JP4671554B2 - Mold with temperature-controlling fluid passage and manufacturing method thereof - Google Patents

Mold with temperature-controlling fluid passage and manufacturing method thereof Download PDF

Info

Publication number
JP4671554B2
JP4671554B2 JP2001230983A JP2001230983A JP4671554B2 JP 4671554 B2 JP4671554 B2 JP 4671554B2 JP 2001230983 A JP2001230983 A JP 2001230983A JP 2001230983 A JP2001230983 A JP 2001230983A JP 4671554 B2 JP4671554 B2 JP 4671554B2
Authority
JP
Japan
Prior art keywords
mold
members
fluid passage
peripheral surface
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001230983A
Other languages
Japanese (ja)
Other versions
JP2003039437A (en
JP2003039437A5 (en
Inventor
好人 宮坂
正雄 鴇田
均 唐沢
文毅 西山
Original Assignee
諏訪熱工業株式会社
Spsシンテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 諏訪熱工業株式会社, Spsシンテックス株式会社 filed Critical 諏訪熱工業株式会社
Priority to JP2001230983A priority Critical patent/JP4671554B2/en
Publication of JP2003039437A publication Critical patent/JP2003039437A/en
Publication of JP2003039437A5 publication Critical patent/JP2003039437A5/ja
Application granted granted Critical
Publication of JP4671554B2 publication Critical patent/JP4671554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度調節用流体通路付き成形型及びその製造方法に関し、詳しくは加熱用流体或いは冷却用流体を流す通路が形成されている成形型及びその製造方法並びにそのような成形型とその成形型を収容する金型母材との組合せ体に関する。
【0002】
プラスチック成形型或いはゴム成形型、ガラス成形型或いはダイキャスト型等の成形型の温度を調節するために成形型の本体内に流体通路を形成し、その流体通路内に冷却流体或いは加熱流体を流すことは従来から知られている。このような既知の成形型及びその製造方法では、流体通路は図15に示されるように成形型1の本体2に外周面から複数の貫通孔3を互いに交差するように空け、その貫通孔の外周面の開口部のいくつかを栓4で塞いで残りを入り口ポート5及び出口ポート6とし、複数の貫通孔によって画成された流体通路内に冷却液又は加熱液を流して成形型1の温度を調節するようにしている。流体は液体でも気体でもよい。
【発明が解決しようとする課題】
【0003】
しかしながら、かかる従来の成形型では、流体通路が複数の直線の貫通孔の組合せで構成されているため、流体回路の形状が限られてしまい、成形品に応じて最適なパターンの流体回路を形成することが極めて困難であるだけでなく、製造工程も工数が多くなり、コスト高になる問題もある。更に、従来の流体通路付き成形型では、成形型の中心部に貫通穴を設け、その貫通穴の中に成形型のキャビティを画成する少なくとも一つの成形コアを着脱可能に挿入する構造の成形型では、それ自体には冷却通路を形成することが困難なため、図16に示されるように、成形型が挿入される空洞Cvを画成する矩形の金型母材7aに互いに接続する複数の貫通穴3aを直線的に形成し、その貫通穴3aの一部を栓4aで塞いで通路にしていた。このため成形型を成形品近傍の位置で形状に合わせ近接させ精度良く加熱、冷却温度制御を行うことが困難なため、温度制御を適切に行うことが困難で、成形可能な材料にも温度むらが生じ、制限があった。
【0004】
本発明が解決しようとする一つの課題は、放電プラズマ焼結、放電焼結、プラズマ活性化焼結法等のパルス通電焼結法(パルス通電加圧焼結法)を応用した接合技術(パルス通電接合法と称する)により従来の成形型及びその製造方法の欠点をなくした新規な温度調節用流体通路付き成形型及びその製造方法を提供することである。
本発明が解決しようとする他の課題は、温度調節用の流体通路の回路パターンを任意のパターンに自由度を広げて設計できる温度調節用流体通路付き成形型及びその製造方法を提供することである。
本発明が解決しようとする別の課題は、温度調節用の流体通路の回路を複数層に亘って低コストでできる温度調節用流体通路付き成形型及びその製造方法を提供することである。
本発明が解決しようとする更に別の課題は、温度調節用流体通路付き成形型と、そのような成形型とを収容する空洞を画成する金型母材との新規な組み合わせを提供することである。
【0005】
【課題を解決するための手段】
本願の一つの発明は、流体を流して温度を調節できる温度調節用流体通路付き成形型において、内外にほぼ同軸にして重ねて配置された少なくとも二つの部材と、前記二つの部材の両端に隣接して配置されていて前記部材の端面において接合された端部材とを備え、内側の部材の外周面と外側の部材の内周面との間には前記流体を流すための流体通路が形成され、前記端部材のうち少なくとも一つの端部材には前記流体通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方が形成され、少なくとも前記部材と前記端部材とがパルス通電加圧焼結法を応用したパルス通電接合法により仮接合された後熱処理されて接合が完成されており、前記内側の部材に形成された軸穴内には、前記軸穴内で成形型のキャビティを画成する少なくとも一つの成形コアが着脱可能に挿入されて構成されている。
上記成形型の一つ実施形態において、前記内外に重ねられた部材の対向する面同士が及び前記部材と前記端部材とがパルス通電接合法により仮接合されていて、もよく、また、前記軸穴が軸方向に貫通する貫通穴であり、前記成形コアが協同して前記キャビティを画成する複数のコア部材から成り、前記コア部材の少なくとも一つが前記軸穴内に着脱可能に挿入されていても良い。
上記成形型の別の実施形態において、前記端部材の一方に前記入口ポート及び出口ポートが形成され、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成されていて、円周方向に伸びかつ軸方向に隔てられた複数の環状溝により構成され、前記内側の部材の外周面及び前記外側の部材の内周面の少なくとも一方には前記環状溝と前記入口ポートとを連通する第1の軸方向通路が形成され、前記内側の部材の外周面及び前記外側の部材の内周面の少なくとも一方には前記第1の軸方向通路とは円周方向に異なる位置において前記環状溝と前記出口ポートとを連通する第2の軸方向通路が形成されていても、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成された少なくとも1条の螺旋溝により構成され、前記内側の部材及び前記外側の部材の少なくとも一方には前記螺旋溝の一端と前記入口ポートとを連通する第1の軸方向通路が形成され、前記内側の部材及び前記外側の部材少なくとも一方には前記第1の軸方向通路とは円周方向に異なる位置において前記螺旋溝の他端と前記出口ポートとを連通する第2の軸方向通路が形成されていても、或いは、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成されていて、軸線方向に伸びかつ円周方向に隔てられた複数の軸方向溝により構成され、前記両端部材には前記軸方向溝と連通する通路が形成され、前記通路の一方と前記入口ポートとが連通可能であり、前記通路の他方と前記出口ポートとが連通可能であっても良い。
【0006】
本願の他の発明は、流体を流して温度を調節できる温度調節用流体通路付き成形型を製造する方法において、
両端面を有していて内外にほぼ同軸にして重ねて配置される少なくとも二つの部材と、前記両端面に接合される二つの端部材とを用意することと、
内外に重ねられたとき互いに向き合う面の間に前記流体通路を形成することと、
前記端部材のうち少なくとも一つの端部材には前記通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方を形成することと、
前記部材の前記端面と前記端部材の一方の面とを互いに当接させ、少なくとも前記端面と前記端部材の面とをパルス通電加圧焼結法を応用したパルス通電接合法により仮接合し、その後熱処理して接合を完成させて母材をつくることと、
前記母材に機械加工を施してコア部材挿入用の軸穴を形成することと、
前記穴内には成形型のキャビティを画成する少なくとも一つのコア部材を挿入することと、
を含んで構成されている。
上記製造方法の一つの実施例において、前記接合面を鏡面に加工してもよい。また、他の実施例において、前記熱処理を真空雰囲気内で前記ブロックの材質の溶融温度の55ないし85%の温度範囲で行なってもよい。
【0007】
本願の別の発明は、流体を流して温度を調節できる温度調節用流体通路付き成形型と、前記成形型を収容する収容空間を画成する金型母材との組合せ体において、
前記成形型が、内外にほぼ同軸にして重ねて配置された少なくとも二つの部材と、前記二つの部材の両端に隣接して配置されていて前記部材の端面において接合された端部材とを備え、内側の部材の外周面と外側の部材の内周面との間には前記流体を流すための流体通路が形成され、前記端部材のうち少なくとも一つの端部材には前記流体通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方が形成され、少なくとも前記部材と前記端部材とがパルス通電加圧焼結法を応用したパルス通電接合法により仮接合された後熱処理されて接合が完成されており、前記内側の部材に形成された軸穴内には、前記軸穴内で成形型のキャビティを画成する少なくとも一つの成形コアが着脱可能に挿入されて形成され、
前記金型母材と前記成形型との間に断熱層が設けられて構成されている。
上記組合せ体において、前記断熱層が断熱空間の層及び断熱材の層の少なくとも一方の層であってもよい。
【0008】
【実施例】
以下、図面を参照して本発明の実施形態について説明する。
まず、図1ないし図6において、本発明による成形型及びその製造方法の一実施形態が、プラスチックギヤ成形型及びその製造方法として示されている。この実施形態の成形型内に水、油等の冷却液を流すための流体通路を形成するために予め分割された複数(この実施例では4個)の部材を用意し、その部材の1個又は2個に流体通路を形成した後それらの部材を放電プラズマ焼結、放電焼結、プラズマ活性化焼結法等のパルス通電焼結法を応用した接合方法(パルス通電接合方法)により接合して成形型用の母材11として一体化し、その後にその母材に機械工等を施した後コア部材を取り付けてプラスチックギヤ成形型10にするものである。この成形型用の母材11は、成形型用の材質として適した材質、例えばSUS420J2(ステンレス鋼)でつくられ、内外に同軸状にして重ねて配置された二つの筒状の部材20及び30と、それらの部材の両端に配置された二つの環状の端部材40及び50を備えている。部材20及び30は同じ軸方向(図1及び図3で上下方向)長さを有している。下側(図1において)の端部材40の一方の面(図2において上面)41は平坦面(好ましくは鏡面)に加工されている。また、内外の部材20及び30の両端面21及び31(図2において上端面)並びに22及び32(図2において下端面)もそれぞれ平坦面(好ましくは鏡面)に加工されている。更に、上側(図1において)の端部材50の下面(図2において)52も平坦面(好ましくは鏡面)に加工されている。更に、部材20及び30の互いに対向する面すなわち部材20の外周面24及び部材30の内周面33も鏡面に加工されている。なお、鏡面に付いての数値的範囲は必ずしも明確でないが、ここでは、Ra0.3以下の数値の平滑度(数値が小さくなれば平滑度は高くなる)を有する表面加工状態を言う。内側の部材20の外周面24には、全周に亘って円周方向に伸びる環状溝25が複数個(この実施形態では5個)軸方向に隔てて形成されている。内側の部材20の外径と外側部材30の内周面33の直径(内径)とは、部材20が部材30の軸穴内に隙間なくぴったりと嵌合するような寸法(例えば外側の部材の内径と内側の部材の外形との寸法差が2ないし50μm)に決められている。部材20の外周面24には、更に、一方の端面(図2で上端面)からその端面から最も離れた環状溝25まで軸方向に伸びる二つの軸方向溝26、26′が直径方向に隔てて形成されている。軸方向溝26、26′は軸方向通路を形成している。かかる環状溝及び軸方向溝は旋盤加工、フライス加工等の機械加工によって形成しても、或いは鋳造によって形成してもよい。なお、この実施形態において、内側の部材20の内周面23の直径(内径)と端部材40及び50の内周面の直径(内径)とは同じに形成され、また、外側の部材30の外周面34の直径(外径)と端部材40、50の外周面の直径(外径)とは同じに形成されている。なお、端部材の外形を外側部材の外形より大きくして必要に応じて後で機械加工により寸法を調整してもよい。また、部材20及び30の端面及びその端面に当接する端部材の面は必ずしも平坦である必要はなく、両者が同じ曲率ならば曲面でもよい。
【0009】
一方の端部材(図1及び2では上側の端部材)50には一端が端部材50の下面(図1及び図2において)52に開口し他端が外周面54に開口する二つのポート56及び56′が形成されている。このポートの一方は入口ポートとして機能し、かつ他方は出口ポートとして機能する。二つのポート56及び56′の下面側の開口端の半径方向位置は、上記の内側の部材20に形成された軸方向溝26及び26′と整合する位置である。部材20の両端面21及び22には、一対の位置決めピン用の位置決め穴27が、それぞれ、直径方向に隔てて形成されている。また、端面21に当接する端部材50の下面52には位置決め穴27と整合する一対の位置決め穴57が形成され、端面22に当接する端部材40の上面41には位置決め穴27と整合する一対の位置決め穴47が形成されている。
【0010】
上記のように予め機械加工された部材20の外側に部材30が装着され、部材20及び30の両端に端部材40及び50が配置される。そして、部材20と端部材40及び50とは位置決め穴27、47及び57内に挿入された位置決めピンにより位置決めされる。この状態で端部材40に形成された一対のポート46及び46′の下面側開口端は、部材20に形成された軸方向溝26及び26′の上面21の開口端と整合されている。したがって、この実施形態では、部材20の上面21及び部材30の上面31と端部材40の下面42とが互いに接合される一対の接合面に、また、部材20の下面22及び部材30の下面32と端部材50の上面52とが互いに接合される一対の接合面になる。この状態で図7に示されるような、放電プラズマ焼結方法のようなパルス通電焼結方法を応用したパルス通電接合装置100の一対の通電電極間に配置し、このパルス通電接合装置でブロックを各対の接合面間で接合して一体化し、母材11をつくる。
【0011】
パルス通電接合装置100は、例えば、通電接合部110と、熱処理部120とを備えている。通電接合部110は、台111の上に絶縁部材を介して公知の方法で台と電気的に絶縁させて固定された下通電電極113と、台111の上方に配置され台に関して公知の方法で固定された流体圧シリンダ114と、流体圧シリンダ114のピストンロッド115の先端(図で下端)に絶縁部材を介して公知の方法でピストンロッド115と電気的に絶縁して固定された上通電電極116とを備えている。流体圧シリンダは被接合材を押圧する加圧装置として機能する。加圧装置としては流体圧シリンダの代わりに電動モータ及びねじ機構で上通電電極を上下動させるようにしてもよい。上下通電電極は電源装置117に電気的に接続されている。電源装置は直流のパルス電流を供給できるようになっている。電源装置117は電源と通電電極との電気的接続及び切断を行うスイッチ機構(図示せず)を内蔵している。電源装置が供給できる電力は、電圧が100V以下で、電流が、例えば2000〜8000Aの大電流の電力である。上記例では下通電電極を固定にして上通電電極を動かすようにしたが、その逆でも、或いは両者を動くようにしてもよい。熱処理部120は真空雰囲気で熱処理可能な公知の構造の真空熱処理炉或いは不活性ガス雰囲気で熱処理可能なガス雰囲気炉でよい。また、パルス通電接合装置110と熱処理部120とを一体構造化してその間に製品搬送ロボット装置を配置し、仮接合された母材を複数個まとめてバッチ式に熱処理するような構造にしても、或いはそれらを別個に配置してもよい。なお、上記実施例では上通電電極を例えば複数の支柱(図示せず)で固定し、流体圧シリンダのような加圧装置を台111の上に配置してその加圧装置で下通電電極を上下動するようにしてもよい。
【0012】
互いに重ね合わされかつ位置決めされた複数の部材20、30、40及び50を上記接合装置100の一対の通電電極113と116との間にセットした後、加圧装置で所定の圧力、例えば0ないし50メガパスカルの範囲の圧力で加圧した状態で、被接合体の体積、断面積、材質、形状、大きさ等に応じて通電電極間で所定の電圧で所定の電流の直流パルス電流を流すと、接触抵抗の高い当接界面部分がジュール加熱により高温に熱せされる。また、材料自体の抵抗値により全体がジュール加熱される。また、上下一軸加圧力による塑性変形と熱膨張により内外に重ねられた部材の当接界面には高い圧力が発生する。更にon−offパルス電流の流れの方向に沿って電場が生じ、電界拡散が生じる。この電界拡散効果と前述の熱拡散の機械的圧力が固相拡散接合に寄与し金属結晶構造の配向性をもとらすと考えられる。このため、それらの部材は対の接合面間、すなわち部材20及び30の対向する当接面間、部材20及び30の上面21及び31と部材50の下面52との間、下面22及び32と部材40の上面41との間で互いに接合する。この接合は、従来のホットプレス焼結法に比べ緻密化速度が速いことが接合実験結果で分かっている。その結果この状態での隣接するブロック間の接合は、エネルギー量的に拡散層は浅く接合強度の点で見た場合まだ完全なものではないが、接合界面の金属格子の配列状態はより拡散し易い方向に揃うものと考えられる。そこでこの接合状態を仮接合と呼び、仮接合された部材を仮接合体と呼ぶ。仮接合された部材20、30、40及び50により構成される仮接合体は、次に熱処理部120の熱処理炉内で熱処理が行なわれる。このように、仮接合する処理と熱処理とを行うので、ここでは2段処理法と呼ぶ。熱処理温度及び時間は部材の材質及び大きさによって異なるが、従来の熱処理のみによる固相拡散接合に要する時間に比べて1/10ないし1/20に大幅に短縮される。この熱処理を行うことにより仮接合されていた接合面間の接合は、緻密化拡散速度の速い時間により短い時間で完全なものになって完全な接合体になり、その接合体の接合強度は部材の材質の強度に匹敵する値になる。これにより母材11の製造が完了する。上記パルス通電接合による加圧力、パルス電流の電圧及び電流並びに熱処理温度及び時間等はブロックの材質及びサイズによって異なるが、部材の材料としてSUS420J2を使用し、部材20の内径を40mm、外径を70mm、部材30の内径を70mm、外径を110mmとしかつ両者の軸方向長さを30mmとし、また、端部材40及び50の内径を40mm、外径を110mmとし、更に端部材40及び50の厚さをそれぞれ5mm及び25mmとした場合、圧力は30メガパスカルで、電圧を3ないし10Vで電流値を5000ないし6000アンペア、真空熱処理温度及び時間はそれぞれ950ないし1100℃及び60ないし120分の範囲で行うのが良い結果を得るのに好ましい。
なお、加熱時に、部材20の外周面は中心軸から外側に膨張しようとしと、部材30との外周は中心軸から外側に膨張し、内周面は中心軸方向に膨張しようとする。これにより部材20が部材30内に締まり嵌めによって嵌合されていなくても両者の当接面間の隙間輪小さくなる。更に冷却時に部材30が先に冷却され、収縮により部材20が一層締め付けられるため、通電接合時に外から加圧しなくても加圧した状態と同じ状態になり、接合はより完全なものになる。部材30の内周面は形状によっては外側に膨張する場合もあるが、部材20の外周面の外側への熱膨張との差が隙間を縮める方向に働くように両部材の肉厚を設定し、熱膨張、収縮により隙間がなくなる隙間範囲及び部材の肉厚にするのが好ましい。
【0013】
このようにしてつくられた成形型用の母材11には、部材20に形成された複数の環状の溝25及び軸方向溝26、26′によって画成される温度調節用流体が流れる流体通路が形成されている。そして軸方向溝26と連通する一方のポート46を入口ポートとし、軸方向溝26′と連通するポート46′を出口ポートとすると、流体は軸方向溝26から複数の環状溝25内を並列に流れ、軸方向溝26′を介して出口ポート46′から流出する。なお、各対の接合面間では予め鏡面加工が施されているため密な接合が行われ、流体通路から接合面間を通して流体が外部に流出することはない。母材11には、後の機械加工工程において、中心部(円形の溝より半径方向内側でその溝と干渉しない位置)に図3に示されるように貫通穴12が形成され、成形型の本体11’につくり上げられる。貫通穴12は、この実施例では、直径D1の横断面が円形の部分13と、直径D2(D2>D1)の横断面が円形の部分14と、部分13と14との中間にあって内周に多数の凹凸がスプライン状に形成された部分15とを有している。部分15の内周に形成される凹凸は成形品であるプラスチックギヤの複数の歯を形成する部分であるから、そのプラスチックギヤの形状及び寸法に合わせて形成される。
なお、上記実施形態のように内側の部材20として筒状の部材を使用しかつ端部材として環状の部材を使用する場合には、それらの内径が上記のように加工される部分の最小直径より小さい値を有する材料を使用する必要がある。予め筒状の部材及び環状の端部材を使用することにより上記のような機械加工の手間を少なくできるが、部材20として中実の円柱体を使用しかつ端部材として円盤状のものを使用してもよい。また、プラスチックギヤの歯が直ぐ歯歯車でなくヘリカルギヤの場合には、部分15に形成される凹凸はそのヘリカルギヤに対応した形状にするのはもちろんである。
【0014】
一方、貫通穴内でプラスチックの成形に必要なキャビティ(プラスチック材を流し込む空洞)を画成するコア部材は別の製造工程で製造される。この実施例のコア部材は、図4及び図5に示される二つのコア部材60及び70で構成されている。一方のコア部材60には本体11′に形成された貫通穴12の直径D1の部分に密に嵌合される外径を有する大径部分63と、貫通穴12内で本体11の部分15と協同して環状のキャビティを画成する直径d1の小径部64とが形成されている。またコア部材60の軸心O−Oには一方の面(図4で上面であって、本体の貫通穴12の内側になる面)61から他方の面62に貫通する段付きの芯穴65が形成されている。面61の中心には直径d2の円形の凹部66が形成されている。更に、コア部材60には軸心O−Oから半径r1及びr2の円周上の位置に円周方向に隔てて複数の貫通穴67及び68が形成されている。これらの貫通穴内には成形品を押し出す押し出しピン82、83が挿入されている。他方のコア部材70は本体11に形成された貫通穴12の直径D2の部分内に密に嵌合される外径を有する大径部73と、貫通穴内12で本体11と協同して環状のキャビティを画成する直径d1の小径部74とが形成されている。またコア部材70には一方の面(図5で上面であって、本体の貫通穴12の内側になる面)71から他方の面72に貫通する成形材注入ポート75が形成されている。面71の中心には直径d2の円形の凹部76が形成されている。上記のようなコア部材60及び70は、図6に示されるように本体11′の貫通穴12内に、軸81と共に挿入され、成形型10が作られる。なお、貫通穴の部分14を本体の外側に向かって広がるテーパー付き穴にしても良い。その場合には、コア部材70の部分73の外周もテーパ付きにする。
【0015】
上記実施形態において、内外に配置された二つの部材のうち内側の部材20の外周面24に環状溝25を形成して流体通路を構成したが、(1)外側の部材30の内周面33に環状溝を形成して流体通路にしても、また、(2)部材20の外周面及び部材30の内周面に互いに整合する環状溝を形成してそれらの環状溝により流体通路を構成してもよい。前記(1)の場合、軸方向溝は部材30の内周面33に形成され、(2)の場合には軸方向溝は部材20の外周面及び部材30の内周面の両方に形成するのが好ましい。更に、円周方向に伸びる溝を環状溝とするのでなく、図8に示されるように内側の部材20aの外周面24aに形成された螺旋溝25a、又は外側の部材30bの内周面33bに形成された螺旋溝35bとし、その螺旋溝の一端(図8で上端)を軸方向通路26a、26bを介して端部材50a、50bに形成された一方のポート56a、56bに接続し、他端(図8で下端)を軸方向通路26a′、26b′を介して他方のポート56a′、56b′に接続してもよい。また、螺旋溝を1条でなく複数条にして別々に流体を流せるようにしてもよい。
更にまた、内外に重ねて配置される二つの部材間に形成される流体通路を、図9に示されるように、内側の部材20cの外周24cに軸方向に全長に亘って伸びる複数の軸方向溝25cを、例えばスプラインのように円周方向に隔てて、形成し、その軸方向溝によって構成してもよい。もちろん、図示しないが、軸方向溝を外側の部材の内周面に形成し、それによって流体通路を構成してもよい。軸方向通路により流体通路を形成する場合には、図10に示されるように、端部材40cの上面41c及び端部材50cの下面52cに軸方向溝と連通する環状の溝47c及び57cをそれぞれ設け、溝57cをポート56cに接続しかつ溝47cを内側部材20cに形成された連通孔26cを介して他のポート57c′に接続するようにしてもよい。
【0016】
上記のようにつくられた成形型10は、金型母材の装着用の空洞内に挿入されるが、この場合、図11に示されるように金型母材200の上下に貫通する空洞201内に、成形型10dの外側の部材30dの外周と空洞の内周との間に断熱空間Icが形成されるようになっている。このため、成形型10dのように、空洞201の内径を部材30dの外径より大きくしてそれらの間に断熱空間ができるようにすると共に、端部材40d及び50dの外径を空洞内にぴったりと入る大きさ(例えば外側の部材の内径と内側の部材の外形との寸法差が2ないし50μm)にする。端部材の外径を大きくする代わりに部材30dの外径と同じ外径の端部材に断熱材製のリングを勘合して断熱を行っても良い。また、図12に示されるように、成形型10eの外径を大きくした端部材40e、50eの外側にスリーブ80を嵌合して溶接等により固定し、スリーブと外側の部材30eとの間に真空状態(負圧状態)に保持した真空空洞Vcを設け、それによって、断熱効果を高めてもよい。なお、81は補強リブである。更には、図13に示されるように、成形型10fの端部材40f、50fの外径を部材30fの外径より大きくすると共に端部材の外側に断熱スリーブ85を固定し、断熱スリーブ付きの成形型を挿入してもよい。このように、成形型と金型母材との間に断熱空間及び断熱材の少なくとも一方による断熱層を形成することによって成形型の温度制御をより容易に且つ効率良く行うことができ、高温での成形が必要な樹脂材(例えば300℃以上)による成形が可能となる。
