JP4677315B2 - Grinding fluid thickness measuring apparatus and grinding machine using the apparatus - Google Patents

Grinding fluid thickness measuring apparatus and grinding machine using the apparatus Download PDF

Info

Publication number
JP4677315B2
JP4677315B2 JP2005276753A JP2005276753A JP4677315B2 JP 4677315 B2 JP4677315 B2 JP 4677315B2 JP 2005276753 A JP2005276753 A JP 2005276753A JP 2005276753 A JP2005276753 A JP 2005276753A JP 4677315 B2 JP4677315 B2 JP 4677315B2
Authority
JP
Japan
Prior art keywords
grinding
grinding fluid
workpiece
grinding wheel
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005276753A
Other languages
Japanese (ja)
Other versions
JP2007083357A (en
Inventor
伸司 相馬
真也 塚本
貴典 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005276753A priority Critical patent/JP4677315B2/en
Publication of JP2007083357A publication Critical patent/JP2007083357A/en
Application granted granted Critical
Publication of JP4677315B2 publication Critical patent/JP4677315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

本発明は、円筒砥石車と基準部材の間に供給される研削液の厚み測定装置及び、この厚み測定装置によって得られる研削液の厚みに基づいて制御される研削盤に関する。   The present invention relates to a thickness measuring device for a grinding fluid supplied between a cylindrical grinding wheel and a reference member, and a grinding machine controlled based on the thickness of the grinding fluid obtained by the thickness measuring device.

工作物を砥石車で研削するときには、工作物と砥石車との研削点に研削液を供給して冷却及び潤滑することにより、研削熱による工作物の研削焼け、熱歪み等を防止している。   When grinding a workpiece with a grinding wheel, the grinding fluid is supplied to the grinding point between the workpiece and the grinding wheel and cooled and lubricated to prevent grinding burn, thermal distortion, etc. of the workpiece due to grinding heat. .

近年、少量の研削液でも工作物と砥石車とを十分に冷却および潤滑が可能なように特許文献1に記載されるような研削液供給方法が開発されている。この特許文献1に記載されている研削液の供給方法は、特許文献1に示されるように、研削点より砥石回転方向の上流側位置でエアジェットを研削液の供給の開始と同時に、砥石車の研削面に沿って一側面側から他側面側に向かって横断するように吹き付け、エアジェットにより砥石車に連れ回りする砥石随伴空気層を遮断することによって、少量の研削液でも砥石車の研削面に良好に付着させて研削点に十分に供給できるようにしている。   In recent years, a grinding fluid supply method as described in Patent Document 1 has been developed so that a workpiece and a grinding wheel can be sufficiently cooled and lubricated with a small amount of grinding fluid. As disclosed in Patent Document 1, the grinding fluid supply method described in Patent Document 1 is a grinding wheel simultaneously with the start of the supply of grinding fluid from an air jet at a position upstream of the grinding point in the direction of grinding wheel rotation. Grinding the grinding wheel with a small amount of grinding fluid by spraying along the grinding surface of the grinding wheel from one side to the other side and blocking the air layer associated with the grinding wheel by the air jet. It adheres well to the surface so that it can be sufficiently supplied to the grinding point.

ところが、特許文献1のように、砥石随伴空気層を遮断して少量の研削液でも研削点に供給できるようになったとしても、供給源から供給される研削液の流量自体が不足していては、工作物の研削焼け、熱歪み等を防止することができない。このため、従来では、本来必要な量より多めに研削液を供給することにより、研削焼け、熱歪み等が発生しないようにしていた。また、十分な流量の研削液が供給されていたとしても、砥石車に所定の厚み(膜厚)を有して砥石車に研削液が付着しているかは、作業者が目視で判断するしかなく、近年、研削液の厚みを正確に測定する技術が必要となっていた。   However, even if the grinding stone associated air layer is blocked and a small amount of grinding fluid can be supplied to the grinding point as in Patent Document 1, the flow rate of the grinding fluid supplied from the supply source is insufficient. Cannot prevent grinding burn, thermal distortion, etc. of the workpiece. For this reason, conventionally, grinding burn, thermal distortion, and the like are prevented from occurring by supplying a larger amount of grinding liquid than originally required. Even if a sufficient amount of grinding fluid is supplied, the operator must visually determine whether the grinding fluid has a predetermined thickness (film thickness) on the grinding wheel and is attached to the grinding wheel. In recent years, a technique for accurately measuring the thickness of the grinding fluid has been required.

図10は研削液の厚みを測定する装置の一例を示すもので、回転軸線O周りに回転する砥石車Gを備え、図中矢印に示す工作物Wの送り方向に、工作物Wの研削領域に露出するように一対の電極1、2を埋め込み、この一対の電極1、2に電圧源Eと電流計4を接続し、電気回路を構成する。そして、研削液を研削液ノズル6から砥石車Gと工作物の間に向かって供給し、工作物Wの研削を行う。この工作物Wを研削車Gで研削するときに研削液を介して流れる電流を電流計4で測定し、記録計7によって積算記録する。この積算記録された電流値から研削液の電気抵抗値を解析することにより、砥石車Gと工作物Wの干渉領域における研削液の膜厚を推定するようにしていた。
特開2004−17265号公報(第5頁段落番号[0019]から第6頁段落番号[0021]、図6)
FIG. 10 shows an example of an apparatus for measuring the thickness of the grinding fluid, which includes a grinding wheel G that rotates about the rotation axis O, and in which the workpiece W is ground in the feed direction of the workpiece W indicated by an arrow in the figure. A pair of electrodes 1 and 2 are embedded so as to be exposed to each other, and a voltage source E and an ammeter 4 are connected to the pair of electrodes 1 and 2 to constitute an electric circuit. Then, the grinding liquid is supplied from the grinding liquid nozzle 6 toward the gap between the grinding wheel G and the workpiece, and the workpiece W is ground. The current flowing through the grinding fluid when the workpiece W is ground by the grinding wheel G is measured by the ammeter 4 and integrated and recorded by the recorder 7. By analyzing the electrical resistance value of the grinding fluid from the accumulated current value, the film thickness of the grinding fluid in the interference region between the grinding wheel G and the workpiece W is estimated.
JP 2004-17265A (paragraph number [0019] from the fifth page to paragraph number [0021] from the sixth page, FIG. 6)

しかしながら図10に示す装置では、工作物Wの送りとともに電極1、2が砥石車Gの回転軸線Oと直交する方向に移動し、移動した電極間の膜厚が計測されるものであるが、研削液の膜厚は、研削液ノズル6の直下で最も厚くなる一方、砥石車Gと工作物Wの干渉領域では最も薄くなる。このため、電流計4に計測される電流は、これら研削液ノズル6直下から砥石車Gと工作物Wの干渉領域までの間に滞留している研削液の平均的な膜厚となってしまい、研削液の膜厚と電流(電気抵抗)との関係の評価が困難であった。さらに、砥石車Gと工作物Wの干渉領域では、供給される研削液の量が少なく、電極間に形成される研削液の液膜が断続的な状態となる場合がある。このような状態が電極間に発生すると、電極間に電流が流れずに電気抵抗値が無限大の状態が断続的に記録されてしまう。このため、積算記録された電流値を単純に積算したとしても正確な研削液の膜厚を推定することは困難であった。   However, in the apparatus shown in FIG. 10, the electrodes 1 and 2 are moved in a direction perpendicular to the rotational axis O of the grinding wheel G as the workpiece W is fed, and the film thickness between the moved electrodes is measured. The film thickness of the grinding liquid is the thickest immediately below the grinding liquid nozzle 6, while it is the thinnest in the interference region between the grinding wheel G and the workpiece W. For this reason, the current measured by the ammeter 4 becomes the average film thickness of the grinding fluid staying between the grinding fluid nozzle 6 and the area between the grinding wheel G and the workpiece W. It was difficult to evaluate the relationship between the thickness of the grinding fluid and the current (electrical resistance). Further, in the interference region between the grinding wheel G and the workpiece W, the amount of the supplied grinding fluid is small, and the grinding fluid film formed between the electrodes may be in an intermittent state. When such a state occurs between the electrodes, no current flows between the electrodes, and a state where the electrical resistance value is infinite is recorded intermittently. For this reason, it is difficult to accurately estimate the film thickness of the grinding fluid even if the accumulated current values are simply accumulated.

従って本発明の目的は、砥石車と工作物の干渉領域、例えば研削点における瞬間的な研削液の量、すなわち研削面と工作物の間に形成される研削液の流れの液膜の厚さ(以降、研削液の厚さと称す)を正確に測定可能な装置を提供することにある。   The object of the present invention is therefore to provide an instantaneous amount of grinding fluid at the grinding wheel and workpiece interference area, for example the grinding point, i.e. the thickness of the fluid film of the grinding fluid flow formed between the grinding surface and the workpiece. An object of the present invention is to provide an apparatus capable of accurately measuring (hereinafter referred to as the thickness of the grinding fluid).

上述の問題を解決するための請求項1の特徴は、回転軸線回りで回転される砥石車と、前記砥石車の研削面に対向して配置される基準部材と、前記砥石車と基準部材の間に研削液が供給される研削液供給手段と、前記基準部材に設けられ互いに絶縁された複数の電極と、前記複数の電極の互いに隣接する電極の間に電圧が印加され、研削液を介して前記複数の電極の間を流れる電流を測定することにより、前記砥石車と基準部材の間の隙間を通過する研削液の電気抵抗値を測定する電気抵抗値測定装置と、前記電気抵抗値測定装置で測定された電気抵抗値に基づいて前記砥石車と基準部材の間の隙間を通過する研削液の厚みを演算する厚み演算手段とを備えた研削液厚み測定装置において、前記複数の電極が前記砥石車の回転軸線と平行に前記基準部材に配置され、前記複数の電極の互いに隣接する電極間に電圧を印加する配線間に固定抵抗が並列に接続されたことである。   The feature of claim 1 for solving the above-described problem is that a grinding wheel rotated around a rotation axis, a reference member disposed opposite to a grinding surface of the grinding wheel, and the grinding wheel and the reference member A voltage is applied between the grinding fluid supply means for supplying the grinding fluid therebetween, the plurality of electrodes provided on the reference member and insulated from each other, and the adjacent electrodes of the plurality of electrodes, via the grinding fluid. Measuring an electric resistance value of a grinding fluid passing through a gap between the grinding wheel and a reference member by measuring current flowing between the plurality of electrodes, and measuring the electric resistance value In a grinding fluid thickness measuring device comprising a thickness computing means for computing the thickness of the grinding fluid passing through the gap between the grinding wheel and a reference member based on the electrical resistance value measured by the device, the plurality of electrodes are Parallel to the axis of rotation of the grinding wheel Disposed reference member, is that the fixed resistance between the wiring for applying a mutually voltage between adjacent electrodes of the plurality of electrodes are connected in parallel.

請求項2に係る発明の特徴は、回転軸線回りで回転される砥石車と、工作物を支持する工作物支持装置とを備え、前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、前記請求項1に記載の研削液厚み測定装置と、前記研削液厚み測定装置の研削液の厚み検出信号に基づいて前記砥石車が前記基準部材に接近したことを検出する接近検出手段と、を備えたことである。   According to a second aspect of the present invention, there is provided a grinding wheel that rotates about a rotation axis, and a workpiece support device that supports a workpiece, and supplies a grinding fluid to a grinding point with the workpiece of the grinding wheel. In the grinding machine which grinds the workpiece by moving the grinding wheel and the workpiece support device relative to each other, the thickness of the grinding fluid thickness measuring device according to claim 1 and the thickness of the grinding fluid of the grinding fluid thickness measuring device. And an approach detection means for detecting that the grinding wheel has approached the reference member based on a detection signal.

請求項3に係る発明の特徴は、回転軸線回りで回転される砥石車と、工作物を支持する工作物支持装置とを備え、前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、前記請求項1に記載の研削液厚み測定装置と、前記研削液厚み測定装置からの研削液の厚み信号に基づいて、研削液の異常または正常を判定する研削液判定手段と、を備えたことである。   According to a third aspect of the present invention, there is provided a grinding wheel that rotates about a rotation axis, and a workpiece support device that supports a workpiece, and supplies a grinding fluid to a grinding point with the workpiece of the grinding wheel. In the grinding machine which grinds the workpiece by relatively moving the grinding wheel and the workpiece support device, the grinding fluid thickness measuring device according to claim 1 and the grinding fluid from the grinding fluid thickness measuring device And a grinding fluid judgment means for judging whether the grinding fluid is abnormal or normal based on the thickness signal.

請求項4に係る発明の特徴は、 回転軸線回りで回転される砥石車と、工作物を支持する工作物支持装置とを備え、前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、前記請求項1に記載の研削液厚み測定装置と、前記砥石台の前面に前記研削液厚み測定装置の基準部材に対向可能に設けられた参照板を含む研削液厚み‐電気抵抗値校正装置と、を備えたことである。   According to a fourth aspect of the present invention, there is provided a grinding wheel that rotates about a rotation axis, and a workpiece support device that supports a workpiece, and supplies a grinding liquid to a grinding point with the workpiece of the grinding wheel. In the grinding machine which grinds the workpiece by moving the grinding wheel and the workpiece support device relative to each other, the grinding fluid thickness measuring device according to claim 1 and the grinding fluid thickness measurement on the front surface of the grinding wheel base. And a grinding fluid thickness-electric resistance value calibration device including a reference plate provided so as to be able to face the reference member of the device.

上記のように構成した請求項1に係る発明においては、基準部材に一対の電極を砥石車の回転軸線と平行に配置したことにより、一対の電極が形成する平行線と砥石車の回転軸線によって形成される面を通過する研削液の瞬間的な量を測定する。個々の切れ刃である砥粒先端の高さが不揃いであること及び砥粒を固定支持するための結合剤表面の高さが不揃いであることから、研削面を通過する研削液の膜厚は、砥石車の幅方向では一定でない。しかし、本発明においては、研削面を通過する研削液の微小体積における電気抵抗を測定することにより、これら砥石作用面における微小な高さ変動を平均化することで、砥石車と基準部材の間を通過する研削液の膜厚を正確に測定することができる。   In the invention according to claim 1 configured as described above, by arranging the pair of electrodes on the reference member in parallel with the rotation axis of the grinding wheel, the parallel line formed by the pair of electrodes and the rotation axis of the grinding wheel Measure the instantaneous amount of grinding fluid that passes through the surface to be formed. The film thickness of the grinding fluid that passes through the grinding surface is different because the heights of the abrasive tips that are the individual cutting edges are uneven and the height of the binder surface for fixing and supporting the abrasive grains is uneven. It is not constant in the width direction of the grinding wheel. However, in the present invention, by measuring the electrical resistance in the minute volume of the grinding fluid passing through the grinding surface, the minute height fluctuations on these grinding wheel working surfaces are averaged, so that the grinding wheel and the reference member can be averaged. The film thickness of the grinding fluid passing through can be measured accurately.

また、一対の電極で構成される電気回路を並列に複数構成したことにより、測定ノイズを低減することができる。   In addition, measurement noise can be reduced by configuring a plurality of electric circuits including a pair of electrodes in parallel.

さらに、互いに隣接する電極間に電圧を印加する配線と並列に固定抵抗が接続されたことによって、砥石車と基準部材の間を流れる研削液がない場合においても、固定抵抗に印加される電圧によって流れる電流によって発生する有限の電気抵抗値が電気抵抗値測定装置に測定されることになる。従って、演算される電気抵抗値が無限大になることがないことから、演算される研削液の電気抵抗値が断続的になることなく、容易に研削液の厚みを測定することができる。   Furthermore, the fixed resistance is connected in parallel with the wiring for applying a voltage between the adjacent electrodes, so that even when there is no grinding fluid flowing between the grinding wheel and the reference member, the voltage applied to the fixed resistance A finite electric resistance value generated by the flowing current is measured by the electric resistance measuring device. Therefore, since the calculated electrical resistance value does not become infinite, the thickness of the grinding fluid can be easily measured without the calculated electrical resistance value of the grinding fluid being intermittent.

上記請求項2の発明の構成によれば、研削盤において、砥石車と基準部材の間に研削液供給手段によって研削液を供給しながら砥石車と基準部材とを互いに接近させる。前記研削液厚み測定装置が、砥石車と基準部材との間の研削液の厚みが所定値以下になったことを検出することにより、接近検出手段は、基準部材と砥石車とが接近したとことを検出する。従って、厚み測定装置を近接スイッチの代わりに用いることができる研削盤を提供することができる。   According to the configuration of the second aspect of the invention, in the grinding machine, the grinding wheel and the reference member are brought close to each other while the grinding fluid is supplied between the grinding wheel and the reference member by the grinding fluid supply means. When the grinding fluid thickness measuring device detects that the thickness of the grinding fluid between the grinding wheel and the reference member has become equal to or less than a predetermined value, the approach detection means indicates that the reference member and the grinding wheel have approached. Detect that. Therefore, it is possible to provide a grinding machine in which the thickness measuring device can be used instead of the proximity switch.

上記請求項3の発明の構成によれば、砥石車と基準部材の間に研削液供給手段によって研削液を供給しながら砥石車と基準部材とを互いに接近させる。研削液判定手段は、砥石車と基準部材とが所定値より接近したにもかかわらず、研削液厚み測定装置が砥石車と基準部材の間の隙間が所定値よりも大きいと判定しなかった場合は研削液が正常に供給されていないと判定する等、研削液の供給の有無を判定することができる研削盤を提供することができる。   According to the third aspect of the present invention, the grinding wheel and the reference member are brought close to each other while the grinding fluid is supplied between the grinding wheel and the reference member by the grinding fluid supply means. When the grinding fluid determination means does not determine that the clearance between the grinding wheel and the reference member is larger than the predetermined value even though the grinding wheel and the reference member are closer than the predetermined value. Can provide a grinding machine capable of determining whether or not the grinding fluid is supplied, such as determining that the grinding fluid is not normally supplied.

上記請求項4の発明の構成によれば、砥石台の前面に設けられた参照板と基準部材とを互いに接近させることにより、研削液厚みと電気抵抗値との関係を実機上で正確かつ容易にキャリブレーションすることができる。   According to the configuration of the fourth aspect of the present invention, the reference plate and the reference member provided on the front surface of the grindstone table are brought close to each other so that the relationship between the grinding fluid thickness and the electrical resistance value can be accurately and easily on the actual machine. Can be calibrated.

以下本発明の実施形態に係る研削液厚み測定装置を備えた研削盤について図1から図7に基づいて説明する。ベッド10上には、図1に示すように、砥石台11が摺動可能に載置され、サーボモータ12により図略のボールネジ機構を介して工作物Wに接近離間するX軸方向に進退移動される。サーボモータ12の回転量は、サーボモータ12の後端に取り付けられたエンコーダ12aにより検出される。砥石台11には、一端に砥石車Gが取り付けられた砥石軸13が回転可能に軸承され電気モータ29により回転駆動される。砥石車Gは鉄又はアルミニウム等の金属で成形された円盤状の基体の外周面に複数の砥石チップが接着されて構成されている。複数の砥石チップの外周面は研削面Gaに整形されている。   A grinding machine provided with a grinding fluid thickness measuring apparatus according to an embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, a grindstone table 11 is slidably mounted on the bed 10, and moves forward and backward in the X-axis direction approaching and separating from the workpiece W via a ball screw mechanism (not shown) by a servo motor 12. Is done. The amount of rotation of the servo motor 12 is detected by an encoder 12a attached to the rear end of the servo motor 12. A grinding wheel shaft 13 having a grinding wheel G attached to one end is rotatably supported on the grinding wheel base 11 and is rotated by an electric motor 29. The grinding wheel G is configured by adhering a plurality of grinding wheel chips to the outer peripheral surface of a disk-shaped base formed of a metal such as iron or aluminum. The outer peripheral surfaces of the plurality of grindstone chips are shaped into a grinding surface Ga.

なお、本実施例では、砥石車として基体の外周面に複数の砥石チップを接着したセグメント砥石の例で説明しているが、これに限定されるものではない。例えば、周知のビトリファイドボンド砥石でもよい。   In addition, although the present Example demonstrated by the example of the segment grindstone which adhere | attached the several grindstone chip | tip on the outer peripheral surface of a base | substrate as a grindstone wheel, it is not limited to this. For example, a known vitrified bond grindstone may be used.

砥石台11には砥石車Gを覆う砥石ガード19が固定されている。砥石ガード19の上面には、研削液ノズル21が取り付けられ、研削液ノズル21からは、砥石車Gが工作物Wを研削加工する研削点Pに向けて研削液が供給される。研削液ノズル21は、研削液を貯蔵する研削液タンク32に研削液供給管33によって接続される。この研削液供給管33の途中には、研削液供給装置20のポンプ34が取り付けられている。このポンプ34は、モータ35によって回転され、研削液タンク32から研削液をくみ上げて所定流量の研削液流22を研削液ノズル21に供給する。   A grinding wheel guard 19 that covers the grinding wheel G is fixed to the grinding wheel base 11. A grinding fluid nozzle 21 is attached to the upper surface of the grinding wheel guard 19, and the grinding fluid is supplied from the grinding fluid nozzle 21 toward the grinding point P where the grinding wheel G grinds the workpiece W. The grinding fluid nozzle 21 is connected by a grinding fluid supply pipe 33 to a grinding fluid tank 32 that stores the grinding fluid. A pump 34 of the grinding liquid supply device 20 is attached in the middle of the grinding liquid supply pipe 33. The pump 34 is rotated by a motor 35, draws up the grinding fluid from the grinding fluid tank 32, and supplies a grinding fluid flow 22 having a predetermined flow rate to the grinding fluid nozzle 21.

前記ベッド10上にはテーブル14が摺動可能に装架され、サーボモータ15によりボールネジ機構16を介してX軸と直角なZ軸方向に移動される。サーボモータ15の回転量は図2に示されるように、サーボモータ15に取り付けられたエンコーダ15aにより検出される。テーブル14上には、工作物支持装置17を構成する主軸台(図略)及び心押台18が取り付けられ、工作物Wは主軸台と心押台18との両センタ間に挟持され回転駆動される。   A table 14 is slidably mounted on the bed 10 and is moved by a servo motor 15 through a ball screw mechanism 16 in the Z-axis direction perpendicular to the X-axis. The rotation amount of the servo motor 15 is detected by an encoder 15a attached to the servo motor 15, as shown in FIG. A headstock (not shown) and a tailstock 18 constituting the workpiece support device 17 are mounted on the table 14, and the workpiece W is sandwiched between the centers of the spindle stock and the tailstock 18 and rotated. Is done.

心押台18の砥石車G側の側面には、研削液の厚みを測定するための図2に示される研削液厚み測定装置50を構成する基準部材55が取付けられている。   A reference member 55 constituting the grinding fluid thickness measuring device 50 shown in FIG. 2 for measuring the thickness of the grinding fluid is attached to the side surface of the tailstock 18 on the grinding wheel G side.

サーボモータ12には、図2に示すようにデジタルサーボ制御装置40aが接続されている。このデジタルサーボ制御装置40aは機械全体を制御するCNC装置41に接続され、CNC装置41からの送り指令とエンコーダ12aからの砥石台11の位置フィードバック信号との偏差に基づいてサーボモータ12を回転制御し、砥石台11の送り速度および移動位置を制御する。サーボモータ15にはデジタルサーボ制御装置40bが接続され、このデジタルサーボ制御装置40bはCNC装置41に接続されている。デジタルサーボ制御装置40bは、CNC装置41からの送り指令とエンコーダ15aからのテーブル14の位置フィードバック信号との偏差に基づいてサーボモータ15を回転制御し、テーブル14の送り速度および移動位置を制御する。   As shown in FIG. 2, a digital servo control device 40 a is connected to the servo motor 12. This digital servo control device 40a is connected to a CNC device 41 that controls the entire machine, and controls the rotation of the servo motor 12 based on the deviation between the feed command from the CNC device 41 and the position feedback signal of the grinder base 11 from the encoder 12a. Then, the feed speed and movement position of the grinding wheel platform 11 are controlled. The servomotor 15 is connected to a digital servo control device 40b, and this digital servo control device 40b is connected to a CNC device 41. The digital servo control device 40b controls the rotation of the servo motor 15 based on the deviation between the feed command from the CNC device 41 and the position feedback signal of the table 14 from the encoder 15a, and controls the feed speed and moving position of the table 14. .

CNC装置41には、デジタルサーボ制御装置40a、40bの他に、CNC装置41からの指令に基づいて電磁開閉弁24の開閉や研削液供給装置20の制御を行うシーケンスコントローラ(以下「PLC」いう)42、および各種情報の入出力を行う入出力装置43が接続されている。   In addition to the digital servo control devices 40a and 40b, the CNC device 41 includes a sequence controller (hereinafter referred to as “PLC”) that opens and closes the electromagnetic on-off valve 24 and controls the grinding fluid supply device 20 based on commands from the CNC device 41. ) 42 and an input / output device 43 for inputting / outputting various information.

研削液供給装置20は、ポンプ34、モータ35およびモータ35の回転を制御するインバータ回路36から構成される。インバータ回路36は、PLC42に接続され、PLC42を介してCNC装置から指令されるポンプ34の回転開始、回転停止の指令および回転数に基づいてモータ35の回転を制御して研削液ノズル21に対してポンプ34の回転数に応じた流量の研削液を供給する。   The grinding fluid supply device 20 includes a pump 34, a motor 35, and an inverter circuit 36 that controls the rotation of the motor 35. The inverter circuit 36 is connected to the PLC 42, and controls the rotation of the motor 35 based on the rotation start and rotation stop command and the rotation speed of the pump 34 commanded from the CNC device via the PLC 42. Then, a grinding fluid having a flow rate corresponding to the rotational speed of the pump 34 is supplied.

CNC装置41は、CPU44、ROM45および入力データ等を記憶するRAM46とを備えている。ROM45は、NCプログラムとして研削サイクルを記憶している。   The CNC device 41 includes a CPU 44, a ROM 45, and a RAM 46 for storing input data and the like. The ROM 45 stores a grinding cycle as an NC program.

次に研削液の厚みを測定する研削液厚み測定装置50の詳細な構成について説明する。厚み測定装置50は、図3に示されるように、主に測定部51、電気抵抗値測定装置52および厚み演算装置53を備えている。測定部51は前記基準部材55を備え、基準部材55は樹脂材等の絶縁材から構成された矩形のブロック状をなしている。基準部材55には、図4に示されるように砥石車Gの回転軸線Oと平行な直線A上に一直線に並べられた複数(実施例では5つ)の電極棒56a〜56eが配置されている。電極棒56a〜56eは断面積と断面形状の等しい円柱状をなし、それぞれ所定の配置距離L1〜L4だけ離され、一方の端面が基準ブロックの表面に露出するように、基準部材55内に埋め込まれている。電極棒56a〜56eは、図3に示されるように隣接する電極がそれぞれ異なるプラス側配線57およびマイナス側配線58に接続されている。即ち、電極棒56aがプラス側配線57に接続されていれば、電極棒56aに隣接する電極棒56bはマイナス側配線58に接続され、同様に電極棒56bに隣接する電極棒56cはプラス側配線57に接続されている。この結果、電極棒56a、56c、56eはプラス側配線57に接続され、電極棒56b、56dはマイナス側配線58に接続され、電極棒56a〜56eは隣接する電極同士が互いに異なるプラス側配線57およびマイナス側配線58に交互に配線されることになる。なお、隣接する電極棒56a〜56eによって一対の電極棒は、例えば電極棒56aおよび56b、電極棒56bおよび56cよって構成されることになる。測定部51には、さらにプラス側配線57およびマイナス側配線58を接続する固定抵抗rが備えられ、この固定抵抗rは、予め既知の電気抵抗値R0を有し、隣接する電極棒56a〜56eによって形成される一対の電極棒と並列に図3に示すように、電気回路が構成されることになる。   Next, a detailed configuration of the grinding fluid thickness measuring apparatus 50 that measures the thickness of the grinding fluid will be described. As shown in FIG. 3, the thickness measurement device 50 mainly includes a measurement unit 51, an electrical resistance value measurement device 52, and a thickness calculation device 53. The measurement unit 51 includes the reference member 55, and the reference member 55 has a rectangular block shape made of an insulating material such as a resin material. As shown in FIG. 4, a plurality (five in the embodiment) of electrode rods 56 a to 56 e arranged in a straight line on a straight line A parallel to the rotational axis O of the grinding wheel G are disposed on the reference member 55. Yes. The electrode rods 56a to 56e have a cylindrical shape having the same cross-sectional area as the cross-sectional area, are separated by a predetermined arrangement distance L1 to L4, and are embedded in the reference member 55 so that one end face is exposed on the surface of the reference block. It is. As shown in FIG. 3, the electrode rods 56 a to 56 e are connected to the plus-side wiring 57 and the minus-side wiring 58 whose adjacent electrodes are different from each other. That is, if the electrode rod 56a is connected to the plus side wiring 57, the electrode rod 56b adjacent to the electrode rod 56a is connected to the minus side wiring 58, and similarly the electrode rod 56c adjacent to the electrode rod 56b is connected to the plus side wiring 58. 57. As a result, the electrode rods 56a, 56c and 56e are connected to the plus side wiring 57, the electrode rods 56b and 56d are connected to the minus side wiring 58, and the electrode rods 56a to 56e are the plus side wiring 57 where the adjacent electrodes are different from each other. And the negative side wiring 58 is alternately wired. A pair of electrode rods by the adjacent electrode rods 56a to 56e is constituted by, for example, electrode rods 56a and 56b and electrode rods 56b and 56c. The measurement unit 51 is further provided with a fixed resistance r for connecting the plus side wiring 57 and the minus side wiring 58, and this fixed resistance r has a known electric resistance value R0 in advance, and the adjacent electrode rods 56a to 56e. As shown in FIG. 3, an electric circuit is formed in parallel with the pair of electrode bars formed by the above.

測定部51には、電気抵抗値測定装置52が接続されている。電気抵抗値測定装置52は、直流安定化電源59を備え、安定化電源59は、測定部51のプラス側配線57およびマイナス側配線58に接続され、予め決められた値Vの電圧を測定部51に供給する。また、電気抵抗値測定装置52は、電流計60、および電流計60の電流値Iと直流安定化電源59の電圧値Vから測定部51における電気抵抗値Rsを演算して出力する抵抗値演算器61が備えられている。   An electrical resistance measurement device 52 is connected to the measurement unit 51. The electrical resistance value measuring device 52 includes a direct current stabilized power source 59, which is connected to the plus side wiring 57 and the minus side wire 58 of the measuring unit 51, and that measures a voltage of a predetermined value V. 51. In addition, the electric resistance value measuring device 52 calculates an electric resistance value Rs in the measuring unit 51 from the ammeter 60, the current value I of the ammeter 60 and the voltage value V of the DC stabilized power supply 59, and outputs the resistance value Rs. A vessel 61 is provided.

抵抗値演算器61には厚み演算装置53が接続されている。厚み演算装置53は、抵抗値演算器61より出力された電気抵抗値Rsに基づいて研削液の厚みTを演算する装置であり、記憶部62、およびCPU63を備えている。記憶部62は予め計測された電気抵抗値Rcalと研削液の厚みTとの関係データが記憶され、CPU63は、抵抗値演算器61より出力された電気抵抗値Rsにおける研削液の厚みTを、記憶部62の電気抵抗値Rsと研削液の厚みTとの関係データに基づき演算する。なお、厚み演算装置53はCNC装置41に接続されている。   A thickness calculator 53 is connected to the resistance calculator 61. The thickness calculation device 53 is a device that calculates the thickness T of the grinding fluid based on the electrical resistance value Rs output from the resistance value calculator 61, and includes a storage unit 62 and a CPU 63. The storage unit 62 stores relationship data between the electrical resistance value Rcal measured in advance and the thickness T of the grinding fluid, and the CPU 63 calculates the thickness T of the grinding fluid at the electrical resistance value Rs output from the resistance value calculator 61. Calculation is performed based on the relational data between the electrical resistance value Rs of the storage unit 62 and the thickness T of the grinding fluid. The thickness calculation device 53 is connected to the CNC device 41.

ここで、研削液厚み測定装置50の動作について説明する。研削液が供給されていないときは、プラス側配線57に接続された電極棒56a,56c,56eと、マイナス側配線配線58に接続された電極棒56b,56dとの間は空間になっており、電極棒56a,56c,56eおよび電極棒56b,56dの間は電気的に開放状態となっている。このとき、電気抵抗値測定装置52には、固定抵抗rを介して電流が流れるのみである。この状態において、研削液が電極棒56a,56c,56eおよび電極棒56b,56dの間に付着すると、電極棒56a,56c,56eおよび電極棒56b,56dの間が研削液を介して電気的に通電し、図3に示すように電極棒56a,56c,56eおよび電極棒56b,56dの間が電気抵抗Ra〜Rdによって通電されることになる。ここで電気抵抗Ra〜Rdの電気抵抗値は研削液の厚みTによって決定される。この結果、研削液の厚みTによって決定される電気抵抗Ra〜Rdの電気抵抗値と固定抵抗rの電気抵抗値とが合成された電気抵抗値がRsとして抵抗値演算器61より出力されることになる。なお、電気抵抗値Rsと研削液の厚みTとの関係は、例えば、図5に示す研削液厚み‐電気抵抗値校正装置によって求められる。図5において70は、昇降ステージである。この昇降ステージ70上には昇降テーブル71が設けられ、昇降ステージ70の側面に設けられた昇降ダイヤル72を操作することにより、図略の昇降機構によって昇降テーブル71が昇降する。昇降テーブル71上には、研削液を満たしたシャーレ73が載置されている。シャーレ73内には、前記基準部材55が研削液中に埋没されている。シャーレ73の開口面側には絶縁板74が支持棒75によって所定位置に固定され、基準部材55と対向して配置されている。このため、昇降テーブル71が昇降ダイヤル72の操作で昇降することにより、絶縁板74と測定部51の基準部材55とを接離させることができる。この結果、絶縁板74と基準部材55が離間することにより、絶縁板74と基準部材55との隙間dに研削液が流れ込み、この隙間dの値を測定し、隙間dと電極棒56a〜56e間を流れる電流とに基づいて、隙間dと等しい研削液の厚みTと電気抵抗値Rsの関係を図6に示すように測定することができる。なお、このとき、固定抵抗rの電気抵抗値の大きさを調整し、感度調整を行っておく。   Here, the operation of the grinding fluid thickness measuring apparatus 50 will be described. When the grinding fluid is not supplied, there is a space between the electrode rods 56a, 56c, 56e connected to the plus side wiring 57 and the electrode rods 56b, 56d connected to the minus side wiring wire 58. The electrode rods 56a, 56c, 56e and the electrode rods 56b, 56d are electrically open. At this time, only an electric current flows through the electric resistance value measuring device 52 via the fixed resistance r. In this state, when the grinding fluid adheres between the electrode rods 56a, 56c, 56e and the electrode rods 56b, 56d, the electrode rods 56a, 56c, 56e and the electrode rods 56b, 56d are electrically connected via the grinding fluid. As shown in FIG. 3, the electrode rods 56a, 56c, 56e and the electrode rods 56b, 56d are energized by the electric resistances Ra to Rd. Here, the electrical resistance values of the electrical resistances Ra to Rd are determined by the thickness T of the grinding fluid. As a result, an electrical resistance value obtained by combining the electrical resistance values of the electrical resistances Ra to Rd determined by the thickness T of the grinding fluid and the electrical resistance value of the fixed resistance r is output from the resistance value calculator 61 as Rs. become. The relationship between the electrical resistance value Rs and the grinding fluid thickness T is obtained, for example, by a grinding fluid thickness-electrical resistance calibration device shown in FIG. In FIG. 5, reference numeral 70 denotes a lifting stage. An elevating table 71 is provided on the elevating stage 70. By operating an elevating dial 72 provided on a side surface of the elevating stage 70, the elevating table 71 is moved up and down by an unillustrated lifting mechanism. A petri dish 73 filled with a grinding fluid is placed on the lifting table 71. In the petri dish 73, the reference member 55 is buried in a grinding fluid. On the opening surface side of the petri dish 73, an insulating plate 74 is fixed at a predetermined position by a support rod 75 and is disposed to face the reference member 55. For this reason, when the raising / lowering table 71 moves up and down by operation of the raising / lowering dial 72, the insulating plate 74 and the reference member 55 of the measurement part 51 can be contacted / separated. As a result, when the insulating plate 74 and the reference member 55 are separated from each other, the grinding fluid flows into the gap d between the insulating plate 74 and the reference member 55, the value of the gap d is measured, and the gap d and the electrode rods 56a to 56e are measured. Based on the current flowing between them, the relationship between the grinding fluid thickness T equal to the gap d and the electrical resistance value Rs can be measured as shown in FIG. At this time, the sensitivity is adjusted by adjusting the electric resistance value of the fixed resistor r.

図6に示した電気抵抗値Rsと研削液の厚みTとの関係を求める別の研削液厚み‐電気抵抗値校正装置の実施例を図9に基づいて説明する。砥石台11の前面に絶縁板74が参照板として固定されている。テーブル14をサーボモータ15によりZ軸方向に移動させて絶縁板74を基準部材55と対向させ、砥石台11をサーボモータ12により移動させて絶縁板74と基準部材55とを測定開始位置まで接近させる。研削ノズル21の開口を絶縁板74に向けて研削液供給装置20を起動し、研削液ノズル21から研削液流22を絶縁板74に向かって供給する。この状態で、砥石台11をCNC装置41からの指令に基づいて絶縁板74に接近させることにより、絶縁板74と基準部材55とを既知の隙間dに接近させることができる。このときの各隙間dと電極棒56a〜56e間を流れる電流とに基づいて、隙間dと等しい研削液の厚みTと電気抵抗値Rsの関係を前述の図6に示すように測定することができる。   An embodiment of another grinding fluid thickness-electric resistance value calibration apparatus for obtaining the relationship between the electrical resistance value Rs and the grinding fluid thickness T shown in FIG. 6 will be described with reference to FIG. An insulating plate 74 is fixed to the front surface of the grindstone base 11 as a reference plate. The table 14 is moved in the Z-axis direction by the servo motor 15 so that the insulating plate 74 is opposed to the reference member 55, and the grindstone base 11 is moved by the servo motor 12 to bring the insulating plate 74 and the reference member 55 close to the measurement start position. Let The grinding fluid supply device 20 is activated with the opening of the grinding nozzle 21 facing the insulating plate 74, and the grinding fluid flow 22 is supplied from the grinding fluid nozzle 21 toward the insulating plate 74. In this state, by bringing the grindstone table 11 closer to the insulating plate 74 based on a command from the CNC device 41, the insulating plate 74 and the reference member 55 can be brought closer to the known gap d. Based on each gap d at this time and the current flowing between the electrode rods 56a to 56e, the relationship between the thickness T of the grinding fluid equal to the gap d and the electrical resistance value Rs can be measured as shown in FIG. it can.

次に、上記のように構成した研削盤の研削開始時の動作を図7のフローチャートに基づいて説明する。この図7のフローチャートはCNC装置41のROM45に記憶されたNCプログラムの動作を示すもので、入出力装置43からCNC装置41に加工開始が指令されたときに実行される。プログラムが開始されると、はじめにステップ100において電気モータ29に回転指令が出され、砥石Gが回転を開始する。さらに、工作物Wの回転指令が出され、工作物Wが主軸台と心押台18との両センタ間に挟持されて回転され、砥石台11がサーボモータ12により前進される。ステップ110ではCNC装置41からPLC42を介して研削液供給装置20に研削液の供給指令が出力される。研削液の供給指令が出力されると研削液供給装置20は、研削液ノズル21から研削液流22を砥石車Gに向かって供給する。   Next, the operation at the start of grinding of the grinding machine configured as described above will be described based on the flowchart of FIG. The flowchart of FIG. 7 shows the operation of the NC program stored in the ROM 45 of the CNC device 41, and is executed when a machining start is instructed from the input / output device 43 to the CNC device 41. When the program is started, first, in step 100, a rotation command is issued to the electric motor 29, and the grindstone G starts rotating. Further, a rotation command for the workpiece W is issued, the workpiece W is sandwiched and rotated between both centers of the headstock and the tailstock 18, and the grindstone platform 11 is advanced by the servo motor 12. In step 110, a grinding fluid supply command is output from the CNC device 41 to the grinding fluid supply device 20 via the PLC 42. When the grinding fluid supply command is output, the grinding fluid supply device 20 supplies the grinding fluid flow 22 from the grinding fluid nozzle 21 toward the grinding wheel G.

ステップ120では、サーボモータ15によりテーブル14が移動され、砥石車Gの研削面Gaと基準部材55が対向する位置まで移動される。その後、ステップ130ではサーボモータ12により砥石台11を微少量前進させ、ステップ140に進む。ステップ140に進むと研削液厚み測定装置50より研削液の厚みTの信号を入力し、ステップ150で、予めRAM46に記憶された研削液の所定厚みT0であるか否かを判断する。このRAM46に記憶された研削液の所定厚みT0であれば、砥石車Gの研削面Gaが所定の位置まで前進したとし、ステップ160において砥石車Gの砥石径を補正した後、ステップ170にて研削サイクルの開始を指令し処理を終了する。また、ステップ150において測定装置本体より入力した研削液の厚みTの信号が予めRAM46に記憶された研削液の所定厚みT0より大きい場合は、ステップ130に戻り、研削液厚み測定装置50より入力した研削液の厚みTの信号がRAM46に記憶された研削液の所定厚みT0になるまで、サーボモータ12により砥石台11を微少量前進させる。このように、研削液ノズル21から砥石車Gの研削面Gaに供給される研削液の厚みTを測定し、この研削液の厚みTが所定厚みT0になったことが検出されることにより、砥石車Gの研削面Gaと基準部材55との接近を検知することができる。   In step 120, the table 14 is moved by the servo motor 15 and moved to a position where the grinding surface Ga of the grinding wheel G and the reference member 55 face each other. Thereafter, in step 130, the grinding wheel base 11 is advanced by a small amount by the servo motor 12, and the process proceeds to step 140. In step 140, a grinding fluid thickness T signal is input from the grinding fluid thickness measuring device 50, and in step 150, it is determined whether or not the grinding fluid thickness T 0 is stored in advance in the RAM 46. If the grinding liquid stored in the RAM 46 has a predetermined thickness T0, it is assumed that the grinding surface Ga of the grinding wheel G has advanced to a predetermined position. In step 160, the grinding wheel diameter of the grinding wheel G is corrected, and then in step 170. The start of the grinding cycle is commanded and the process is terminated. If the signal of the grinding fluid thickness T input from the measuring device main body in step 150 is larger than the predetermined grinding fluid thickness T0 stored in the RAM 46 in advance, the processing returns to step 130 and is input from the grinding fluid thickness measuring device 50. The grinding wheel base 11 is advanced by a small amount until the signal T of the grinding fluid thickness T reaches the predetermined grinding fluid thickness T0 stored in the RAM 46. Thus, by measuring the thickness T of the grinding fluid supplied from the grinding fluid nozzle 21 to the grinding surface Ga of the grinding wheel G, and detecting that the thickness T of this grinding fluid has reached a predetermined thickness T0, The approach between the grinding surface Ga of the grinding wheel G and the reference member 55 can be detected.

ステップ140,150により、研削液厚み測定装置50の研削液の厚み検出信号に基づいて砥石車Gが基準部材55に接近したことを検出する接近検出手段が構成されている。   Steps 140 and 150 constitute an approach detection means for detecting that the grinding wheel G has approached the reference member 55 based on the grinding fluid thickness detection signal of the grinding fluid thickness measuring device 50.

次に研削盤の第2の実施の形態について説明する。この第2の実施の形態は、正常に研削液が供給されているか判定するものであり、図8はCNC装置41の動作を説明するフローチャートである。なお、この第2の実施の形態の装置構成は、第1の実施の形態と同じであり、装置の動作のみが異なるだけなので、装置構成の説明は省略し、動作のみを図8に基づいて説明する。   Next, a second embodiment of the grinding machine will be described. In the second embodiment, it is determined whether or not the grinding fluid is normally supplied. FIG. 8 is a flowchart for explaining the operation of the CNC device 41. The apparatus configuration of the second embodiment is the same as that of the first embodiment, and only the operation of the apparatus is different. Therefore, the description of the apparatus configuration is omitted, and only the operation is based on FIG. explain.

図8のプログラムが開始されると、はじめにステップ200において電気モータ29に回転指令が出され、砥石Gが回転を開始する。さらに、工作物Wの回転指令が出され、工作物Wが主軸台と心押台18との両センタ間に挟持されて回転され、砥石台11がサーボモータ12により前進される。ステップ210ではCNC装置41からPLC42を介して研削液供給装置20に研削液の供給指令が出力される。研削液の供給指令が出力されると研削液供給装置20は、研削液ノズル21から研削液流22を砥石Gに向かって供給する。   When the program of FIG. 8 is started, first, in step 200, a rotation command is issued to the electric motor 29, and the grindstone G starts rotating. Further, a rotation command for the workpiece W is issued, the workpiece W is sandwiched and rotated between both centers of the headstock and the tailstock 18, and the grindstone platform 11 is advanced by the servo motor 12. In step 210, a grinding fluid supply command is output from the CNC device 41 to the grinding fluid supply device 20 via the PLC 42. When the grinding fluid supply command is output, the grinding fluid supply device 20 supplies the grinding fluid flow 22 from the grinding fluid nozzle 21 toward the grindstone G.

ステップ220では、サーボモータ15によりテーブル14が移動され、砥石車Gの研削面Gaと基準部材55が対向する位置まで移動され、ステップ230では、基準部材55に研削液が供給される所定位置X0までサーボモータ12により砥石台11を前進させる。そして、砥石台11が所定位置X0にあるときの研削液の厚みTをステップ240にて研削液厚み測定装置50より入力し、この厚み測定装置50より入力した研削液の厚みTが予めCNC装置41のRAM46に記憶された所定値T1以上か否かを判断することにより、研削液が正常に供給されているか否かを判定している(ステップ250)。このステップ250の判定から測定された研削液の厚みTが所定値T1以上と判定したときはステップ260に進み、測定された研削液の厚みTが所定値T1より小さいときは、研削液流22に何らかの異常があると判定してステップ270においてCNC装置41が研削サイクルを起動しないで砥石台11を後退させ、電気モータ29を停止後にステップ280でCNC装置41が入出力装置43に異常を表示させる。ステップ250において、測定された研削液の厚みTが所定値T1以上と判定したときは、ステップ260で研削サイクルの開始を指令し処理を終了する。   In step 220, the table 14 is moved by the servo motor 15 and moved to a position where the grinding surface Ga of the grinding wheel G and the reference member 55 face each other. In step 230, a predetermined position X0 where the grinding fluid is supplied to the reference member 55. The grindstone base 11 is advanced by the servo motor 12 until the time. Then, the grinding fluid thickness T when the grindstone base 11 is at the predetermined position X0 is inputted from the grinding fluid thickness measuring device 50 in step 240, and the grinding fluid thickness T inputted from the thickness measuring device 50 is previously determined as the CNC device. It is determined whether or not the grinding fluid is normally supplied by determining whether or not the value is equal to or greater than a predetermined value T1 stored in the RAM 46 (step 250). When it is determined from the determination in step 250 that the measured thickness T of the grinding fluid is equal to or greater than the predetermined value T1, the process proceeds to step 260. When the measured thickness T of the grinding fluid is smaller than the predetermined value T1, the grinding fluid flow 22 is reached. In step 270, the CNC device 41 retracts the grindstone table 11 without starting the grinding cycle, and after stopping the electric motor 29, the CNC device 41 displays an abnormality on the input / output device 43 in step 280. Let If it is determined in step 250 that the measured thickness T of the grinding fluid is equal to or greater than the predetermined value T1, the start of the grinding cycle is commanded in step 260, and the process is terminated.

ステップ240,250により、研削液厚み測定装置50からの研削液の厚み信号に基づいて、研削液の異常または正常を判定する研削液判定手段が構成されている。 Steps 240 and 250 constitute grinding fluid determination means for determining whether the grinding fluid is abnormal or normal based on the grinding fluid thickness signal from the grinding fluid thickness measuring device 50.

本発明に係る厚み測定装置を適用した研削盤を示す側面図。The side view which shows the grinding machine to which the thickness measuring apparatus which concerns on this invention is applied. 図1に係る研削盤におけるデジタルサーボ制御装置のブロック図。The block diagram of the digital servo control apparatus in the grinding machine which concerns on FIG. 厚み測定装置のブロック図。The block diagram of a thickness measuring apparatus. 厚み測定装置の基準部材における電極配置を示す図。The figure which shows electrode arrangement | positioning in the reference | standard member of a thickness measuring apparatus. 研削液の厚みと電気抵抗値の関係を校正するための校正装置を示す図。The figure which shows the calibration apparatus for calibrating the relationship between the thickness of a grinding fluid, and an electrical resistance value. 研削液の厚みと電気抵抗値の関係を示すデータ。Data showing the relationship between grinding fluid thickness and electrical resistance. 第1の実施の形態に係る研削盤の動作を示すフローチャート。3 is a flowchart showing the operation of the grinding machine according to the first embodiment. 第2の実施の形態に係る研削盤の動作を示すフローチャート。The flowchart which shows operation | movement of the grinding machine which concerns on 2nd Embodiment. 研削液の厚みと電気抵抗値の関係を校正するための他の校正装置を示す図。The figure which shows the other calibration apparatus for calibrating the relationship between the thickness of a grinding fluid, and an electrical resistance value. 研削液の厚みを測定する従来装置の一例を示す図。The figure which shows an example of the conventional apparatus which measures the thickness of a grinding fluid.

符号の説明Explanation of symbols

10…ベッド、11…砥石台、12…サーボモータ、12a…エンコーダ、13…砥石軸、14…テーブル、15…サーボモータ、15a…エンコーダ、16…ボールネジ機構、17…工作物支持装置、18…心押台、19…砥石ガード、20…研削液供給装置、21…研削液ノズル、22…研削液流、24…電磁開閉弁、29…電気モータ、32…研削液タンク、33…研削液供給管、34…ポンプ、35…モータ、36…インバータ回路、40a…デジタルサーボ制御装置、40b…デジタルサーボ制御装置、41…CNC装置、42…シーケンスコントローラ(PLC)、43…入出力装置、44…CPU、45…ROM、46…RAM、50…研削液厚み測定装置、51…測定部、52…電気抵抗値測定装置、53…厚み演算装置、55…基準部材、56a〜56e…電極棒、57…プラス側配線、58…マイナス側配線、59…直流安定化電源、60…電流計、61…抵抗値演算器、62…記憶部、63…CPU、70…昇降ステージ、71…昇降テーブル、72…昇降ダイヤル、73…シャーレ、74…絶縁板、75…支持棒、G…砥石車、Ga…研削面、W…工作物、P…研削点、O…砥石車の回転軸線、A…砥石車の回転軸線と平行な直線、L1〜L4…電極棒の配置距離、r…固定抵抗、Ro…予め既知の電気抵抗値、I…電流値、V…電圧値、T…研削液の厚み、T0…所定の研削液厚み、T1…所定の研削液厚み、Ra〜Rd…電極棒間の電気抵抗、Rcal…予め計測された電気抵抗、Rs…電気抵抗。
DESCRIPTION OF SYMBOLS 10 ... Bed, 11 ... Grinding wheel base, 12 ... Servo motor, 12a ... Encoder, 13 ... Grinding wheel shaft, 14 ... Table, 15 ... Servo motor, 15a ... Encoder, 16 ... Ball screw mechanism, 17 ... Workpiece support device, 18 ... Tailstock, 19 ... Grinding wheel guard, 20 ... Grinding fluid supply device, 21 ... Grinding fluid nozzle, 22 ... Grinding fluid flow, 24 ... Electromagnetic on-off valve, 29 ... Electric motor, 32 ... Grinding fluid tank, 33 ... Grinding fluid supply Pipe 34, pump 35, motor 36, inverter circuit 40 a digital servo control device 40 b digital servo control device 41 CNC device 42 sequence controller (PLC) 43 input / output device 44 CPU, 45... ROM, 46... RAM, 50... Grinding fluid thickness measurement device, 51. 5 ... reference member, 56a to 56e ... electrode rod, 57 ... positive side wiring, 58 ... negative side wiring, 59 ... direct current stabilized power supply, 60 ... ammeter, 61 ... resistance value calculator, 62 ... storage unit, 63 ... CPU, 70 ... Elevating stage, 71 ... Elevating table, 72 ... Elevating dial, 73 ... Petri dish, 74 ... Insulating plate, 75 ... Support bar, G ... Grinding wheel, Ga ... Grinding surface, W ... Workpiece, P ... Grinding point , O: rotation axis of the grinding wheel, A: straight line parallel to the rotation axis of the grinding wheel, L1 to L4: arrangement distance of the electrode rod, r: fixed resistance, Ro: previously known electric resistance value, I: current value, V: Voltage value, T: Grinding fluid thickness, T0: Predetermined grinding fluid thickness, T1: Predetermined grinding fluid thickness, Ra to Rd: Electrical resistance between electrode rods, Rcal: Premeasured electrical resistance, Rs ... Electrical resistance.

Claims (4)

回転軸線回りで回転される砥石車と、
前記砥石車の研削面に対向して配置される基準部材と、
前記砥石車と基準部材の間に研削液が供給される研削液供給手段と、
前記基準部材に設けられ互いに絶縁された複数の電極と、
前記複数の電極の互いに隣接する電極の間に電圧が印加され、研削液を介して前記複数の電極の間を流れる電流を測定することにより、前記砥石車と基準部材の間の隙間を通過する研削液の電気抵抗値を測定する電気抵抗値測定装置と、
前記電気抵抗値測定装置で測定された電気抵抗値に基づいて前記砥石車と基準部材の間の隙間を通過する研削液の厚みを演算する厚み演算手段とを備えた研削液厚み測定装置において、
前記複数の電極が前記砥石車の回転軸線と平行に前記基準部材に配置され、
前記複数の電極の互いに隣接する電極間に電圧を印加する配線間に固定抵抗が並列に接続されたことを特徴とする研削液厚み測定装置。
A grinding wheel that rotates about the axis of rotation;
A reference member disposed to face the grinding surface of the grinding wheel;
Grinding fluid supply means for supplying a grinding fluid between the grinding wheel and a reference member;
A plurality of electrodes provided on the reference member and insulated from each other;
A voltage is applied between adjacent electrodes of the plurality of electrodes, and a current flowing between the plurality of electrodes is measured via a grinding fluid, thereby passing through a gap between the grinding wheel and a reference member. An electrical resistance measuring device for measuring the electrical resistance of the grinding fluid;
In a grinding fluid thickness measuring device comprising a thickness computing means for computing the thickness of the grinding fluid passing through the gap between the grinding wheel and a reference member based on the electrical resistance value measured by the electrical resistance value measuring device,
The plurality of electrodes are arranged on the reference member in parallel with the rotation axis of the grinding wheel,
A grinding fluid thickness measuring apparatus, wherein a fixed resistor is connected in parallel between wirings for applying a voltage between adjacent electrodes of the plurality of electrodes.
回転軸線回りで回転される砥石車と、
工作物を支持する工作物支持装置とを備え、
前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、
前記請求項1に記載の研削液厚み測定装置と、
前記研削液厚み測定装置の研削液の厚み検出信号に基づいて前記砥石車が前記基準部材に接近したことを検出する接近検出手段と、
を備えたことを特徴とする研削盤。
A grinding wheel that rotates about the axis of rotation;
A workpiece support device for supporting the workpiece,
In a grinding machine for grinding the workpiece by relatively moving the grinding wheel and the workpiece support device while supplying a grinding liquid to a grinding point with the workpiece of the grinding wheel,
The grinding fluid thickness measuring device according to claim 1,
An approach detection means for detecting that the grinding wheel has approached the reference member based on a grinding fluid thickness detection signal of the grinding fluid thickness measuring device;
A grinding machine characterized by comprising:
回転軸線回りで回転される砥石車と、
工作物を支持する工作物支持装置とを備え、
前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、
前記請求項1に記載の研削液厚み測定装置と、
前記研削液厚み測定装置からの研削液の厚み信号に基づいて、研削液の異常または正常を判定する研削液判定手段と、
を備えたことを特徴とする研削盤。
A grinding wheel that rotates about the axis of rotation;
A workpiece support device for supporting the workpiece,
In a grinding machine for grinding the workpiece by relatively moving the grinding wheel and the workpiece support device while supplying a grinding liquid to a grinding point with the workpiece of the grinding wheel,
The grinding fluid thickness measuring device according to claim 1,
Based on the grinding fluid thickness signal from the grinding fluid thickness measuring device, grinding fluid judgment means for judging whether the grinding fluid is abnormal or normal,
A grinding machine characterized by comprising:
回転軸線回りで回転される砥石車と、
工作物を支持する工作物支持装置とを備え、
前記砥石車の工作物との研削点に研削液を供給しながら前記砥石車と工作物支持装置を相対移動させて前記工作物を研削加工する研削盤において、
前記請求項1に記載の研削液厚み測定装置と、
前記砥石台の前面に前記研削液厚み測定装置の基準部材に対向可能に設けられた参照板を含む研削液厚み‐電気抵抗値校正装置と、
を備えたことを特徴とする研削盤。
A grinding wheel that rotates about the axis of rotation;
A workpiece support device for supporting the workpiece,
In a grinding machine for grinding the workpiece by relatively moving the grinding wheel and the workpiece support device while supplying a grinding liquid to a grinding point with the workpiece of the grinding wheel,
The grinding fluid thickness measuring device according to claim 1,
Grinding fluid thickness-electric resistance calibration device including a reference plate provided on the front surface of the grindstone table so as to be able to face the reference member of the grinding fluid thickness measuring device;
A grinding machine characterized by comprising:
JP2005276753A 2005-09-22 2005-09-22 Grinding fluid thickness measuring apparatus and grinding machine using the apparatus Expired - Fee Related JP4677315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276753A JP4677315B2 (en) 2005-09-22 2005-09-22 Grinding fluid thickness measuring apparatus and grinding machine using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276753A JP4677315B2 (en) 2005-09-22 2005-09-22 Grinding fluid thickness measuring apparatus and grinding machine using the apparatus

Publications (2)

Publication Number Publication Date
JP2007083357A JP2007083357A (en) 2007-04-05
JP4677315B2 true JP4677315B2 (en) 2011-04-27

Family

ID=37970864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276753A Expired - Fee Related JP4677315B2 (en) 2005-09-22 2005-09-22 Grinding fluid thickness measuring apparatus and grinding machine using the apparatus

Country Status (1)

Country Link
JP (1) JP4677315B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146670A (en) * 1980-04-11 1981-11-14 Hitachi Ltd Grinder
JPH07161668A (en) * 1993-12-08 1995-06-23 Nippon Steel Corp Method and device for grinding substrate
JP2002307302A (en) * 2001-04-17 2002-10-23 Okamoto Machine Tool Works Ltd Grinding device and method for determining cutting-in start point position of grinding wheel for workpiece
JP2002334858A (en) * 2001-05-10 2002-11-22 Canon Inc Apparatus for polishing semiconductor wafer
JP2004017265A (en) * 2002-06-20 2004-01-22 Toyoda Mach Works Ltd Device for shutting off air layer accompanying rotation of grinding wheel and grinding device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146670A (en) * 1980-04-11 1981-11-14 Hitachi Ltd Grinder
JPH07161668A (en) * 1993-12-08 1995-06-23 Nippon Steel Corp Method and device for grinding substrate
JP2002307302A (en) * 2001-04-17 2002-10-23 Okamoto Machine Tool Works Ltd Grinding device and method for determining cutting-in start point position of grinding wheel for workpiece
JP2002334858A (en) * 2001-05-10 2002-11-22 Canon Inc Apparatus for polishing semiconductor wafer
JP2004017265A (en) * 2002-06-20 2004-01-22 Toyoda Mach Works Ltd Device for shutting off air layer accompanying rotation of grinding wheel and grinding device using the same

Also Published As

Publication number Publication date
JP2007083357A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4846432B2 (en) Displacement and run-out measuring device for spindle device in machine tool
US8784156B2 (en) Grinding method for grinding a workpiece using a grinding wheel
US9212961B2 (en) Grinding abnormality monitoring method and grinding abnormality monitoring device
JP2007220775A (en) Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP6751301B2 (en) Grinding machine
JP4677315B2 (en) Grinding fluid thickness measuring apparatus and grinding machine using the apparatus
JP3975309B2 (en) Wafer chamfering method and apparatus
JP2009214217A (en) Grinding wheel distal end position correction method and device
JP7274998B2 (en) Grinding equipment
KR20120069056A (en) The main axis heat displacement correction unit using tools measuring of cnc and method thereof
JP7128070B2 (en) Grinding equipment
JP2009279727A (en) Workpiece dimension measuring device and machine tool
KR20090101058A (en) Machining quality judging method for wafer grinding machine and wafer grinding machine
JP4326974B2 (en) Wafer grinding apparatus and grinding method
JP6489429B2 (en) Wafer chuck clogging inspection apparatus and inspection method
JP2016184604A (en) Grinding device
JPH10315129A (en) Method for controlling amount of grinding and measuring device therefor
JP6875675B2 (en) On-board trueing equipment and machine tools
JP2001277084A (en) Double head grinder
JP2021070134A (en) Grinding device and grinding method
JP4397011B2 (en) Fixing device for workpiece
JPH07186042A (en) Contact detection device for grinding wheel
JP2008226408A (en) Method and device for processing magnetic head slider
JP2007319965A (en) Working method and apparatus
JP2009142951A (en) Setup device and setup method for centerless grinder, and centerless grinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4677315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees