JPH11271032A - Apparatus and method for measuring sectional profile - Google Patents

Apparatus and method for measuring sectional profile

Info

Publication number
JPH11271032A
JPH11271032A JP7807498A JP7807498A JPH11271032A JP H11271032 A JPH11271032 A JP H11271032A JP 7807498 A JP7807498 A JP 7807498A JP 7807498 A JP7807498 A JP 7807498A JP H11271032 A JPH11271032 A JP H11271032A
Authority
JP
Japan
Prior art keywords
cross
measured
distance
distance meter
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7807498A
Other languages
Japanese (ja)
Inventor
Minoru Matsumoto
実 松本
Yoshiki Fukutaka
善己 福高
Jiro Katayama
二郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7807498A priority Critical patent/JPH11271032A/en
Publication of JPH11271032A publication Critical patent/JPH11271032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an angle detector unnecessary and enable shortening measurement time. SOLUTION: This measuring apparatus is provided with a calibration segment 2 which has a specific dimension and is arranged at a constant position in the vicinity of an object to be measured, a range finder guide 4 which has a curved section, reciprocates parallel with a specific base line 10, can contain, in an outward trip, the section of the calibration segment and the section of the object to be measured in this order in a bay via a curved bay port and can bear a plurality of optical range finders 3, and a guide mover 5 which holds the range finder guide and makes it reciprocate parallel with the base line, and has function for calibrating position and angle of each range finder. While angle and position are calibrated only in the outward trip by using calibration segment measurement results, the sectional whole profile of the object to be measured is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断面輪郭測定装置
および方法に関し、特に、レーザ距離計等、物体との距
離を非接触で計測する光学式の距離計を用いて、例えば
H形鋼の中間製品等、断面形状の複雑な被測定物の断面
輪郭を精度よく測定できる断面輪郭測定装置および方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring a cross-sectional profile, and more particularly to an apparatus for measuring an H-section by using an optical distance meter such as a laser distance meter for measuring the distance to an object in a non-contact manner. The present invention relates to an apparatus and a method for measuring a cross-sectional contour of an object having a complicated cross-sectional shape, such as an intermediate product, with high accuracy.

【0002】[0002]

【従来の技術】光学式の距離計を用いて形鋼の断面形状
寸法を測定する技術として、例えば特開昭59−27210 号
公報に開示されるように、形鋼を包囲して回転するよう
に保持された筒体と、この筒体に取り付けられた距離計
と、筒体の回転角度を検出する角度検出器と、距離計で
得られた形鋼測定点までの距離信号および角度検出器か
らの角度信号を入力し両信号から形鋼の断面形状寸法を
算出する演算装置とを有する寸法測定装置が知られてい
る。この装置は、1個の距離計と1個の角度検出器によ
り、形鋼断面上の各部位の寸法、形状測定を同時に行お
うとするものである。
2. Description of the Related Art As a technique for measuring the cross-sectional shape and size of a section steel using an optical distance meter, for example, as disclosed in Japanese Patent Application Laid-Open No. 59-27210, the section steel is surrounded and rotated. , A distance meter attached to the cylinder, an angle detector for detecting the rotation angle of the cylinder, a distance signal to the measuring point of the section steel obtained by the distance meter, and an angle detector There is known a dimension measuring device having an arithmetic unit for inputting an angle signal from a computer and calculating a cross-sectional shape and dimension of the section steel from both signals. This device is intended to simultaneously measure the size and shape of each part on the cross section of a shaped steel by one distance meter and one angle detector.

【0003】ここに、光学式の距離計とは、例えば細く
絞ったHe−Neレーザビームを物体表面に照射し、その照
射点を光学レンズを通して受光面上に結像し、その点像
の位置およびその変化を検出して物体表面までの距離を
計測する計器を指す。しかしながら、この装置は、1個
の距離計を円周上に固定しているために、その円周を回
転させても形鋼の断面輪郭(プロフィル)の全貌を測定
することができず、形状良否判定のために断面全輪郭の
測定値を必要とする形鋼中間製品等の被測定物には適用
できない。
[0003] Here, an optical range finder is, for example, a device that irradiates a narrowly focused He-Ne laser beam onto the surface of an object, forms an irradiation point on the light receiving surface through an optical lens, and positions the point image. And an instrument that detects the change and measures the distance to the object surface. However, in this device, since one distance meter is fixed on the circumference, even if the circumference is rotated, it is not possible to measure the entire profile of the cross-sectional profile of the shaped steel, and the shape cannot be measured. It cannot be applied to an object to be measured, such as a shaped steel intermediate product, which requires a measured value of the entire contour of the cross-section for quality judgment.

【0004】これに対し、特開平8−327329号公報に
は、角度検出器を取り付けた距離計を形鋼の上下に1個
ずつ水平往復走行可能に設け、往路と復路で距離計の角
度を変更して、往復走行させながら形鋼までの距離と角
度のデータを採取し、これらのデータから形鋼の断面輪
郭の座標値を算出し、さらに、距離計間の機差を、被測
定物の測定毎に断面寸法既知の校正片を測定しその結果
を用いて補正するという方法および装置が提案されてい
る。
On the other hand, in Japanese Patent Application Laid-Open No. 8-327329, a distance meter equipped with an angle detector is provided so as to be able to reciprocate horizontally one at a time above and below a shaped steel, and the angle of the distance meter can be set between the forward path and the return path. Change the distance and angle data to the shaped steel while traveling back and forth, calculate the coordinate values of the cross-sectional profile of the shaped steel from these data, and determine the machine difference between the rangefinders. A method and apparatus have been proposed in which a calibration piece having a known cross-sectional dimension is measured for each measurement, and correction is performed using the measurement result.

【0005】これによれば、被測定物の断面全輪郭を測
定することができる。しかしながら、この装置は、距離
計の角度を角度検出器により検出するものであるため、
以下のような問題がある。 角度検出器を用いた場合、角度データ転送時の距離
データとの同期処理が困難で、また、計器本体およびデ
ータサンプリング用ソフトウエアが高価である。 角度検出器は距離計と共に走行するので走行時の衝
撃、振動、走行レールの変形等の影響を受け、距離計と
の相対位置関係がずれやすく、それがそのまま検出誤差
となる。 角度検出器自体が熱などの影響で故障しやすく、ま
た故障に至らないまでもそれによる誤差を生じやすい。 角度検出器は検出精度を確保するために取り付けの
位置決めに時間がかかる。
According to this, it is possible to measure the entire contour of the cross section of the object to be measured. However, since this device detects the angle of the rangefinder with an angle detector,
There are the following problems. When an angle detector is used, it is difficult to perform synchronization processing with distance data at the time of transferring angle data, and the instrument body and data sampling software are expensive. Since the angle detector travels together with the distance meter, it is affected by impacts, vibrations, deformation of the traveling rail, and the like at the time of traveling, and the relative positional relationship with the distance meter tends to shift, which directly becomes a detection error. The angle detector itself is likely to fail due to the influence of heat or the like, and even if it does not lead to a failure, an error due to it tends to occur. The angle detector takes time to position the mounting to secure the detection accuracy.

【0006】また、この装置は、往路と復路でデータを
採取する必要があるため測定に時間がかかる問題もあ
る。
In addition, this device has a problem that it takes a long time to measure data because it is necessary to collect data on the outward route and the return route.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術の問題点
に鑑み、本発明は、角度検出器を必要とせずかつ測定時
間も短縮できる断面輪郭測定装置および方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an apparatus and method for measuring a cross-sectional profile which does not require an angle detector and can shorten the measurement time.

【0008】[0008]

【課題を解決するための手段】本発明は、物体との距離
を非接触で計測する光学式の距離計を用いた断面輪郭測
定装置において、所定の寸法を有し被測定物に近接して
設けた定位置に配置された校正片と、湾曲形の断面形状
を有し所定の基線に平行に往復走行し往路で校正片断面
と被測定物断面とをこの順に湾曲形の湾口経由で湾内に
収容でき、かつ複数の距離計を担持可能に構成された距
離計ガイドと、この距離計ガイドを保持して前記基線に
平行に往復走行させるガイドムーバとを有し、各距離計
の位置および角度校正機能を備えたことを特徴とする断
面輪郭測定装置(本発明装置)である。
SUMMARY OF THE INVENTION The present invention relates to a cross-sectional contour measuring apparatus using an optical distance meter for measuring a distance to an object in a non-contact manner. The calibration piece arranged at the fixed position provided, and the reciprocating traveling parallel to a predetermined base line having a curved cross-sectional shape, the cross-section of the calibration piece and the cross section of the object to be measured in the forward path in the bay through the curved bay mouth in this order. A distance meter guide configured to be able to carry a plurality of distance meters, and a guide mover for holding the distance meter guide and reciprocating in parallel with the base line, and the position of each distance meter and A cross-sectional profile measuring device (device of the present invention) characterized by having an angle calibration function.

【0009】本発明装置では、距離計ガイドの断面形状
が円弧状であり、ガイドムーバが距離計ガイドを旋回可
能に保持することが好ましい。請求項1記載の装置。ま
た、本発明は、前記本発明装置を用いて被測定物の断面
輪郭を測定する方法であって、距離計ガイドに複数の距
離計を被測定物の断面形状に応じて設定した位置と角度
で担持させ、往復走行の往路走行時に距離計で校正片と
被測定物とを順次距離計測し、校正片の距離計測値から
各距離計の角度と位置を校正し、この校正値と被測定物
の距離計測値から被測定物の断面全輪郭の座標値を算出
することを特徴とする断面輪郭測定方法(本発明方法)
である。
In the apparatus of the present invention, it is preferable that the cross-sectional shape of the distance meter guide is an arc shape, and the guide mover holds the distance meter guide so as to be pivotable. The device according to claim 1. Further, the present invention is a method for measuring a cross-sectional contour of an object to be measured using the device of the present invention, wherein a plurality of distance meters are set in a distance meter guide according to the cross-sectional shape of the object to be measured. During calibration, the distance between the calibration piece and the DUT is measured sequentially by the distance meter during the reciprocating travel, and the angle and position of each distance meter are calibrated from the measured distance of the calibration piece. Calculating a coordinate value of the entire cross-section of the object to be measured from a distance measurement value of the object (method of the present invention)
It is.

【0010】[0010]

【発明の実施の形態】本発明装置は、例えば図1に示す
ように、所定の寸法を有し被測定物1に近接して設けた
定位置に配置された校正片2と、湾曲形の断面形状を有
し所定の基線10に平行に往復走行し往路で校正片断面と
被測定物断面とをこの順に湾曲形の湾口経由で湾内に収
容でき、かつ複数の距離計3を担持可能に構成された距
離計ガイド4と、この距離計ガイド4を保持して前記基
線10に平行に往復走行させるガイドムーバ5とを有す
る。6はガイドムーバ5に取り付けられガイドムーバ5
と校正片2との距離の基線方向成分を計測する基準距離
計、7は被測定物1を支持するローラである。基準距離
計6は距離計3と同じものを用いてよい。距離計3およ
び基準距離計6の距離計測は同期して行われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, for example, a device according to the present invention comprises a calibration piece 2 having a predetermined size and arranged at a fixed position provided in close proximity to an object 1 to be measured. It has a cross-sectional shape and can reciprocate in parallel to a predetermined baseline 10 and can accommodate the cross section of the calibration piece and the cross section of the DUT on the outward path in this order via a curved bay mouth in the bay, and can carry a plurality of distance meters 3 It has a configured distance meter guide 4 and a guide mover 5 that holds the distance meter guide 4 and reciprocates in parallel with the base line 10. 6 is attached to the guide mover 5 and the guide mover 5
A reference distance meter 7 measures a baseline component of a distance between the object and the calibration piece 2, and a roller 7 supports the DUT 1. The reference rangefinder 6 may be the same as the rangefinder 3. The distance measurement by the distance meter 3 and the reference distance meter 6 is performed in synchronization.

【0011】この例では、被測定物1がH形鋼の中間製
品であり、距離計ガイド4が被測定物1の上下に各2個
の距離計3を担持している。各距離計3の取り付け位置
と角度は、往路走間でこれら距離計3の測定点が全体と
して被測定物1の断面全輪郭を走査するように設定す
る。この場合、湾口側の距離計3は湾奥側に向かせ、湾
奥側の距離計3は湾口側に向かせるように角度設定する
のがよい。このような設定条件は自由度が大きいので、
個々の距離計3の取り付け精度はさほど厳密さを要求さ
れない。
In this example, the DUT 1 is an intermediate product of an H-section steel, and the distance meter guide 4 carries two distance meters 3 above and below the DUT 1. The mounting position and the angle of each distance meter 3 are set such that the measurement points of the distance meter 3 as a whole scan the entire contour of the cross section of the DUT 1 during forward traveling. In this case, it is preferable to set the angle so that the distance meter 3 on the side of the bay is directed to the far side of the bay, and the distance meter 3 on the far side of the bay is directed toward the side of the bay. Since such setting conditions have a large degree of freedom,
The mounting accuracy of each distance meter 3 is not required to be so strict.

【0012】なお、被測定物1の形状によっては、各距
離計3の狙い位置を変更する必要が生じるが、多くの場
合、各距離計3の円周方向の相互位置関係は保存できる
ことから、図示のように、距離計ガイド4を円弧状と
し、これをガイドムーバ5で旋回可能に保持しておけ
ば、距離計ガイド4を旋回させるだけで各距離計3の狙
い位置を変更できるから測定能率を向上できて好まし
い。
It is necessary to change the target position of each distance meter 3 depending on the shape of the DUT 1. In many cases, however, the mutual positional relationship between the distance meters 3 in the circumferential direction can be preserved. As shown in the figure, if the distance meter guide 4 is formed in an arc shape and is held rotatably by the guide mover 5, the target position of each distance meter 3 can be changed simply by turning the distance meter guide 4, so that measurement is performed. It is preferable because the efficiency can be improved.

【0013】本発明方法に従って、距離計ガイド4がガ
イドムーバ5によって校正片2の右側から左向きに往路
走行させられると、距離計ガイド4の湾内には先に校正
片2が入り、次いで被測定物1が入るから、距離計3に
より被測定物1に先立って校正片2が走査される。い
ま、図2に示すように、基線10を含む鉛直面内で長方形
OABCを断面輪郭とする校正片2を、辺OAが基線10
に平行になるように配置し、図示のようにXY座標軸を
とって、この校正片2を距離計3で往路走査するものと
すれば、走査経路は、上湾口側ではB→C→O、上湾奥
側ではA→B→C、下湾口側ではA→O→C、下湾奥側
ではB→A→Oとなる。このとき、距離計3の角度θ
は、校正片2のY軸平行辺上(湾口側では辺OC上、湾
奥側では辺AB上)で距離計毎に任意に選ばれる2つの
測定点P1 、P2 の距離計測値(距離データ)L1 、L
2と基準距離計6の同期計測値x1 、x2 とから(1) 式
により算出できる。なお、図2には上湾口側の距離計の
み図示した。
According to the method of the present invention, when the range finder guide 4 is made to travel leftward from the right side of the calibration piece 2 by the guide mover 5, the calibration piece 2 enters the bay of the range finder guide 4 first, and then is measured. Since the object 1 enters, the calibration piece 2 is scanned by the distance meter 3 before the object 1 to be measured. Now, as shown in FIG. 2, a calibration piece 2 having a rectangular OABC as a cross-sectional profile in a vertical plane including a base line 10
If the calibration piece 2 is to be scanned forward by the distance meter 3 using the XY coordinate axes as shown in the figure, the scanning path is B → C → O, A → B → C on the far side of the upper bay, A → O → C on the far side of the lower bay, and B → A → O on the far side of the lower bay. At this time, the angle θ of the distance meter 3
Is a distance measurement value between two measurement points P 1 and P 2 arbitrarily selected for each distance meter on the Y-axis parallel side of the calibration piece 2 (on the side OC on the bay entrance side and on the side AB on the back side of the bay). Distance data) L 1 , L
2 and synchronous measurement value of the reference distance meter 6 x 1, x 2 Metropolitan can be calculated by the equation (1). FIG. 2 shows only the range finder on the side of the bay bay.

【0014】 θ=cos -1{(x2 −x1 )/(L2 −L1 )} (1) すなわち、本発明装置は、各距離計3が校正片2の距離
データに基準距離計6の同期計測値を援用して自身の角
度を校正することができる、すなわち角度校正機能を有
するので、角度検出器を必要としない。一方、各距離計
3と基準距離計6との相対位置関係は走行中不変であ
り、各距離計3の基準距離計6からの距離のX、Y方向
成分XC 、YC は、例えば図3(a)〜(d)に示すよ
うに、距離計3の校正片2上の往路最終測定点(上湾口
側及び下湾奥側では点O、上湾奥側及び下湾口側では点
C)の距離データLC と、基準距離計6の同期計測値X
O およびY座標値YO (既知)とを用いて以下の式で表
される。なお、OA=BC=a、AB=CO=bとし
た。
Θ = cos −1 {(x 2 −x 1 ) / (L 2 −L 1 )} (1) That is, in the present invention, each distance meter 3 uses the reference distance meter as the distance data of the calibration piece 2. The angle can be calibrated by using the synchronous measurement value of No. 6; that is, since the angle measurement function is provided, an angle detector is not required. On the other hand, the relative positional relationship between each distance meter 3 and the reference distance meter 6 is constant during traveling, and the X and Y direction components X C and Y C of the distance of each distance meter 3 from the reference distance meter 6 are, for example, as shown in FIG. As shown in FIGS. 3 (a) to 3 (d), the final measurement points on the forward path on the calibration piece 2 of the distance meter 3 (point O on the upper bay entrance side and lower bay interior side, point C on the upper bay interior side and lower bay entrance side). and distance data L C) of the reference distance meter 6 of synchronous measurement value X
It is expressed by the following equation using O and the Y coordinate value Y O (known). Note that OA = BC = a and AB = CO = b.

【0015】上湾口側(図3(a)): XC =(XO +a)+L3 ×cos θ (2) YC =L3 ×sin θ−YO (3) 下湾奥側(図3(b)): XC =(XO +a)−L3 ×cos θ (4) YC =L3 ×sin θ+YO (5) 上湾奥側(図3(c)): XC =(XO +a)−L3 ×cos θ (6) YC =L3 ×sin θ+(b−YO ) (7) 下湾口側(図3(d)): XC =(XO +a)+L3 ×cos θ (8) YC =L3 ×sin θ−(b−YO ) (9) このようにして校正片2の往路走査時に、各距離計3の
基準距離計6に対する相対位置(XC ,YC )を校正す
ることができる。すなわち、本発明装置は各距離計3の
位置校正機能も有する。
Upper bay entrance side (FIG. 3 (a)): X C = (X O + a) + L 3 × cos θ (2) Y C = L 3 × sin θ−Y O (3) Back side of lower bay (FIG. 3 (b)): X C = (X O + a) −L 3 × cos θ (4) Y C = L 3 × sin θ + Y O (5) Deep side of upper bay (FIG. 3 (c)): X C = (X O + a) -L 3 × cos θ (6) Y C = L 3 × sin θ + (b-Y O) (7) the lower mouth of the bay-side (FIG. 3 (d)): X C = (X O + a) + L 3 × cos θ (8) Y C = L 3 × sin θ− (b−Y O ) (9) In this way, when the calibration piece 2 scans the forward path, the relative position of each distance meter 3 with respect to the reference distance meter 6 (X C , Y C ) can be calibrated. That is, the apparatus of the present invention also has a position calibration function for each distance meter 3.

【0016】次いで、各距離計3は被測定物1の往路走
査にかかるが、被測定物1上の測定点Pの座標(xP
P )と、距離データLP および基準距離計6の同期計
測値XS 、ならびに校正された角度θ、基準距離計6に
対する相対位置(XC ,YC)、基準距離計6のY座標
値YO とは、各距離計3について図4、図5に示すよう
な幾何学的関係にあるから、LP およびXS の計測の都
度、式(10)〜(17)を用いて測定点Pの座標(xP
P )を算出することができる。
Next, each distance meter 3 performs forward scanning of the DUT 1, and the coordinates (x P ,
y P ), the distance data L P and the synchronous measurement value X S of the reference distance meter 6, the calibrated angle θ, the relative position (X C , Y C ) with respect to the reference distance meter 6, and the Y coordinate of the reference distance meter 6. the value Y O, 4 for each distance meter 3, because in the geometric relationship shown in FIG. 5, each of the measurement between L P and X S, measured using equation (10) to (17) The coordinates of point P (x P ,
y P ) can be calculated.

【0017】 上湾口側(図4(a)): xP =−{(XC −a−XS )−LP ×cos θ} (10) yP =(YC +YO )−LP ×sin θ (11) 下湾奥側(図4(b)): xP =−{(XC −a−XS )+LP ×cos θ} (12) yP =−{(YC −YO )−LP ×sin θ} (13) 上湾奥側(図5(a)): xP =−{(XC −a−XS )+LP ×cos θ} (14) yP =(YC +YO )−LP ×sin θ (15) 下湾口側(図5(b)): xP =−{(XC −a−XS )−LP ×cos θ} (16) yP =−{(YC −YO )−LP ×sin θ} (17) 各距離計3毎の測定点Pの座標(xP ,yP )は、同一
座標軸上の値として高精度に校正されているから、往路
の途上で、各距離計毎の座標値を逐次重ね合わせるだけ
で、直ちに被測定物1の断面部分輪郭が得られる。そし
て、複数の距離計3は、往路走間でそれぞれの測定点が
全体として被測定物の断面全輪郭を走査するように取り
付けられているから、往路の終点では被測定物の断面全
輪郭が得られる。
Upper bay entrance side (FIG. 4A): x P = − {(X C −a−X S ) −L P × cos θ} (10) y P = (Y C + Y O ) −L P × sin θ (11) Inner side of lower bay (FIG. 4B): x P = − {(X C −a−X S ) + L P × cos θ} (12) y P = − {(Y C Y O) -L P × sin θ } (13) on Gulf back side (FIG. 5 (a)): x P = - {(X C -a-X S) + L P × cos θ} (14) y P = (Y C + Y O ) −L P × sin θ (15) The lower bay entrance side (FIG. 5B): x P = − {(X C −a−X S ) −L P × cos θ} (16) ) y P = - {(Y C -Y O) -L P × sin θ} (17) coordinates (x P of the measuring point P of the distance measuring instrument every 3, y P) is high as the value on the same coordinate axis Since the accuracy is calibrated, the sectional partial contour of the DUT 1 can be obtained immediately by merely superimposing the coordinate values of the respective distance meters one by one on the way. The plurality of distance meters 3 are mounted so that each measurement point scans the entire cross-sectional contour of the measured object as a whole during the outbound traveling. can get.

【0018】また、(2) 〜(9) 式の左辺を(10)〜(17)式
の対応する右辺に代入すると、以下の式が得られる。 上湾口側: xP =(XS −XO )+(LP −L3 )×cos θ (18) yP =−(LP −L3 )×sin θ (19) 下湾奥側: xP =(XS −XO )−(LP −L3 )×cos θ (20) yP =(LP −L3 )×sin θ (21) 上湾奥側: xP =(XS −XO )−(LP −L3 )×cos θ (22) yP =b−(LP −L3 )×sin θ (23) 下湾口側: xP =(XS −XO )+(LP −L3 )×cos θ (24) yP =b+(LP −L3 )×sin θ (25) すなわち、本発明では(2) 〜(9) 式の演算を省略し、(1
0)〜(17)式の代わりに(18)〜(25)式を用いて被測定物測
定点の座標を算出することもできる。
When the left side of equations (2) to (9) is substituted into the corresponding right side of equations (10) to (17), the following equation is obtained. Upper mouth of the bay-side: x P = (X S -X O) + (L P -L 3) × cos θ (18) y P = - (L P -L 3) × sin θ (19) lower bay back side: x P = (X S −X O ) − (L P −L 3 ) × cos θ (20) y P = (L P −L 3 ) × sin θ (21) Inner side of upper bay: x P = (X S− X O ) − (L P −L 3 ) × cos θ (22) y P = b− (L P −L 3 ) × sin θ (23) Lower bay entrance side: x P = (X S −X O ) + (L P −L 3 ) × cos θ (24) y P = b + (L P −L 3 ) × sin θ (25) That is, in the present invention, the calculations of the equations (2) to (9) are omitted. , (1
The coordinates of the measurement point of the object to be measured can be calculated by using the equations (18) to (25) instead of the equations (0) to (17).

【0019】なお、ここでは、被測定物の上下に各2個
の距離計を配置した例について説明したが、距離計の個
数は被測定物の形状に応じて適宜決めればよい。
Although an example in which two distance meters are arranged above and below the object to be measured has been described, the number of distance meters may be determined as appropriate according to the shape of the object to be measured.

【0020】[0020]

【実施例】H形鋼の中間製品製造ラインに本発明を実施
した。装置構成は図1に示したように、校正片は断面長
方形とし、距離計ガイドは円弧状とし、これをガイドム
ーバで旋回可能に支持するようにした。距離計ガイドの
旋回駆動には電動モータを用いた。距離計は被測定物の
上下に各2個、往路走行時に測定点が被測定物の全輪郭
を走査できる位置・角度を選んで、距離計ガイドに取り
付けた。また、距離計及び基準距離計にはレーザ距離計
を用いた。
EXAMPLE The present invention was applied to an H-section intermediate product production line. As shown in FIG. 1, the configuration of the device was such that the calibration piece had a rectangular cross-section, the rangefinder guide had an arc shape, and this was rotatably supported by a guide mover. An electric motor was used for turning the rangefinder guide. Two distance meters were provided above and below the object to be measured, and the positions and angles at which the measurement points could scan the entire contour of the object to be measured during forward traveling were selected and attached to the distance meter guide. Laser rangefinders were used as the rangefinder and the reference rangefinder.

【0021】前記のようにして往路のみで校正片を先に
走査して得た距離データから各距離計毎の角度θを算出
すると共に、被測定物上の測定点Pの距離データLP
び基準距離計の同期計測値XS から(18)〜(25)式により
測定点の座標を算出し、各距離計による測定点座標を重
ね合わせて被測定物の断面全輪郭を測定した。さらに、
この輪郭測定データを基に、図示しない演算装置によ
り、H形鋼のフランジ厚、フランジ幅、ウエブ厚、ウエ
ブ高さ、脚長、中心偏りなどを自動演算して求めた。
As described above, the angle θ of each distance meter is calculated from the distance data obtained by first scanning the calibration piece only on the outward path, and the distance data L P and the distance data L of the measurement point P on the object to be measured are calculated. by the synchronous measurement value X S of the reference distance meter (18) to (25) below to calculate the coordinates of the measurement points was measured sectional full contour of the object by superimposing measuring point coordinate according to the rangefinder. further,
Based on the contour measurement data, an arithmetic unit (not shown) was used to automatically calculate the flange thickness, flange width, web thickness, web height, leg length, center deviation, and the like of the H-section steel.

【0022】これにより、角度検出器を使用して角度を
検出していた時期に比べて、距離計取り付け作業時間が
約50%短縮し、角度検出器のゼロ点調整不足や角度の誤
認識による断面輪郭の重ね合わせのずれが皆無となり、
また、角度検出器使用時に必要であった角度データのと
りこみ・同期処理等のソフトウエアが不要となった。ま
た、復路での測定が不要となったことから、復路での走
行スピードを上げることができ、往路と復路の両方で測
定する従来技術に比較して、測定所要時間が約30%短縮
した。
As a result, the time required for installing the distance meter is reduced by about 50% compared with the time when the angle was detected using the angle detector, and the zero point adjustment of the angle detector was insufficient and the angle was erroneously recognized. There is no misalignment of the cross-section profile,
Also, software for capturing and synchronizing angle data, which was necessary when using the angle detector, is no longer necessary. In addition, since the measurement on the return path is not required, the traveling speed on the return path can be increased, and the time required for the measurement is reduced by about 30% as compared with the conventional technique in which the measurement is performed on both the forward path and the return path.

【0023】[0023]

【発明の効果】かくして本発明によれば、形鋼等の複雑
な断面形状をもつ被測定物の断面全輪郭を、コスト面や
取り付け調整面に難のある角度検出器を必要とせず、高
精度にかつ従来よりも短時間で測定できるようになると
いう優れた効果を奏する。
As described above, according to the present invention, the entire cross-sectional contour of an object to be measured having a complicated cross-sectional shape such as a shaped steel can be obtained without using an angle detector which is difficult in terms of cost and mounting adjustment. This provides an excellent effect that measurement can be performed with high accuracy and in a shorter time than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of a device of the present invention.

【図2】距離計の角度校正方法を示す説明図である。FIG. 2 is an explanatory diagram showing a method for calibrating an angle of a range finder.

【図3】距離計の相対位置校正方法を示す説明図であ
る。
FIG. 3 is an explanatory view showing a relative position calibration method of the range finder.

【図4】測定点の座標算出方法を示す説明図である。FIG. 4 is an explanatory diagram showing a method of calculating coordinates of a measurement point.

【図5】測定点の座標算出方法を示す説明図である。FIG. 5 is an explanatory diagram showing a method of calculating coordinates of a measurement point.

【符号の説明】 1 被測定物 2 校正片 3 距離計 4 距離計ガイド 5 ガイドムーバ 6 基準距離計 7 ローラ 10 基線[Description of Signs] 1 DUT 2 Calibration strip 3 Distance meter 4 Distance meter guide 5 Guide mover 6 Reference distance meter 7 Roller 10 Base line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体との距離を非接触で計測する光学式
の距離計を用いた断面輪郭測定装置において、所定の寸
法を有し被測定物に近接して設けた定位置に配置された
校正片と、湾曲形の断面形状を有し所定の基線に平行に
往復走行し往路で校正片断面と被測定物断面とをこの順
に湾曲形の湾口経由で湾内に収容でき、かつ複数の距離
計を担持可能に構成された距離計ガイドと、この距離計
ガイドを保持して前記基線に平行に往復走行させるガイ
ドムーバとを有し、各距離計の位置および角度校正機能
を備えたことを特徴とする断面輪郭測定装置。
1. A cross-sectional contour measuring apparatus using an optical distance meter for measuring a distance to an object in a non-contact manner, wherein the cross-sectional contour measuring apparatus has a predetermined size and is arranged at a fixed position provided close to an object to be measured. The calibration piece and the curved cross-sectional shape have a cross-sectional shape, and can reciprocate in parallel to a predetermined base line, and can accommodate the cross-section of the calibration piece and the cross-section of the DUT on the outward path in this order through the curved bay mouth in the bay, and at a plurality of distances. A distance meter guide configured to be able to carry the distance meter, and a guide mover that holds the distance meter guide and reciprocates in parallel to the base line, and has a position and angle calibration function for each distance meter. Characteristic cross-section profile measurement device.
【請求項2】 距離計ガイドの断面形状が円弧状であ
り、ガイドムーバが距離計ガイドを旋回可能に保持する
請求項1記載の装置。
2. The device according to claim 1, wherein the cross-sectional shape of the rangefinder guide is arc-shaped, and the guide mover holds the rangefinder guide in a pivotable manner.
【請求項3】 請求項1または2に記載の装置を用いて
被測定物の断面輪郭を測定する方法であって、距離計ガ
イドに複数の距離計を被測定物の断面形状に応じて設定
した位置と角度で担持させ、往復走行の往路走行時に距
離計で校正片と被測定物とを順次距離計測し、校正片の
距離計測値から各距離計の角度と位置を校正し、この校
正値と被測定物の距離計測値から被測定物の断面全輪郭
の座標値を算出することを特徴とする断面輪郭測定方
法。
3. A method for measuring a cross-sectional contour of an object to be measured using the apparatus according to claim 1 or 2, wherein a plurality of distance meters are set in a distance meter guide according to the cross-sectional shape of the object to be measured. The distance and distance between the calibration piece and the DUT are measured sequentially with the distance meter during forward and backward traveling of the reciprocating travel, and the angle and position of each distance meter are calibrated from the measured distance of the calibration piece. A cross-sectional contour measuring method, comprising calculating coordinate values of the entire cross-section of the cross-section of the measured object from the measured values and the distance measurement values of the measured object.
JP7807498A 1998-03-25 1998-03-25 Apparatus and method for measuring sectional profile Pending JPH11271032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7807498A JPH11271032A (en) 1998-03-25 1998-03-25 Apparatus and method for measuring sectional profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7807498A JPH11271032A (en) 1998-03-25 1998-03-25 Apparatus and method for measuring sectional profile

Publications (1)

Publication Number Publication Date
JPH11271032A true JPH11271032A (en) 1999-10-05

Family

ID=13651705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7807498A Pending JPH11271032A (en) 1998-03-25 1998-03-25 Apparatus and method for measuring sectional profile

Country Status (1)

Country Link
JP (1) JPH11271032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162223A (en) * 2000-11-22 2002-06-07 Kawasaki Steel Corp Size measuring device of h shape steel and size measuring method using the same
JP2006275919A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Dimension measuring method of shape steel
JP2011149849A (en) * 2010-01-22 2011-08-04 Mitsutoyo Corp Noncontact displacement measuring apparatus
JP2015197431A (en) * 2014-04-03 2015-11-09 Jfeスチール株式会社 shaped steel squareness measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162223A (en) * 2000-11-22 2002-06-07 Kawasaki Steel Corp Size measuring device of h shape steel and size measuring method using the same
JP4626047B2 (en) * 2000-11-22 2011-02-02 Jfeスチール株式会社 Dimensional measurement method for H-section steel
JP2006275919A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Dimension measuring method of shape steel
JP4677810B2 (en) * 2005-03-30 2011-04-27 Jfeスチール株式会社 Dimensional measurement method for section steel
JP2011149849A (en) * 2010-01-22 2011-08-04 Mitsutoyo Corp Noncontact displacement measuring apparatus
JP2015197431A (en) * 2014-04-03 2015-11-09 Jfeスチール株式会社 shaped steel squareness measurement device

Similar Documents

Publication Publication Date Title
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
US6674531B2 (en) Method and apparatus for testing objects
CN104482884B (en) Narrow angle measuring device and its measuring method
JPH03257354A (en) Apparatus for inspecting solder printing
CN103968778A (en) Detecting system with multiple laser devices
JP7227442B2 (en) Vehicle dimension measuring device and vehicle dimension measuring method
JP3031529B2 (en) Method and apparatus for measuring sectional dimensions of H-section steel
WO2014024812A1 (en) Support detection device using laser measurement
JP5763974B2 (en) Progress measurement device, progress measurement system, and progress measurement method
CN108088375A (en) A kind of object relative position detection light beam method of reseptance and device
JPH11271032A (en) Apparatus and method for measuring sectional profile
CN108072325A (en) A kind of object space determines method and device
CN108088374B (en) Light beam switching method and device
JPH01314907A (en) Method and device for zero-point correction in measuring thickness
JP3385174B2 (en) Cross section profile measurement method
CN108072326B (en) Method and device for observing light beam irradiation
JPH11173840A (en) Device and method for measuring distance
JPH08178642A (en) Surveying device for railway
JPH0854234A (en) Three-dimensional coordinate position measuring method
JP2630844B2 (en) 3D shape and size measurement device
JPH10105719A (en) Optical measurement method for hole position
JP2012098048A (en) Wheel shape calibration tool, calibration method using wheel shape calibration tool
JP3239682B2 (en) Segment position measurement method
KR20120114579A (en) Apparatus for inspecting weld toe grinding and methord thereof
JP2001249004A (en) Wheel measurement device