JP4677810B2 - Dimensional measurement method for section steel - Google Patents

Dimensional measurement method for section steel Download PDF

Info

Publication number
JP4677810B2
JP4677810B2 JP2005098461A JP2005098461A JP4677810B2 JP 4677810 B2 JP4677810 B2 JP 4677810B2 JP 2005098461 A JP2005098461 A JP 2005098461A JP 2005098461 A JP2005098461 A JP 2005098461A JP 4677810 B2 JP4677810 B2 JP 4677810B2
Authority
JP
Japan
Prior art keywords
data
distance
calibration
laser
linearity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005098461A
Other languages
Japanese (ja)
Other versions
JP2006275919A (en
Inventor
実 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005098461A priority Critical patent/JP4677810B2/en
Publication of JP2006275919A publication Critical patent/JP2006275919A/en
Application granted granted Critical
Publication of JP4677810B2 publication Critical patent/JP4677810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、形鋼の寸法測定方法に関し、特に、レーザ距離計を用いて形鋼の断面形状
や寸法を高精度で測定する形鋼の寸法測定方法に関するものである。
The present invention relates to a method for measuring a dimension of a shape steel, and more particularly to a method for measuring a dimension of a shape steel in which a cross-sectional shape and dimensions of the shape steel are measured with high accuracy using a laser distance meter.

形鋼の内、例えばH形鋼では、ウエブ厚、ウエブ高さ、フランジ厚、フランジ幅、脚長、中心偏りなど、品質管理上必要とされる製品寸法精度を確保するために、製品や圧延中間品の寸法や形状を測定し、この測定データを基に圧延条件を調整することが行われている。   Of the shape steels, for example H-shape steel, in order to ensure product dimensional accuracy required for quality control such as web thickness, web height, flange thickness, flange width, leg length, center deviation, etc. The dimensions and shape of the product are measured, and the rolling conditions are adjusted based on the measurement data.

そして、H形鋼、I形鋼、溝形鋼などのいわゆる形鋼の断面輪郭を規定する、いくつかの諸元寸法を測定する形鋼寸法測定装置として、例えば特許文献1に開示されているレーザ距離計が一般に使われている。レーザ距離計は、レーザ光の投光器と受光器とを組み合わせた三角測量機能を有する計器であり、計器原点から所定の計測方向線上の被測点(測定対象物におけるレーザ光の到達点)までの距離(計測距離)を計測・出力する。被測点が測定対象物を走査するようにレーザ距離計を走行させることを、「レーザ距離計で走査する」という。   For example, Patent Document 1 discloses a structural steel dimension measuring apparatus for measuring several dimensions that defines a cross-sectional contour of a so-called structural steel such as an H-shaped steel, an I-shaped steel, and a grooved steel. Laser rangefinders are commonly used. A laser rangefinder is a measuring instrument that has a triangulation function that combines a laser beam projector and a light receiver. From the instrument origin to a measured point on the predetermined measurement direction line (the point where the laser beam reaches the measuring object) Measure and output distance (measurement distance). Running the laser distance meter so that the measurement point scans the measurement object is called “scanning with the laser distance meter”.

レーザ距離計を用いて形鋼の寸法を精度よく測定する方法としては、これまで以下の方法がある。
(a)目標精度に見合った特注レーザ距離計を使用する方法
(b)検出温度を用いて測定データを補正する方法(特許文献2)
(c)遠点・近点の2点近似校正方法(特許文献3)
上記(a)の方法は、特注レーザ距離計として、ビーム径・ビームウエスト(強度調整)・レンズおよび受光素子(CCD)の光学系の調整を施したレーザ距離計を使用する方法である。また、上記(b)の方法は、検出温度を用いて、測定環境温度の変動によるレーザ距離計の計測距離の誤差を測定中に補正できるようにした方法である。さらに、上記(c)の方法は、レーザ距離計測定範囲の近い距離と遠い距離の2点校正データにより、直線近似する方法である。
特開平8−327329号公報 特開2000−74632号公報 特開平10−239026号公報
As a method for measuring the dimension of a shape steel with high accuracy using a laser distance meter, there are the following methods.
(A) Method of using a custom-made laser distance meter that matches the target accuracy (b) Method of correcting measurement data using detected temperature (Patent Document 2)
(C) Far-point / near-point two-point approximate calibration method (Patent Document 3)
The method (a) is a method using a laser range finder that has been adjusted with the optical system of the beam diameter, beam waist (intensity adjustment), lens and light receiving element (CCD) as a custom laser range finder . The method (b) is a method in which an error in the measurement distance of the laser rangefinder due to a change in the measurement environment temperature can be corrected during the measurement using the detected temperature. Further, the method (c) is a method of linear approximation by two-point calibration data of a distance close to and a distance far from the laser rangefinder measurement range .
JP-A-8-327329 JP 2000-74632 A Japanese Patent Laid-Open No. 10-239026

しかしながら、上記(a)目標精度に見合った特注レーザ距離計を使用する方法は、レーザ距離計本体が高額となるという問題がある。汎用型レーザ距離計と比較すると、およそ7倍である。レーザ距離計を複数台使用すると、装置本体の費用が増大してしまうという問題がある。 However, the method (a) of using a custom-made laser distance meter corresponding to the target accuracy has a problem that the laser distance meter body is expensive. Compared with a general-purpose laser distance meter , it is about 7 times. When a plurality of laser distance meters are used, there is a problem that the cost of the apparatus main body increases.

また、上記(b)検出温度を用いて測定データを補正する方法(特許文献2)では、測定環境温度の変動によるレーザ距離計の計測距離の誤差は補正できるものの、その他の誤差については補正ができない。   In addition, in the method (b) for correcting the measurement data using the detected temperature (Patent Document 2), the error in the measurement distance of the laser rangefinder due to the change in the measurement environment temperature can be corrected, but other errors can be corrected. Can not.

さらに、上記(c)遠点・近点の2点近似校正方法(特許文献3)では、中間距離データのリニアリティー(直線性)が正確に校正できず、これが寸法測定の誤差となるという問題がある。   Further, in the above-mentioned (c) far point / near point two-point approximate calibration method (Patent Document 3), the linearity (linearity) of the intermediate distance data cannot be accurately calibrated, which causes an error in dimension measurement. is there.

本発明は上記事情に鑑みてなされたもので、上記問題を解決し、安価に精度の高い形鋼の寸法測定方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at solving the said problem and providing the dimension measuring method of a shape steel with high precision cheaply.

本発明の請求項1に係る発明は、レーザ距離計を用いて形鋼の断面形状や寸法を測定する形鋼の寸法測定方法において、
レーザ距離計走行方向に対して垂直に設置した校正片および測定対象の形鋼をレーザ距離計で走査し、前記校正片を測定した際に得られる距離計単体のリニアリティー誤差および距離計傾斜角による誤差を校正データとして求め、形鋼の寸法測定データを補正することを特徴とする形鋼の寸法測定方法である。
The invention according to claim 1 of the present invention is a method for measuring a dimension of a section steel, in which a cross-sectional shape and a dimension of the section steel are measured using a laser distance meter.
The distance between the calibration piece installed perpendicular to the direction of travel of the laser rangefinder and the shape of the object to be measured is scanned with the laser rangefinder, and the linearity error of the distance meter obtained when the calibration piece is measured and the inclination angle of the rangefinder This is a method for measuring a dimension of a section steel, wherein an error is obtained as calibration data and the dimension measurement data of the section steel is corrected.

また本発明の請求項2に係る発明は、請求項1に記載の形鋼の寸法測定方法において、
前記校正データの作成にあたっては、定寸ピッチで間欠的にまたは連続的にレーザ距離計で走査したデータを使用することを特徴とする形鋼の寸法測定方法である。
The invention according to claim 2 of the present invention is the method for measuring dimensions of a section steel according to claim 1,
In the creation of the calibration data , it is a method for measuring a dimension of a structural steel, wherein data scanned with a laser distance meter intermittently or continuously at a fixed pitch is used.

さらに本発明の請求項3に係る発明は、請求項1または請求項2に記載の形鋼の寸法測定方法において、
前記校正データは、テーブルまたは関数の形で保持することを特徴とする形鋼の寸法測定方法である。
Furthermore, the invention according to claim 3 of the present invention is the method for measuring a dimension of a section steel according to claim 1 or 2,
The calibration data is held in the form of a table or a function, and is a method for measuring a dimension of a structural steel.

本発明では、校正片を測定した際に得られる距離計単体のリニアリティー誤差および距離計傾斜角による誤差よりなる校正データに基づいて、形鋼の寸法測定データを補正するようにしたので、高精度な形鋼の断面プロフィールを求めることができるという利点がある。 In the present invention, since the dimensional measurement data of the shape steel is corrected based on the calibration data consisting of the linearity error of the distance meter alone and the error due to the distance meter inclination angle obtained when the calibration piece is measured , There is an advantage that a cross-sectional profile of a simple shape steel can be obtained.

図1は、本発明を実施するための装置例の概要を示す図である。図中、1は校正片、2a〜fはレーザ距離計、3はCフレーム、4はCフレーム走行用機構、5はCフレーム高さ設定機構、6は距離計高さ設定機構、および7はH形鋼をそれぞれ表している。   FIG. 1 is a diagram showing an outline of an example of an apparatus for carrying out the present invention. In the figure, 1 is a calibration piece, 2a to f are laser distance meters, 3 is a C frame, 4 is a C frame running mechanism, 5 is a C frame height setting mechanism, 6 is a distance meter height setting mechanism, and 7 is Each represents an H-section steel.

レーザ距離計2a〜2fは、校正片1とH形鋼7を上下左右から挟むように上下左右45°と上下90°の計6台配置する。材サイズに応じてレーザ距離計の測定範囲を変化させる距離計高さ設定機構6を有している。なお、上下左右45°の距離計配置で材の距離測定が可能な場合は4台でも構わない。Cフレーム3は、レーザ距離計2a〜2fを搭載し、サーボモータ等のCフレーム走行用機構4で走行・移動できるとともに、Cフレーム高さ設定機構5によりフレーム高さを変化できる構造になっている。また、レーザ距離計を搭載するCフレーム3は左右分離型でも構わない。その場合は、校正片1は左右それぞれに必要である。   The laser distance meters 2a to 2f are arranged in a total of six units of 45 ° in the vertical and horizontal directions and 90 ° in the vertical direction so that the calibration piece 1 and the H-shaped steel 7 are sandwiched from the vertical and horizontal directions. It has a distance meter height setting mechanism 6 that changes the measurement range of the laser distance meter according to the material size. If the distance of the material can be measured with a distance meter of 45 ° vertically and horizontally, 4 units may be used. The C frame 3 is equipped with laser distance meters 2a to 2f, and can be moved and moved by a C frame traveling mechanism 4 such as a servo motor, and the frame height can be changed by a C frame height setting mechanism 5. Yes. Further, the C frame 3 on which the laser distance meter is mounted may be a left-right separation type. In that case, the calibration pieces 1 are necessary for each of the left and right sides.

図2は、図1に示した装置を用いた測定概要を示す図である。材停止中において、材上にレーザ距離計を走査させ、測定毎に校正片と材を同時に測定する。距離データ(L)・距離計の傾斜角(θ)・距離計の走査中の位置データ(M)より三角測量の原理を用いて、校正片と材の断面プロフィールを求める。校正片の断面プロフィールを復元することで、各レーザ距離計より得られる断片的な材の断面プロフィールを合成するものである。   FIG. 2 is a diagram showing an outline of measurement using the apparatus shown in FIG. While the material is stopped, the laser distance meter is scanned over the material, and the calibration piece and the material are simultaneously measured for each measurement. Using the triangulation principle, the cross-sectional profile of the calibration piece and the material is obtained from the distance data (L), the inclination angle of the distance meter (θ), and the position data during scanning of the distance meter (M). By restoring the cross-sectional profile of the calibration piece, the cross-sectional profile of the fragmented material obtained from each laser distance meter is synthesized.

図3〜図6を用いて、校正片を用いた校正方法つまりリニアリティー校正データの求め方を、以下に示す。
(1)レーザ距離計走行方向に対し、取り付け角度が直角となるように寸法が既知である校正片を設置する。
(2)レーザ距離計の傾斜角は 45°±△θ1 とする。△θ1は距離計の取り付け誤差を表す。
(3)レーザ距離計を定寸ピッチで校正片上を走査させる。すなわち、レーザ距離計を搭載したCフレームを定寸ピッチ走行後停止させ、レーザ距離計で距離データをサンプリングする。この際、走行の基準となる位置(M1)を定め、この位置(M1)における距離データ(L1)を測定する(図3)。なお、定寸ピッチ毎の間欠計測の例を説明したが、Cフレーム走行させながら同時にレーザ距離計による距離計測を行う連続計測を行っても構わない。
(4)M1を基点とし、任意の位置(M2)における距離データ(L2)で考える。以下の(1)式で示すように距離データは、真値・(距離計単体での)リニアリティー誤差・距離計傾斜角(45°±△θ1)による誤差の加算と考えることができる。
A calibration method using a calibration piece, that is, a method for obtaining linearity calibration data will be described below with reference to FIGS.
(1) A calibration piece having a known dimension is installed so that the mounting angle is perpendicular to the traveling direction of the laser distance meter.
(2) The inclination angle of the laser distance meter shall be 45 ° ± Δθ1. Δθ1 represents the installation error of the distance meter.
(3) A laser distance meter is scanned over the calibration piece at a fixed pitch. That is, the C frame on which the laser distance meter is mounted is stopped after traveling at a fixed pitch, and the distance data is sampled by the laser distance meter. At this time, a reference position of the travel defining a (M1), measure the distance data (L1) at this position (M1) (Figure 3). In addition, although the example of the intermittent measurement for every fixed pitch was demonstrated, you may perform the continuous measurement which measures the distance by a laser rangefinder simultaneously with making it run C frame.
(4) Consider M1 as a base point and distance data (L2) at an arbitrary position (M2). As shown in the following equation (1), the distance data can be considered as an addition of an error due to a true value, a linearity error (in the distance meter alone), and a distance meter inclination angle (45 ° ± Δθ1).

L2 = Lo2 + L21 + L22 ・・・・・・・・・・・・・・・・・・・・(1)
ここで、L2 : 測定データ(観測データ)
Lo2 : 真値(未知)
L21 : (距離計単体での)リニアリティー誤差
L22 : 距離計傾斜角(45°±△θ1)による誤差
(5)L1の真値Lo1とL2の真値Lo2との差は、サーボモータの走行量を正とした場合、距離計傾斜角45°に換算する、(2)式のように求めることができる
L2 = Lo2 + L21 + L22 (1)
Where L2: Measurement data (observation data)
Lo2: True value (unknown)
L21: Linearity error (with distance meter alone)
L22: Error due to the distance meter tilt angle (45 ° ± △ θ1) (5) The difference between the true value Lo1 of L1 and the true value Lo2 of L2 is the distance meter tilt angle 45 when the travel amount of the servo motor is positive. Converted to ° , it can be obtained as in equation (2) .

Lo1 - Lo2 = ( M2 - M1 ) / cos45° ・・・・・・・・・・・・・・・・・・・・(2)
(6)距離データ全体のリニアリティー誤差△Lは、 (距離計単体での)リニアリティー誤差・距離計傾斜角(45°±△θ1)による誤差の加算と考えることができる((4)式および図4)。
Lo1- Lo2 = (M2-M1) / cos45 ° (2)
(6) The linearity error △ L of the entire distance data can be considered as the addition of the error due to the linearity error and the distance meter inclination angle (45 ° ± △ θ1) (in the distance meter alone) 4).

△L = L2 - Lo2 ・・・・・・・・・・・・・・・・・・・・(3)
= ( Lo2 + L21 + L22 ) - Lo2
= L21 + L22 ・・・・・・・・・・・・・・・・・・・・(4)
(7)上記より、定寸ピッチ毎に距離データ全体のリニアリティー誤差(△L)を求めることで、高精度なリニアリティー校正データを得ることができる。また、定寸ピッチ毎に複数の距離データをサンプリングし、異常値の除去・平均処理を施すことで、距離データのばらつきを軽減させることができる。(図5)さらに、測定範囲全体のリニアリティー校正データを任意範囲で移動平均することで、ばらつき軽減も可能となる(図6)。
(8)測定範囲全体のリニアリティー校正データをテーブル化する。テーブルは測定データ(L2)と距離データ全体のリニアリティー誤差(△L)の関係となる。なお、ここでの例では、測定データ(L2)と距離データ全体のリニアリティー誤差(△L)との関係をテーブルという形で求めているが、これに限られるものでなく、近似関数形など種々適宜な形式で関係を表すものでも構わない。
△ L = L2-Lo2 (3)
= (Lo2 + L21 + L22)-Lo2
= L21 + L22 (4)
(7) From the above, highly accurate linearity calibration data can be obtained by obtaining the linearity error (ΔL) of the entire distance data for each fixed pitch. In addition, by sampling a plurality of distance data for each fixed pitch and performing removal / average processing of abnormal values, variations in distance data can be reduced. (FIG. 5) Furthermore, variation can be reduced by linearly averaging the linearity calibration data of the entire measurement range in an arbitrary range (FIG. 6).
(8) Create a table of linearity calibration data for the entire measurement range. The table shows the relationship between the measurement data (L2) and the linearity error (ΔL) of the entire distance data. In this example, the relationship between the measurement data (L2) and the linearity error (△ L) of the entire distance data is obtained in the form of a table. However, the present invention is not limited to this. The relationship may be expressed in an appropriate format.

以上、リニアリティー校正方法つまりリニアリティー校正データの求め方を説明したが、次に求めたリニアリティー校正データを用いて実材測定の距離データを補正する方法を説明する。
(9)レーザ距離計を移動させながら、校正片と実材を測定する(図7)。
(10)サンプリングした距離データの全てについて、リニアリティー校正データで補正する。ここで、先に求めたリニアリティー校正テーブルを使用する(図8)。
The linearity calibration method, that is, the method for obtaining linearity calibration data has been described above. Next, a method for correcting distance data for actual material measurement using the obtained linearity calibration data will be described.
(9) The calibration piece and the actual material are measured while moving the laser distance meter (FIG. 7).
(10) All the sampled distance data is corrected with the linearity calibration data. Here, the previously obtained linearity calibration table is used (FIG. 8).

Lb2 = La2 - {( △L2 - △L1 )/( L22 - L21 )}× ( La2 - L21 ) −△L1 ・・・・・・・・・・・・・・・・・・(5)
ここで、La2 : 距離データ(観測データ)
Lb2 : リニアリティー補正後の距離データ
△L : リニアリティー校正データ(誤差)(n:1 距離が短い側、n:2 距離が長い側)
L2 : リニアリティー校正データ(距離)(n:1 距離が短い側、n:2 距離が長い側)
上記により、実材および校正片の距離データについて、リニアリティー補正を行うことができる。なお、リニアリティー校正時と実材測定時で傾斜角が変動することも考えられるため、更に以下の処理を施し傾斜角の補正を行う。
(11)リニアリティー校正片の垂直面データを抽出し、距離データ(L)と位置データ(M)より傾斜角度(θa2)を求める(図9)。
Lb2 = La2-{(△ L2-△ L1) / (L22-L21)} × (La2-L21) − △ L1 (5)
Where La2: Distance data (observation data)
Lb2: Distance data after linearity correction △ L n : Linearity calibration data (error) (n: 1 distance is short, n: 2 distance is long)
L2 n : Linearity calibration data (distance) (n: 1 shorter distance, n: 2 longer distance)
As described above, linearity correction can be performed on the distance data of the actual material and the calibration piece. Note that the tilt angle may vary between linearity calibration and actual material measurement, and therefore the following processing is performed to correct the tilt angle.
(11) The vertical plane data of the linearity calibration piece is extracted, and the inclination angle (θa2) is obtained from the distance data (L) and the position data (M) (FIG. 9).

θa2 = cos-1 ( ( Ma2 - Ma1 ) / ( Lb1 - Lb2 ) ) ・・・・・・・・・・(6)
ここで、Lb : リニアリティー校正後の距離データ(n:1 距離が長い側、n:2 距離が短い側)
Ma : 位置データ(n:1 距離が長い側、n:2 距離が短い側)
(12)求めた傾斜角度(θa2)と位置データ(M)より、傾斜角度誤差(つまり傾斜角の違いによる距離データの差)を求める((7)式の1項)。傾斜角度誤差は、リニアリティー校正時の傾斜角と実材測定時の傾斜角の違いを表す。
(13)傾斜角度誤差と真の距離データ((7)式の2項)と差を求め、校正量(△L)を求め傾斜角度校正データとする(図10)。そして、求めた傾斜角度校正データを、リニアリティー校正データと同様にテーブル化する。(傾斜角度校正テーブル)
△L = M / cos(θa2) - M / cos 45° ・・・・・・・(7)
(14)再度、サンプリング毎に距離データを補正する。補正は傾斜角度校正テーブルを用いて、補間処理する。
θa2 = cos -1 ((Ma2-Ma1) / (Lb1-Lb2)) (6)
Where Lb n : Distance data after linearity calibration (n: 1 distance is longer, n: 2 distance is shorter)
Ma n: position data (n: 1 distance is long side, n: 2 distance shorter side)
(12) From the obtained inclination angle (θa2) and position data (M), an inclination angle error (that is, a difference in distance data due to a difference in inclination angle) is obtained (term 1 in equation (7)). The tilt angle error represents the difference between the tilt angle during linearity calibration and the tilt angle during actual material measurement.
(13) The difference between the tilt angle error and the true distance data (term 2 in equation (7)) is obtained, and the calibration amount (ΔL) is obtained as tilt angle calibration data (FIG. 10). Then, the obtained tilt angle calibration data is tabulated in the same manner as the linearity calibration data. (Inclination angle calibration table)
△ L = M / cos (θa2)-M / cos 45 ° (7)
(14) The distance data is corrected again every sampling. Correction is performed by interpolation using an inclination angle calibration table.

Lc2 = Lb2 - △L2
Lb2 : リニアリティー補正後の距離データ
Lc2 : 傾斜角度校正後の距離データ
△L2 : 傾斜角度校正テーブルの校正量
(15)再度、プロフィール校正片の垂直面データより、傾斜角度(θ’a2)を求める。
Lc2 = Lb2-△ L2
Lb2: Distance data after linearity correction
Lc2: Distance data after tilt angle calibration
ΔL2: Calibration amount of tilt angle calibration table (15) The tilt angle (θ′a2) is obtained again from the vertical plane data of the profile calibration piece.

θ’a2 = cos-1 ( ( Ma2 - Ma1 ) / ( Lc1 - Lc2 ) )
= cos-1 ( ( Ma2 - Ma1 ) / ( Lb1 - △L1- Lb2 + △L2 ) ) ・・・・(8)
△L1・△L2 : 傾斜角度校正テーブルの校正量
(16)材測定時の全ての距離データに関して、校正テーブルと傾斜角度校正テーブルを用いて補正を行い、また、再算出した傾斜角度を用いて2次元座標(x、y)に展開する。
θ'a2 = cos -1 ((Ma2-Ma1) / (Lc1-Lc2))
= cos -1 ((Ma2-Ma1) / (Lb1- △ L1 -Lb2 + △ L2 )) (8)
△ L1, △ L2: Calibration amount of tilt angle calibration table (16) All distance data during material measurement is corrected using the calibration table and tilt angle calibration table, and the recalculated tilt angle is used. Expands to two-dimensional coordinates (x, y).

x = M + ( Lb±△L2 ) ・cos(θ’a2 ) ・・・・・・・・・・(9)
y = ( Lb±△L2 ) ・sin (θ’a2 ) ・・・・・・・・・・(10)
Lb : リニアリティー補正後の材測定時の距離データ
(17)上記の処理により、距離データ全体のリニアリティー誤差(△L)を補正した距離データで、高精度な断面プロフィールを求めることができる。
x = M + (Lb ± △ L2) ・ cos (θ'a2) (9)
y = (Lb ± △ L2) ・ sin (θ'a2) (10)
Lb: Distance data at the time of material measurement after linearity correction (17) By the above processing, a highly accurate cross-sectional profile can be obtained with distance data obtained by correcting the linearity error (ΔL) of the entire distance data.

図1に示す装置を用いた本発明の実施例を以下に示す。使用したレーザ距離計は、測定範囲250〜450mmのものであり、校正片仕様は、高さ260mm、幅50mm、およびワイヤカット面の表面性状を有するものである。定寸ピッチは0.5mmであり、サーボモータの走行移動量の誤差は0.01mm以下である。
今回、リニアリティー校正データの10回測定でのばらつきは0.032mmであり、移動平均処理を行った最終的なリニアリティー校正データは、図6に示すものである。
An embodiment of the present invention using the apparatus shown in FIG. The laser distance meter used has a measurement range of 250 to 450 mm, and the calibration piece specification has a height of 260 mm, a width of 50 mm, and a surface property of a wire cut surface. The fixed pitch is 0.5mm, and the error of the travel distance of the servo motor is 0.01mm or less.
This time, the variation of the linearity calibration data after 10 measurements is 0.032 mm, and the final linearity calibration data after the moving average processing is as shown in FIG.

本発明を実施するための装置例の概要を示す図である。It is a figure which shows the outline | summary of the example of an apparatus for implementing this invention. 図1に示した装置を用いた測定概要を示す図である。It is a figure which shows the measurement outline | summary using the apparatus shown in FIG. リニアリティー校正の概要を示す図である。It is a figure which shows the outline | summary of linearity calibration. リニアリティー校正片測定時の真値と測定データの関係を示す図である。It is a figure which shows the relationship between the true value at the time of linearity calibration piece measurement, and measurement data. リニアリティー校正結果(距離値と誤差との関係)を示す図である。It is a figure which shows a linearity calibration result (relationship between a distance value and an error). 移動平均後のリニアリティー校正結果(距離値と誤差との関係)を示す図である。It is a figure which shows the linearity calibration result (relationship between a distance value and an error) after a moving average. 実材測定の概要を示す図である。It is a figure which shows the outline | summary of a real material measurement. リニアリティー誤差と測定データの関係を示す図である。It is a figure which shows the relationship between a linearity error and measurement data. 距離計傾斜角の求め方概要を示す図である。It is a figure which shows the method of calculating | requiring a distance meter inclination | tilt angle. リニアリティー校正片測定時の真値と測定データの関係を示す図である。It is a figure which shows the relationship between the true value at the time of linearity calibration piece measurement, and measurement data.

符号の説明Explanation of symbols

1 校正片
2a〜f レーザ距離計
3 Cフレーム
4 Cフレーム走行用機構
5 Cフレーム高さ設定機構
6 距離計高さ設定機構
7 H形鋼
DESCRIPTION OF SYMBOLS 1 Calibration piece 2a-f Laser distance meter 3 C frame 4 C frame traveling mechanism 5 C frame height setting mechanism 6 Distance meter height setting mechanism 7 H-section steel

Claims (3)

レーザ距離計を用いて形鋼の断面形状や寸法を測定する形鋼の寸法測定方法において、
レーザ距離計走行方向に対して垂直に設置した校正片および測定対象の形鋼をレーザ距離計で走査し、前記校正片を測定した際に得られる距離計単体のリニアリティー誤差および距離計傾斜角による誤差を校正データとして求め、形鋼の寸法測定データを補正することを特徴とする形鋼の寸法測定方法。
In the method of measuring the shape of a section steel, which measures the cross-sectional shape and dimensions of the section steel using a laser distance meter,
The distance between the calibration piece installed perpendicular to the direction of travel of the laser rangefinder and the shape of the object to be measured is scanned with the laser rangefinder, and the linearity error of the distance meter obtained when the calibration piece is measured and the inclination angle of the rangefinder A method for measuring a dimension of a section steel, wherein an error is obtained as calibration data and the dimension measurement data of the section steel is corrected.
請求項1に記載の形鋼の寸法測定方法において、
前記校正データの作成にあたっては、定寸ピッチで間欠的にまたは連続的にレーザ距離計で走査したデータを使用することを特徴とする形鋼の寸法測定方法。
In the dimension measuring method of the section steel according to claim 1,
In the creation of the calibration data, a method for measuring the dimension of a structural steel, wherein data scanned intermittently or continuously with a laser distance meter at a fixed pitch is used.
請求項1または請求項2に記載の形鋼の寸法測定方法において、
前記校正データは、テーブルまたは関数の形で保持することを特徴とする形鋼の寸法測定方法。
In the dimension measuring method of the shape steel of Claim 1 or Claim 2,
The method for measuring dimensions of a section steel, wherein the calibration data is held in the form of a table or a function.
JP2005098461A 2005-03-30 2005-03-30 Dimensional measurement method for section steel Active JP4677810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098461A JP4677810B2 (en) 2005-03-30 2005-03-30 Dimensional measurement method for section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098461A JP4677810B2 (en) 2005-03-30 2005-03-30 Dimensional measurement method for section steel

Publications (2)

Publication Number Publication Date
JP2006275919A JP2006275919A (en) 2006-10-12
JP4677810B2 true JP4677810B2 (en) 2011-04-27

Family

ID=37210831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098461A Active JP4677810B2 (en) 2005-03-30 2005-03-30 Dimensional measurement method for section steel

Country Status (1)

Country Link
JP (1) JP4677810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534993A (en) * 2014-12-26 2015-04-22 四川宏华电气有限责任公司 Fracturing pump plug displacement detector and detection method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185491A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Angle steel size calculation method and device
CN101403603B (en) * 2008-11-14 2010-06-02 天津大学 Large scale scanning survey apparatus and method based on laser ranging and Bluetooth transmission
JP5316992B2 (en) * 2009-05-28 2013-10-16 国立大学法人岩手大学 A system that simultaneously measures an object to be measured from multiple directions using a laser measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239026A (en) * 1997-02-28 1998-09-11 Kawasaki Steel Corp Measuring method for cross sectional shape profile
JPH1127132A (en) * 1997-07-01 1999-01-29 Hitachi Ltd Impedance matching circuit and semiconductor memory
JPH11271032A (en) * 1998-03-25 1999-10-05 Kawasaki Steel Corp Apparatus and method for measuring sectional profile
JP2000088527A (en) * 1998-09-10 2000-03-31 Kawasaki Steel Corp Dimension measuring apparatus for shape steel
JP2003315027A (en) * 2002-04-25 2003-11-06 Sumitomo Metal Ind Ltd Hot dimension/shape measuring apparatus of h-steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239026A (en) * 1997-02-28 1998-09-11 Kawasaki Steel Corp Measuring method for cross sectional shape profile
JPH1127132A (en) * 1997-07-01 1999-01-29 Hitachi Ltd Impedance matching circuit and semiconductor memory
JPH11271032A (en) * 1998-03-25 1999-10-05 Kawasaki Steel Corp Apparatus and method for measuring sectional profile
JP2000088527A (en) * 1998-09-10 2000-03-31 Kawasaki Steel Corp Dimension measuring apparatus for shape steel
JP2003315027A (en) * 2002-04-25 2003-11-06 Sumitomo Metal Ind Ltd Hot dimension/shape measuring apparatus of h-steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534993A (en) * 2014-12-26 2015-04-22 四川宏华电气有限责任公司 Fracturing pump plug displacement detector and detection method thereof
CN104534993B (en) * 2014-12-26 2017-11-10 四川宏华电气有限责任公司 A kind of fracturing pump plug displacement detector and its detection method

Also Published As

Publication number Publication date
JP2006275919A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
KR101912647B1 (en) Method for thickness measurement on measurement objects and device for applying the method
US10036626B2 (en) Vehicle guidance system, method for orientating vehicle, and inspection vehicle
US9151595B1 (en) Laser thickness gauge and method including passline angle correction
JP4677810B2 (en) Dimensional measurement method for section steel
KR100256324B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
JP2016024141A (en) Overhead line position measuring device, and method
JP2018179889A (en) Calibration piece, calibration method, shape measurement system and shape measurement method
JP2568891B2 (en) Zero point correction method and apparatus in thickness measurement method
JP5290038B2 (en) Measuring apparatus and measuring method
JP3528733B2 (en) Method for measuring cross-sectional dimensions of H-section steel
JP3339624B2 (en) Dimension measurement method
JP3245003B2 (en) Distance measuring apparatus and method
CN108072326B (en) Method and device for observing light beam irradiation
JP6393289B2 (en) Laser Doppler velocimeter calibration system and calibration method
KR20160083221A (en) Linear positioning apparatus and method for compensating error thereof
JP2012098048A (en) Wheel shape calibration tool, calibration method using wheel shape calibration tool
JP2556945B2 (en) Thickness measuring device
JP2015003371A (en) Workpiece position recognition device, workpiece position recognition method and robot system
JP3385174B2 (en) Cross section profile measurement method
RU2311613C1 (en) Method of determining flatness of moving sheet of material
JPS603502A (en) Non-contacting type distance measuring method
JP6965795B2 (en) Rangefinder calibration method and calibration jig used for it
JPH11271032A (en) Apparatus and method for measuring sectional profile
JPH10122837A (en) Correcting method and equipment of online measuring equipment of die steel, and rest for mounting correction jig

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Ref document number: 4677810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250