JP2007121004A - Method and device for measuring rail size - Google Patents

Method and device for measuring rail size Download PDF

Info

Publication number
JP2007121004A
JP2007121004A JP2005310848A JP2005310848A JP2007121004A JP 2007121004 A JP2007121004 A JP 2007121004A JP 2005310848 A JP2005310848 A JP 2005310848A JP 2005310848 A JP2005310848 A JP 2005310848A JP 2007121004 A JP2007121004 A JP 2007121004A
Authority
JP
Japan
Prior art keywords
rail
cross
sectional shape
railroad
dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310848A
Other languages
Japanese (ja)
Inventor
Minoru Matsumoto
実 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005310848A priority Critical patent/JP2007121004A/en
Publication of JP2007121004A publication Critical patent/JP2007121004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring highly accurately various sizes of rails for railroad. <P>SOLUTION: A sectional shape of the rail for the railroad is determined from distance data and a tilt angle of a laser range finder arranged in the tilted state vertically and sidewards and position data during scanning, and each part dimension of the rail for the railroad is operated based on the sectional shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、形鋼の寸法測定方法および装置に関し、特に、鉄道用レール(以下、レールまたはRailとも略称する)の断面形状や寸法を高精度で測定するレール寸法測定方法および装置に関するものである。   The present invention relates to a method and apparatus for measuring a dimension of a section steel, and more particularly to a rail dimension measuring method and apparatus for measuring a cross-sectional shape and dimensions of a rail for rail (hereinafter also abbreviated as rail or Rail) with high accuracy. .

旅客や貨物の輸送手段としての鉄道に用いる鉄道用レールにおいては、その製造過程での形状検査または使用時のメンテナンスが、重要視されている。しかし、レールの形状測定としては、これまでは幅ゲージもしくはマイクロメータといった専用の測定治具を用いた手測定が主なものであった。このため、測定に時間がかかり、ピッチダウンが発生する、または測定者による測定値のバラツキが生じる、さらにベテランと経験年数の浅い者との差も生じるなどといった問題が生じていた。   For railroad rails used for railways as a means of transporting passengers and cargo, shape inspection in the manufacturing process or maintenance during use is regarded as important. However, until now, the main measurement of rail shape has been manual measurement using a dedicated measuring jig such as a width gauge or micrometer. For this reason, it takes time to measure, causing pitch down, variation in measurement values by the measurer, and a difference between experienced and inexperienced people.

これに対して、種々の技術が提案されている。例えば、特許文献1に鉄道用レールの形状測定方法と称する技術が開示されている。この技術は、スキャン式レーザ距離計を搬送方向に2台並べ、走間中のレールに対しレール上面までの距離を測定し、レ−ル上面に存在する個々の凹凸の長手方向極値を抽出することでそれぞれ凹凸量を算出する、及び端部の曲がり量を算出することによって、オンラインでレ−ルの形状合否判定を行うものである。   On the other hand, various techniques have been proposed. For example, Patent Literature 1 discloses a technique called a railroad rail shape measuring method. This technology arranges two scanning laser distance meters in the transport direction, measures the distance to the rail upper surface with respect to the running rail, and extracts the longitudinal extreme values of individual irregularities present on the rail upper surface By doing this, the amount of unevenness is calculated, and the amount of bending at the end is calculated, so that the rail shape is judged online.

また、特許文献2に鉄道用レールの柱厚判定方法と称する技術が開示されている。この技術は、レール(厚み部)に対し、レーザ距離計を挟み込む姿勢で2台配置し、走間中のレールまでの距離を測定し、互いの距離計間隔と距離データから厚みを測定し合否判定を行うものである。   Patent Document 2 discloses a technique referred to as a rail rail column thickness determination method. In this technology, two rails with a laser distance meter are placed on the rail (thickness part), the distance to the rail during the run is measured, and the thickness is measured from the distance between the distance meters and the distance data. Judgment is performed.

さらに、特許文献3にレール断面形状測定装置と称する技術が開示されている。この技術は、レールに対し、上面と側面にレーザ変位計を2台配置し、上面は材左右方向、側面は材上下方向にレーザ変位計を走査させるものである。
特開平8−261742号公報 特開平10−260035号公報 特開2003−207319号公報
Furthermore, Patent Literature 3 discloses a technique called a rail cross-sectional shape measuring device. In this technique, two laser displacement meters are arranged on the upper surface and side surface of the rail, and the upper surface scans the laser displacement meter in the material left-right direction and the side surface in the material up-down direction.
JP-A-8-261742 JP 10-260035 A JP 2003-207319 A

しかしながら、特許文献1および特許文献2に記載の技術は、レール搬送中に測定するものであり、かつその測定項目もそれぞれ材長手方向全長のレール上面の凸凹を測定することで求める波長・波高、およびレールの柱厚が主なものであり、レールの複雑な形状を詳細にかつ高精度に測定するものでないという問題がある。   However, the techniques described in Patent Document 1 and Patent Document 2 are measured during rail transportation, and the measurement items are also determined by measuring the unevenness of the rail upper surface of the entire length in the longitudinal direction of the material. Moreover, the column thickness of the rail is the main one, and there is a problem that the complicated shape of the rail is not measured in detail and with high accuracy.

また、特許文献2に記載の技術では、上面と側面に設置したレーザ変位計を走査させて、レール断面形状を測定するとしているが、具体的な断面形状の測定についての記載はない。   Further, in the technique described in Patent Document 2, it is assumed that the rail cross-sectional shape is measured by scanning laser displacement meters installed on the upper surface and the side surface, but there is no description about the measurement of the specific cross-sectional shape.

本発明は上記事情に鑑みてなされたもので、上記問題を解決し、鉄道用レールの各種寸法を高精度に測定するレール寸法測定方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rail dimension measuring method and apparatus that can solve the above problems and measure various dimensions of railroad rails with high accuracy.

本発明の請求項1に係る発明は、上下左右に傾斜させた状態で配置されたレーザ距離計を走査して鉄道用レールの断面形状や寸法を測定するレール寸法測定方法において、前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記鉄道用レールの断面形状を求め、この断面形状に基づき前記鉄道用レールの各部寸法を演算することを特徴とするレール寸法測定方法である。   The invention according to claim 1 of the present invention is the rail distance measuring method for measuring the cross-sectional shape and dimensions of railroad rails by scanning a laser distance meter disposed in a state where it is tilted vertically and horizontally. A rail dimension measuring method characterized in that a cross-sectional shape of the rail for railroad is obtained from the distance data, inclination angle, and position data during scanning, and the dimensions of each part of the rail for railroad are calculated based on the cross-sectional shape. .

また本発明の請求項2に係る発明は、請求項1に記載のレール寸法測定方法において、前記各部寸法は、レールの頭幅、底面幅、高さ、厚み、片足幅、足裏平坦度、および頭幅触れのいずれか又はそれらの組合わせであることを特徴とするレール寸法測定方法である。   Further, the invention according to claim 2 of the present invention is the rail dimension measuring method according to claim 1, wherein the dimensions of each part are the head width, bottom width, height, thickness, one foot width, sole flatness of the rail, And a method of measuring a rail size, characterized in that any one of them and a combination thereof is used.

さらに本発明の請求項3に係る発明は、上下左右に傾斜させた状態で配置されたレーザ距離計を走査して鉄道用レールの断面形状や寸法を測定するレール寸法測定装置において、前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記鉄道用レールの断面形状を求め、この断面形状に基づき前記鉄道用レールの各部寸法を演算する演算装置を備えることを特徴とするレール寸法測定装置である。   Further, the invention according to claim 3 of the present invention is the rail distance measuring apparatus that measures the cross-sectional shape and dimensions of the rail for rail by scanning a laser distance meter arranged in an inclined state vertically and horizontally. A rail comprising: an arithmetic unit that obtains a cross-sectional shape of the railroad rail from the distance data of the meter, an inclination angle, and position data during scanning, and calculates the dimensions of each part of the railroad rail based on the cross-sectional shape It is a dimension measuring device.

本発明では、レーザ距離計の距離データ、傾斜角、および走査中の位置データから鉄道用レールの断面形状を求め、この断面形状に基づき鉄道用レールの各部寸法を演算するようにしたので、高精度にかつ高速に鉄道用レールの各部寸法を求めることができる。   In the present invention, the cross-sectional shape of the railroad rail is obtained from the distance data of the laser rangefinder, the inclination angle, and the position data during scanning, and the dimensions of each part of the railroad rail are calculated based on this cross-sectional shape. The dimensions of each part of the rail for rail can be obtained accurately and at high speed.

図1は、本発明を実施するための装置例の概要を示す図である。図中、1は校正片、2a〜fはレーザ距離計、3はCフレーム、4はCフレーム走行用機構、5はCフレーム高さ設定機構、6は距離計高さ設定機構、および7はレールをそれぞれ表している。   FIG. 1 is a diagram showing an outline of an example of an apparatus for carrying out the present invention. In the figure, 1 is a calibration piece, 2a to f are laser distance meters, 3 is a C frame, 4 is a C frame running mechanism, 5 is a C frame height setting mechanism, 6 is a distance meter height setting mechanism, and 7 is Each rail is shown.

レーザ距離計2a〜2fは、校正片1とレール7を上下左右から傾斜させた状態で挟むように配置されており、具体的には上下左右45°(X(エックス)型とし、傾斜角は30°未満ではレーザ光の乱反射光の受光ができないもしくは誤差がでる可能性があるので、30°以上とし、好ましくは 45°±△θ1 とする)と上下90°の計6台配置する。   The laser rangefinders 2a to 2f are arranged so as to sandwich the calibration piece 1 and the rail 7 in an inclined state from the top, bottom, left and right. Specifically, the top and bottom, left and right are 45 ° (X type), and the inclination angle is If the angle is less than 30 °, irregularly reflected light from the laser beam cannot be received or an error may occur. Therefore, the angle is set to 30 ° or more, and preferably 45 ° ± Δθ1) and 90 ° vertically.

材(以下、測定対象レールを材と略称する)サイズに応じてレーザ距離計の測定範囲を変化させる距離計高さ設定機構6を有している。なお、上下90°に設置したレーザ距離計2eおよび2fはより測定精度を上げるためのものであり、上下左右45°の距離計配置で十分な精度で材の距離測定が可能な場合は4台でも構わない。Cフレーム3は、レーザ距離計2a〜2fを搭載し、サーボモータ等のCフレーム走行用機構4で走行・移動できるとともに、Cフレーム高さ設定機構5によりフレーム高さを変化できる構造になっている。また、レーザ距離計を搭載するCフレーム3は左右分離型でも構わない。その場合は、校正片1は左右それぞれに必要である。   It has a distance meter height setting mechanism 6 that changes the measurement range of the laser distance meter according to the size of the material (hereinafter, the measurement target rail is abbreviated as material). The laser rangefinders 2e and 2f installed 90 degrees above and below are intended to increase the measurement accuracy. If the distance measurement of 45 degrees above and below and left and right is enough to measure the distance of the material, 4 units are available. It doesn't matter. The C frame 3 is equipped with laser distance meters 2a to 2f, and can be moved and moved by a C frame traveling mechanism 4 such as a servo motor, and the frame height can be changed by a C frame height setting mechanism 5. Yes. Further, the C frame 3 on which the laser distance meter is mounted may be a left-right separation type. In that case, the calibration pieces 1 are necessary for each of the left and right sides.

図2は、図1に示した装置を用いた測定概要を示す図である。材停止中において、材上にレーザ距離計を走査させ、測定毎に校正片と材を同時に測定する。距離データ(L)・距離計の傾斜角(θ)・距離計の走査中の位置データ(M)より三角測量の原理を用いて、校正片と材の断面プロフィールを求める。校正片の断面プロフィールを復元することで、各レーザ距離計より得られる断片的な材の断面プロフィールを合成するものである。   FIG. 2 is a diagram showing an outline of measurement using the apparatus shown in FIG. While the material is stopped, the laser distance meter is scanned over the material, and the calibration piece and the material are simultaneously measured for each measurement. Using the triangulation principle, the cross-sectional profile of the calibration piece and the material is obtained from the distance data (L), the inclination angle of the distance meter (θ), and the position data during scanning of the distance meter (M). By restoring the cross-sectional profile of the calibration piece, the cross-sectional profile of the fragmented material obtained from each laser distance meter is synthesized.

図8は、本発明の処理フロー例を示す図である。以下、図8に従って処理の詳細を説明していく。なお、以下の処理・演算は、既存のプロコンまたはパソコンで構成される演算装置(図示せず)で行うようにする。   FIG. 8 is a diagram showing a processing flow example of the present invention. Details of the processing will be described below with reference to FIG. The following processing / calculation is performed by an arithmetic device (not shown) constituted by an existing process computer or personal computer.

1)材に対して平行にレーザ距離計を走行させ、校正片およびレールまでの距離データをサンプリングする(Step01)。なお,校正片は,上下左右のレーザ距離計の測定データである断面プロフィールを復元させるものである。 1) A laser distance meter is run in parallel with the material, and distance data to the calibration piece and the rail are sampled (Step 01). The calibration piece restores the cross-sectional profile that is the measurement data of the laser rangefinders in the vertical and horizontal directions.

2)距離データより2次元平面座標(x,y)を以下の式により求める(Step02)。
(1)左上のレーザ距離計
x1 = M + L1・cosθ1 ・・・・・・・・・・・・・・・・・・・・(1)
y1 = H - L1・sinθ1 ・・・・・・・・・・・・・・・・・・・・(2)
(2)左下のレーザ距離計
x2 = M + L2・cosθ2 ・・・・・・・・・・・・・・・・・・・・(3)
y2 = L2・sinθ2 ・・・・・・・・・・・・・・・・・・・(4)
(3)右上のレーザ距離計
x3 = M + D - L3・cosθ3 ・・・・・・・・・・・・・・・・・(5)
y3 = H - L3・sinθ3 ・・・・・・・・・・・・・・・・・・・(6)
(4)右下のレーザ距離計
x4 = M + D - L4・cosθ4 ・・・・・・・・・・・・・・・・・(7)
y4 = L4・sinθ4 ・・・・・・・・・・・・・・・・・・・(8)
Ln (n = 1 〜 4) : 測定データ
θn (n = 1 〜 4) : 傾斜角
D : 左右距離計の間隔(設定値)
H : 上下距離計の間隔
2) Two-dimensional plane coordinates (x, y) are obtained from the distance data by the following formula (Step 02).
(1) Upper left laser rangefinder
x1 = M + L1 ・ cosθ1 (1)
y1 = H-L1 · sinθ1 (2)
(2) Laser distance meter in the lower left
x2 = M + L2 ・ cosθ2 (3)
y2 = L2 · sinθ2 (4)
(3) Upper right laser distance meter
x3 = M + D-L3 · cosθ3 (5)
y3 = H-L3 · sinθ3 (6)
(4) Lower right laser rangefinder
x4 = M + D-L4 · cosθ4 (7)
y4 = L4 · sinθ4 (8)
Ln (n = 1 to 4): Measurement data θn (n = 1 to 4): Inclination angle
D: Distance between left and right distance meters (setting value)
H: Vertical distance meter interval

3)各距離計のレール の2次元平面座標を、校正片の2次元平面座標を復元することにより、レールの断面プロフィールを求める(Step03)。さらに、断面プロフィールのデータのばらつきを軽減させるために、前後数点の移動平均処理を行うことも有効である。次にレールの各寸法の演算方法を示す。説明上、特長点は括弧付き英字とし、また特長点のxy座標は下付き文字で表すものとする。一例として、特長点Aのxy座標は、それぞれ(Ax)および(Ay)として表す。材が倒れた姿勢で搬送が行われるケースで以下説明するが、材が立った姿勢で搬送されていても構わない。 3) The cross-sectional profile of the rail is obtained by restoring the 2D plane coordinates of the rail of each distance meter and the 2D plane coordinates of the calibration piece (Step 03). Furthermore, it is also effective to perform a moving average process at several points before and after in order to reduce variation in the data of the cross-sectional profile. Next, the calculation method of each dimension of a rail is shown. For the sake of explanation, feature points are expressed in alphabetic characters with parentheses, and xy coordinates of feature points are expressed in subscript characters. As an example, the xy coordinates of the feature point A are represented as (Ax) and (Ay), respectively. In the following description, the material is conveyed in a posture in which the material has fallen, but the material may be conveyed in a standing posture.

4)底面両端下エッジを検出する(Step04)。ある傾き(θk)をもった仮想線を底面に近づけ、仮想線と接する座標を底面下両エッジ(A・B)とする。(図4を参照のこと) 4) A bottom edge at both ends of the bottom surface is detected (Step 04). A virtual line having a certain inclination (θk) is brought close to the bottom surface, and coordinates in contact with the virtual line are defined as both bottom bottom edges (A and B). (See Figure 4)

5)材の傾きを求める(Step05)。底面下両エッジ間(A・B)の座標を次式で1次近似し、材の傾き(a、θr)を求める。
y = ax + b ・・・・・・・・・(9)
θr = tan-1 ( a ) ・・・・・・・・・(10)
5) Obtain the inclination of the material (Step 05). Approximate the coordinates between the bottom bottom edges (A and B) by the following formula and obtain the inclination (a, θr) of the material.
y = ax + b (9)
θr = tan-1 (a) (10)

6)座標を回転させる(Step06)。材の傾きで反時計方向にプロフィールを回転させる。つまりレールが立った状態にする。xy座標全ての点について,半径および角度をもとめ、材の傾き(θr)に応じ座標を回転させて、図5のように断面を正立させる。そして、回転後の座標は(X,Y)とする。
r = √x2+y2 ・・・・・・・・・・・・(11)
θ = tan-1 ( x / - y ) ・・・・・・・・・・・・(12)
X = -r・sin ( θ±θr ) ・・・・・・・・・・・ (13)
Y = r・cos( θ±θr ) ・・・・・・・・・・・ (14)
6) The coordinates are rotated (Step 06). The profile is rotated counterclockwise by the tilt of the material. In other words, the rail is in a standing state. For all points in the xy coordinates, the radius and angle are obtained, and the coordinates are rotated according to the inclination (θr) of the material, so that the cross section is erected as shown in FIG. The coordinates after rotation are (X, Y).
r = √x2 + y2 (11)
θ = tan-1 (x /-y) (12)
X = -r ・ sin (θ ± θr) (13)
Y = r ・ cos (θ ± θr) (14)

7)底面両端上エッジを検出する(Step07)。仮想線と接する座標を、底面上両エッジ(C・D)とする。 7) The upper edge at both ends of the bottom surface is detected (Step 07). The coordinates in contact with the imaginary line are defined as both edges (C / D) on the bottom surface.

8)底面突端を検出する(Step08)。底面上両エッジ間(A・C)・ (B・D)を移動平均し、ピークを底面突端(E・F)とする。 8) The bottom end is detected (Step 08). Moving average (A ・ C) ・ (B ・ D) between both edges on the bottom surface, and the peak is the bottom edge (E ・ F).

9)幅を算出する(Step09)。底面左右突端(E・F)の間隔(X座標)を、幅とする。
B = Ex - Fx ・・・・・・・・・・・ (15)
9) The width is calculated (Step 09). The distance (X coordinate) between the bottom left and right protrusions (E, F) is the width.
B = Ex-Fx (15)

10)幅中心を求める(Step10)。底面左右突端(E・F)より、以下の式により幅中心位置を求める。
bHx = ( Ex - Fx ) / 2 + Fx ・・・・・・・・・・・ (16)
Ey > Fy bHy = Ey - ( Ey - Fy ) /2 ・・・・・・・・・・・ (17)
Ey < Fy bHy = Fy - ( Fy - Ey ) /2 ・・・・・・・・・・・ (18)
Ey = Fy bHy = Ey ・・・・・・・・・・・ (19)
10) Find the width center (Step 10). From the bottom left and right protrusions (E, F), find the width center position using the following formula.
bHx = (Ex-Fx) / 2 + Fx (16)
Ey> Fy bHy = Ey-(Ey-Fy) / 2 (17)
Ey <Fy bHy = Fy-(Fy-Ey) / 2 (18)
Ey = Fy bHy = Ey (19)

11)底面突端を検出する(Step11)。底面下両エッジ間(A・B)を移動平均し、ピークを底面突端(G)とする。なお、ピークは符号付きとし、図6に示すように、底面下両エッジ間(A・B) のY座標より小さければ凸とし、符号+、大きければ凹とし−とする。 11) A bottom end is detected (Step 11). The moving average between the bottom bottom edges (A and B) is taken, and the peak is defined as the bottom tip (G). The peak is signed, and as shown in FIG. 6, the peak is convex if it is smaller than the Y coordinate between the bottom bottom edges (A and B), and the sign is +, if it is larger, it is concave.

12)足裏平坦度を算出する(Step12)。底面下両エッジ間(A・B) のY座標と、ピーク(G)のY座標の差を平坦度とする。
H = By - Gy ・・・・・・・・・・・ (20)
12) The flatness of the sole is calculated (Step 12). Flatness is defined as the difference between the Y coordinate between the bottom bottom edges (A and B) and the Y coordinate of the peak (G).
H = By-Gy (20)

13)頭幅両端を算出する(Step13)。頭幅に対し仮想線と接する座標を、頭幅左右両エッジ(H・I)とする。ある範囲で平均化するようにする。 13) Calculate both ends of the head width (Step 13). Coordinates that contact the virtual line with respect to the head width are the head width left and right edges (HI). Try to average over a range.

14)頭幅を算出する(Step14)。頭幅左右両エッジ(H・I)の間隔(X座標)を頭幅とする。
c = Hx - Ix ・・・・・・・・・・・ (21)
14) The head width is calculated (Step 14). The head width is the distance (X coordinate) between the left and right edges of the head width (HI).
c = Hx-Ix (21)

15)頭幅中心を求める(Step15)。頭幅左右両エッジ(H・I)より、以下の示す式のより幅中心位置を求める。
cHx = ( Hx + Ix ) / 2 + Ix ・・・・・・・・・・・ (22)
Hy > Iy cHy = Hy - ( Hy - Iy ) /2 ・・・・・・・・・・・ (23)
Hy < Iy cHy = Iy - ( Iy - Hy ) /2 ・・・・・・・・・・・ (24)
Hy = Iy cHy = Hy ・・・・・・・・・・・ (25)
15) The center of the head width is obtained (Step 15). From the head width left and right edges (H · I), the width center position is obtained from the following expression.
cHx = (Hx + Ix) / 2 + Ix (22)
Hy> Iy cHy = Hy-(Hy-Iy) / 2 (23)
Hy <Iy cHy = Iy-(Iy-Hy) / 2 (24)
Hy = Iy cHy = Hy (25)

16)芯ずれを求める(Step16)。頭幅中心と幅中心のxy座標より、以下の式により芯ずれを算出する。図7は、芯ずれ算出の概要を示す図である。
±θrT = tan-1(( bHx - cHx )/( cHy - bHy )) ・・・・・・・・・・・ (26)
16) Find misalignment (Step 16). From the head width center and the xy coordinates of the width center, the misalignment is calculated by the following formula. FIG. 7 is a diagram showing an outline of misalignment calculation.
± θrT = tan-1 ((bHx-cHx) / (cHy-bHy)) (26)

17)芯ずれ補正後の頭幅を求める(Step17)。頭幅Cに対し、芯ずれ補正を以下のように行う。
C = c・cosθrT ・・・・・・・・・・・ (27)
17) The head width after the misalignment correction is obtained (Step 17). For head width C, misalignment correction is performed as follows.
C = c ・ cosθrT (27)

18)頭幅突端を検出する(Step18)。頭幅左右両エッジ(H・I)を移動平均し、上限ピーク(最大Y座標)を頭幅突端(J)とする。 18) A head width tip is detected (Step 18). The head width left and right edges (H / I) are moving averaged, and the upper limit peak (maximum Y coordinate) is the head width peak (J).

19)高さを求める(Step19)。頭幅突端(J)と底面突端(G)の間隔(Y座標)を高さとする。
A = Jy - Gy ・・・・・・・・・・・ (28)
ただし、底面突端(G)が凹であれば、底面下両エッジ間(A・B)を移動平均し、最小Y座標を算出し、頭幅突端(J)のY座標との差を高さとする。
19) Find the height (Step 19). The height (Y coordinate) between the head width protrusion (J) and the bottom protrusion (G) is the height.
A = Jy-Gy (28)
However, if the bottom tip (G) is concave, the moving average between the bottom bottom edges (A and B) is calculated, the minimum Y coordinate is calculated, and the difference between the head width tip (J) and the Y coordinate is the height To do.

20)柱厚両端を検出する(Step20)。底面突端(G)を基準に、任意の高さ位置における柱厚部分の両端を柱厚両端(K・L)とする。ある範囲で平均化するようにし、任意の高さ位置は例えば60mmとする。ただし、底面突端(G)が凹であれば,底面下両エッジ間(A・B)を移動平均し、最小Y座標を底面突端(G)とする。 20) Both ends of the column thickness are detected (Step 20). Both ends of the column thickness portion at an arbitrary height position are defined as column thickness ends (K · L) with reference to the bottom protrusion (G). Averaging is performed in a certain range, and an arbitrary height position is, for example, 60 mm. However, if the bottom tip (G) is concave, the moving average between the bottom bottom edges (A and B) is taken, and the minimum Y coordinate is the bottom tip (G).

21)片足幅を算出する(Step21)。底面突端(E・F)と柱厚両端(K・L)との変位(X座標)を片足幅とする。
K1 = L - F ・・・・・・・・・・・ (29)
K2 = E - K ・・・・・・・・・・・ (30)
21) One leg width is calculated (Step 21). The displacement (X coordinate) between the bottom end (E, F) and both ends of the column thickness (K, L) is the width of one foot.
K1 = L-F (29)
K2 = E-K (30)

22)厚みを算出する(Step22)。柱厚部に対し,高さ方向に厚みを求め、最も薄い厚みを検出し、厚みgとする。ある範囲で平均化するが、柱厚部については底面突端より高さ60mmの位置を基準でも構わない。 22) The thickness is calculated (Step 22). The thickness is obtained in the height direction with respect to the column thickness portion, and the thinnest thickness is detected and set as the thickness g. Although averaging is performed within a certain range, the column thickness portion may be based on a position 60 mm in height from the bottom end.

23)芯ずれ補正後の厚みを算出する(Step23)。厚みgに対し芯ずれ補正を以下のように行う。
G = g・cosθrT ・・・・・・・・・・・ (31)
23) The thickness after the misalignment correction is calculated (Step 23). The misalignment correction is performed on the thickness g as follows.
G = g ・ cosθrT ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (31)

24)頭幅振れを算出する(Step24)。底面左右突端(E・F)と頭幅左右両エッジ(H・I)の変位を、頭幅振れとする。
なお、頭幅左右両エッジ(H・I)についてはある範囲で平均化する。
TF1 = Ex - Hx ・・・・・・・・・・・ (32)
TF2 = Lx - Fx ・・・・・・・・・・・ (33)
上述のように図5に示すレール各部位の寸法を演算することにより、高精度なレール寸法測定ができる。
24) Head width shake is calculated (Step 24). The displacement of the bottom left and right protrusions (E and F) and the head width left and right edges (H and I) is the head width shake.
The head width left and right edges (H · I) are averaged over a certain range.
TF1 = Ex-Hx (32)
TF2 = Lx-Fx (33)
As described above, by calculating the dimensions of each part of the rail shown in FIG. 5, highly accurate rail dimension measurement can be performed.

本発明の実施例を以下に示す。高さ122.7mm、底面122.8mm、および厚み13.6mmのレールピースを対象にして、マイクロメータ等で熟練者が手測定して真値とし、「本発明によって求めた寸法−真値=誤差」として整理した。測定回数は10回であり、測定誤差は、高さ+0.11mm、厚み-0.09mm、頭幅-0.06mm(2σ 0.06mm)であり、良好な結果が得られた。   Examples of the present invention are shown below. Targeting a rail piece with a height of 122.7 mm, a bottom surface of 122.8 mm, and a thickness of 13.6 mm, a skilled person manually measures it with a micrometer or the like to obtain a true value, and “the dimension obtained by the present invention−true value = error” Tidy. The number of measurements was 10, and the measurement error was height + 0.11mm, thickness -0.09mm, head width -0.06mm (2σ 0.06mm), and good results were obtained.

この測定結果を圧延機または矯正機にフィードバックすることで、品質コントロールも可能となる。また、測定時間についても従来2〜3分かかっていたものが、本発明では10秒以内で求めることができ,測定によるピッチダウンも大幅に削減することが確認できた。   By feeding back this measurement result to a rolling mill or a straightening machine, quality control is also possible. In addition, the measurement time which conventionally took 2 to 3 minutes can be obtained within 10 seconds in the present invention, and it has been confirmed that the pitch down due to the measurement is greatly reduced.

本発明を実施するための装置例の概要を示す図である。It is a figure which shows the outline | summary of the example of an apparatus for implementing this invention. 図1に示した装置を用いた測定概要を示す図である。It is a figure which shows the measurement outline | summary using the apparatus shown in FIG. 断面プロフィール測定の概要を示す図である。It is a figure which shows the outline | summary of a cross-sectional profile measurement. 断面プロフィール合成後の断面プロフィールを示す図である。It is a figure which shows the cross-sectional profile after cross-sectional profile synthesis | combination. レールの寸法演算の概要を示す図である。It is a figure which shows the outline | summary of the dimension calculation of a rail. 足裏平坦度算出の概要を示す図である。It is a figure which shows the outline | summary of sole flatness calculation. 芯ずれ算出の概要を示す図である。It is a figure which shows the outline | summary of misalignment calculation. 本発明の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of this invention.

符号の説明Explanation of symbols

1 校正片
2a〜f レーザ距離計
3 Cフレーム
4 Cフレーム走行用機構
5 Cフレーム高さ設定機構
6 距離計高さ設定機構
7 レール
DESCRIPTION OF SYMBOLS 1 Calibration piece 2a-f Laser rangefinder 3 C frame 4 C frame travel mechanism 5 C frame height setting mechanism 6 Distance meter height setting mechanism 7 Rail

Claims (3)

上下左右に傾斜させた状態で配置されたレーザ距離計を走査して鉄道用レールの断面形状や寸法を測定するレール寸法測定方法において、
前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記鉄道用レールの断面形状を求め、この断面形状に基づき前記鉄道用レールの各部寸法を演算することを特徴とするレール寸法測定方法。
In the rail dimension measurement method of measuring the cross-sectional shape and dimensions of railroad rails by scanning a laser rangefinder arranged in a state tilted up and down, left and right,
Rail dimensions, wherein a cross-sectional shape of the railroad rail is obtained from distance data of the laser rangefinder, an inclination angle, and position data during scanning, and dimensions of each part of the railroad rail are calculated based on the cross-sectional shape. Measuring method.
請求項1に記載のレール寸法測定方法において、
前記各部寸法は、
レールの頭幅、底面幅、高さ、厚み、片足幅、足裏平坦度、および頭幅触れのいずれか又はそれらの組合わせであることを特徴とするレール寸法測定方法。
In the rail dimension measuring method according to claim 1,
The dimensions of each part are as follows:
A rail dimension measuring method, characterized in that the head width, bottom surface width, height, thickness, one foot width, sole flatness, and head width touch of the rail, or a combination thereof.
上下左右に傾斜させた状態で配置されたレーザ距離計を走査して鉄道用レールの断面形状や寸法を測定するレール寸法測定装置において、
前記レーザ距離計の距離データ、傾斜角、および走査中の位置データから前記鉄道用レールの断面形状を求め、この断面形状に基づき前記鉄道用レールの各部寸法を演算する演算装置を備えることを特徴とするレール寸法測定装置。
In a rail dimension measuring device that measures the cross-sectional shape and dimensions of railroad rails by scanning a laser distance meter arranged in a state tilted vertically and horizontally,
A calculation device is provided that obtains a cross-sectional shape of the railroad rail from distance data of the laser rangefinder, an inclination angle, and position data during scanning, and calculates the dimensions of each part of the railroad rail based on the cross-sectional shape. Rail dimension measuring device.
JP2005310848A 2005-10-26 2005-10-26 Method and device for measuring rail size Pending JP2007121004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310848A JP2007121004A (en) 2005-10-26 2005-10-26 Method and device for measuring rail size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310848A JP2007121004A (en) 2005-10-26 2005-10-26 Method and device for measuring rail size

Publications (1)

Publication Number Publication Date
JP2007121004A true JP2007121004A (en) 2007-05-17

Family

ID=38145020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310848A Pending JP2007121004A (en) 2005-10-26 2005-10-26 Method and device for measuring rail size

Country Status (1)

Country Link
JP (1) JP2007121004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276485A (en) * 2009-05-28 2010-12-09 Iwate Univ System for simultaneously measuring object to be measured from a plurality of direction using laser measuring apparatus
JP2014194366A (en) * 2013-03-28 2014-10-09 Hitachi High-Technologies Corp Raceway track shape measuring method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276485A (en) * 2009-05-28 2010-12-09 Iwate Univ System for simultaneously measuring object to be measured from a plurality of direction using laser measuring apparatus
JP2014194366A (en) * 2013-03-28 2014-10-09 Hitachi High-Technologies Corp Raceway track shape measuring method and device

Similar Documents

Publication Publication Date Title
JP5453130B2 (en) Attack angle measuring device and measuring method
JP6445383B2 (en) Trajectory inspection method and apparatus
CN100376444C (en) Device for measuring the roundness of a railroad wheel
WO2016021224A1 (en) Rail position measurement device
JP2013545972A5 (en)
JP4183978B2 (en) Track maintenance device and method for detecting track position
US20030009892A1 (en) Method and measurement device for measurement of a two-wheeled vehicle frame
JP2006337112A (en) Method and device for correcting zero-point error in sequential three-point method
JP2018512278A (en) Method for correcting a predetermined cutting path for cutting a metal base plate
CN103968778A (en) Detecting system with multiple laser devices
US20220266881A1 (en) Method and measuring vehicle for determining an actual position of a track
JP2007121004A (en) Method and device for measuring rail size
JP5422322B2 (en) Rail detection method and rail displacement measurement device in rail displacement measurement
JP5502681B2 (en) Tong rail contact state measuring device and tong gleil wear amount measuring device
CN107380205A (en) Orbital data detects car and orbital data detection method
JP5064773B2 (en) Railway building limit measuring method and measuring device
JP2012192759A (en) Method and apparatus for correcting rocking of inspection vehicle, and inspection method and apparatus
JP2008185492A (en) Valve plate size calculation method and device
JP2008185491A (en) Angle steel size calculation method and device
JP2007240303A (en) Channel steel dimension arithmetic method and device
JP4677810B2 (en) Dimensional measurement method for section steel
CN112647378B (en) Double-prism rail inspection trolley measuring method
JP5302707B2 (en) Derailment prevention guardrail position measuring method and measuring apparatus
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
JP2005291876A (en) Dimension-measuring method of section