【0017】
図14において、本願の成形型の更に別の実施形態が示されている。前の実施形態では内外に重ねられる部材が2個の例を示したが、この実施形態では3個にして異なる領域を加熱又は冷却して温度制御できるようにしている。同図において、内外に同軸状にして重ねて配置された二つの筒状の部材20gと30gとの間には、筒状の別の部材90gが配置されている。それらの部材は同じ軸方向長さを有し、両端には端部材40g及び50gが配置されている。なお、以下において図1ないし図6の実施形態と共通の部分に付いては説明は省略する。部材20gの外周面24gには全周に亘って円周方向に伸びる環状溝25gが複数個(この実施形態では6個)軸方向に隔てて形成されている。部材20gの外周面24gには、更に、一方の端面(図2で上端面)から他方の端面まで軸方向に伸びる二つの軸方向溝26g、26g′が直径方向に隔てて形成されている。軸方向溝26g、26g′は軸方向通路を形成している。部材90gの外周面94gには全周に亘って円周方向に伸びる環状溝95gが複数個(この実施形態では3個)部材90gの軸方向中央部に軸方向に隔てて形成されている。部材90gの外周面94gには、更に、一方の端面(図14で上端面)からその端面から最も離れた環状溝95gまで軸方向に伸びる軸方向溝96gと、他方の端面(図14で上端面)からその端面から最も離れた環状溝95gまで軸方向に伸びる軸方向溝96g′とが直径方向に隔てて形成されている。軸方向溝96g、96g′は軸方向通路を形成している。部材2に形成される軸方向溝26g、26g′と部材90に形成される軸方向溝96g、96g′とは、部材20、90、30及び端部材40、50が一体的に接合されるときは、軸方向溝26g、26g′と96g、96g′とが円周方向に90度ずれるようにする。
【0018】
一方の端部材(図1及び2では上側の端部材)50gには一端が端部材50gの下面52gに開口し他端が外周面54に開口する二対のポート56g及び56g′及び59g、59g′が形成されている。このポートの一方は入口ポートとして機能し、かつ他方は出口ポートとして機能する。二つのポート56gと56g′とは直径方向に(円周方向に180°)隔てて形成され、同様に二つのポート59gと59g′とも直径方向に隔てて形成されている。ポート56gの下面側の開口端の半径方向位置は、図14の[B]に示されるように、上記の内側の部材20に形成された軸方向溝26と整合する位置であり、ポート56g′の下面側の開口端の半径方向位置は、部材30に軸方向に貫通して形成されかつ他方の軸方向溝26g′と端部材に形成された溝46gを介して連通している通路36g′と整合する位置である。ポート59gの下面側の開口端の半径方向位置は、図14の[B]に示されるように、上記の内側の部材90gに形成された軸方向溝96gと整合する位置であり、ポート59g′の下面側の開口端の半径方向位置は、部材30に軸方向に貫通して形成されかつ他方の軸方向溝59g′と端部材に形成された溝49gを介して連通している通路39g′と整合する位置である。このように三つの筒状の部材を設けることによって二つの異なる流体通路を設け、しかもその位置を異ならせることによって加熱、冷却の範囲を調節する事が可能となる。
なお、上記実施形態では内側の部材の外周面及び外側の部材の内周面の少なくとも一方、更には中間の部材の内周面及び外周面の少なくとも一方に溝を形成する例を示したが、それらの内周面、外周面に溝を形成せずに、内外に重ねられる部材の面間に流体が流れる程度の隙間を設けておき(したがって内外に重ねられた部材間では接合されていない)、そこに温度調節用の流体を流してもよい。
【0019】
【効果】
本発明によれば次の様な効果を奏することができる。
(イ)筒の部材又は柱状の部材の外周又は筒状の部材の内周に流体通路を画成する溝を形成してその部材をパルス通電焼結法を応用した接合方法(パルス通電接合法)で接合しているので、従来のロー付けや溶接法に比べ大面積の接合界面を全域に亙り隙間なく均質、高品位に漏れのないように接合できるので成形品面により近接した位置に所望の温度調節用流体通路の回路パターンを正確に成形型内部につくることができ成形型の温度調節効率を向上できる。
(ロ)表面に流体通路を画成する溝を形成したブロックをパルス通電焼結法を応用した接合方法で接合しているので、Oリング溝を設けOリングでブロック間をシールする従来方法が不要となり、所望の流体通路の回路パターンを簡単につくることができ、熱伝導率をベースに有限要素法による熱分布シュミレーションの結果にほぼ近似の構造を設計できるため自由度を広げて効率の良い冷却加熱構造となりかつ製造コストの削減を図れる。
(ハ)複数の流体通路が画成できるので、部分的温度調節が可能となり、成形製品の品質を向上させることができる。
(ニ)同様な考え方で凸型内部にも流体通路が画成でき、更に詳細な温度管理ができる。
(ホ)成形型の温度制御を容易にかつより精密に行うことができる。
【図面の簡単な説明】
【図1】本発明の温度調節通路付き成形型の一実施形態に使用する母材の斜視図である。
【図2】図1の成形型の各部材を分解した状態で示す斜視図であって、各部材に形成された溝、位置決め穴等の配置関係を示す図である。
【図3】図1の母材に機械加工を施してできた成形型の本体の断面図である。
【図4】図3の本体内に挿入される一方のコア部材の斜視図である。
【図5】図3の本体内に挿入される他方のコア部材の斜視図である。。
【図6】成形型の断面図である。
【図7】パルス通電接合装置の概略構成を示す図である。
【図8】部材に形成される溝の変形例を示す断面図である。
【図9】部材に形成される溝の別の変形例を示す断面図である。
【図10】図9の溝を有する母材における溝とポートとの接続方法を説明する断面図である。
【図11】成形型の金型母材の空洞内への取り付け状態を説明する図である。
【図12】成形型の金型母材の空洞内への他の取り付け状態を説明する図である。
【図13】成形型の金型母材の空洞内への更に他の取り付け状態を説明する図である。
【図14】本発明の成形型の更に別の実施形態の断面図である。
【図15】従来の流体通路付き成形型の一例を示す図である。
【図16】従来の流体通路付き金型母材の一例を示す図である。
【符号の説明】
10、10a、10d、10e、10f 成形型
11、11a、11b、11c、11g 母材
12 貫通穴
20、20a、20b、20c 部材
30、30a、30b、30c、30d、30e、30f、 部材
40、40a、40b、40c、40d、40e、40f、 端部材
50、50a、50b、50c、50d、50e、50f、 部材
24、24a、24b、24c 外周
25、25a、25c 溝 35b 溝
56、56′、56a、56a′、56b、56b′、56c、56c′ポート
60、70 コア部材
90g 部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold having a temperature control fluid passage and a manufacturing method thereof, and more particularly, a molding die having a passage through which a heating fluid or a cooling fluid flows, a manufacturing method thereof, and such a molding die and the molding thereof. The present invention relates to a combination body with a mold base material that accommodates a mold.
[0002]
In order to adjust the temperature of a mold such as a plastic mold, a rubber mold, a glass mold or a die cast mold, a fluid passage is formed in the main body of the mold, and a cooling fluid or a heating fluid is allowed to flow in the fluid passage. This has been known for some time. In such a known mold and its manufacturing method, as shown in FIG. 15, the fluid passage is formed in the body 2 of the mold 1 so that a plurality of through holes 3 intersect each other from the outer peripheral surface, and the through holes are formed. Some of the openings on the outer peripheral surface are closed with plugs 4 and the rest are used as an inlet port 5 and an outlet port 6, and a cooling liquid or a heating liquid is allowed to flow in a fluid passage defined by a plurality of through holes. The temperature is adjusted. The fluid may be liquid or gas.
[Problems to be solved by the invention]
[0003]
However, in such a conventional mold, since the fluid passage is composed of a combination of a plurality of straight through holes, the shape of the fluid circuit is limited, and an optimum pattern fluid circuit is formed according to the molded product. Not only is it extremely difficult to do this, but there is also a problem that the number of steps in the manufacturing process increases and the cost increases. Furthermore, in a conventional mold with a fluid passage, a through hole is formed in the center of the mold, and at least one molding core that defines a mold cavity is removably inserted into the through hole. Since it is difficult to form a cooling passage in the mold itself, as shown in FIG. 16, a plurality of molds connected to a rectangular mold base material 7a that defines a cavity Cv into which the mold is inserted, are connected. The through hole 3a was formed linearly, and a part of the through hole 3a was closed with a plug 4a to form a passage. For this reason, it is difficult to accurately control the heating and cooling temperatures by bringing the mold close to the shape in the vicinity of the molded product, and it is difficult to control the temperature appropriately. There was a limit.
[0004]
One problem to be solved by the present invention is a joining technique (pulsed sintering) applying a pulsed current sintering method (pulsed current pressure sintering method) such as discharge plasma sintering, discharge sintering, plasma activated sintering method, etc. The present invention is to provide a novel mold having a temperature adjusting fluid passage and a method for manufacturing the same, which eliminates the disadvantages of the conventional mold and the method for manufacturing the same.
Another problem to be solved by the present invention is to provide a mold having a temperature adjusting fluid passage and a method of manufacturing the same which can design a circuit pattern of the temperature adjusting fluid passage in an arbitrary pattern. is there.
Another problem to be solved by the present invention is to provide a molding die with a temperature adjusting fluid passage and a method for manufacturing the same, in which a circuit for the temperature adjusting fluid passage can be provided over a plurality of layers at a low cost.
Still another problem to be solved by the present invention is to provide a novel combination of a mold with a temperature adjusting fluid passage and a mold base material defining a cavity for accommodating such a mold. It is.
[0005]
[Means for Solving the Problems]
One invention of the present application is a molding die with a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid, at least two members arranged substantially coaxially on the inside and outside, and adjacent to both ends of the two members. And an end member joined at the end surface of the member, and a fluid passage for flowing the fluid is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. , At least one of the end member is formed with at least one of an inlet port and an outlet port respectively communicating with the fluid passage, and at least the member and the end member are Applied pulsed current pressure sintering method At least one forming core that is temporarily bonded by a pulse current bonding method and then heat-treated to complete the bonding, and in the shaft hole formed in the inner member, defines a mold cavity in the shaft hole. Is configured to be detachably inserted.
In one embodiment of the above mold, the opposing surfaces of the members stacked on the inside and outside, and the member and the end member may be temporarily joined by a pulse current joining method, and the shaft may be The hole is a through-hole penetrating in the axial direction, and the molded core is composed of a plurality of core members that cooperatively define the cavity, and at least one of the core members is detachably inserted into the shaft hole. Also good.
In another embodiment of the mold, the inlet port and the outlet port are formed on one of the end members, and the passage is formed on at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. A plurality of annular grooves formed in the circumferential direction and spaced apart in the axial direction; and at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member; A first axial passage that communicates with the inlet port is formed, and at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member is the circumferential direction of the first axial passage. Even if a second axial passage that communicates the annular groove and the outlet port is formed at different positions, the passage is at least of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. Little formed on one side Both are constituted by a single spiral groove, and at least one of the inner member and the outer member is formed with a first axial passage that communicates one end of the spiral groove and the inlet port. At least one of the member and the outer member is formed with a second axial passage that communicates the other end of the spiral groove and the outlet port at a position different from the first axial passage in the circumferential direction. Alternatively, the passage is formed in at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and extends in the axial direction and is separated in the circumferential direction. The both end members are formed with a passage that communicates with the axial groove, and one of the passages can communicate with the inlet port, and the other of the passages can communicate with the outlet port. May be .
[0006]
Another invention of the present application is a method of manufacturing a mold with a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid.
Providing at least two members having both end faces and being arranged substantially coaxially inside and outside, and two end members joined to the both end faces;
Forming the fluid passageway between faces facing each other when overlapped inside and outside;
Forming at least one of an inlet port and an outlet port respectively communicating with the passage in at least one of the end members;
The end surface of the member and one surface of the end member are brought into contact with each other, and at least the end surface and the surface of the end member Applied pulsed current pressure sintering method Temporary bonding by pulse current bonding method, then heat treatment to complete the bonding and make the base material,
Machining the base material to form a shaft hole for inserting a core member;
Inserting at least one core member defining a cavity of the mold into the hole;
It is comprised including.
In one embodiment of the manufacturing method, the joining surface may be processed into a mirror surface. In another embodiment, the heat treatment may be performed in a temperature range of 55 to 85% of the melting temperature of the block material in a vacuum atmosphere.
[0007]
Another invention of the present application is a combination of a mold having a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid, and a mold base material defining a storage space for storing the mold,
The mold includes at least two members arranged substantially coaxially on the inside and outside, and an end member arranged adjacent to both ends of the two members and joined at the end surfaces of the members; A fluid passage for flowing the fluid is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and at least one of the end members communicates with the fluid passage. At least one of an inlet port and an outlet port is formed, and at least the member and the end member are Applied pulsed current pressure sintering method At least one forming core that is temporarily bonded by a pulse current bonding method and then heat-treated to complete the bonding, and in the shaft hole formed in the inner member, defines a mold cavity in the shaft hole. Is formed detachably inserted,
A heat insulating layer is provided between the mold base material and the mold.
In the above combination, the heat insulating layer may be at least one of a heat insulating space layer and a heat insulating material layer.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, in FIG. 1 to FIG. 6, an embodiment of a molding die and a manufacturing method thereof according to the present invention is shown as a plastic gear molding die and a manufacturing method thereof. A plurality of members (four in this embodiment) divided in advance to prepare a fluid passage for flowing a coolant such as water and oil in the mold of this embodiment are prepared, and one of the members is prepared. Alternatively, after forming fluid passages in two pieces, the members are joined by a joining method (pulse current joining method) applying a pulse current sintering method such as discharge plasma sintering, discharge sintering, or plasma activated sintering method. Then, it is integrated as a base material 11 for a molding die, and thereafter, the core material is subjected to mechanics and the like, and then a core member is attached to form a plastic gear molding die 10. The mold base material 11 is made of a material suitable as a mold material, for example, SUS420J2 (stainless steel), and has two cylindrical members 20 and 30 arranged coaxially on the inside and outside. And two annular end members 40 and 50 disposed at both ends of the members. The members 20 and 30 have the same axial direction (vertical direction in FIGS. 1 and 3) length. One surface (upper surface in FIG. 2) 41 of the lower end member 40 (in FIG. 1) is processed into a flat surface (preferably a mirror surface). Further, both end surfaces 21 and 31 (upper end surface in FIG. 2) and 22 and 32 (lower end surface in FIG. 2) of the inner and outer members 20 and 30 are also processed into flat surfaces (preferably mirror surfaces). Further, the lower surface (in FIG. 2) 52 of the upper end member 50 (in FIG. 1) is also processed into a flat surface (preferably a mirror surface). Further, the surfaces of the members 20 and 30 facing each other, that is, the outer peripheral surface 24 of the member 20 and the inner peripheral surface 33 of the member 30 are also processed into mirror surfaces. In addition, although the numerical range about a mirror surface is not necessarily clear, here, it says the surface processing state which has the smoothness of the numerical value below Ra0.3 (a smoothness becomes high when a numerical value becomes small). A plurality (5 in this embodiment) of annular grooves 25 extending in the circumferential direction are formed on the outer circumferential surface 24 of the inner member 20 so as to be spaced apart in the axial direction. The outer diameter of the inner member 20 and the diameter (inner diameter) of the inner peripheral surface 33 of the outer member 30 are dimensions that allow the member 20 to fit snugly within the shaft hole of the member 30 (for example, the inner diameter of the outer member). And the outer dimension of the inner member is determined to be 2 to 50 μm. The outer peripheral surface 24 of the member 20 further includes two axial grooves 26 and 26 'extending in the axial direction from one end surface (the upper end surface in FIG. 2) to the annular groove 25 farthest from the end surface. Is formed. The axial grooves 26, 26 'form an axial passage. The annular groove and the axial groove may be formed by machining such as lathe processing or milling, or may be formed by casting. In this embodiment, the diameter (inner diameter) of the inner peripheral surface 23 of the inner member 20 and the diameter (inner diameter) of the inner peripheral surfaces of the end members 40 and 50 are formed to be the same. The diameter (outer diameter) of the outer peripheral surface 34 is the same as the diameter (outer diameter) of the outer peripheral surfaces of the end members 40 and 50. Note that the outer shape of the end member may be made larger than that of the outer member, and the dimensions may be adjusted later by machining as necessary. Further, the end surfaces of the members 20 and 30 and the surface of the end member in contact with the end surfaces do not necessarily have to be flat, and may be curved surfaces if both have the same curvature.
[0009]
One end member (upper end member in FIGS. 1 and 2) 50 has two ports 56 having one end opened on the lower surface (in FIGS. 1 and 2) 52 of the end member 50 and the other end opened on the outer peripheral surface 54. And 56 '. One of these ports functions as an inlet port and the other functions as an outlet port. The radial positions of the open ends on the lower surface side of the two ports 56 and 56 ′ are positions aligned with the axial grooves 26 and 26 ′ formed in the inner member 20. A pair of positioning holes 27 for positioning pins are formed on both end faces 21 and 22 of the member 20 so as to be separated from each other in the diameter direction. In addition, a pair of positioning holes 57 that align with the positioning holes 27 are formed in the lower surface 52 of the end member 50 that contacts the end surface 21, and a pair that aligns with the positioning holes 27 in the upper surface 41 of the end member 40 that contacts the end surface 22. Positioning hole 47 is formed.
[0010]
The member 30 is mounted on the outside of the member 20 that has been machined in advance as described above, and the end members 40 and 50 are disposed at both ends of the members 20 and 30. The member 20 and the end members 40 and 50 are positioned by positioning pins inserted into the positioning holes 27, 47 and 57. In this state, the lower surface side open ends of the pair of ports 46 and 46 ′ formed in the end member 40 are aligned with the open ends of the upper surface 21 of the axial grooves 26 and 26 ′ formed in the member 20. Therefore, in this embodiment, the upper surface 21 of the member 20, the upper surface 31 of the member 30, and the lower surface 42 of the end member 40 are joined to each other, and the lower surface 22 of the member 20 and the lower surface 32 of the member 30. And the upper surface 52 of the end member 50 form a pair of joint surfaces. In this state, as shown in FIG. 7, it is arranged between a pair of energized electrodes of a pulse energization joining apparatus 100 to which a pulse energization sintering method such as a discharge plasma sintering method is applied. The base material 11 is formed by joining and integrating the joint surfaces of each pair.
[0011]
The pulse energization bonding apparatus 100 includes, for example, an energization bonding unit 110 and a heat treatment unit 120. The current-carrying joint 110 is mounted on the base 111 through an insulating member and electrically insulated from the base by a known method and fixed to the lower conductive electrode 113. A fixed fluid pressure cylinder 114 and an upper energizing electrode fixed electrically insulated from the piston rod 115 by a known method via an insulating member at the tip (lower end in the figure) of the piston rod 115 of the fluid pressure cylinder 114 116. The fluid pressure cylinder functions as a pressurizing device that presses the material to be joined. As the pressurizing device, the upper energizing electrode may be moved up and down by an electric motor and a screw mechanism instead of the fluid pressure cylinder. The upper and lower energization electrodes are electrically connected to the power supply device 117. The power supply device can supply a DC pulse current. The power supply device 117 has a built-in switch mechanism (not shown) that electrically connects and disconnects the power supply and the energizing electrode. The power that can be supplied by the power supply device is a large current with a voltage of 100 V or less and a current of 2000 to 8000 A, for example. In the above example, the lower energizing electrode is fixed and the upper energizing electrode is moved. However, the opposite is also possible, or both may be moved. The heat treatment unit 120 may be a vacuum heat treatment furnace having a known structure capable of heat treatment in a vacuum atmosphere or a gas atmosphere furnace capable of heat treatment in an inert gas atmosphere. In addition, the pulse energization joining device 110 and the heat treatment unit 120 are integrally structured, and a product transport robot device is disposed between them, and a plurality of temporarily joined base materials are collectively heat treated in a batch manner. Alternatively, they may be arranged separately. In the above embodiment, the upper energizing electrode is fixed by, for example, a plurality of columns (not shown), and a pressurizing device such as a fluid pressure cylinder is arranged on the table 111, and the lower energizing electrode is used by the pressurizing device. You may make it move up and down.
[0012]
After a plurality of members 20, 30, 40, and 50, which are superimposed and positioned on each other, are set between the pair of energizing electrodes 113 and 116 of the joining device 100, a predetermined pressure, for example, 0 to 50 is applied by the pressurizing device. When a DC pulse current of a predetermined current is applied at a predetermined voltage between current-carrying electrodes according to the volume, cross-sectional area, material, shape, size, etc. of the object to be joined in a state where the pressure is in the megapascal range. The contact interface portion having a high contact resistance is heated to a high temperature by Joule heating. Further, the whole is Joule-heated by the resistance value of the material itself. In addition, high pressure is generated at the contact interface between the members stacked on the inside and outside due to plastic deformation and thermal expansion caused by the vertical uniaxial pressure. Furthermore, an electric field is generated along the direction of on-off pulse current flow, and electric field diffusion occurs. It is considered that this electric field diffusion effect and the aforementioned mechanical pressure of thermal diffusion contribute to solid phase diffusion bonding and derive the orientation of the metal crystal structure. For this reason, these members are between the pair of joining surfaces, that is, between the contact surfaces facing each other of the members 20 and 30, between the upper surfaces 21 and 31 of the members 20 and 30, and the lower surface 52 of the member 50, and between the lower surfaces 22 and 32. The upper surface 41 of the member 40 is joined to each other. It has been found from the joining experiment results that this joining has a higher densification rate than the conventional hot press sintering method. As a result, the bonding between adjacent blocks in this state is not perfect when viewed from the viewpoint of bonding strength because the diffusion layer is shallow in terms of energy, but the metal lattice arrangement at the bonding interface is more diffused. It is thought that they are easily aligned. Therefore, this bonded state is called temporary bonding, and the temporarily bonded member is called a temporary bonded body. The temporary joined body constituted by the temporarily joined members 20, 30, 40 and 50 is then subjected to heat treatment in a heat treatment furnace of the heat treatment section 120. As described above, the temporary bonding process and the heat treatment are performed, and therefore, this is referred to as a two-stage process. Although the heat treatment temperature and time vary depending on the material and size of the member, the heat treatment temperature and time are significantly reduced to 1/10 to 1/20 compared to the time required for solid phase diffusion bonding by conventional heat treatment alone. The joint between the joint surfaces temporarily bonded by performing this heat treatment becomes a complete joined body in a short time due to a fast densification diffusion speed, and the joined strength of the joined body is a member. The value is comparable to the strength of the material. Thereby, manufacture of the base material 11 is completed. The pressure applied by the above-mentioned pulse energization joining, the voltage and current of the pulse current, the heat treatment temperature and time, etc. vary depending on the material and size of the block, but SUS420J2 is used as the material of the member, the inner diameter of the member 20 is 40 mm, and the outer diameter is 70 mm. The inner diameter of the member 30 is 70 mm, the outer diameter is 110 mm, the axial length of both is 30 mm, the inner diameter of the end members 40 and 50 is 40 mm, the outer diameter is 110 mm, and the thickness of the end members 40 and 50 is further increased. When the thickness is 5 mm and 25 mm, respectively, the pressure is 30 megapascal, the voltage is 3 to 10 V, the current value is 5000 to 6000 amperes, the vacuum heat treatment temperature and time are 950 to 1100 ° C. and 60 to 120 minutes, respectively. It is preferred to obtain good results.
During heating, when the outer peripheral surface of the member 20 tries to expand outward from the central axis, the outer periphery with the member 30 expands outward from the central axis, and the inner peripheral surface tends to expand in the direction of the central axis. As a result, even if the member 20 is not fitted into the member 30 by an interference fit, the gap ring between the contact surfaces of both members becomes smaller. Furthermore, since the member 30 is cooled first at the time of cooling, and the member 20 is further tightened by contraction, even if no pressure is applied from the outside at the time of energization joining, the state is the same as the pressurized state, and the joining becomes more complete. The inner peripheral surface of the member 30 may expand outward depending on the shape, but the thickness of both members is set so that the difference from the thermal expansion to the outer side of the outer peripheral surface of the member 20 works in the direction of reducing the gap. It is preferable to make the gap range where the gap disappears due to thermal expansion and contraction and the thickness of the member.
[0013]
In the mold base material 11 thus formed, a fluid passage through which a temperature adjusting fluid defined by a plurality of annular grooves 25 and axial grooves 26 and 26 ′ formed in the member 20 flows. Is formed. When one port 46 communicating with the axial groove 26 is an inlet port and the port 46 ′ communicating with the axial groove 26 ′ is an outlet port, fluid flows in parallel from the axial groove 26 into the plurality of annular grooves 25. Flows out of outlet port 46 'via axial groove 26'. In addition, since the mirror surface processing is performed in advance between each pair of joining surfaces, dense joining is performed, and the fluid does not flow out from the fluid passage through the joining surfaces. In the base material 11, a through hole 12 is formed in the center portion (a position radially inward of the circular groove and does not interfere with the groove) as shown in FIG. 11 '. In this embodiment, the through hole 12 is intermediate between the portion 13 having a circular cross section of the diameter D1, the portion 14 having a circular cross section of the diameter D2 (D2> D1), and the portions 13 and 14. And a portion 15 in which a large number of irregularities are formed in a spline shape. The unevenness formed on the inner periphery of the portion 15 is a portion that forms a plurality of teeth of a plastic gear that is a molded product, and is therefore formed in accordance with the shape and dimensions of the plastic gear.
When a cylindrical member is used as the inner member 20 and an annular member is used as the end member as in the above embodiment, the inner diameter thereof is smaller than the minimum diameter of the portion processed as described above. It is necessary to use materials with small values. By using a cylindrical member and an annular end member in advance, it is possible to reduce the labor of machining as described above. However, a solid cylindrical body is used as the member 20 and a disc-shaped end member is used. May be. In the case where the plastic gear has a helical gear instead of a straight gear, it is needless to say that the irregularities formed in the portion 15 have a shape corresponding to the helical gear.
[0014]
On the other hand, a core member that defines a cavity (a cavity into which a plastic material is poured) required for plastic molding in the through hole is manufactured in a separate manufacturing process. The core member of this embodiment is composed of two core members 60 and 70 shown in FIGS. One core member 60 includes a large-diameter portion 63 having an outer diameter that is closely fitted to a portion having a diameter D1 of the through-hole 12 formed in the main body 11 ′, and a portion 15 of the main body 11 in the through-hole 12. A small diameter portion 64 having a diameter d1 is formed which cooperates to define an annular cavity. Further, a stepped core hole 65 penetrating from one surface 61 (the surface that is the upper surface in FIG. 4 and that is inside the through hole 12 of the main body) 61 to the other surface 62 of the axis OO of the core member 60. Is formed. A circular recess 66 having a diameter d2 is formed at the center of the surface 61. Furthermore, a plurality of through holes 67 and 68 are formed in the core member 60 at positions on the circumferences of the radii r1 and r2 from the axis OO in the circumferential direction. Extrusion pins 82 and 83 for extruding the molded product are inserted into these through holes. The other core member 70 has a large-diameter portion 73 having an outer diameter that is tightly fitted in a portion of the through hole 12 formed in the body 11 and having a diameter D2, and an annular shape in cooperation with the body 11 in the through hole 12. A small-diameter portion 74 having a diameter d1 that defines a cavity is formed. Further, the core member 70 is formed with a molding material injection port 75 penetrating from one surface 71 (the surface which is the upper surface in FIG. 5 and becomes the inside of the through hole 12 of the main body) 71 to the other surface 72. A circular recess 76 having a diameter d2 is formed at the center of the surface 71. The core members 60 and 70 as described above are inserted together with the shaft 81 into the through hole 12 of the main body 11 ′ as shown in FIG. The through hole portion 14 may be a tapered hole that widens toward the outside of the main body. In that case, the outer periphery of the portion 73 of the core member 70 is also tapered.
[0015]
In the above embodiment, the annular groove 25 is formed in the outer peripheral surface 24 of the inner member 20 among the two members arranged inside and outside, and the fluid passage is configured. (1) The inner peripheral surface 33 of the outer member 30 (2) An annular groove that is aligned with the outer peripheral surface of the member 20 and the inner peripheral surface of the member 30 is formed, and the fluid passage is configured by these annular grooves. May be. In the case of (1), the axial groove is formed on the inner peripheral surface 33 of the member 30, and in the case of (2), the axial groove is formed on both the outer peripheral surface of the member 20 and the inner peripheral surface of the member 30. Is preferred. Further, the groove extending in the circumferential direction is not an annular groove, but is formed on the spiral groove 25a formed on the outer peripheral surface 24a of the inner member 20a or the inner peripheral surface 33b of the outer member 30b as shown in FIG. The spiral groove 35b is formed, and one end (the upper end in FIG. 8) of the spiral groove is connected to one port 56a, 56b formed in the end member 50a, 50b via the axial passage 26a, 26b, and the other end. (The lower end in FIG. 8) may be connected to the other ports 56a 'and 56b' via the axial passages 26a 'and 26b'. Further, the spiral groove may be a plurality of strips instead of a single strip so that the fluid can flow separately.
Furthermore, as shown in FIG. 9, a plurality of axial directions in which the fluid passage formed between the two members arranged inside and outside extends in the axial direction to the outer periphery 24c of the inner member 20c. For example, the groove 25c may be formed by being separated in the circumferential direction like a spline and configured by the axial groove. Of course, although not shown, an axial groove may be formed on the inner peripheral surface of the outer member, thereby forming a fluid passage. When the fluid passage is formed by the axial passage, as shown in FIG. 10, annular grooves 47c and 57c communicating with the axial groove are provided on the upper surface 41c of the end member 40c and the lower surface 52c of the end member 50c, respectively. The groove 57c may be connected to the port 56c, and the groove 47c may be connected to another port 57c 'through the communication hole 26c formed in the inner member 20c.
[0016]
The mold 10 produced as described above is inserted into a cavity for mounting a mold base material. In this case, as shown in FIG. A heat insulating space Ic is formed between the outer periphery of the member 30d outside the mold 10d and the inner periphery of the cavity. For this reason, as in the mold 10d, the inside diameter of the cavity 201 is made larger than the outside diameter of the member 30d so that a heat insulating space is formed between them, and the outside diameters of the end members 40d and 50d are closely fitted in the cavity. (For example, the dimensional difference between the inner diameter of the outer member and the outer shape of the inner member is 2 to 50 μm). Instead of increasing the outer diameter of the end member, heat insulation may be performed by fitting a ring made of a heat insulating material to an end member having the same outer diameter as that of the member 30d. Also, as shown in FIG. 12, a sleeve 80 is fitted to the outside of the end members 40e and 50e having a larger outer diameter of the mold 10e and fixed by welding or the like, and between the sleeve and the outer member 30e. A vacuum cavity Vc maintained in a vacuum state (negative pressure state) may be provided, thereby enhancing the heat insulation effect. Reference numeral 81 denotes a reinforcing rib. Further, as shown in FIG. 13, the outer diameters of the end members 40f and 50f of the mold 10f are made larger than the outer diameter of the member 30f, and a heat insulating sleeve 85 is fixed to the outer side of the end member to form a heat insulating sleeve. A mold may be inserted. In this way, by forming a heat insulating layer of at least one of the heat insulating space and the heat insulating material between the mold and the mold base material, the temperature control of the mold can be performed more easily and efficiently, and at a high temperature. Molding with a resin material (for example, 300 ° C. or higher) that requires this molding becomes possible.
[0017]
In FIG. 14, yet another embodiment of the mold of the present application is shown. In the previous embodiment, an example in which there are two members stacked on the inside and outside has been shown, but in this embodiment, three members are heated and cooled so that the temperature can be controlled. In the figure, another cylindrical member 90g is arranged between two cylindrical members 20g and 30g arranged coaxially inside and outside. These members have the same axial length, and end members 40g and 50g are arranged at both ends. In the following, description of the same parts as those in the embodiment of FIGS. 1 to 6 will be omitted. A plurality (six in this embodiment) of annular grooves 25g extending in the circumferential direction are formed on the outer circumferential surface 24g of the member 20g so as to be spaced apart in the axial direction. The outer peripheral surface 24g of the member 20g is further formed with two axial grooves 26g and 26g 'extending in the axial direction from one end surface (the upper end surface in FIG. 2) to the other end surface, spaced apart in the diametrical direction. The axial grooves 26g and 26g 'form an axial passage. A plurality (three in this embodiment) of annular grooves 95g extending in the circumferential direction are formed on the outer peripheral surface 94g of the member 90g in the axially central portion of the member 90g so as to be separated in the axial direction. The outer peripheral surface 94g of the member 90g further includes an axial groove 96g extending in the axial direction from one end face (upper end face in FIG. 14) to the annular groove 95g farthest from the end face, and the other end face (upper face in FIG. 14). An axial groove 96g 'extending in the axial direction from the end face) to the annular groove 95g farthest from the end face is formed in a diametrically spaced manner. The axial grooves 96g, 96g 'form an axial passage. The axial grooves 26g, 26g ′ formed in the member 2 and the axial grooves 96g, 96g ′ formed in the member 90 are when the members 20, 90, 30 and the end members 40, 50 are joined together. The axial grooves 26g, 26g 'and 96g, 96g' are shifted 90 degrees in the circumferential direction.
[0018]
One end member (upper end member in FIGS. 1 and 2) 50g has two pairs of ports 56g, 56g ′, 59g, and 59g, one end opening on the lower surface 52g of the end member 50g and the other end opening on the outer peripheral surface 54. 'Is formed. One of these ports functions as an inlet port and the other functions as an outlet port. The two ports 56g and 56g ′ are formed to be separated from each other in the diametrical direction (180 ° in the circumferential direction). Similarly, the two ports 59g and 59g ′ are also formed to be separated from each other in the diametrical direction. As shown in FIG. 14B, the radial position of the opening end on the lower surface side of the port 56g is a position aligned with the axial groove 26 formed in the inner member 20, and the port 56g ′. The radial position of the opening end on the lower surface side of the groove 36g ′ is formed through the member 30 in the axial direction and communicates with the other axial groove 26g ′ through the groove 46g formed in the end member. It is a position that matches. As shown in FIG. 14B, the radial position of the opening end on the lower surface side of the port 59g is a position aligned with the axial groove 96g formed in the inner member 90g, and the port 59g ′ The radial position of the opening end on the lower surface side is a passage 39g 'formed through the member 30 in the axial direction and communicating with the other axial groove 59g' via a groove 49g formed in the end member. It is a position that matches. Thus, by providing three cylindrical members, it is possible to provide two different fluid passages, and to adjust the range of heating and cooling by changing the positions thereof.
In the above embodiment, an example is shown in which grooves are formed on at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and further on at least one of the inner peripheral surface and the outer peripheral surface of the intermediate member. No gaps are formed on the inner and outer peripheral surfaces of the members, and a gap is provided between the surfaces of the members stacked inside and outside (so that the members stacked inside and outside are not joined). The fluid for adjusting the temperature may flow there.
[0019]
【effect】
According to the present invention, the following effects can be obtained.
(A) A joining method (pulse current joining method) in which a groove defining a fluid passage is formed in the outer periphery of a cylindrical member or a columnar member or the inner periphery of the cylindrical member, and the member is applied with a pulse current sintering method. ), It is possible to connect a large area of the joint interface over the entire area compared to the conventional brazing and welding methods, so that there is no gap and it can be joined so that there is no leakage in the high quality. Thus, the circuit pattern of the temperature adjusting fluid passage can be accurately formed inside the forming die, and the temperature adjusting efficiency of the forming die can be improved.
(B) Since the blocks in which the grooves defining the fluid passages are formed on the surface are joined by the joining method applying the pulse current sintering method, there is a conventional method in which an O-ring groove is provided and the blocks are sealed with an O-ring. Eliminates the need for a simple circuit pattern for the desired fluid path, and allows the design of a structure that approximates the thermal distribution simulation result based on the finite element method based on thermal conductivity. A cooling and heating structure is provided, and the manufacturing cost can be reduced.
(C) Since a plurality of fluid passages can be defined, partial temperature adjustment is possible, and the quality of the molded product can be improved.
(D) With the same concept, a fluid passage can be defined inside the convex mold, and more detailed temperature control can be performed.
(E) The temperature of the mold can be controlled easily and more precisely.
[Brief description of the drawings]
FIG. 1 is a perspective view of a base material used in an embodiment of a mold with a temperature control passage of the present invention.
2 is a perspective view showing each member of the mold shown in FIG. 1 in an exploded state, and is a diagram showing an arrangement relationship of grooves, positioning holes and the like formed in each member. FIG.
FIG. 3 is a cross-sectional view of a main body of a mold formed by machining the base material of FIG.
4 is a perspective view of one core member inserted into the main body of FIG. 3;
FIG. 5 is a perspective view of the other core member inserted into the main body of FIG. 3; .
FIG. 6 is a cross-sectional view of a mold.
FIG. 7 is a diagram showing a schematic configuration of a pulse energization bonding apparatus.
FIG. 8 is a cross-sectional view showing a modification of a groove formed in a member.
FIG. 9 is a cross-sectional view showing another modified example of the groove formed in the member.
10 is a cross-sectional view illustrating a method of connecting a groove and a port in a base material having the groove of FIG.
FIG. 11 is a diagram illustrating a state in which a mold base material of a mold is attached in a cavity.
FIG. 12 is a view for explaining another attachment state of the mold base material of the mold into the cavity.
FIG. 13 is a view for explaining still another attachment state of the mold base material of the mold into the cavity.
FIG. 14 is a cross-sectional view of still another embodiment of the mold of the present invention.
FIG. 15 is a view showing an example of a conventional mold with a fluid passage.
FIG. 16 is a view showing an example of a conventional mold base material with a fluid passage.
[Explanation of symbols]
10, 10a, 10d, 10e, 10f Mold
11, 11a, 11b, 11c, 11g
12 Through hole
20, 20a, 20b, 20c member
30, 30a, 30b, 30c, 30d, 30e, 30f, member
40, 40a, 40b, 40c, 40d, 40e, 40f, end member
50, 50a, 50b, 50c, 50d, 50e, 50f, member
24, 24a, 24b, 24c
25, 25a, 25c groove 35b groove
56, 56 ', 56a, 56a', 56b, 56b ', 56c, 56c' ports
60, 70 Core member
90g member

Claims (12)

流体を流して温度を調節できる温度調節用流体通路付き成形型において、内外にほぼ同軸にして重ねて配置された少なくとも二つの部材と、前記二つの部材の両端に隣接して配置されていて前記部材の端面において接合された端部材とを備え、内側の部材の外周面と外側の部材の内周面との間には前記流体を流すための流体通路が形成され、前記端部材のうち少なくとも一つの端部材には前記流体通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方が形成され、少なくとも前記部材と前記端部材とがパルス通電加圧焼結法を応用したパルス通電接合法により仮接合された後熱処理されて接合が完成されており、前記内側の部材に形成された軸穴内には、前記軸穴内で成形型のキャビティを画成する少なくとも一つの成形コアが着脱可能に挿入されている温度調節用流体通路付き成形型。In a mold with a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid, at least two members arranged substantially coaxially on the inside and outside, and arranged adjacent to both ends of the two members, An end member joined at an end surface of the member, and a fluid passage is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and at least of the end members. One end member is formed with at least one of an inlet port and an outlet port respectively communicating with the fluid passage, and at least the member and the end member are temporarily formed by a pulse current joining method using a pulse current pressure sintering method. At least one forming core that is heat-treated after joining and has been joined, and in the shaft hole formed in the inner member, defines a mold cavity in the shaft hole. Removably inserted temperature adjusting fluid passage with the mold being. 請求項1に記載の温度調節用流体通路付き成形型において、前記内外に重ねられた部材の対向する面同士が及び前記部材と前記端部材とがパルス通電接合法により仮接合されている温度調節用流路付き成形型。The temperature control according to claim 1, wherein the opposing surfaces of the members stacked inside and outside and the member and the end member are temporarily joined by a pulse current joining method. Mold with flow channel. 請求項1又は2に記載の温度調節用流体通路付き成形型において、前記軸穴が軸方向に貫通する貫通穴であり、前記成形コアが協同して前記キャビティを画成する複数のコア部材から成り、前記コア部材の少なくとも一つが前記軸穴内に着脱可能に挿入されている成形型。3. The mold with a temperature control fluid passage according to claim 1, wherein the shaft hole is a through-hole penetrating in the axial direction, and the molding core cooperates to define the cavity. A molding die in which at least one of the core members is detachably inserted into the shaft hole. 請求項1、2又は3に記載の温度調節用流体通路付き成形型において、前記端部材の一方に前記入口ポート及び出口ポートが形成され、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成されていて、円周方向に伸びかつ軸方向に隔てられた複数の環状溝により構成され、前記内側の部材の外周面及び前記外側の部材の内周面の少なくとも一方には前記環状溝と前記入口ポートとを連通する第1の軸方向通路が形成され、前記内側の部材の外周面及び前記外側の部材の内周面の少なくとも一方には前記第1の軸方向通路とは円周方向に異なる位置において前記環状溝と前記出口ポートとを連通する第2の軸方向通路が形成されている成形型。4. The mold with a temperature adjusting fluid passage according to claim 1, 2, or 3, wherein the inlet port and the outlet port are formed in one of the end members, and the passage includes the outer peripheral surface of the inner member and the outer side. Formed on at least one of the inner peripheral surfaces of the member, and is constituted by a plurality of annular grooves extending in the circumferential direction and spaced apart in the axial direction, the outer peripheral surface of the inner member and the inner periphery of the outer member A first axial passage that communicates the annular groove and the inlet port is formed in at least one of the surfaces, and at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member is the first axial passage. A molding die in which a second axial passage that communicates the annular groove and the outlet port is formed at a position different from the one axial passage in the circumferential direction. 請求項1、2又は3に記載の温度調節用流体通路付き成形型において、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成された少なくとも1条の螺旋溝により構成され、前記内側の部材及び前記外側の部材の少なくとも一方には前記螺旋溝の一端と前記入口ポートとを連通する第1の軸方向通路が形成され、前記内側の部材及び前記外側の部材少なくとも一方には前記第1の軸方向通路とは円周方向に異なる位置において前記螺旋溝の他端と前記出口ポートとを連通する第2の軸方向通路が形成されている成形型。4. The mold with a temperature adjusting fluid passage according to claim 1, wherein the passage is formed on at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. A first axial passage that communicates one end of the spiral groove and the inlet port is formed in at least one of the inner member and the outer member, and the inner member and the outer member At least one of the outer members is formed with a second axial passage that communicates the other end of the spiral groove and the outlet port at a position different from the first axial passage in the circumferential direction. . 請求項1、2又は3に記載の温度調節用流体通路付き成形型において、前記通路が、前記内側の部材の外周面と前記外側の部材の内周面の少なくとも一方に形成されていて、軸線方向に伸びかつ円周方向に隔てられた複数の軸方向溝により構成され、前記両端部材には前記軸方向溝と連通する通路が形成され、前記通路の一方と前記入口ポートとが連通可能であり、前記通路の他方と前記出口ポートとが連通可能である成形型。The mold with a temperature adjusting fluid passage according to claim 1, 2, or 3, wherein the passage is formed on at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member, A plurality of axial grooves extending in the direction and separated in the circumferential direction, the both end members are formed with a passage communicating with the axial groove, and one of the passages can communicate with the inlet port. A molding die in which the other of the passages and the outlet port can communicate with each other. 流体を流して温度を調節できる温度調節用流体通路付き成形型を製造する方法において、
両端面を有していて内外にほぼ同軸にして重ねて配置される少なくとも二つの部材と、前記両端面に接合される二つの端部材とを用意することと、
内外に重ねられたとき互いに向き合う面の間に前記流体通路を形成することと、
前記端部材のうち少なくとも一つの端部材には前記通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方を形成することと、
前記部材の前記端面と前記端部材の一方の面とを互いに当接させ、少なくとも前記端面と前記端部材の面とをパルス通電加圧焼結法を応用したパルス通電接合法により仮接合し、その後熱処理して接合を完成させて母材をつくることと、
前記母材に機械加工を施してコア部材挿入用の軸穴を形成することと、
前記穴内には成形型のキャビティを画成する少なくとも一つのコア部材を挿入することと、
を含む成形型の製造方法。
In a method of manufacturing a mold with a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid,
Providing at least two members having both end faces and being arranged substantially coaxially inside and outside, and two end members joined to the both end faces;
Forming the fluid passageway between faces facing each other when overlapped inside and outside;
Forming at least one of an inlet port and an outlet port respectively communicating with the passage in at least one of the end members;
The end surface of the member and one surface of the end member are brought into contact with each other, and at least the end surface and the surface of the end member are temporarily joined by a pulse energization bonding method applying a pulse energization pressure sintering method , Then heat treatment to complete the joining and make the base material,
Machining the base material to form a shaft hole for inserting a core member;
Inserting at least one core member defining a cavity of the mold into the hole;
The manufacturing method of the shaping | molding die containing.
