JP2008185491A - Angle steel size calculation method and device - Google Patents

Angle steel size calculation method and device Download PDF

Info

Publication number
JP2008185491A
JP2008185491A JP2007020254A JP2007020254A JP2008185491A JP 2008185491 A JP2008185491 A JP 2008185491A JP 2007020254 A JP2007020254 A JP 2007020254A JP 2007020254 A JP2007020254 A JP 2007020254A JP 2008185491 A JP2008185491 A JP 2008185491A
Authority
JP
Japan
Prior art keywords
angle steel
cross
height
width
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020254A
Other languages
Japanese (ja)
Other versions
JP2008185491A5 (en
Inventor
Minoru Matsumoto
実 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007020254A priority Critical patent/JP2008185491A/en
Publication of JP2008185491A publication Critical patent/JP2008185491A/en
Publication of JP2008185491A5 publication Critical patent/JP2008185491A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle steel size calculation method and its device for measuring, with high accuracy and at a high speed, the height, width, height-side thickness, width-side thickness, and camber of an angle steel such as an NAB (unequal angle steel) or an AB (equal angle steel). <P>SOLUTION: In this angle steel size calculation method, the cross-section shape or sizes of an angle steel is measured and calculated by causing laser distance meters to scan, with the distance meters disposed in a variously inclined state. The cross-section shape of the angle steel is found from distance data obtained by the distance meters, inclination angles thereof, and positional data during the scanning. The sizes of respective parts of the angle steel are calculated based on the cross-section shape. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、形鋼の寸法演算方法および装置に関し、特に、NAB(不等辺山形鋼)あるいはAB(等辺山形鋼)といった山形鋼の断面形状や寸法を高精度で測定し演算する山形鋼寸法演算方法および装置に関するものである。   TECHNICAL FIELD The present invention relates to a method and an apparatus for calculating a dimension of a section steel, and in particular, an angle steel dimension calculation for measuring and calculating a cross-sectional shape and dimension of an angle steel such as NAB (unequal angle iron) or AB (equal angle iron) with high accuracy. It relates to a method and a device.

形鋼成品を測定する方法または装置としては、大別して(1)複数のセンサを固定した状態で配置し、その直下を成品が搬送される材搬送中の測定、および(2)材長手方向の測定箇所に成品を搬送停止させ、成品上をセンサが走査する材停止中の測定、の2種類はあるものの、特に山形鋼を測定し寸法を求める方法は開示されてない。   The method or apparatus for measuring a shaped steel product can be broadly classified as follows: (1) Place a plurality of sensors in a fixed state, and directly under that, measure during material conveyance, and (2) in the longitudinal direction of the material. Although there are two types of measurement, in which the product is stopped at the measurement location and the sensor is scanned on the product, the method for measuring the angle steel and obtaining the dimensions is not disclosed.

これまでは、専用の測定治具による手測定により、NABもしくはABの高さ・幅・高さ辺厚み・幅辺厚み・直角度・反りなどを測定する方法が行われてきていた。   Until now, a method of measuring the height, width, height side thickness, width side thickness, squareness, warpage, etc. of NAB or AB has been performed by manual measurement with a dedicated measuring jig.

しかしながら、専用の測定治具による手測定では、測定時間がかかるため、ピッチダウンが発生する、また、測定者による測定値のバラツキが生じる、さらに、ベテランと経験年数の浅い者との差も生じる、といった問題があった。   However, manual measurement with a dedicated measuring jig takes a long time, resulting in pitch down, variation in measured values by the measurer, and a difference between experienced and inexperienced people. There was a problem such as.

本発明は上記事情に鑑みてなされたもので、上記問題を解決し、NAB(不等辺山形鋼)あるいはAB(等辺山形鋼)といった山形鋼の高さ・幅・高さ辺厚み・幅辺厚み・直角度・反りを高精度にかつ高速に測定し、演算する山形鋼寸法演算方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and solves the above problems, and the height, width, height side thickness and width side thickness of angle irons such as NAB (unequal angle iron) or AB (equal edge angle steel). An object of the present invention is to provide an angle iron dimension calculation method and apparatus for measuring and calculating squareness and warpage with high accuracy and high speed.

本発明の請求項1に係る発明は、上下左右に傾斜させた状態で配置されたレーザ距離計を走査して山形鋼の断面形状や寸法を測定および演算する山形鋼寸法演算方法であって、前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記山形鋼の断面形状を求め、この断面形状に基づき前記山形鋼の各部寸法を演算することを特徴とする山形鋼寸法演算方法である。   The invention according to claim 1 of the present invention is an angle steel dimension calculation method for measuring and calculating a cross-sectional shape and dimensions of an angle steel by scanning a laser distance meter arranged in a state where it is inclined vertically and horizontally, A chevron steel size calculation characterized in that a cross-sectional shape of the angle steel is obtained from the distance data of the laser rangefinder, the tilt angle, and the position data during scanning, and each part size of the chevron steel is calculated based on the cross-sectional shape. Is the method.

また本発明の請求項2に係る発明は、請求項1に記載の山形鋼寸法演算方法において、前記各部寸法は、高さ、幅、高さ辺厚み、幅辺厚み、直角度、および反りのいずれか又はそれらの組合わせであることを特徴とする山形鋼寸法演算方法である。   The invention according to claim 2 of the present invention is the angle steel dimension calculation method according to claim 1, wherein the dimensions of each part are height, width, height side thickness, width side thickness, squareness, and warpage. It is an angle iron dimension calculating method characterized by being either or a combination thereof.

さらに本発明の請求項3に係る発明は、上下左右に傾斜させた状態で配置されたレーザ距離計を走査して山形鋼の断面形状や寸法を測定および演算する山形鋼寸法演算装置であって、前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記山形鋼の断面形状を求め、この断面形状に基づき前記山形鋼の各部寸法を演算する演算装置を備えることを特徴とする山形鋼寸法演算装置である。   Further, the invention according to claim 3 of the present invention is an angle steel dimension calculation device that measures and calculates a cross-sectional shape and dimensions of an angle steel by scanning a laser distance meter arranged in an inclined state vertically and horizontally. And an arithmetic device for calculating a cross-sectional shape of the angle steel from the distance data of the laser rangefinder, an inclination angle, and position data during scanning, and calculating a size of each part of the angle steel based on the cross-sectional shape. It is an angle steel size calculation device.

本発明では、材停止中に上下左右45°に配置されたレーザ距離計を測定対象であるNABもしくはAB上を走査し、距離データ・距離計の傾斜角・距離計の走査中の位置データより、2次元平面座標つまり断面プロフィールを求め、この断面プロフィールに基づきNABもしくはABの各部寸法を演算するようにしたので、高精度にかつ高速にNABもしくはABの各部寸法を求めることができる。   In the present invention, a laser distance meter arranged at 45 ° up, down, left and right while the material is stopped is scanned over NAB or AB to be measured, and distance data, inclination angle of distance meter, position data during distance meter scanning Since the two-dimensional plane coordinates, that is, the cross-sectional profile are obtained and the dimensions of each part of NAB or AB are calculated based on this cross-sectional profile, the dimensions of each part of NAB or AB can be obtained with high accuracy and at high speed.

図1は、本発明を実施するための装置例の概要を示す図である。図中、1は校正片、2a〜fはレーザ距離計、3はCフレーム、4はCフレーム走行用モータ、5はCフレーム高さ設定機構、6は距離計高さ設定機構、および7はNABをそれぞれ表している。   FIG. 1 is a diagram showing an outline of an example of an apparatus for carrying out the present invention. In the figure, 1 is a calibration piece, 2a to f are laser distance meters, 3 is a C frame, 4 is a C frame driving motor, 5 is a C frame height setting mechanism, 6 is a distance meter height setting mechanism, and 7 is Each represents NAB.

レーザ距離計2a〜2fは、校正片1とNAB7を上下左右から傾斜させた状態で挟むように配置されており、具体的には上下左右45°(X(エックス)型とし、傾斜角は30°未満ではレーザ光の乱反射光の受光ができないもしくは誤差がでる可能性があるので、30°以上とし、好ましくは 45°±△θ1 とする)と上下90°の計6台配置する。   The laser distance meters 2a to 2f are arranged so as to sandwich the calibration piece 1 and the NAB 7 in an inclined state from the top, bottom, left, and right. Specifically, the laser distance meters 2a to 2f are 45 ° (X) type, and the inclination angle is 30. If the angle is less than 0 °, irregularly reflected light from the laser beam may not be received or an error may occur. Therefore, the angle is set to 30 ° or more, preferably 45 ° ± Δθ1) and 90 ° vertically.

材(以下、測定対象NABを材と略称する)サイズに応じてレーザ距離計の測定範囲を変化させる距離計高さ設定機構6を有している。なお、上下90°に設置したレーザ距離計2eおよび2fはより測定精度を上げるためのものであり、上下左右45°の距離計配置で十分な精度で材の距離測定が可能な場合は4台でも構わない。Cフレーム3は、レーザ距離計2a〜2fを搭載し、サーボモータ等のCフレーム走行用機構4で走行・移動できるとともに、Cフレーム高さ設定機構5によりフレーム高さを変化できる構造になっている。また、レーザ距離計を搭載するCフレーム3は左右分離型でも構わない。その場合は、校正片1は左右それぞれに必要である。   It has a distance meter height setting mechanism 6 that changes the measurement range of the laser distance meter according to the size of the material (hereinafter, the measurement target NAB is abbreviated as material). The laser rangefinders 2e and 2f installed 90 degrees above and below are intended to increase the measurement accuracy. If the distance measurement of 45 degrees above and below and left and right is enough to measure the distance of the material, 4 units are available. It doesn't matter. The C frame 3 is equipped with laser distance meters 2a to 2f, and can be moved and moved by a C frame traveling mechanism 4 such as a servo motor, and the frame height can be changed by a C frame height setting mechanism 5. Yes. The C frame 3 on which the laser distance meter is mounted may be a left-right separation type. In that case, the calibration pieces 1 are necessary for each of the left and right sides.

図2は、図1に示した装置を用いた測定概要を示す図である。材停止中において、材上にレーザ距離計を走査させ、測定毎に校正片と材を同時に測定する。距離データ(L)・距離計の傾斜角(θ)・距離計の走査中の位置データ(M)より三角測量の原理を用いて、校正片と材の断面プロフィールを求める。校正片の断面プロフィールを復元することで、各レーザ距離計より得られる断片的な材の断面プロフィールを合成するものである。   FIG. 2 is a diagram showing an outline of measurement using the apparatus shown in FIG. While the material is stopped, the laser distance meter is scanned over the material, and the calibration piece and the material are simultaneously measured for each measurement. Using the triangulation principle, the cross-sectional profile of the calibration piece and the material is obtained from the distance data (L), the inclination angle of the distance meter (θ), and the position data during scanning of the distance meter (M). By restoring the cross-sectional profile of the calibration piece, the cross-sectional profile of the fragmented material obtained from each laser distance meter is synthesized.

図8は、本発明の処理フロー例を示す図である。以下、図8に従って処理の詳細を説明していく。なお、以下の処理・演算は、既存のプロコンまたはパソコンで構成される演算装置(図示せず)で行うようにする。   FIG. 8 is a diagram showing a processing flow example of the present invention. Details of the processing will be described below with reference to FIG. The following processing / calculation is performed by an arithmetic device (not shown) constituted by an existing process computer or personal computer.

1)材に対して平行にレーザ距離計を走行させ、校正片およびNABまでの距離データをサンプリングする(Step01)。なお、校正片は、上下左右のレーザ距離計の測定データである断面プロフィールを復元させるものである。   1) A laser distance meter is run in parallel with the material, and distance data to the calibration piece and the NAB is sampled (Step 01). The calibration piece restores the cross-sectional profile that is measurement data of the laser rangefinders in the vertical and horizontal directions.

2)距離データより2次元平面座標(x、y)を以下の式により求める(Step02)。
(1)左上のレーザ距離計
x1 = M + L1・cosθ1 ・・・・・・・・・・・・・・・・・・・・(1)
y1 = H - L1・sinθ1 ・・・・・・・・・・・・・・・・・・・・(2)
(2)左下のレーザ距離計
x2 = M + L2・cosθ2 ・・・・・・・・・・・・・・・・・・・・(3)
y2 = L2・sinθ2 ・・・・・・・・・・・・・・・・・・・(4)
(3)右上のレーザ距離計
x3 = M + D - L3・cosθ3 ・・・・・・・・・・・・・・・・・(5)
y3 = H - L3・sinθ3 ・・・・・・・・・・・・・・・・・・・(6)
(4)右下のレーザ距離計
x4 = M + D - L4・cosθ4 ・・・・・・・・・・・・・・・・・(7)
y4 = L4・sinθ4 ・・・・・・・・・・・・・・・・・・・(8)
Ln (n = 1 〜 4) : 測定データ
θn (n = 1 〜 4) : 傾斜角
D : 左右距離計の間隔(設定値)
H : 上下距離計の間隔
2) Two-dimensional plane coordinates (x, y) are obtained from the distance data by the following formula (Step 02).
(1) Upper left laser rangefinder
x1 = M + L1 ・ cosθ1 (1)
y1 = H-L1 · sinθ1 (2)
(2) Laser distance meter in the lower left
x2 = M + L2 ・ cosθ2 (3)
y2 = L2 · sinθ2 (4)
(3) Upper right laser distance meter
x3 = M + D-L3 · cosθ3 (5)
y3 = H-L3 · sinθ3 (6)
(4) Lower right laser rangefinder
x4 = M + D-L4 · cosθ4 (7)
y4 = L4 · sinθ4 (8)
Ln (n = 1 to 4): Measurement data θn (n = 1 to 4): Inclination angle
D: Distance between left and right distance meters (setting value)
H: Vertical distance meter interval

3)各距離計のNAB の2次元平面座標を、校正片の2次元平面座標を復元することにより、NABもしくはABの断面プロフィールを求める(Step03)。さらに、断面プロフィールのデータのばらつきを軽減させるために、前後数点の移動平均処理を行うことも有効である。   3) The NAB or AB cross-sectional profile is obtained by restoring the two-dimensional plane coordinates of the NAB of each distance meter and the two-dimensional plane coordinates of the calibration piece (Step 03). Furthermore, it is also effective to perform a moving average process at several points before and after in order to reduce variation in the data of the cross-sectional profile.

次にNABの各寸法の演算方法の一例を示す。説明上、特長点は括弧付き英字とし、また特長点のxy座標は下付き文字で表すものとする。一例として、特長点Aのxy座標は、それぞれ(Ax)および(Ay)として表す。また、部位の呼び方は、図4より短い辺を高さ(紙面右側)、長い辺を幅(紙面左側)とする。   Next, an example of a method for calculating each dimension of the NAB will be shown. For the sake of explanation, feature points are expressed in alphabetic characters with parentheses, and xy coordinates of feature points are expressed in subscript characters. As an example, the xy coordinates of the feature point A are represented as (Ax) and (Ay), respectively. In addition, the part is referred to as a side shorter than that in FIG. 4 (height on the right side of the drawing) and a longer side as the width (left side of the drawing).

材は搬送姿勢のケースで以下説明する。
4)高さ辺両端下エッジを検出する(Step04)。ある傾き(θk)をもった仮想線を底面に近づけ、仮想線と接する座標を底面下両エッジ(A・B)とする。(図4を参照のこと、なお図4は傾きの一例として−θnの状態を示す。)
The material will be described below in the case of a conveying posture.
4) The lower edge at both ends of the height side is detected (Step 04). A virtual line having a certain inclination (θk) is brought close to the bottom surface, and coordinates in contact with the virtual line are defined as both bottom edge (A / B) of the bottom surface. (See FIG. 4. Note that FIG. 4 shows a state of −θn as an example of the inclination.)

5)材の傾きを求める(Step05)。底面下両エッジ間(A・B)の座標を1次近似し、材の傾きaを求める。(θn)
y = ax + b ・・・・・・・・・(9)
θn = tan-1 ( a ) ・・・・・・・・・(10)
5) Obtain the inclination of the material (Step 05). First, approximate the coordinates of the bottom edge (A / B) to obtain the slope a of the material. (Θn)
y = ax + b (9)
θn = tan -1 (a) (10)

6)座標を回転させる(Step06)。材の傾きで反時計方向にプロフィールを回転させる。つまり、NABが立った状態にする。xy座標全ての点について、半径および角度をもとめ、材の傾き(θn)に応じ座標を回転させて、図5のように断面を正立させる。そして、回転後の座標は(X、Y)とする。
r = SQRT(x2+y2) ・・・・・・・・・・・・(11)
θ = tan-1 ( x / - y ) ・・・・・・・・・・・・(12)
X = -r・sin ( θ±θn) ・・・・・・・・・・・ (13)
Y = r・cos( θ±θn ) ・・・・・・・・・・・ (14)
6) The coordinates are rotated (Step 06). The profile is rotated counterclockwise by the tilt of the material. That is, the NAB is set up. For all the xy coordinates, the radius and angle are obtained, and the coordinates are rotated according to the inclination (θn) of the material, so that the cross section is erected as shown in FIG. The coordinates after rotation are (X, Y).
r = SQRT (x 2 + y 2 ) (11)
θ = tan -1 (x /-y) (12)
X = -r ・ sin (θ ± θn) (13)
Y = r · cos (θ ± θn) (14)

7)高さ辺内側エッジを検出する(Step07)。仮想線と接する座標を高さ辺内側エッジとする。(C)   7) The height side inner edge is detected (Step 07). The coordinates in contact with the imaginary line are the height side inner edges. (C)

8)高さ辺突端を検出する(Step08)。高さ辺左上下両エッジ(B・C)間を移動平均し、ピークを底面突端とする。(D)   8) The height side tip is detected (Step 08). Moving average between left and right edges (B, C) of the height side, and the peak is the bottom tip. (D)

9)幅辺エッジ近傍部を算出する(Step09)。高さ辺右下エッジ(A)を含め幅辺方向内側にある範囲を平均し、幅辺右下エッジ近傍部とする。(G)   9) The width side edge vicinity part is calculated (Step 09). The range on the inner side in the width side direction including the lower right edge (A) of the height side is averaged to obtain the vicinity of the lower right edge of the width side. (G)

10)高さを求める(Step10)。高さ辺突端(D)と幅辺右下エッジ近傍部(G)の間隔を高さとする。
高さ = Ax - Bx ・・・・・・・・・・・ (15)
10) Find the height (Step 10). The distance between the height edge tip (D) and the width side lower right edge vicinity (G) is defined as the height.
Height = Ax-Bx (15)

11)高さ辺厚みを求める(Step11)。高さ(Ax-Bx/2)1/2位置の厚みを高さ辺厚みとする。ある範囲で平均化する。   11) The height side thickness is obtained (Step 11). The thickness at the height (Ax-Bx / 2) 1/2 position is defined as the height side thickness. Average over a range.

12)高さ底面を検出する(Step12)。高さ辺下左右両エッジ(A・B)間を移動平均し、下限ピークを高さ底面とする。(H)   12) The bottom surface of the height is detected (Step 12). Moving average between left and right edges (A, B) below the height side, and the lower limit peak is the height bottom. (H)

13)幅辺の両端エッジを検出する(Step13)。仮想線と接する座標を幅辺上左右両エッジとする。(E・F)   13) Both end edges of the wide side are detected (Step 13). The coordinates that touch the virtual line are the left and right edges on the width side. (E ・ F)

14)幅辺突端を検出する(Step14)。幅辺上左右両エッジ(E・F)間を移動平均し、ピークを幅辺突端とする。(I)   14) Detect the width side tip (Step 14). Moving average between the left and right edges (EF) on the width side, and the peak is the width side tip. (I)

15)幅を算出する(Step15)。高さ辺底面(H)と幅辺突端(I)の間隔を幅とする。
幅 = Iy - Hy ・・・・・・・・・・・ (16)
15) The width is calculated (Step 15). The interval between the height side bottom (H) and the width side tip (I) is defined as the width.
Width = Iy-Hy (16)

16)幅辺厚みを求める(Step16)。幅(Iy-Hy/2)1/2位置の厚みを幅辺厚みとする。ある範囲で平均化する。   16) The width side thickness is obtained (Step 16). The thickness at the width (Iy-Hy / 2) 1/2 position is defined as the width side thickness. Average over a range.

17)直角度を算出する(Step17)。高さ辺両端エッジ(A)と幅辺両端エッジ(F)の間隔を直角度とする。
直角度 = Fx - Ax ・・・・・・・・・・・ (17)
17) The squareness is calculated (Step 17). The interval between the height side edge (A) and the width edge (F) is a squareness.
Squareness = Fx-Ax (17)

符号は、+の場合、時計方向の傾き、-の場合、反時計方向の傾きとする。
18)反りを算出する(Step18)。高さ辺右下エッジ(A)と幅辺上右エッジ(F)を結ぶ線と、高さ辺右下エッジ(A)と幅辺上右エッジ(F)間で最も凹凸のある位置との間隔を反りまたは猫背とする。図6が猫背であり、右方向の湾曲、図7が反りであり、左方向の湾曲、猫背は右方向の湾曲である。
When the sign is +, the inclination is clockwise, and when it is-, the inclination is counterclockwise.
18) The warpage is calculated (Step 18). The line connecting the lower right edge (A) of the height side and the upper right edge (F) of the width side and the position with the most unevenness between the lower right edge of the height side (A) and the upper right edge (F) of the width side The interval is warped or stooped. FIG. 6 is a stoop, rightward curvature, and FIG. 7 is a warp, a leftward curvature, and a stoop is a rightward curvature.

上述のようにNAB各部位の寸法を演算することにより、高精度なNAB寸法測定ができる。   As described above, the NAB dimension can be measured with high accuracy by calculating the dimension of each part of the NAB.

本発明の実施例を以下に示す。図1に本発明の装置概要を示す。装置構成は、校正片・レーザ距離計・レーザ距離計を搭載するCフレーム・Cフレームを走行させる移動機構・材サイズに応じてレーザ距離計の測定範囲を変化させる距離計高さ設定機構である。レーザ距離計の配置は、上下左右45°と上下90°の計6台である。なお、上下左右45°の距離計配置で材の距離測定が可能な場合は4台でも構わない。また、レーザ距離計を搭載するCフレームは左右分離型でも構わない。その場合は、校正片は左右に必要である。   Examples of the present invention are shown below. FIG. 1 shows an outline of the apparatus of the present invention. The apparatus configuration includes a calibration piece, a laser distance meter, a C frame on which the laser distance meter is mounted, a moving mechanism for running the C frame, and a distance meter height setting mechanism for changing the measurement range of the laser distance meter according to the material size. . There are 6 laser rangefinders in total, 45 ° vertically and horizontally and 90 ° vertically. In addition, if the distance measurement of the material is possible by the distance meter arrangement of 45 degrees up, down, left and right, four units may be used. The C frame on which the laser distance meter is mounted may be a left-right separation type. In that case, calibration pieces are required on the left and right.

図2に測定概要、図3に断面プロフィール合成概要を示す。材停止中において、材上にレーザ距離計を走査させ、測定毎に校正片と材を同時に測定する。距離データ(L)・距離計の傾斜角(θ)・距離計の走査中の位置データ(M)より、校正片と材の断面プロフィールを求める。校正片の断面プロフィールを復元することで、各レーザ距離計より得られる断片的な材の断面プロフィールを合成する。   Fig. 2 shows the outline of measurement, and Fig. 3 shows the outline of the cross-sectional profile synthesis. While the material is stopped, the laser distance meter is scanned over the material, and the calibration piece and the material are simultaneously measured for each measurement. From the distance data (L), the inclination angle of the distance meter (θ), and the position data during scanning of the distance meter (M), the cross-sectional profile of the calibration piece and the material is obtained. By restoring the cross-sectional profile of the calibration piece, the cross-sectional profile of the fragmented material obtained from each laser distance meter is synthesized.

図4に合成後のNABの断面プロフィールを示す。図5に材を座標回転させ、立てた姿勢の断面プロフィールを示す。また部位の説明を示す。この断面プロフィールを基にNABもしくはABの高さ、幅、高さ辺厚み、幅辺厚み、直角度、および反りを求める。   FIG. 4 shows a cross-sectional profile of the NAB after synthesis. Fig. 5 shows a cross-sectional profile of a standing posture with the material rotated in coordinates. Moreover, the description of a site | part is shown. Based on this cross-sectional profile, the height, width, height side thickness, width side thickness, squareness, and warp of NAB or AB are determined.

NAB測定結果は以下の通りである。
材仕様 : 250×90×8×14 250×90×9×14
高さ -0.36mm -0.26mm
直角度 ±0.0mm ±0.0mm
反り +0.15mm +0.10mm
The NAB measurement results are as follows.
Material specifications: 250 x 90 x 8 x 14 250 x 90 x 9 x 14
Height -0.36mm -0.26mm
Squareness ± 0.0mm ± 0.0mm
Warpage + 0.15mm + 0.10mm

本発明を実施するための装置例の概要を示す図である。It is a figure which shows the outline | summary of the example of an apparatus for implementing this invention. 図1に示した装置を用いた測定概要を示す図である。It is a figure which shows the measurement outline | summary using the apparatus shown in FIG. 断面プロフィール測定の概要を示す図である。It is a figure which shows the outline | summary of a cross-sectional profile measurement. 搬送状態でのNABの断面プロフィールを示す図である。It is a figure which shows the cross-sectional profile of NAB in a conveyance state. 材を座標回転させ、立てた姿勢の断面プロフィールを示す図である。It is a figure which shows the cross-sectional profile of the posture which rotated the coordinate of the material and stood. NAB猫背の概要を示す図である。It is a figure which shows the outline | summary of a NAB stoop. NAB反りの概要を示す図である。It is a figure which shows the outline | summary of NAB curvature. 本発明の演算処理フロー例を示す図である。It is a figure which shows the example of a calculation processing flow of this invention.

符号の説明Explanation of symbols

1 校正片
2a〜f レーザ距離計
3 Cフレーム
4 Cフレーム走行用モータ
5 Cフレーム高さ設定機構
6 距離計高さ設定機構
7 NAB
DESCRIPTION OF SYMBOLS 1 Calibration piece 2a-f Laser distance meter 3 C frame 4 C frame travel motor 5 C frame height setting mechanism 6 Distance meter height setting mechanism 7 NAB

Claims (3)

上下左右に傾斜させた状態で配置されたレーザ距離計を走査して山形鋼の断面形状や寸法を測定および演算する山形鋼寸法演算方法であって、
前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記山形鋼の断面形状を求め、この断面形状に基づき前記山形鋼の各部寸法を演算することを特徴とする山形鋼寸法演算方法。
A chevron steel dimension calculation method for measuring and calculating a cross-sectional shape and dimensions of an angle steel by scanning a laser distance meter arranged in an inclined state vertically and horizontally,
A chevron steel size calculation characterized in that a cross-sectional shape of the angle steel is obtained from distance data of the laser rangefinder, an inclination angle, and position data during scanning, and each part size of the angle steel is calculated based on the cross-sectional shape. Method.
請求項1に記載の山形鋼寸法演算方法において、
前記各部寸法は、
高さ、幅、高さ辺厚み、幅辺厚み、直角度、および反りのいずれか又はそれらの組合わせであることを特徴とする山形鋼寸法演算方法。
In the angle steel dimension calculation method according to claim 1,
The dimensions of each part are as follows:
A chevron steel dimension calculation method characterized by being any one of height, width, height side thickness, width side thickness, squareness, warpage, or a combination thereof.
上下左右に傾斜させた状態で配置されたレーザ距離計を走査して山形鋼の断面形状や寸法を測定および演算する山形鋼寸法演算装置であって、
前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記山形鋼の断面形状を求め、この断面形状に基づき前記山形鋼の各部寸法を演算する演算装置を備えることを特徴とする山形鋼寸法演算装置。
A chevron steel size calculation device that measures and calculates the cross-sectional shape and dimensions of an angle steel by scanning a laser distance meter arranged in an inclined state vertically and horizontally,
A calculation device is provided that obtains the cross-sectional shape of the angle steel from the distance data of the laser rangefinder, the tilt angle, and the position data during scanning, and calculates the dimensions of each part of the angle steel based on the cross-sectional shape. Angle steel dimension calculator.
JP2007020254A 2007-01-31 2007-01-31 Angle steel size calculation method and device Pending JP2008185491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020254A JP2008185491A (en) 2007-01-31 2007-01-31 Angle steel size calculation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020254A JP2008185491A (en) 2007-01-31 2007-01-31 Angle steel size calculation method and device

Publications (2)

Publication Number Publication Date
JP2008185491A true JP2008185491A (en) 2008-08-14
JP2008185491A5 JP2008185491A5 (en) 2009-10-22

Family

ID=39728639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020254A Pending JP2008185491A (en) 2007-01-31 2007-01-31 Angle steel size calculation method and device

Country Status (1)

Country Link
JP (1) JP2008185491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729426A (en) * 2015-04-03 2015-06-24 济南恒升视觉信息科技有限公司 Automatic angle iron online detecting system and method based on machine vision

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189762A (en) * 1975-02-05 1976-08-06
JPH04157308A (en) * 1990-10-19 1992-05-29 Kawasaki Steel Corp Detecting method and apparatus of warp in widthwise direction of steel band
JPH07120226A (en) * 1993-10-25 1995-05-12 Serutetsuku Syst:Kk Measuring instrument for shape steel dimension
JPH08136213A (en) * 1994-11-04 1996-05-31 Katsuji Uosaki Detection of edge position of member
JPH08219727A (en) * 1995-02-14 1996-08-30 Toshiba Fa Syst Eng Kk Size measuring apparatus
JPH10115509A (en) * 1996-10-14 1998-05-06 Selltec Syst:Kk Apparatus for measuring size of cross section of shape steel
JP2000074632A (en) * 1998-08-31 2000-03-14 Kawasaki Steel Corp Method for measuring dimension
JP2002162223A (en) * 2000-11-22 2002-06-07 Kawasaki Steel Corp Size measuring device of h shape steel and size measuring method using the same
JP2005291876A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Dimension-measuring method of section
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method
JP2006275919A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Dimension measuring method of shape steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189762A (en) * 1975-02-05 1976-08-06
JPH04157308A (en) * 1990-10-19 1992-05-29 Kawasaki Steel Corp Detecting method and apparatus of warp in widthwise direction of steel band
JPH07120226A (en) * 1993-10-25 1995-05-12 Serutetsuku Syst:Kk Measuring instrument for shape steel dimension
JPH08136213A (en) * 1994-11-04 1996-05-31 Katsuji Uosaki Detection of edge position of member
JPH08219727A (en) * 1995-02-14 1996-08-30 Toshiba Fa Syst Eng Kk Size measuring apparatus
JPH10115509A (en) * 1996-10-14 1998-05-06 Selltec Syst:Kk Apparatus for measuring size of cross section of shape steel
JP2000074632A (en) * 1998-08-31 2000-03-14 Kawasaki Steel Corp Method for measuring dimension
JP2002162223A (en) * 2000-11-22 2002-06-07 Kawasaki Steel Corp Size measuring device of h shape steel and size measuring method using the same
JP2005291876A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Dimension-measuring method of section
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method
JP2006275919A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Dimension measuring method of shape steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729426A (en) * 2015-04-03 2015-06-24 济南恒升视觉信息科技有限公司 Automatic angle iron online detecting system and method based on machine vision

Similar Documents

Publication Publication Date Title
US11156454B2 (en) Measurement system and machine for folding an object
JP6051751B2 (en) Method and apparatus for detecting position and orientation of metal plate, and method for inspecting metal plate
JP4516615B2 (en) Hub attitude detection method and apparatus
JP2013545972A5 (en)
JP5954241B2 (en) Self-propelled inspection device and inspection method for metal plate
JP2007218705A5 (en)
JP6445383B2 (en) Trajectory inspection method and apparatus
JP2018512278A (en) Method for correcting a predetermined cutting path for cutting a metal base plate
CN106643643A (en) Non-contact target coordinate measuring method
CN105424013A (en) Measuring method of ground coordinates
JP2008185491A (en) Angle steel size calculation method and device
JP4769914B2 (en) Flatness measuring method and apparatus
CN105466381A (en) Concave arc radius detection and arc degree determination apparatus and method
JP2008185492A (en) Valve plate size calculation method and device
JP2009063541A (en) Geometric quantity measurement method and device
JP5384412B2 (en) Inspection apparatus and inspection method
JP2007121004A (en) Method and device for measuring rail size
JP2007240303A (en) Channel steel dimension arithmetic method and device
CN108020135A (en) A kind of plane quadrilateral size automatic measuring method
TWM632582U (en) Optical measurement device
JP2002161511A (en) Measuring method of longitudinal section profile of road face and measuring method of road face profile
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP6965795B2 (en) Rangefinder calibration method and calibration jig used for it
WO2012111510A1 (en) Position detection device
CN106610302B (en) A kind of absolute type measuring device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20090908

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20090908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A131 Notification of reasons for refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110905

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120214

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD03 Notification of appointment of power of attorney

Effective date: 20120405

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619