JP4673477B2 - Image sensor drive circuit, image sensor test apparatus - Google Patents

Image sensor drive circuit, image sensor test apparatus Download PDF

Info

Publication number
JP4673477B2
JP4673477B2 JP2000271629A JP2000271629A JP4673477B2 JP 4673477 B2 JP4673477 B2 JP 4673477B2 JP 2000271629 A JP2000271629 A JP 2000271629A JP 2000271629 A JP2000271629 A JP 2000271629A JP 4673477 B2 JP4673477 B2 JP 4673477B2
Authority
JP
Japan
Prior art keywords
image sensor
overflow
ofd
supply terminal
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271629A
Other languages
Japanese (ja)
Other versions
JP2002084461A (en
Inventor
雅志 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2000271629A priority Critical patent/JP4673477B2/en
Publication of JP2002084461A publication Critical patent/JP2002084461A/en
Application granted granted Critical
Publication of JP4673477B2 publication Critical patent/JP4673477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は一般にCCD(Charge Couple Device) と呼ばれている固体撮像素子を動作状態に維持する撮像素子駆動回路及びこの撮像素子駆動回路を搭載した撮像素子試験装置に関する。
【0002】
【従来の技術】
図3に従来の撮像素子駆動回路の構成を示す。図中10はCCD等と呼ばれている撮像素子、20はこの撮像素子10にオーバーフロー電圧VOFD を印加する駆動回路を示す。撮像素子10には、このオーバーフロー電圧VOFD を印加する駆動回路20の他に各種の駆動回路を接続して駆動するが、この発明の対象はオーバーフロー電圧VOFD を印加する駆動回路20であるので、この駆動回路20のみを示している。
【0003】
オーバーフロー電圧VOFD とは撮像素子10に入力される光量が規定よりオーバーした場合(このときの入力光量を飽和露光量と呼んでいる)、光電変換部に発生する過剰な電荷をオーバーフロードレインに排出させるための閾値を与える電圧である。このオーバーフロー電圧VOFD を一定値に維持しておくことにより、入力光−出力電圧の直線特性の範囲を一定値に維持することができる。
オーバーフロー電圧VOFD は電圧源21からダイオードD1と抵抗器R1から成る並列回路を通じて撮像素子10のオーバーフロー供給端子TOFD に印加される。
【0004】
ここでダイオードD1が用いられる理由を説明する。つまり、オーバーフロー電圧供給端子TOFD にはオーバーフロー電圧VOFD の他にシャッタパルスPCCも印加される。このシャッタパルスPCCの印加により、各光電変換部に蓄積されている電荷を瞬時に放出(リセット)させ、その直後に入力された光量に従って蓄積された電荷を読み出すことによって、瞬時にとらえた画像データを得ることを目的としている。つまり、移動している物体の瞬時をとらえ、流線ボケの少ない画像を得ることを目的として考えられたシャッタ機構である。
【0005】
シャッタパルスはドライバ22からコンデンサCを通じてオーバーフロー電圧供給端子TOFD に印加される。このシャッタパルスは正極性のパルスで与えられ、非印加時点ではドライバ22の出力端子はL論理電位PLを出力し、シャッタパルスの出力時点ではパルスの尖頭値はH論理電位を与えるPHとなる。従って、シャッタパルスPCCが非出力時点ではオーバーフロー電圧供給端子TOFD には電圧源21から一定電圧のオーバーフロー電圧VOFD が印加されており、またシャッタパルスPCCの印加時点ではオーバーフロー電圧VOFD にシャッタパルスPCCの振幅が加算されて印加される(図4参照)。シャッタパルスPCCが出力される時点でダイオードD1はオフとなり、電圧源21をドライバ22の負荷から切離し、少ないパワーで撮像素子10にシャッタパルスPCCを印加するためにダイオードD1が用いられている。
【0006】
【発明が解決しようとする課題】
撮像素子10のオーバーフロー電圧供給端子TOFD から内部を見たインピーダンス(直流抵抗値)は、どの撮像素子10であっても一定値となるように製造されている。しかしながら、製造上のバラツキ等によってわずかではあるが、オーバーフロー電圧供給端子TOFD から内部を見たインピーダンスは一様でなく、各撮像素子間でバラツキを持つ、このため撮像素子10の動作を試験して新たな撮像素子に交換するごとにダイオードD1を流れる電流が変動し、この電流の変動によりオーバーフロー電圧VOFD も変動する不都合が生じる。
【0007】
つまり、撮像素子10を順次試験する場合、撮像素子の試験が終了すると、次に新しい撮像素子10を試験装置に装着し、新たに装着された撮像素子10を試験する。このために撮像素子10が交換されるごとに、オーバーフロー電圧供給端子TOFD とダイオードD1を通じて流れる電流Ic は撮像素子10の抵抗値(オーバーフロー電圧供給端子TOFD から見た内部インピーダンス)の値に通じて変化し、これによりオーバーフロー電圧VOFD も変動してしまう欠点がある。
【0008】
この様子を図5を用いて説明する。試験すべき撮像素子10に流れる電流Ic がダイオードD1のオンの状態とオフの状態のほぼ中間点に対応する電流値IO であった場合には、ダイオードD1の電流−電圧特性曲線の彎曲部分で動作することになる。この動作電流IO で動作した場合、撮像素子10の内部抵抗のバラツキによってわずかでも電流IO が+ΔIO ,−ΔIO に変動すると、ダイオードD1の順方向電圧降下VD1が大きく変動し、この変動によって撮像素子10に印加されるオーバーフロー電圧VOFD も大きく変動してしまうことになる。
【0009】
試験すべき撮像素子10に印加するオーバーフロー電圧VOFD が撮像素子ごとに変動すると、各撮像素子ごとに光電変換特性の直線範囲が変動するため、撮像素子ごとに光電変換特性の範囲が異なる状態で試験が行われることになり、均一な試験を行うことができない不都合が生じる。
従って、従来は試験しようとする撮像素子10ごとにオーバーフロー電圧供給端子TOFD の内部インピーダンスを予め測定し、その測定された内部インピーダンスに従って電圧源21に設定する電圧を調整し、オーバーフロー電圧VOFD が一定値になるように係数管理する必要があった。
【0010】
この発明の目的は、予めオーバーフロー電圧供給端子TOFD の内部インピーダンスを測定する必要がなく、また、この測定結果により電圧源21の電圧を設定変更する必要のない撮像素子駆動回路と、この撮像素子駆動回路を搭載した撮像素子試験装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
この発明の請求項1では、撮像素子のオーバーフロー電圧供給端子にダイオードと抵抗器を通じてオーバーフロー電圧VOFD を印加し、撮像素子を動作状態に維持する構造の撮像素子駆動回路において、
ダイオードとオーバーフロー電圧供給端子との接続点と共通電位点との間に定電流回路を接続した構造の撮像素子駆動回路を提案するものである。
【0012】
この発明の請求項2では、請求項1記載の撮像素子駆動回路を搭載し、被試験撮像素子が順次交換されてもオーバーフロー電圧供給端子に供給されるオーバーフロー電圧が一定値を維持する構造とした撮像素子試験装置を提案するものである。
【0013】
【作 用】
この発明による請求項1で提案した撮像素子駆動回路の構成によれば、定電流回路を流れる電流がダイオードを通じて流れるため、ダイオードは常時順方向電流が流れた状態に維持される。
この結果、負荷となる撮像素子のオーバーフロー電圧供給端子の内部インピーダンスが多少変動しても、ダイオードの順方向電圧降下は一定値を維持する。この結果、このダイオードを通じて印加されるオーバーフロー電圧VOFD は一定値を維持することができる。
【0014】
この発明の請求項2で提案する撮像素子試験装置によれば、被試験撮像素子が順次交換され、この交換ごとにオーバーフロー電圧供給端子の内部インピーダンスが変動しても、オーバーフロー電圧VOFD を供給するダイオードの順方向電圧降下は一定値に維持され続ける。この結果、被試験撮像素子が交換されても、各撮像素子のオーバーフロー電圧供給端子に印加されるオーバーフロー電圧は一定値に維持され、特定した光電変換特性上で試験を行うことができる利点が得られる。
【0015】
【発明の実施の形態】
図1にこの発明による撮像素子駆動回路の一実施例を示す。図3と対応する部分には同一符号を付して示す。この発明の請求項1では電圧源21からダイオードD1と抵抗器R1を通じて撮像素子10のオーバーフロー電圧供給端子TOFD にオーバーフロー電圧VOFD を印加する構造の撮像素子駆動回路20において、ダイオードD1とオーバーフロー電圧供給端子TOFD との接続点と共通電位点との間に定電流回路23を接続した構造とした点を特徴とするものである。
【0016】
定電流回路23はダイオードD1を通じて電圧源21から一定の電流IS を吸い込む動作を行う。定電流回路23で一定の電流IS を吸い込むことにより、ダイオードD1は一定の電流IS で決まる動作点で動作する。この動作点で決まる電圧降下VD2は電流IS が一定値に維持されている限りにおいては、図2に示すように一定電圧VD2に維持される。更に、ダイオードD1には一定電流IS に加えて撮像素子10のオーバーフロー電圧供給端子TOFD に流れる電流IO が流れ。結局ダイオードD1に流れる電流はI1 =I0 +IS となる。一定電流IS と電流IO とを比較してIS >IO の関係に設定することにより、電流IO が−ΔI1 ,−ΔI1 に変動しても、ダイオードD1の順方向の電圧降下VD2の変動はわずかな変動に抑えることができる。
【0017】
【発明の効果】
以上説明したように、この発明によればダイオードD1を通じて撮像素子10のオーバーフロー電圧VOFD を印加する撮像素子駆動回路において、オーバーフロー電圧供給端子から内部を見たインピーダンスが各撮像素子ごとにバラツキを有していても、ダイオードには定電流回路23により撮像素子10に流れる電流IO より大きい一定電流IS を流した構造としたから、撮像素子10に流れ込む電流IO が多少変動しても、ダイオードD1の順方向電圧降下VD2の変動を小さい値に抑えることができる。
【0018】
従って、この発明によればどの撮像素子に対してもほぼ一定の値のオーバーフロー電圧VOFD を与えた状態で試験を行うことができ、均一な条件に揃った状態で試験を行うことができる利点が得られる。
なお、上述ではこの発明による撮像素子駆動回路を撮像素子試験装置に適用した場合を説明したが、試験装置に限らず、他の装置にも適用できることは容易に理解することができよう。
【図面の簡単な説明】
【図1】この発明による撮像素子駆動回路の一実施例を説明するための接続図。
【図2】この発明の要部の動作を説明するためのグラフ。
【図3】従来の技術を説明するための接続図。
【図4】図3の動作を説明するための波形図。
【図5】従来の技術の欠点を説明するためのグラフ。
【符号の説明】
10 撮像素子
OFD オーバーフロー電圧
OFD オーバーフロー電圧供給端子
20 撮像素子駆動回路
21 電圧源
22 ドライバ
23 定電流回路
D1 ダイオード
R1 抵抗器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image sensor drive circuit that maintains a solid-state image sensor generally called a CCD (Charge Couple Device) in an operating state, and an image sensor test apparatus equipped with the image sensor drive circuit.
[0002]
[Prior art]
FIG. 3 shows a configuration of a conventional image sensor driving circuit. In the figure, reference numeral 10 denotes an image pickup device called a CCD or the like, and 20 denotes a drive circuit for applying an overflow voltage V OFD to the image pickup device 10. The image pickup device 10 is driven by being connected to various drive circuits in addition to the drive circuit 20 for applying the overflow voltage V OFD , but the object of the present invention is the drive circuit 20 for applying the overflow voltage V OFD . Only the drive circuit 20 is shown.
[0003]
Overflow voltage V OFD means that when the amount of light input to image sensor 10 exceeds the specified value (the amount of input light at this time is called the saturated exposure amount), excess charge generated in the photoelectric conversion unit is discharged to the overflow drain. It is a voltage that gives a threshold for By maintaining the overflow voltage V OFD at a constant value, the range of the linear characteristic of the input light-output voltage can be maintained at a constant value.
The overflow voltage V OFD is applied from the voltage source 21 to the overflow supply terminal T OFD of the image sensor 10 through a parallel circuit composed of the diode D1 and the resistor R1.
[0004]
Here, the reason why the diode D1 is used will be described. That is, the shutter pulse P CC are also applied to other overflow voltage V OFD in the overflow voltage supply terminal T OFD. By applying the shutter pulse PCC, the electric charge accumulated in each photoelectric conversion unit is instantaneously released (reset), and the accumulated electric charge is read according to the amount of light input immediately thereafter, thereby capturing the image instantaneously. The purpose is to obtain data. In other words, the shutter mechanism is designed to capture an instantaneous moving object and obtain an image with less streamline blurring.
[0005]
The shutter pulse is applied from the driver 22 to the overflow voltage supply terminal T OFD through the capacitor C. The shutter pulse is given as a positive pulse, the output terminal of the driver 22 outputs the L logic potential PL at the time of non-application, and the peak value of the pulse becomes PH giving the H logic potential at the time of output of the shutter pulse. . Thus, in the non-output time shutter pulse P CC has overflow voltage V OFD constant voltage from the voltage source 21 is applied to the overflow voltage supply terminal T OFD, also the overflow voltage V OFD in application time point of the shutter pulse P CC the amplitude of the shutter pulse P CC is applied is added (see FIG. 4). When the shutter pulse P CC is output, the diode D1 is turned off, the voltage source 21 is disconnected from the load of the driver 22, and the diode D1 is used to apply the shutter pulse P CC to the image sensor 10 with a small amount of power. .
[0006]
[Problems to be solved by the invention]
The impedance (DC resistance value) viewed from the overflow voltage supply terminal T OFD of the image sensor 10 is manufactured to be a constant value regardless of the image sensor 10. However, the impedance seen from the overflow voltage supply terminal T OFD is not uniform and varies between the image pickup devices, although there are slight variations due to manufacturing variations, etc. Therefore, the operation of the image pickup device 10 is tested. Each time the sensor is replaced with a new image sensor, the current flowing through the diode D1 varies, and the overflow voltage V OFD also varies due to the variation in current.
[0007]
That is, when sequentially testing the image sensor 10, when the test of the image sensor is completed, the new image sensor 10 is next mounted on the test apparatus, and the newly mounted image sensor 10 is tested. For this reason, each time the image sensor 10 is replaced, the current I c flowing through the overflow voltage supply terminal T OFD and the diode D1 becomes the resistance value of the image sensor 10 (internal impedance viewed from the overflow voltage supply terminal T OFD ). There is a drawback in that the overflow voltage V OFD also fluctuates.
[0008]
This will be described with reference to FIG. When the current I c flowing through the imaging device 10 to be tested is a current value I O corresponding to an approximately halfway point between the ON state and the OFF state of the diode D1, the curve of the current-voltage characteristic curve of the diode D1 Will work on the part. When operating with this operating current I O , if the current I O fluctuates slightly to + ΔI O , −ΔI O due to variations in the internal resistance of the image sensor 10, the forward voltage drop V D1 of the diode D1 fluctuates greatly. Due to the fluctuation, the overflow voltage V OFD applied to the image sensor 10 also fluctuates greatly.
[0009]
When the overflow voltage V OFD applied to the image sensor 10 to be tested varies for each image sensor, the linear range of the photoelectric conversion characteristic varies for each image sensor, so that the range of the photoelectric conversion characteristic varies for each image sensor. A test is performed, and a disadvantage that a uniform test cannot be performed occurs.
Therefore, conventionally, the internal impedance of the overflow voltage supply terminal T OFD is measured in advance for each image sensor 10 to be tested, and the voltage set in the voltage source 21 is adjusted according to the measured internal impedance, so that the overflow voltage V OFD is It was necessary to manage the coefficient so that it was a constant value.
[0010]
An object of the present invention is to provide an image sensor driving circuit that does not require the internal impedance of the overflow voltage supply terminal T OFD to be measured in advance and that does not require the voltage source 21 to be set and changed according to the measurement result, and the image sensor An object of the present invention is to provide an image sensor testing apparatus equipped with a drive circuit.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an imaging element driving circuit having a structure in which an overflow voltage V OFD is applied to an overflow voltage supply terminal of an imaging element through a diode and a resistor to maintain the imaging element in an operating state.
An image sensor driving circuit having a structure in which a constant current circuit is connected between a connection point between a diode and an overflow voltage supply terminal and a common potential point is proposed.
[0012]
According to a second aspect of the present invention, the image pickup element driving circuit according to the first aspect is mounted, and the overflow voltage supplied to the overflow voltage supply terminal maintains a constant value even if the image pickup element under test is sequentially replaced. An image sensor testing apparatus is proposed.
[0013]
[Operation]
According to the configuration of the imaging element driving circuit proposed in claim 1 of the present invention, since the current flowing through the constant current circuit flows through the diode, the diode is always maintained in a state where the forward current flows.
As a result, the forward voltage drop of the diode maintains a constant value even if the internal impedance of the overflow voltage supply terminal of the image sensor serving as a load slightly varies. As a result, the overflow voltage V OFD applied through the diode can maintain a constant value.
[0014]
According to the imaging device testing apparatus proposed in claim 2 of the present invention, the imaging device under test is sequentially replaced, and the overflow voltage V OFD is supplied even if the internal impedance of the overflow voltage supply terminal varies with each replacement. The diode forward voltage drop continues to be maintained at a constant value. As a result, even when the image sensor under test is replaced, the overflow voltage applied to the overflow voltage supply terminal of each image sensor is maintained at a constant value, and there is an advantage that the test can be performed on the specified photoelectric conversion characteristics. It is done.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an image sensor driving circuit according to the present invention. Parts corresponding to those in FIG. 3 are denoted by the same reference numerals. According to the first aspect of the present invention, in the image pickup device driving circuit 20 having a structure in which the overflow voltage V OFD is applied from the voltage source 21 to the overflow voltage supply terminal T OFD of the image pickup device 10 through the diode D1 and the resistor R1, the diode D1 and the overflow voltage are applied. It is characterized in that a constant current circuit 23 is connected between a connection point with the supply terminal T OFD and a common potential point.
[0016]
The constant current circuit 23 performs an operation of sucking a constant current I S from the voltage source 21 through the diode D1. By sucking the constant current I S by the constant current circuit 23, the diode D1 operates at an operating point determined by the constant current I S. As long as the current I S is maintained at a constant value, the voltage drop V D2 determined by this operating point is maintained at the constant voltage V D2 as shown in FIG. Furthermore, in addition to the constant current I S , a current I O flowing through the overflow voltage supply terminal T OFD of the image sensor 10 flows through the diode D1. Eventually, the current flowing through the diode D1 is I 1 = I 0 + I S. By comparing the constant current I S and the current I O and setting the relationship I S > I O , the forward voltage of the diode D1 even if the current I O varies to −ΔI 1 , −ΔI 1. The fluctuation of the drop V D2 can be suppressed to a slight fluctuation.
[0017]
【The invention's effect】
As described above, according to the present invention, in the image sensor driving circuit that applies the overflow voltage V OFD of the image sensor 10 through the diode D1, the impedance viewed from the overflow voltage supply terminal varies for each image sensor. also be, is from was by the constant current circuit 23 a current flow I O is greater than the constant current I S flowing through the imaging device 10 structure to the diode, also slightly vary the current I O flowing into the imaging device 10, The fluctuation of the forward voltage drop V D2 of the diode D1 can be suppressed to a small value.
[0018]
Therefore, according to the present invention, the test can be performed in a state where an almost constant overflow voltage V OFD is applied to any image pickup device, and the test can be performed in a uniform condition. Is obtained.
In the above description, the case where the image sensor driving circuit according to the present invention is applied to the image sensor test apparatus has been described. However, it can be easily understood that the present invention can be applied not only to the test apparatus but also to other apparatuses.
[Brief description of the drawings]
FIG. 1 is a connection diagram for explaining an embodiment of an image sensor driving circuit according to the present invention.
FIG. 2 is a graph for explaining the operation of the main part of the present invention.
FIG. 3 is a connection diagram for explaining a conventional technique.
4 is a waveform diagram for explaining the operation of FIG. 3; FIG.
FIG. 5 is a graph for explaining a defect of a conventional technique.
[Explanation of symbols]
10 Image sensor V OFD overflow voltage T OFD overflow voltage supply terminal 20 Image sensor drive circuit 21 Voltage source 22 Driver 23 Constant current circuit D1 Diode R1 Resistor

Claims (2)

撮像素子のオーバーフロー電圧供給端子にダイオードと抵抗器を通じてオーバーフロー電圧を印加して撮像素子を動作状態に維持する構造の撮像素子駆動回路において、
上記ダイオードと上記オーバーフロー電圧供給端子との接続点と共通電位との間に、上記オーバーフロー電圧供給端子に流れる電流よりも大きい定電流を流す定電流回路を接続した構造としたことを特徴とする撮像素子駆動回路。
In an image sensor driving circuit having a structure in which an overflow voltage is applied to the overflow voltage supply terminal of the image sensor through a diode and a resistor to maintain the image sensor in an operating state.
An imaging device characterized in that a constant current circuit for flowing a constant current larger than a current flowing through the overflow voltage supply terminal is connected between a common potential and a connection point between the diode and the overflow voltage supply terminal. Element drive circuit.
請求項1記載の撮像素子駆動回路を搭載し、被試験撮像素子が順次交換されても、上記オーバーフロー電圧供給端子に供給されるオーバーフロー電圧が一定値を維持する構造としたことを特徴とする撮像素子試験装置。  An imaging device comprising the imaging device driving circuit according to claim 1, wherein the overflow voltage supplied to the overflow voltage supply terminal maintains a constant value even when the device under test is sequentially replaced. Element testing equipment.
JP2000271629A 2000-09-07 2000-09-07 Image sensor drive circuit, image sensor test apparatus Expired - Fee Related JP4673477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271629A JP4673477B2 (en) 2000-09-07 2000-09-07 Image sensor drive circuit, image sensor test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271629A JP4673477B2 (en) 2000-09-07 2000-09-07 Image sensor drive circuit, image sensor test apparatus

Publications (2)

Publication Number Publication Date
JP2002084461A JP2002084461A (en) 2002-03-22
JP4673477B2 true JP4673477B2 (en) 2011-04-20

Family

ID=18757885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271629A Expired - Fee Related JP4673477B2 (en) 2000-09-07 2000-09-07 Image sensor drive circuit, image sensor test apparatus

Country Status (1)

Country Link
JP (1) JP4673477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081943A (en) * 2005-09-15 2007-03-29 Fujifilm Holdings Corp Solid-state imaging module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633565A (en) * 1986-06-23 1988-01-08 Mitsubishi Electric Corp Driving circuit for vertical transfer part in solid-state image pickup element
JPH03136481A (en) * 1989-10-20 1991-06-11 Sanyo Electric Co Ltd Ccd driving circuit
JPH0471075U (en) * 1990-10-31 1992-06-23
JP2000223688A (en) * 1999-01-29 2000-08-11 Sony Corp Solid state image pickup device and camera system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088475B2 (en) * 1993-05-20 1996-01-29 ソニー・テクトロニクス株式会社 Clamp circuit
JP3635681B2 (en) * 1994-07-15 2005-04-06 ソニー株式会社 Bias circuit adjustment method, charge transfer device, charge detection device, and adjustment method thereof
JP3579993B2 (en) * 1995-10-24 2004-10-20 ソニー株式会社 Solid-state imaging device
JP3675593B2 (en) * 1996-11-13 2005-07-27 ソニー株式会社 Bias circuit, solid-state imaging device, and camera system
JP2000012819A (en) * 1998-06-17 2000-01-14 Nikon Corp Solid-state image pickup element
JP2000013640A (en) * 1998-06-18 2000-01-14 Matsushita Electric Ind Co Ltd Clamping circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633565A (en) * 1986-06-23 1988-01-08 Mitsubishi Electric Corp Driving circuit for vertical transfer part in solid-state image pickup element
JPH03136481A (en) * 1989-10-20 1991-06-11 Sanyo Electric Co Ltd Ccd driving circuit
JPH0471075U (en) * 1990-10-31 1992-06-23
JP2000223688A (en) * 1999-01-29 2000-08-11 Sony Corp Solid state image pickup device and camera system

Also Published As

Publication number Publication date
JP2002084461A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
US8243190B2 (en) Solid state image pickup device and camera with focus detection using level shifting
TWI709297B (en) Methods and circuit for actuator control
US7023482B2 (en) Processing apparatus
JP4699524B2 (en) Systems and methods for image sensor elements or arrays with photometric and real-time reporting capabilities
JP3827145B2 (en) Solid-state imaging device
US7880788B2 (en) Optical sensor circuit and image sensor
JP4360041B2 (en) Imaging device
JP5631555B2 (en) Image sensor and readout system thereof
KR101010380B1 (en) Circuit arrangement and method for controlling at least one light source
CN106575075B (en) With the low-power imager that function is automatically sensed
TW200423391A (en) Imaging device that prevents loss of shadow detail
JP4673477B2 (en) Image sensor drive circuit, image sensor test apparatus
JPH04136721A (en) Optical and x-ray sensor reader
JP4300654B2 (en) Solid-state imaging device
FR2925166A1 (en) METHOD AND DEVICE FOR MEASURING CURRENT FOR DC / DC CONVERTER
JPH06311441A (en) Solid-state image pickup device
FR2823383A1 (en) INVERTER FOR DISCHARGE LAMP SUPPLY
JP2002171142A (en) Photoreceiver
US20150260169A1 (en) Drive circuit for actuating a shape-memory alloy actuator
US7190399B2 (en) Image pickup apparatus
JP2005094219A (en) Image photographing apparatus
TWI333735B (en) Apparatus and method for convering optical signal into electrical signal
JP2010014782A (en) Stroboscopic device
JP3953239B2 (en) Power circuit
JP3837260B2 (en) CCD drive circuit

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees