間に形成された固体電解質33cの厚みは40μm、酸素側電極33dの厚みは50μm、燃料側電極33bの厚みは10μm、インターコネクタ33fの厚みは50μm、P型半導体33gの厚みは50μmであった。また、それぞれの燃料電池セル33の両端部にはそれぞれ15mmの非発電部を形成した。   The thickness of the solid electrolyte 33c formed between the fuel side electrode 33b and the oxygen side electrode 33d is 40 μm, the thickness of the oxygen side electrode 33d is 50 μm, the thickness of the fuel side electrode 33b is 10 μm, the thickness of the interconnector 33f is 50 μm, P The thickness of the mold semiconductor 33g was 50 μm. Further, 15 mm non-power generation portions were formed at both ends of each fuel cell 33.

次に、燃料電池セル33の内部に、水素ガスを流し、850℃で、支持基板33a及び燃料側電極33bの還元処理を施した。得られた燃料電池セルにおいて、支持基板の厚み、ガス流路から支持基板の主面までの距離L1、ガス流路間の距離L2、ガス流路から支持基板の側面までの距離L3を求め、表1に記載した。   Next, hydrogen gas was allowed to flow inside the fuel battery cell 33, and reduction treatment of the support substrate 33a and the fuel side electrode 33b was performed at 850 ° C. In the obtained fuel cell, the thickness of the support substrate, the distance L1 from the gas flow path to the main surface of the support substrate, the distance L2 between the gas flow paths, the distance L3 from the gas flow path to the side surface of the support substrate, It described in Table 1.

得られた燃料電池セル33の良品について、ガス流路34に水素を流通させ、燃料電池セル33の外側に空気を流通させ、燃料電池セル33をガスバーナーを用いて850℃まで加熱し、3時間発電した後に停止し、この起動停止を10回繰り返し、支持基板の側面とガス流路間の割れを確認し、表1に記載した。

Figure 0004683889
With respect to the non-defective product of the obtained fuel battery cell 33, hydrogen was passed through the gas flow path 34, air was passed outside the fuel battery cell 33, and the fuel battery cell 33 was heated to 850 ° C. using a gas burner. After power generation for a period of time, the system was stopped and this start / stop operation was repeated 10 times, and cracks between the side surface of the support substrate and the gas flow path were confirmed.
Figure 0004683889

この表1から、支持基板がL2<L1、L12<L11であり、本発明の範囲外の試料No.4では、乾燥工程終了後にガス流路34とガス流路34の間の割れによる不良が、30本の試料のうち13本確認され、歩留まりが低いことが判る。   From Table 1, the support substrates are L2 <L1, L12 <L11, and sample Nos. Out of the scope of the present invention. In No. 4, 13 defects out of 30 samples were confirmed due to cracks between the gas flow path 34 and the gas flow path 34 after the completion of the drying process, and it was found that the yield was low.

また、支持基板がL3<L1、L13<L11であり、本発明の範囲外の試料No.5では、乾燥工程終了後に側面とガス流路34の間の割れによる不良が、30本の試料のうち14本確認され、歩留まりが低いことが判る。   Further, the support substrates are L3 <L1, L13 <L11, and sample Nos. Out of the scope of the present invention. In No. 5, 14 defects out of 30 samples were confirmed due to cracks between the side surface and the gas flow path 34 after the completion of the drying process, and it was found that the yield was low.

これに対して、支持基板がL2>L1、L3>L1である本発明の試料No.1〜3、6〜9では、ガス流路間における割れ、側面とガス流路間の割れはまったくなく、製造歩留まりが高く、しかも、起動停止を10回繰り返しても側面とガス流路間の割れは全くなかった。
In contrast, the sample No. 1 of the present invention in which the support substrate is L2> L1, L3> L1 . 1-3 , 6-9 , there are no cracks between the gas flow paths, no cracks between the side faces and the gas flow paths, and the production yield is high. There were no cracks.

本発明の燃料電池セルを示す断面斜視図である。It is a cross-sectional perspective view which shows the fuel battery cell of this invention. 本発明の支持基板を示す横断面図である。It is a cross-sectional view which shows the support substrate of this invention. 支持基板成形体を示す横断面図である。It is a cross-sectional view which shows a support substrate molded object. セルスタックを示す断面図である。It is sectional drawing which shows a cell stack. 従来の燃料電池セルを示す横断面図である。It is a cross-sectional view showing a conventional fuel cell.

符号の説明Explanation of symbols

33・・・燃料電池セル
33a・・・支持基板
33b・・・内側電極(燃料側電極)
33c・・・固体電解質
33d・・・外側電極(酸素側電極)
34・・・ガス流路
L1・・・ガス流路から支持基板の主面までの距離
L2・・・ガス流路間の距離
L3・・・ガス流路か支持基板の側面までの距離
33 ... Fuel cell 33a ... Support substrate 33b ... Inner electrode (fuel side electrode)
33c: Solid electrolyte 33d: Outer electrode (oxygen side electrode)
34: Gas flow path L1: Distance from gas flow path to main surface of support substrate L2: Distance between gas flow paths L3: Distance from gas flow path to side surface of support substrate

Claims (4)

断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された多孔質の支持基板を有し、該支持基板上に固体電解質、電極を形成してなる燃料電池セルであって、前記ガス流路から前記支持基板の主面までの距離をL1、前記ガス流路間の距離をL2、前記支持基板の側面側に位置する前記ガス流路から前記支持基板の側面までの距離をL3としたとき、L2>L1、L3>L1を満足することを特徴とする燃料電池セル。 The cross-sectional shape is composed of arc-shaped portions provided at both ends in the width direction and a pair of flat portions that connect these arc-shaped portions, and a plurality of circular gas passages are formed penetrating in the axial length direction. A fuel cell having a porous support substrate and a solid electrolyte and an electrode formed on the support substrate, wherein the distance from the gas flow path to the main surface of the support substrate is L1, L2> L1 and L3> L1 are satisfied, where L2 is a distance between gas flow paths and L3 is a distance from the gas flow path located on the side surface side of the support substrate to the side surface of the support substrate. Fuel cell. 断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された多孔質の支持基板を有し、該支持基板上に固体電解質、電極を形成してなる燃料電池セルの製法であって、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、断面円形の複数のガス流路が軸長方向に貫通して形成された支持基板成形体を形成する工程を具備するとともに、前記支持基板成形体が、前記ガス流路から前記支持基板成形体の主面までの距離をL11、前記ガス流路間の距離をL12、前記支持基板成形体の側面側に位置する前記ガス流路から前記支持基板成形体の側面までの距離をL13としたとき、L12>L11、L13>L11を満足することを特徴とする燃料電池セルの製法。 The cross-sectional shape is composed of arc-shaped portions provided at both ends in the width direction and a pair of flat portions that connect these arc-shaped portions, and a plurality of circular gas passages are formed penetrating in the axial length direction. A fuel cell having a porous support substrate and a solid electrolyte and an electrode formed on the support substrate, wherein the cross-sectional shape is an arc-shaped portion provided at both ends in the width direction, and these arcuate portions are composed of a pair of flat portions for connecting, as well as comprising a step of forming a supporting substrate molded body in which a plurality of gas passages of circular cross section formed therethrough in the axial direction, the The gas flow path in which the support substrate molded body is located on the side surface side of the support substrate molded body, L11 is the distance from the gas flow path to the main surface of the support substrate molded body, L12 is the distance between the gas flow paths. And the distance from the side surface of the support substrate molding to L13 A fuel cell manufacturing method characterized by satisfying L12> L11 and L13> L11 . L11が0.5mm以上であることを特徴とする請求項に記載の燃料電池セルの製法。 L11 is 0.5 mm or more, The manufacturing method of the fuel cell of Claim 2 characterized by the above-mentioned. 請求項1に記載の燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池。 A fuel cell comprising a plurality of the fuel cells according to claim 1 stored in a storage container.
JP2004281670A 2003-11-26 2004-09-28 FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL Expired - Lifetime JP4683889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281670A JP4683889B2 (en) 2003-11-26 2004-09-28 FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396202 2003-11-26
JP2004281670A JP4683889B2 (en) 2003-11-26 2004-09-28 FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL

Publications (2)

Publication Number Publication Date
JP2005183362A JP2005183362A (en) 2005-07-07
JP4683889B2 true JP4683889B2 (en) 2011-05-18

Family

ID=34797248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281670A Expired - Lifetime JP4683889B2 (en) 2003-11-26 2004-09-28 FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL

Country Status (1)

Country Link
JP (1) JP4683889B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095877B1 (en) * 2011-10-05 2012-12-12 日本碍子株式会社 Fuel cell
JP5095878B1 (en) * 2011-10-05 2012-12-12 日本碍子株式会社 Fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338336A (en) * 1993-05-31 1994-12-06 Nippon Telegr & Teleph Corp <Ntt> Conductive nonuniform hollow flat plate

Also Published As

Publication number Publication date
JP2005183362A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP5118865B2 (en) Horizontally-striped fuel cell and method for producing the same
JP5457954B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP4853979B2 (en) Fuel cell
JP4028809B2 (en) Fuel cell and fuel cell
JP5437169B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP5095877B1 (en) Fuel cell
JP2004253376A (en) Fuel battery cell and method for manufacturing same, and fuel battery
JP4412986B2 (en) Cell stack and fuel cell
JP2006092837A (en) Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP5455271B1 (en) Fuel cell
JP4002521B2 (en) Fuel cell and fuel cell
JP4925688B2 (en) Fuel cell and fuel cell
JP4683889B2 (en) FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
JP5095878B1 (en) Fuel cell
JP4412984B2 (en) Fuel cell and fuel cell
JP3935086B2 (en) Fuel cell and fuel cell
JP5455268B1 (en) Fuel cell
JP5455270B1 (en) Fuel cell
JP5401405B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP4925574B2 (en) Fuel cell and fuel cell
JP4881479B2 (en) Fuel cell
JP4028813B2 (en) Fuel cell and fuel cell
JP4002525B2 (en) Fuel cell and fuel cell
JP4012830B2 (en) Fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150