請求項6に記載の温度調節用流体通路付き成形型を製造する方法において、前記端面と前記端部材の面とを及び前記内外に重ねられた部材の対向する面同士をパルス通電接合法により仮接合する製造方法。7. The method for producing a mold with a temperature adjusting fluid passage according to claim 6, wherein the end surface and the surface of the end member and the opposing surfaces of the members stacked inside and outside are temporarily formed by a pulse current joining method. Manufacturing method to join. 請求項7又は8に記載の温度調節用流体通路付き成形型を製造する方法において、前記部材の対向する面並びに前記部材の端面及び前記端部材の面を鏡面に加工する成形型の製造方法。9. The method for manufacturing a molding die with a temperature adjusting fluid passage according to claim 7 or 8, wherein the opposing surface of the member, the end surface of the member, and the surface of the end member are processed into a mirror surface. 請求項6、7又は8に記載の温度調節用流体通路付き成形型を製造する方法において、前記熱処理を所望の雰囲気内で前記ブロックの材質の溶融温度の55ないし85%の温度範囲で行なう成形型の製造方法。9. The method for producing a mold with a temperature adjusting fluid passage according to claim 6, 7 or 8, wherein said heat treatment is performed in a desired atmosphere in a temperature range of 55 to 85% of a melting temperature of said block material. Mold manufacturing method. 流体を流して温度を調節できる温度調節用流体通路付き成形型と、前記成形型を収容する収容空間を画成する金型母材との組合せ体において、
前記成形型が、内外にほぼ同軸にして重ねて配置された少なくとも二つの部材と、前記二つの部材の両端に隣接して配置されていて前記部材の端面において接合された端部材とを備え、内側の部材の外周面と外側の部材の内周面との間には前記流体を流すための流体通路が形成され、前記端部材のうち少なくとも一つの端部材には前記流体通路とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方が形成され、少なくとも前記部材と前記端部材とがパルス通電加圧焼結法を応用したパルス通電接合法により仮接合された後熱処理されて接合が完成されており、前記内側の部材に形成された軸穴内には、前記軸穴内で成形型のキャビティを画成する少なくとも一つの成形コアが着脱可能に挿入されて形成され、
前記金型母材と前記成形型との間に断熱層が設けられている、
ことを特徴とする温度調節用流体通路付き成形型と金型母材との組合せ体。
In a combination of a mold having a temperature adjusting fluid passage capable of adjusting the temperature by flowing a fluid, and a mold base material defining a storage space for storing the mold,
The molding die includes at least two members arranged substantially coaxially on the inside and outside, and an end member arranged adjacent to both ends of the two members and joined at an end surface of the member; A fluid passage for flowing the fluid is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and at least one of the end members communicates with the fluid passage. At least one of an inlet port and an outlet port is formed, and at least the member and the end member are temporarily joined by a pulsed current joining method using a pulsed current pressure sintering method, and then heat-treated, thereby completing the joining. In the shaft hole formed in the inner member, at least one molding core that defines a mold cavity in the shaft hole is detachably inserted, and is formed.
A heat insulating layer is provided between the mold base and the mold,
A combination of a mold having a temperature adjusting fluid passage and a mold base material.
請求項11に記載の組合せ体において、前記断熱層が断熱空間の層及び断熱材の層の少なくとも一方の層である組合せ体。12. The combination according to claim 11, wherein the heat insulating layer is at least one of a heat insulating space layer and a heat insulating material layer.
JP2001230983A 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof Expired - Fee Related JP4671554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230983A JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230983A JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003039437A JP2003039437A (en) 2003-02-13
JP2003039437A5 JP2003039437A5 (en) 2008-08-21
JP4671554B2 true JP4671554B2 (en) 2011-04-20

Family

ID=19063104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230983A Expired - Fee Related JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4671554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847105B2 (en) * 2005-11-10 2011-12-28 株式会社リコー Injection mold
JP6231836B2 (en) * 2013-09-24 2017-11-15 株式会社エンプラス Injection mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146954U (en) * 1981-03-09 1982-09-16
JPH0243009A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Plastic molding mold
JPH03124420A (en) * 1989-10-09 1991-05-28 Toshiba Corp Cooling method and heat exchange parts for mold
JPH06238728A (en) * 1993-02-18 1994-08-30 Mitsubishi Heavy Ind Ltd Mold
JPH11156857A (en) * 1997-11-28 1999-06-15 Mitsuboshi Belting Ltd Method and apparatus for vulcanizing belt sleeve and others
JPH11222607A (en) * 1997-12-03 1999-08-17 Asahi Optical Co Ltd Method for joining ceramic and metal and joined body thereby
JP2001162350A (en) * 1999-12-06 2001-06-19 Suwa Netsukogyo Kk Metallic mold including heating and cooling circuits of fluid and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146954U (en) * 1981-03-09 1982-09-16
JPH0243009A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Plastic molding mold
JPH03124420A (en) * 1989-10-09 1991-05-28 Toshiba Corp Cooling method and heat exchange parts for mold
JPH06238728A (en) * 1993-02-18 1994-08-30 Mitsubishi Heavy Ind Ltd Mold
JPH11156857A (en) * 1997-11-28 1999-06-15 Mitsuboshi Belting Ltd Method and apparatus for vulcanizing belt sleeve and others
JPH11222607A (en) * 1997-12-03 1999-08-17 Asahi Optical Co Ltd Method for joining ceramic and metal and joined body thereby
JP2001162350A (en) * 1999-12-06 2001-06-19 Suwa Netsukogyo Kk Metallic mold including heating and cooling circuits of fluid and manufacturing method therefor

Also Published As

Publication number Publication date
JP2003039437A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
EP1162022B1 (en) Electric joining method and apparatus
JP3970356B2 (en) Injection molding nozzle
EP1352727B1 (en) Injection molding apparatus with Film-Heater
JPS6378720A (en) Molding die
US20070039943A1 (en) Heatable tool
US20090289041A1 (en) Electric joining method and electric joining apparatus
JP2003103324A (en) Manufacturing method of mold
CA2821997A1 (en) Hot runner nozzle
JP4671554B2 (en) Mold with temperature-controlling fluid passage and manufacturing method thereof
JP4113610B2 (en) Injection molding apparatus having cooling core
JPH09262870A (en) Injection mold and its production
JP2002200620A (en) Mold with fluid passage for regulating temperature and method for manufacturing the same
JP4594486B2 (en) Cavity forming mold manufacturing method and cavity forming mold
JP2005335187A (en) Valve gate type mold assembly and its manufacturing method
JP2002283355A (en) Mold for molding resin
US2475396A (en) Casting apparatus
JP2006056203A (en) Valve gate type mold apparatus and its manufacturing method
JP3066207B2 (en) Electrothermal converter and manufacturing method thereof
JP2005335190A (en) Mold for molding rotary body equipped with tooth part and its manufacturing method
JP2001353761A (en) Method for injection molding and mold used therefor
JP2005335209A (en) Mold assembly and its manufacturing method
JP3618715B2 (en) Cooling device for current-carrying electrode and assembly of current-carrying electrode and cooling device
JP2005335188A (en) Valve gate type mold assembly and its manufacturing method
JP2005335195A (en) Molding equipment and its manufacturing method
JPH0531501B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees