JP2009063541A - Geometric quantity measurement method and device - Google Patents

Geometric quantity measurement method and device Download PDF

Info

Publication number
JP2009063541A
JP2009063541A JP2007233883A JP2007233883A JP2009063541A JP 2009063541 A JP2009063541 A JP 2009063541A JP 2007233883 A JP2007233883 A JP 2007233883A JP 2007233883 A JP2007233883 A JP 2007233883A JP 2009063541 A JP2009063541 A JP 2009063541A
Authority
JP
Japan
Prior art keywords
sensors
measurement
sensor head
amount
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007233883A
Other languages
Japanese (ja)
Inventor
Yoshinaga Kiyota
芳永 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007233883A priority Critical patent/JP2009063541A/en
Publication of JP2009063541A publication Critical patent/JP2009063541A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geometric quantity measurement method capable of reducing errors due to deviation of setting position of sensors in a sensor head and relative inclination between the sensor head and a measurement object. <P>SOLUTION: The geometric quantity at the surface of the measurement object is measured by relatively moving the sensor head provided with at least 3 sensors along the measurement object using the detected signal from each sensor. Preliminarily measuring a straightness to the reference plane 30, the deviation of the center sensor in a measurement direction is calculated from the segment connecting the reference points of both the sensors, and the relation between the relative inclination and deviation is made into a correction table as pair data. At the measurement of geometric quantity, the relative inclination between the measuring object and the sensor head is calculated, and the calculated deviation is taken out while referring the correction table. The geometric quantity of the surface of the measurement object is operated using the deviation taken out and the detection signal obtained from the 3 sensors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真直度、平面度等の幾何学量を計測する方法及び装置に関し、特に測定対象物の表面の幾何学量を3個以上のセンサを用いて計測する幾何学量計測に際しての校正方法及びこの校正機能を有する幾何学量計測装置に関する。   The present invention relates to a method and apparatus for measuring geometric quantities such as straightness and flatness, and in particular, calibration for measuring geometric quantities using three or more sensors to measure the geometric quantities of the surface of a measurement object. The present invention relates to a method and a geometric quantity measuring apparatus having the calibration function.

図5を参照して、幾何学量計測の一例として、真直度の計測方法の一例を説明する。この種の計測には、計測対象OBまでの距離を検出する3個のセンサI、J、Kを一直線に並ぶように配置した構成を持つセンサヘッドSHが用いられる。センサヘッドSHは計測対象に沿って移動され、定間隔のタイミング(あるいは定間隔の移動距離)で計測を行う。センサI、J、Kで得られる距離の検出値をそれぞれi、j、kとする。検出値i、j、kはそれぞれ、センサI、J、Kの基準点(黒丸で示す)から計測対象までの距離である。図5のように、計測対象表面に凹凸があれば、検出値i、j、kには差が生じることから、これらの差から真直度を計測することができる。このような3点式の計測によれば、センサヘッドSHの移動中にセンサヘッドSHと計測対象OBとの相対位置関係が変化、つまり接近したり、離反したりしてもその影響を受けることは無い。   With reference to FIG. 5, an example of a straightness measurement method will be described as an example of geometric amount measurement. For this type of measurement, a sensor head SH having a configuration in which three sensors I, J, and K for detecting the distance to the measurement target OB are arranged in a straight line is used. The sensor head SH is moved along the measurement target and performs measurement at a fixed interval timing (or a fixed interval moving distance). The detected distance values obtained by the sensors I, J, and K are i, j, and k, respectively. The detection values i, j, and k are distances from the reference points (indicated by black circles) of the sensors I, J, and K to the measurement target, respectively. As shown in FIG. 5, if there are irregularities on the measurement target surface, differences occur in the detection values i, j, and k, and the straightness can be measured from these differences. According to such a three-point measurement, even if the relative positional relationship between the sensor head SH and the measurement target OB changes during the movement of the sensor head SH, that is, even when the sensor head SH approaches or separates, it is affected. There is no.

上記の説明は、3個のセンサI、J、Kが一直線上に配置されていることを前提としている。しかしながら、3個のセンサI、J、Kの設置には、微小なずれを生じることが避けられない。   The above description is based on the assumption that the three sensors I, J, and K are arranged on a straight line. However, in the installation of the three sensors I, J, K, it is inevitable that a minute shift occurs.

図6は、3個のセンサI、J、Kのうち、センサJに設置ずれがある場合の例を誇張して示している。3つのセンサのうちの両側のセンサI、Kの基準点を結ぶ線分からの中央のセンサJの基準点のずれ量(オフセット)をδとし、以後、これを設置ずれ量と呼ぶ。この設置ずれ量δは機械的なずれ量であるので変化しない。そこで、何らかの方法で設置ずれ量δを知ることができれば、検出値i、j、kとあわせて、計測対象OBの局所形状を表す量である値wを知ることができる。そして、センサヘッドSHを移動させながら、センサ間ピッチPと等間隔に値wを求めて積算し、計測点を格子状の各交点に設定することで計測対象OBの表面形状を知ることができる。   FIG. 6 exaggerates an example in which the sensor J is misplaced among the three sensors I, J, and K. The deviation amount (offset) of the reference point of the central sensor J from the line segment connecting the reference points of the sensors I and K on both sides of the three sensors is denoted by δ, and this is hereinafter referred to as an installation deviation amount. Since this installation deviation amount δ is a mechanical deviation amount, it does not change. Therefore, if the installation deviation amount δ can be known by some method, the value w that is the amount representing the local shape of the measurement target OB can be known together with the detected values i, j, and k. Then, while moving the sensor head SH, the value w is obtained at an equal interval with the inter-sensor pitch P and accumulated, and the surface shape of the measurement object OB can be known by setting the measurement points at respective grid intersections. .

図6の場合、設置ずれ量δは、以下の式(1)で算出することができる。   In the case of FIG. 6, the installation deviation amount δ can be calculated by the following equation (1).

δ=j−(i+k)/2 (1)
しかしながら、上記のような非接触式のセンサヘッドSHは、センサヘッドSHと計測対象OBの相対的な傾斜の影響を受ける。つまり、センサヘッドSHの移動中にセンサヘッドSHと計測対象OBの間に相対的な傾斜が生じると、相対的な傾斜が無い場合に比べて検出値が微小に変動するため、上記の式(1)によって一意に決定した設置ずれ量δをそのまま利用することができない。これは、センサヘッドSHと計測対象OBとの間に相対的な傾斜がある場合には、取得した設置ずれ量は相対的な傾斜に起因する変動分を含んでしまい、誤差要因となるので高精度での計測を維持できなくなることを意味している。
δ = j− (i + k) / 2 (1)
However, the non-contact sensor head SH as described above is affected by the relative inclination between the sensor head SH and the measurement target OB. That is, if a relative inclination occurs between the sensor head SH and the measurement target OB during the movement of the sensor head SH, the detected value fluctuates slightly compared to the case where there is no relative inclination. The installation deviation amount δ uniquely determined by 1) cannot be used as it is. This is because, when there is a relative inclination between the sensor head SH and the measurement object OB, the acquired installation deviation amount includes a variation due to the relative inclination, which becomes an error factor, which is high. It means that measurement with accuracy cannot be maintained.

なお、真直度を測定する際の検出器校正方法の一例が特許文献1に開示されている。この校正方法では、校正ターゲットとして、センサピッチに対して十分に大きい径の円盤を、再現性良く回転させる必要があり、大掛かりで精密な装置が必要となる。また、センサの設置ずれ量(オフセット誤差)は、円盤が一回転する間の変動を平均化し、一意に決定するものであり、真直度計測時の高精度が期待できない。   An example of a detector calibration method for measuring straightness is disclosed in Patent Document 1. In this calibration method, it is necessary to rotate a disk having a sufficiently large diameter with respect to the sensor pitch as a calibration target with good reproducibility, and a large-scale and precise device is required. Further, the sensor installation deviation amount (offset error) is determined uniquely by averaging fluctuations during one rotation of the disk, and high accuracy during straightness measurement cannot be expected.

特開2005−308703号公報JP 2005-308703 A

本発明は、センサヘッドにおけるセンサが設置ずれ量を有し、しかも計測中にセンサヘッドと計測対象の間に相対傾斜が生じるような場合があっても、設置ずれ量及び相対傾斜に起因する誤差を無くすことのできる幾何学量計測方法及び幾何学量計測装置を提供することを課題とする。   In the present invention, even if the sensor in the sensor head has an installation deviation amount, and there is a case where a relative inclination occurs between the sensor head and the measurement object during measurement, the error caused by the installation deviation amount and the relative inclination. It is an object of the present invention to provide a geometric amount measuring method and a geometric amount measuring apparatus that can eliminate the problem.

本発明は、センサヘッドに設置された少なくとも3個のセンサのうち両側の2つのセンサにより、計測時のセンサヘッドと計測対象との間の相対傾斜を簡易に取得し、取得した相対傾斜に応じて、計測(演算)に使用するセンサの設置ずれ量の値を動的に変化、つまり取得した相対傾斜に応じて、計測(演算)に使用する設置ずれ量の変動分を補正することで、計測精度を向上させるようにしている。   According to the present invention, the relative inclination between the sensor head and the measurement target at the time of measurement is easily obtained by two sensors on both sides among at least three sensors installed on the sensor head, and the obtained relative inclination is determined. By dynamically changing the value of the installation deviation amount of the sensor used for measurement (calculation), that is, by correcting the fluctuation amount of the installation deviation amount used for measurement (calculation) according to the acquired relative inclination, The measurement accuracy is improved.

本発明による幾何学量計測方法においては、計測対象表面までの距離を検出する少なくとも3個のセンサを進行方向に沿ってオフセットを有して配置してなるセンサヘッドを前記計測対象表面に相対移動させることで前記少なくとも3個のセンサから得られる検出信号を用いて前記計測対象表面の幾何学量を計測する。   In the geometric amount measuring method according to the present invention, a sensor head in which at least three sensors for detecting the distance to the measurement target surface are arranged with an offset along the traveling direction is relatively moved to the measurement target surface. Thus, the geometric amount of the measurement target surface is measured using detection signals obtained from the at least three sensors.

本発明の好ましい態様による幾何学量計測方法においては、あらかじめ、平坦面を持つ基準平面に対して計測を行い、前記少なくとも3個のセンサのうち両側のセンサの基準点を結ぶ線分からの中央のセンサの基準点のずれ量であって計測方向に関するずれ量を前記3個のセンサの検出値から算出すると共に、前記基準平面と前記センサヘッドとの間の相対傾斜と、これを変化させることにより変化する前記算出されたずれ量との間の関係を対のデータとして収集することにより補正テーブルを作成し、計測対象に対する幾何学量の計測に際しては、計測の都度、前記計測対象表面と前記センサヘッドとの間の相対傾斜を前記両側のセンサの検出値とこれらの間隔とから算出し、かつ前記算出した相対傾斜に基づいて前記補正テーブルを参照して前記算出されたずれ量を取り出し、該取り出したずれ量と前記少なくとも3個のセンサから得られた検出信号を用いて前記計測対象表面の幾何学量を演算する。   In the geometric amount measuring method according to a preferred aspect of the present invention, measurement is performed in advance on a reference plane having a flat surface, and the center of the at least three sensors from the line segment connecting the reference points of the sensors on both sides is measured. By calculating the deviation amount of the reference point of the sensor and the deviation amount in the measurement direction from the detection values of the three sensors, and changing the relative inclination between the reference plane and the sensor head, A correction table is created by collecting the relationship between the calculated amount of deviation as a pair of data, and the measurement target surface and the sensor are measured each time when measuring the geometric amount for the measurement target. The relative inclination between the head and the head is calculated from the detected values of the sensors on both sides and the distance between them, and the correction table is referred to based on the calculated relative inclination. The calculated shift amount is removed and calculating the geometric volume of the measurement object surface by using a detection signal obtained from the the shift amount extracted the at least three sensors Te.

本発明による幾何学量計測方法においては、前記補正テーブルの作成に際し、前記基準平面と前記センサヘッドとの間の相対傾斜を、前記少なくとも3個のセンサの並び方向に直交する軸を中心軸として前記基準平面又は前記センサヘッドを傾斜させることで変化させることが好ましい。   In the geometric amount measuring method according to the present invention, when the correction table is created, the relative inclination between the reference plane and the sensor head is set with an axis orthogonal to the arrangement direction of the at least three sensors as a central axis. The reference plane or the sensor head is preferably changed by inclining.

本発明によればまた、計測対象表面までの距離を検出する少なくとも3個のセンサを進行方向に沿ってオフセットを有して配置してなるセンサヘッドと、該センサヘッドを前記計測対象表面に相対移動させる移動手段と、前記少なくとも3個のセンサから得られる検出信号を用いて前記計測対象表面の幾何学量を演算する演算手段とを備えた幾何学量計測装置が提供される。   According to the present invention, there is also provided a sensor head in which at least three sensors for detecting the distance to the measurement target surface are arranged with an offset along the traveling direction, and the sensor head is relative to the measurement target surface. There is provided a geometric quantity measuring apparatus comprising a moving means for moving and a computing means for computing a geometric quantity of the measurement target surface using detection signals obtained from the at least three sensors.

本発明による幾何学量計測装置においては、前記演算手段は、前記少なくとも3個のセンサのうち両側のセンサの基準点を結ぶ線分からの中央のセンサの基準点のずれ量であって計測方向に関するずれ量を前記3個のセンサの検出値から算出すると共に、平坦面による基準平面と前記センサヘッドとの間の相対傾斜と、これを変化させることにより変化する前記算出されたずれ量との間の関係を対のデータとして収集して作成された補正テーブルを有し、前記演算手段はまた、計測対象に対する幾何学量の計測の都度、前記計測対象表面と前記センサヘッドとの間の相対傾斜を前記両側のセンサの検出値とこれらの間隔とから算出し、かつ前記算出した相対傾斜に基づいて前記補正テーブルを参照して前記算出されたずれ量を取り出し、該取り出したずれ量と前記少なくとも3個のセンサから得られた検出信号を用いて前記計測対象表面の幾何学量を演算することを特徴とする。   In the geometric amount measuring apparatus according to the present invention, the calculation means is a deviation amount of a reference point of a central sensor from a line segment connecting reference points of sensors on both sides of the at least three sensors, and relates to a measurement direction. The amount of deviation is calculated from the detection values of the three sensors, and between the relative inclination between the reference plane by the flat surface and the sensor head, and the calculated amount of deviation that changes by changing this. The correction means is created by collecting the relationship of the data as a pair of data, and the calculation means also has a relative inclination between the measurement target surface and the sensor head each time the geometric amount is measured with respect to the measurement target. Is calculated from the detection values of the sensors on both sides and the interval between them, and the calculated deviation amount is extracted by referring to the correction table based on the calculated relative inclination. Characterized by calculating the geometry of the measurement object surface by using a detection signal obtained from the out shift amount between the at least three sensors.

本発明によれば、計測時のセンサヘッドと計測対象との間の相対傾斜に応じて、算出される設置ずれ量を動的に変化させることで、センサの設置ずれ量及び相対傾斜の影響を受けることの無い高精度な幾何学量計測を実現できる。   According to the present invention, the installation displacement amount and the relative inclination of the sensor are affected by dynamically changing the calculated installation displacement amount according to the relative inclination between the sensor head and the measurement target at the time of measurement. It is possible to achieve high-accuracy geometric quantity measurement that will not be received.

図1〜図4を参照して、本発明の実施形態について説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は、本発明による幾何学量計測装置におけるセンサヘッドと計測対象との関係のみを拡大して示す。特に、センサが設置ずれ量(オフセット)を有し、しかも計測時にセンサヘッドと計測対象との間に相対傾斜が生じていることを誇張して示している。ここでは、図5と同様、センサヘッドSHに3個のセンサI、J、Kが設置され、両側のセンサI、Kの基準点を結ぶ線分からの中央のセンサJの基準点のずれ量、特に計測方向に関するずれ量がδであることを示している。また、センサI、Kの基準点を結ぶ線分と計測対象OBとの間の相対傾斜がθであることを示している。センサI、J、Kの検出値はi、j、kとする。   FIG. 1 is an enlarged view showing only the relationship between a sensor head and a measurement object in a geometric quantity measuring apparatus according to the present invention. In particular, it is exaggerated that the sensor has an installation deviation amount (offset), and that a relative inclination occurs between the sensor head and the measurement object during measurement. Here, as in FIG. 5, three sensors I, J, and K are installed in the sensor head SH, and the deviation amount of the reference point of the central sensor J from the line segment connecting the reference points of the sensors I and K on both sides, In particular, the amount of deviation in the measurement direction is δ. In addition, the relative inclination between the line segment connecting the reference points of the sensors I and K and the measurement target OB is θ. The detection values of sensors I, J, and K are i, j, and k.

図1に示すようなセンサヘッドSHに対して、実際の計測の前に、図2に示す傾斜ステージ及び基準平面を用いて以下のような真直度計測による校正作業を行う。傾斜ステージ及び基準平面は、計測対象物の側に設置しセンサを校正するのが好適である。センサの位置誤差は気温、湿度等の様々な条件で変化するので定期的に校正を行うことが望ましい。図2において、傾斜ステージ20は、上面に平坦面を持つ基準平面30を搭載したテーブル21を、一軸を中心軸にして傾斜させることができる。ここでは、上記一軸を、センサヘッドSHにおける3個のセンサI、J、Kの並び方向に直交する軸となるようにしている。なお、3個のセンサI、J、KはセンサI、Kの基準点を結ぶ線分に関し等ピッチPで設置されているものとする。   For the sensor head SH as shown in FIG. 1, the following calibration work is performed by the following straightness measurement using the tilt stage and the reference plane shown in FIG. 2 before actual measurement. It is preferable that the tilt stage and the reference plane are installed on the measurement object side to calibrate the sensor. Since the sensor position error changes under various conditions such as temperature and humidity, it is desirable to calibrate periodically. In FIG. 2, the tilt stage 20 can tilt a table 21 on which a reference plane 30 having a flat surface on the upper surface is mounted with one axis as a central axis. Here, the one axis is set to be an axis orthogonal to the direction in which the three sensors I, J, and K in the sensor head SH are arranged. It is assumed that the three sensors I, J, and K are installed at an equal pitch P with respect to a line segment that connects the reference points of the sensors I and K.

図2の場合、計測対象が基準平面30であるので、図1に示すような計測対象OBの局所形状wは常にゼロである。計測対象(基準平面30)とセンサヘッドSHの相対傾斜をθとすると、相対傾斜θは、両側のセンサI、Kの検出値i、kとセンサ間のピッチPを用いて、以下の式(2)で算出することができる。   In the case of FIG. 2, since the measurement target is the reference plane 30, the local shape w of the measurement target OB as shown in FIG. 1 is always zero. When the relative inclination between the measurement target (reference plane 30) and the sensor head SH is θ, the relative inclination θ is expressed by the following equation (1) using the detection values i and k of the sensors I and K on both sides and the pitch P between the sensors. 2).

tanθ=(k−i)/2P (2)
また、センサJの設置ずれ量δは、センサI、J、Kの検出値i、j、kを用いて、前に述べた式(1)、つまり、δ=j−(i+k)/2にて算出することができる。
tan θ = (ki) / 2P (2)
Further, the installation deviation amount δ of the sensor J is calculated by using the detected values i, j, and k of the sensors I, J, and K as the above-described equation (1), that is, δ = j− (i + k) / 2. Can be calculated.

校正作業においては、傾斜ステージ20で相対傾斜θを逐次変化させ、その都度、相対傾斜θを計測すると共に設置ずれ量δを算出する。そして、これをn回(但し、nは正の整数)繰り返すことで、相対傾斜と算出された設置ずれ量との関係をn対の校正データ(θ,δ)、・・・(θi,δi)(iはi番目を示す)・・・、(θn,δn)として収集し、補正テーブルを作成する。なお、図2は基準平面30を時計回りに傾斜させた時の相対傾斜θを正として示している。 In the calibration operation, the relative inclination θ is sequentially changed by the inclination stage 20, and the relative inclination θ is measured and the installation deviation amount δ is calculated each time. Then, by repeating this n times (where n is a positive integer), the relationship between the relative inclination and the calculated amount of installation deviation is expressed by n pairs of calibration data (θ 1 , δ 1 ),. , Δi) (i indicates i-th)..., (Θn, δn), and a correction table is created. FIG. 2 shows that the relative inclination θ when the reference plane 30 is inclined clockwise is positive.

このようにして取得された相対傾斜と算出された設置ずれ量との関係は、計測対象が基準平面であるので、他の要因の影響を受けておらず、算出された設置ずれ量は相対傾斜の影響を織り込み済みの値である。言い換えれば、センサヘッドと計測対象との間の相対傾斜に応じて、設置ずれ量の校正量を動的に変化させるようにしていると言える。   The relationship between the relative inclination acquired in this way and the calculated installation deviation amount is not affected by other factors because the measurement target is the reference plane, and the calculated installation deviation amount is the relative inclination. This is a value that has already been factored in. In other words, it can be said that the calibration amount of the installation deviation amount is dynamically changed according to the relative inclination between the sensor head and the measurement target.

上記の校正作業において作成された補正テーブルは、幾何学量計測装置において演算手段としても機能する制御装置に備えられた記憶装置に保存される。   The correction table created in the above calibration work is stored in a storage device provided in a control device that also functions as a calculation means in the geometric amount measuring apparatus.

図3(a)は、幾何学量計測装置による真直度計測の一形態を示す。計測対象OBは、図面の表裏方向(以後、長さ方向と呼ぶ)に搬送可能なテーブル41に搭載される。計測対象OBの上方には、ガイド42に沿って図面の左右方向、つまり計測対象OBの上を横切る方向(以後、幅方向と呼ぶ)に移動可能であると共に図面の上下方向、つまり計測対象OBに垂直な方向に移動可能な走行部(移動手段)43が配置され、この走行部43にセンサヘッドSHが取り付けられている。   FIG. 3A shows one form of straightness measurement by the geometric amount measuring apparatus. The measurement object OB is mounted on a table 41 that can be conveyed in the front and back direction of the drawing (hereinafter referred to as the length direction). Above the measurement object OB, it can be moved along the guide 42 in the left-right direction of the drawing, that is, in the direction crossing the measurement object OB (hereinafter referred to as the width direction), and in the vertical direction of the drawing, ie, the measurement object OB. A traveling portion (moving means) 43 that can move in a direction perpendicular to the traveling portion 43 is disposed, and a sensor head SH is attached to the traveling portion 43.

以下の動作は、制御装置の制御下で実行される。   The following operations are executed under the control of the control device.

真直度計測に際しては、センサヘッドSHを計測対象OBの一端側から他端側に向けて幅方向に移動させる。そして、移動している間に、一定間隔で3個のセンサI、J、Kによる計測を行い、検出値i、j、kを得る。ここで、図1で説明したように、中央のセンサJは設置ずれ量δを有しており、センサヘッドSHと計測対象OBとの間に相対傾斜θがあるとその影響を受けることは前述した通りである。このため、上記式(2)により相対傾斜θiを算出し、センサJからの検出値jについては、算出された相対傾斜θiに基づいて補正テーブルを参照して読み出した設置ずれ量δiを用いて計測対象OBまでの距離を(j−δi)として算出する。このようにして得られた値i、(j−δi)、kを用いて値wを求める。   In measuring the straightness, the sensor head SH is moved in the width direction from one end side to the other end side of the measurement target OB. And while moving, measurement with three sensors I, J, and K is performed at regular intervals, and detection values i, j, and k are obtained. Here, as described with reference to FIG. 1, the center sensor J has an installation displacement amount δ, and the fact that there is a relative inclination θ between the sensor head SH and the measurement target OB is affected by the above. That's right. For this reason, the relative inclination θi is calculated by the above equation (2), and the detected value j from the sensor J is used by using the installation deviation amount δi read by referring to the correction table based on the calculated relative inclination θi. The distance to the measurement target OB is calculated as (j−δi). The value w is obtained using the values i, (j−δi), and k thus obtained.

上記の計測を、センサヘッドSHが計測対象OBの一端側から他端側に到達するまでの間に一定間隔で繰り返し、値wを積算することで、計測対象OBの幅方向に関する真直度を計測することができる。続いて、計測対象OBをテーブル41により長さ方向に一定距離だけ移動させた後、上記の計測を行う。   The above measurement is repeated at regular intervals until the sensor head SH reaches the other end side from the one end side of the measurement target OB, and the straightness in the width direction of the measurement target OB is measured by accumulating the value w. can do. Subsequently, the measurement target OB is moved by a certain distance in the length direction by the table 41, and then the above measurement is performed.

以上のような計測を繰り返すことにより、計測対象OBに対し、図3(b)に黒のドットで示すような格子状の交点での計測を行うことができ、これらの計測結果を用いて計測対象OBの平面度の計測を行うことができる。なお、図3(b)は理解しやすくするために、ドットの間隔を大きくしているが、実際にはこの間隔は小さい。   By repeating the measurement as described above, the measurement object OB can be measured at a grid-like intersection as shown by the black dots in FIG. 3B, and measurement is performed using these measurement results. The flatness of the target OB can be measured. In FIG. 3B, the dot interval is increased for easy understanding, but this interval is actually small.

図1では中央のセンサJが設置ずれ量δを持つものとしているが、仮に、センサJ、Kが共に同一直線上にあってセンサIがこの直線から計測方向に関してずれて設置されたような場合であっても、両側のセンサI、Kの基準点を結ぶ線分からの中央のセンサJの基準点のずれ量が設置ずれ量δとして定義される。   In FIG. 1, the center sensor J has an installation deviation amount δ. However, if the sensors J and K are both on the same straight line and the sensor I is installed with a deviation from the straight line in the measurement direction. Even so, the deviation amount of the reference point of the central sensor J from the line connecting the reference points of the sensors I and K on both sides is defined as the installation deviation amount δ.

図4は、上記の計測により実際に収集した校正データの例を示す。センサI、J、Kには三角測量型のレーザー変位計を用い、基準平面30にはオプチカルフラットを利用した。傾斜ステージ20の代表例としてはゴニオメータと呼ばれるものがある。センサヘッドと計測対象の相対傾斜により、収集された設置ずれ量の値に明らかな変動傾向が見て取れる。このことにより、真直度計測を実施する場合について言えば、一定間隔での計測時にその都度、センサヘッドと計測対象の間の相対傾斜を計算し、それに応じた設置ずれ量の値を補正テーブルを参照して決定し、補正を行うことにより、前述の式(1)から一意に決定した設置ずれ量を用いる方法と比べて高精度な計測を実現できる。そして、これは、センサヘッドがその移動中に、うねったり、傾いたりしてどのように姿勢や計測対象に対する間隔が変化しようとも実現できる。   FIG. 4 shows an example of calibration data actually collected by the above measurement. Triangulation laser displacement meters were used for the sensors I, J, and K, and an optical flat was used for the reference plane 30. A typical example of the tilt stage 20 is a so-called goniometer. Due to the relative inclination between the sensor head and the measurement object, a clear variation tendency can be seen in the collected installation deviation values. As a result, in the case of measuring the straightness, the relative inclination between the sensor head and the measurement target is calculated each time when measuring at a constant interval, and the value of the installation deviation amount corresponding to the relative inclination is calculated in the correction table. By determining with reference and performing correction, it is possible to realize highly accurate measurement as compared with the method using the installation deviation amount uniquely determined from the above-described equation (1). This can be realized no matter how the posture or the interval with respect to the measurement object changes as the sensor head undulates or tilts during the movement.

上記説明では、基準平面を傾斜させる場合について説明したが、センサヘッドを傾斜させるようにしても良い。また、センサが3個の場合について説明したが、4個以上でも適用可能である。   In the above description, the case where the reference plane is inclined has been described. However, the sensor head may be inclined. Moreover, although the case where there are three sensors has been described, four or more sensors are also applicable.

本発明は、例えば超精密仕上げを要求される石材や鉄材等のテーブルのための超精密平面研削盤に組み合わされて被研削物の真直度や平面度等の幾何学量を計測するのに適している。   The present invention is suitable for measuring geometric quantities such as straightness and flatness of an object to be ground in combination with an ultra-precision surface grinder for tables such as stone and iron that require ultra-precision finishing. ing.

図1は、本発明による幾何学量計測装置におけるセンサヘッドと計測対象との関係のみを拡大して示す。FIG. 1 is an enlarged view showing only the relationship between a sensor head and a measurement object in a geometric quantity measuring apparatus according to the present invention. 図2は、本発明により幾何学量計測を行う前に実施される校正作業を説明するための図であり、校正作業において使用される傾斜ステージ及び基準平面とセンサヘッドとの関係を示した図である。FIG. 2 is a diagram for explaining a calibration operation performed before geometric amount measurement according to the present invention, and is a diagram showing a relationship between the tilt stage and the reference plane and the sensor head used in the calibration operation. It is. 図3(a)は幾何学量計測装置による真直度計測の一形態を示し、図3(b)は図3(a)の真直度の計測結果を用いて行われる平面度の計測について説明するための平面図である。FIG. 3A shows one form of straightness measurement by the geometric quantity measuring device, and FIG. 3B explains flatness measurement performed using the straightness measurement result of FIG. 3A. FIG. 図4は、本発明による幾何学量計測により実際に収集した校正データの例を示す。FIG. 4 shows an example of calibration data actually collected by geometric amount measurement according to the present invention. 図5は、幾何学量計測の一例として、真直度の計測方法の一例を説明するための図である。FIG. 5 is a diagram for explaining an example of a straightness measurement method as an example of geometric amount measurement. 図6は、図5に示されたセンサヘッドにおける3個のセンサのうちの1つに設置ずれがある場合の例を誇張して示している。FIG. 6 exaggerates an example in which one of the three sensors in the sensor head shown in FIG. 5 is misplaced.

符号の説明Explanation of symbols

I、J、K センサ
SH センサヘッド
OB 計測対象
20 傾斜ステージ
21 テーブル
30 基準平面
41 テーブル
42 ガイド
43 走行部
I, J, K Sensor SH Sensor head OB Measurement object 20 Inclined stage 21 Table 30 Reference plane 41 Table 42 Guide 43 Traveling section

Claims (3)

計測対象表面までの距離を検出する少なくとも3個のセンサを進行方向に沿ってオフセットを有して配置してなるセンサヘッドを前記計測対象表面に相対移動させることで前記少なくとも3個のセンサから得られる検出信号を用いて前記計測対象表面の幾何学量を計測する方法において、
あらかじめ、平坦面を持つ基準平面に対して計測を行い、前記少なくとも3個のセンサのうち両側のセンサの基準点を結ぶ線分からの中央のセンサの基準点のずれ量であって計測方向に関するずれ量を前記3個のセンサの検出値から算出すると共に、前記基準平面と前記センサヘッドとの間の相対傾斜と、これを変化させることにより変化する前記算出されたずれ量との間の関係を対のデータとして収集することにより補正テーブルを作成し、
計測対象に対する幾何学量の計測に際しては、計測の都度、前記計測対象表面と前記センサヘッドとの間の相対傾斜を前記両側のセンサの検出値とこれらの間隔とから算出し、かつ前記算出した相対傾斜に基づいて前記補正テーブルを参照して前記算出されたずれ量を取り出し、該取り出したずれ量と前記少なくとも3個のセンサから得られた検出信号を用いて前記計測対象表面の幾何学量を演算することを特徴とする幾何学量計測方法。
Obtained from the at least three sensors by moving relative to the measurement target surface a sensor head in which at least three sensors for detecting the distance to the measurement target surface are arranged with an offset along the traveling direction. In the method of measuring the geometric amount of the measurement target surface using the detected signal,
Measurement is performed in advance on a reference plane having a flat surface, and the deviation of the reference point of the central sensor from the line segment connecting the reference points of the sensors on both sides of the at least three sensors, and the deviation in the measurement direction The amount is calculated from the detection values of the three sensors, and the relationship between the relative inclination between the reference plane and the sensor head and the calculated deviation amount that changes by changing the relative inclination is obtained. Create a correction table by collecting data as pairs,
When measuring the geometric amount for the measurement target, each time the measurement is performed, the relative inclination between the measurement target surface and the sensor head is calculated from the detection values of the sensors on both sides and the interval therebetween, and the calculation is performed. The calculated deviation amount is extracted with reference to the correction table based on the relative inclination, and the geometric amount of the measurement target surface is obtained using the extracted deviation amount and detection signals obtained from the at least three sensors. A geometric amount measuring method characterized by calculating
前記補正テーブルの作成に際し、前記基準平面と前記センサヘッドとの間の相対傾斜を、前記少なくとも3個のセンサの並び方向に直交する軸を中心軸として前記基準平面又は前記センサヘッドを傾斜させることで変化させることを特徴とする請求項1に記載の幾何学量計測方法。 In creating the correction table, the reference plane or the sensor head is inclined with respect to a relative inclination between the reference plane and the sensor head, with an axis perpendicular to the arrangement direction of the at least three sensors as a central axis. The geometric amount measuring method according to claim 1, wherein the geometric amount measuring method is changed. 計測対象表面までの距離を検出する少なくとも3個のセンサを進行方向に沿ってオフセットを有して配置してなるセンサヘッドと、該センサヘッドを前記計測対象表面に相対移動させる移動手段と、前記少なくとも3個のセンサから得られる検出信号を用いて前記計測対象表面の幾何学量を演算する演算手段とを備えた幾何学量計測装置において、
前記演算手段は、前記少なくとも3個のセンサのうち両側のセンサの基準点を結ぶ線分からの中央のセンサの基準点のずれ量であって計測方向に関するずれ量を前記3個のセンサの検出値から算出すると共に、平坦面による基準平面と前記センサヘッドとの間の相対傾斜と、これを変化させることにより変化する前記算出されたずれ量との間の関係を対のデータとして収集して作成された補正テーブルを有し、
前記演算手段はまた、計測対象に対する幾何学量の計測の都度、前記計測対象表面と前記センサヘッドとの間の相対傾斜を前記両側のセンサの検出値とこれらの間隔とから算出し、かつ前記算出した相対傾斜に基づいて前記補正テーブルを参照して前記算出されたずれ量を取り出し、該取り出したずれ量と前記少なくとも3個のセンサから得られた検出信号を用いて前記計測対象表面の幾何学量を演算することを特徴とする幾何学量計測装置。
A sensor head in which at least three sensors for detecting the distance to the measurement target surface are arranged with an offset along the traveling direction; a moving means for relatively moving the sensor head to the measurement target surface; In a geometric quantity measuring apparatus comprising a calculation means for calculating a geometric quantity of the surface to be measured using detection signals obtained from at least three sensors,
The arithmetic means is a deviation amount of a reference point of a central sensor from a line segment connecting reference points of sensors on both sides of the at least three sensors, and a deviation amount relating to a measurement direction is detected by the three sensors. In addition, the relationship between the relative inclination between the reference plane by the flat surface and the sensor head and the calculated deviation amount that changes by changing the relative inclination is collected and created as a pair of data. Correction table,
The calculation means also calculates the relative inclination between the measurement target surface and the sensor head from the detection values of the sensors on both sides and the distance between the measurement target surface and the sensor head each time the geometric amount is measured with respect to the measurement target. The calculated deviation amount is extracted with reference to the correction table based on the calculated relative inclination, and the geometry of the measurement target surface is obtained using the extracted deviation amount and the detection signals obtained from the at least three sensors. A geometrical amount measuring apparatus characterized by calculating a stoichiometric amount.
JP2007233883A 2007-09-10 2007-09-10 Geometric quantity measurement method and device Withdrawn JP2009063541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233883A JP2009063541A (en) 2007-09-10 2007-09-10 Geometric quantity measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233883A JP2009063541A (en) 2007-09-10 2007-09-10 Geometric quantity measurement method and device

Publications (1)

Publication Number Publication Date
JP2009063541A true JP2009063541A (en) 2009-03-26

Family

ID=40558229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233883A Withdrawn JP2009063541A (en) 2007-09-10 2007-09-10 Geometric quantity measurement method and device

Country Status (1)

Country Link
JP (1) JP2009063541A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813181B1 (en) * 2014-06-24 2015-11-17 アイサンテクノロジー株式会社 Satellite positioning map display system
KR20160104552A (en) * 2015-02-26 2016-09-05 스미도모쥬기가이고교 가부시키가이샤 shape measuring apparatus, processing apparatus, and shape measuring method
CN105937886A (en) * 2015-03-04 2016-09-14 住友重机械工业株式会社 Shape measuring device, processing device and reforming method of shape measuring device
CN111561861A (en) * 2020-06-30 2020-08-21 张长勤 Building engineering ground flatness measuring device
CN113295077A (en) * 2017-03-26 2021-08-24 株式会社阿迪泰克工程 Flatness measuring method
JP2021156714A (en) * 2020-03-26 2021-10-07 住友重機械工業株式会社 Straightness measuring system, displacement sensor calibration method and straightness measuring method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813181B1 (en) * 2014-06-24 2015-11-17 アイサンテクノロジー株式会社 Satellite positioning map display system
KR20160104552A (en) * 2015-02-26 2016-09-05 스미도모쥬기가이고교 가부시키가이샤 shape measuring apparatus, processing apparatus, and shape measuring method
CN105928482A (en) * 2015-02-26 2016-09-07 住友重机械工业株式会社 Shape measuring apparatus, processing apparatus, and shape measuring method
KR101701084B1 (en) 2015-02-26 2017-01-31 스미도모쥬기가이고교 가부시키가이샤 shape measuring apparatus, processing apparatus, and shape measuring method
CN105928482B (en) * 2015-02-26 2020-09-29 住友重机械工业株式会社 Shape measuring apparatus, machining apparatus, and shape measuring method
CN105937886A (en) * 2015-03-04 2016-09-14 住友重机械工业株式会社 Shape measuring device, processing device and reforming method of shape measuring device
KR101798322B1 (en) * 2015-03-04 2017-11-15 스미도모쥬기가이고교 가부시키가이샤 shape measuring device, processing device and reforming method of shape measuring device
CN113295077A (en) * 2017-03-26 2021-08-24 株式会社阿迪泰克工程 Flatness measuring method
CN113295077B (en) * 2017-03-26 2023-09-12 株式会社阿迪泰克工程 Flatness measuring method
JP2021156714A (en) * 2020-03-26 2021-10-07 住友重機械工業株式会社 Straightness measuring system, displacement sensor calibration method and straightness measuring method
JP7296334B2 (en) 2020-03-26 2023-06-22 住友重機械工業株式会社 Straightness measurement system, displacement sensor calibration method, and straightness measurement method
CN111561861A (en) * 2020-06-30 2020-08-21 张长勤 Building engineering ground flatness measuring device

Similar Documents

Publication Publication Date Title
KR101912647B1 (en) Method for thickness measurement on measurement objects and device for applying the method
CN104024081B (en) The displacement detector of rail
US9074865B2 (en) Contour and surface texture measuring instrument and contour and surface texture measuring method
JP2009063541A (en) Geometric quantity measurement method and device
JP5866629B2 (en) Displacement detector, scale calibration method, and scale calibration program
JP6431157B1 (en) Apparatus and measuring method for building limit in railway
CN109477313A (en) System and method for measuring track
JP6657552B2 (en) Flatness measurement method
CN104949620A (en) Correction device and correction method for optical measuring apparatus
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
TWI609171B (en) Shape measuring device, processing device, and shape measuring device calibration method
US9250057B2 (en) Displacement detection apparatus
JP5100613B2 (en) Straightness measuring method and straightness measuring device
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
JP2009281768A (en) Measuring apparatus
JP5954861B2 (en) Road surface profile measuring device and measuring method
JP2006234427A (en) Flatness measuring method and instrument
JP5246952B2 (en) Measuring method
JP2010256107A (en) Measuring device and measurement method
KR101265221B1 (en) Profile measuring instrument of road and profiling method using the same
JP2002161511A (en) Measuring method of longitudinal section profile of road face and measuring method of road face profile
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP3245003B2 (en) Distance measuring apparatus and method
JP4980817B2 (en) Multipoint probe zero error related value recording device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207