JP2005335195A - Molding equipment and its manufacturing method - Google Patents

Molding equipment and its manufacturing method Download PDF

Info

Publication number
JP2005335195A
JP2005335195A JP2004156800A JP2004156800A JP2005335195A JP 2005335195 A JP2005335195 A JP 2005335195A JP 2004156800 A JP2004156800 A JP 2004156800A JP 2004156800 A JP2004156800 A JP 2004156800A JP 2005335195 A JP2005335195 A JP 2005335195A
Authority
JP
Japan
Prior art keywords
mold
molding
molding member
mold body
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004156800A
Other languages
Japanese (ja)
Inventor
Kojiro Masuda
孝次郎 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004156800A priority Critical patent/JP2005335195A/en
Publication of JP2005335195A publication Critical patent/JP2005335195A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a flow speed by narrowing the flow channel area of a fluid passage while reducing fluid resistance in a molding equipment. <P>SOLUTION: Fluid dividing passage parts 35, 36, 85 and 86 having an almost halved circular cross section are provided and, when the fluid dividing passage parts 35, 36, 85 and 86 coincide with each other, the cross sections of fluid passages 31 and 81 are formed into an almost circular shape. The fluid passages 31 and 81 are formed between molding members 33 and 83 and mold bodies 34 and 84 and joining surfaces 33A, 34A, 83A and 84A are pressed under predetermined pressure and a DC current and/or a pulse current is allowed to flow through the molding members 33 and 83 and the mold bodies 34 and 84 while holding the pressed state to temporarily join the joining surfaces 33A, 34A, 83A and 84A of the molding members 33 and 83 and the mold bodies 34 and 84, and the molding members 33 and 83 and the mold bodies 34 and 84 in the temporarily joined state are heat-treated at a predetermined atmospheric temperature. The flow speed of a cooling liquid is increased by narrowing the area of a cooling liquid flow channel to enhance heat exchange efficiency. The molding members 33 and 83 and the mold bodies 34 and 84 can be joined without using a welding auxiliary material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金型装置及びその製造方法に関するものである。   The present invention relates to a mold apparatus and a manufacturing method thereof.

従来、複数の型体を型閉してこれら型体間に光ディスクを形成するキャビティを形成し、このキャビティ内に熱可塑性の成形材料を充填する光ディスク の成形用金型装置が知られている。このような金型装置においては、互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に冷却用の流体通路を設け、該流体通路に冷却液を流すことにより金型温度の上昇を阻止して、キャビティ内の溶融樹脂を早期に固化するようにしている。そして、従来の流体通路はキャビティに臨む成形面を有するキャビティ形成部材における成形面と反対側の面を開口して溝状の流体通路が形成されると共に、該流体通路の開口側は成形用部材に密着すると共に成形機に装着される金型本体に塞がれるようになっている(例えば特許文献1)。   2. Description of the Related Art Conventionally, a mold apparatus for molding an optical disk is known in which a plurality of molds are closed, a cavity for forming an optical disk is formed between the molds, and a thermoplastic molding material is filled in the cavity. Such a mold apparatus includes a pair of mold bodies that open and close each other to form a cavity between them when the mold is closed, and a cooling fluid passage is provided in the mold body, and a coolant is supplied to the fluid passage. By flowing, the rise of the mold temperature is prevented and the molten resin in the cavity is solidified at an early stage. In the conventional fluid passage, a groove-shaped fluid passage is formed by opening a surface opposite to the molding surface in the cavity forming member having a molding surface facing the cavity, and the opening side of the fluid passage is a molding member The mold body attached to the molding machine is blocked by the mold body (for example, Patent Document 1).

このような流体通路の形状では流体通路の先端、すなわち流体通路の成形面側から開口部までの深さが大きいので流路における流路面積が広くなり、比較的大量の冷却液を流すことができる。   In such a fluid passage shape, since the depth from the front end of the fluid passage, that is, from the molding surface side of the fluid passage to the opening is large, the flow passage area in the flow passage becomes wide, and a relatively large amount of coolant can flow. it can.

しかしながら、金型における冷却液による冷却効果は、単位時間当りの冷却液の液量が一定であれば流速が速ければ速いほど冷却効果が高いことが判明した。すなわち、流路面積が広いと流速が遅くなり、冷却効果が低くなってしまう。   However, it has been found that the cooling effect of the cooling liquid in the mold is higher when the flow rate is higher if the amount of the cooling liquid per unit time is constant. That is, if the flow path area is large, the flow rate becomes slow and the cooling effect becomes low.

このような問題を解決するものとして、流体を流して温度を調節できる温度調節用流体通路付き成形型において、平坦な接合面により互いに接合された複数のブロックを備え、隣接するブロックの少なくとも一方の接合面には該流体を流すための流体通路を画成する断面が半円状の溝が形成され、該複数のブロックのうち少なくとも一つのブロックには該溝とそれぞれ連通する入口ポート及び出口ポートの少なくとも一方が形成され、該複数のブロックがパルス通電接合法により仮接合された後熱処理されて接合が完成される温度調節用流体通路付き成形型が知られている(例えば特許文献2)。   In order to solve such a problem, in a mold having a temperature adjusting fluid passage capable of adjusting a temperature by flowing a fluid, the mold includes a plurality of blocks joined to each other by a flat joining surface, and at least one of adjacent blocks is provided. A groove having a semicircular cross section defining a fluid passage for flowing the fluid is formed on the joint surface, and at least one of the plurality of blocks has an inlet port and an outlet port respectively communicating with the groove. There is known a molding die with a temperature adjusting fluid passage in which at least one of the above is formed, the plurality of blocks are temporarily joined by a pulse current joining method, and then heat-treated to complete the joining (for example, Patent Document 2).

また、接合技術に関して金型において互いに接合する複数の部材の接合面をグラファイト製の型を用いずに互いに突き合わせ、該部材を所望の圧力で押圧しながら該部材に所望の直流電流及びパルス電流の少なくとも一方の電流を流して仮接合し、仮接合された部材を所望の温度条件の下で熱処理する通電接合方法等も知られている(例えば特許文献3)。
特開2002−331552号公報 特開2002−59270号公報 特開2002−200620号公報
Further, with respect to the joining technique, the joining surfaces of a plurality of members that are joined to each other in the mold are brought into contact with each other without using a graphite mold, and the desired direct current and pulse current are applied to the members while pressing the members with a desired pressure. There is also known an energization joining method or the like in which at least one current is supplied and temporarily joined, and the temporarily joined member is heat-treated under a desired temperature condition (for example, Patent Document 3).
JP 2002-331552 A JP 2002-59270 A JP 2002-200620 A

しかし、従来技術においては流体通路の断面が半円状であるので、冷却液を流したとき、流体抵抗が大きくなり流速が低下するおそれがあり、この結果金型の冷却効果が低下してしまい、成形サイクルを速めることはできない
解決しようとする問題点は、互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に流体通路を設けた金型装置において、流体通路の流路面積を狭くして流速を速めると共に流体抵抗を低減できるようにする点である。
However, since the cross section of the fluid passage is semicircular in the prior art, there is a risk that when the coolant is flowed, the fluid resistance increases and the flow velocity may decrease, resulting in a decrease in the cooling effect of the mold. The molding cycle cannot be accelerated The problem to be solved is that a mold apparatus having a pair of mold bodies that open and close each other to form a cavity between them when the mold is closed, and in which a fluid passage is provided in the mold body In this case, the flow area of the fluid passage is narrowed to increase the flow velocity and reduce the fluid resistance.

請求項1の発明は、互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に流体通路を設けた金型装置において、前記型体は前記キャビティに臨む成形面を有する成形用部材と、該成形用部材に固定され成形機側に装着される型体本体と、前記成形用部材と型体本体の接合面の両方にほぼ円形を半割りした断面がほぼ半円形の流体分割通路部とを備え、前記成形用部材と型体本体の接合面を所定の圧力で押し付け、この押し付けた状態を保持しながら、前記成形用部材と型体本体に、直流電流及び/又はパルス電流を流して、前記成形用部材と型体本体の接合面を仮接合し、仮接合された状態の前記成形用部材と型体本体を所定の雰囲気温度で熱処理して前記成形用部材と型体本体間に前記流体通路を形成したことを特徴とする金型装置である。   According to a first aspect of the present invention, there is provided a mold apparatus including a pair of mold bodies that open and close each other to form a cavity between the mold bodies when the mold is closed, and the mold body includes a fluid passage. A molding member having a facing molding surface, a mold body fixed to the molding member and mounted on the molding machine side, and a cross section obtained by dividing a substantially circular shape into both the molding member and the joint surface of the mold body Is provided with a substantially semicircular fluid dividing passage portion, pressing the joining surface of the molding member and the mold body main body with a predetermined pressure, while maintaining the pressed state, the molding member and the mold body main body, A direct current and / or pulse current is passed to temporarily join the joining surface of the molding member and the mold body, and the molding member and the mold body in the temporarily joined state are heat-treated at a predetermined ambient temperature. The fluid passage is provided between the molding member and the mold body. A mold apparatus being characterized in that form.

請求項2の発明は、前記成形用部材はキャビティ形成部材を分割して形成されたものであることを特徴とする請求項1記載の金型装置である。   A second aspect of the present invention is the mold apparatus according to the first aspect, wherein the molding member is formed by dividing a cavity forming member.

請求項3の発明は、互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に流体通路を設けた金型装置の製造方法において、前記型体は前記キャビティに臨む成形面を有する成形用部材と、該成形用部材に固定され成形機側に装着される型体本体と、前記成形用部材と型体本体の接合面の両方にほぼ円形を半割りした断面がほぼ半円形の流体分割通路部とを備え、前記成形用部材と型体本体にそれぞれ前記流体分割通路部を形成した後、前記成形用部材と型体本体の接合面を所定の圧力で押し付け、この押し付けた状態を保持しながら、前記成形用部材と型体本体に、直流電流及び/又はパルス電流を流して、前記成形用部材と型体本体の接合面を仮接合し、仮接合された状態の前記成形用部材と型体本体を所定の雰囲気温度で熱処理して前記成形用部材と型体本体間に前記流体通路を形成したことを特徴とする金型装置の製造方法である。   According to a third aspect of the present invention, there is provided a mold apparatus manufacturing method including a pair of mold bodies that open and close each other to form a cavity between the mold bodies when the mold is closed, and the mold body is provided with a fluid passage. The molding member having a molding surface facing the cavity, the mold body fixed to the molding member and mounted on the molding machine side, and the joint surface between the molding member and the mold body are substantially semicircular. A divided fluid section having a substantially semicircular cross section, and forming the fluid separating passage in the molding member and the mold body, respectively, and then connecting the joining surface of the molding member and the mold body to a predetermined surface. While pressing with pressure, while maintaining this pressed state, a direct current and / or a pulse current is passed through the molding member and the mold body to temporarily join the joining surface of the molding member and the mold body, The molding member and the mold body in a temporarily joined state Body which is a manufacturing method of a mold apparatus, characterized in that the formation of the fluid passage between predetermined said moldable member was heat-treated at ambient temperature and type body.

請求項4の発明は、前記流体分割通路部を研磨した後、前記仮接合を行うことを特徴とする請求項3記載の金型装置の製造方法である。   A fourth aspect of the present invention is the method of manufacturing a mold apparatus according to the third aspect, wherein the temporary joining is performed after the fluid dividing passage portion is polished.

請求項5の発明は、前記圧力を50メガパスカル以下とすることを特徴とする請求項3又は4に記載の金型装置の製造方法である。   A fifth aspect of the present invention is the method for manufacturing a mold apparatus according to the third or fourth aspect, wherein the pressure is 50 megapascals or less.

請求項6の発明は、前記熱処理を不活性雰囲気中で行うことを特徴とする請求項3〜5のいずれか1項に記載の金型装置の製造方法である。   The invention of claim 6 is the method for manufacturing a mold apparatus according to any one of claims 3 to 5, wherein the heat treatment is performed in an inert atmosphere.

請求項7の発明は、前記熱処理の温度を接合すべき部材の融点の55%〜85%の温度範囲とする請求項3〜6のいずれか1項に記載の金型装置の製造方法である。   Invention of Claim 7 is a manufacturing method of the metal mold | die apparatus of any one of Claims 3-6 which makes temperature of the said heat processing 55 to 85% of melting | fusing point of the member which should be joined. .

請求項1の発明によれば、冷却用の液体の流路における面積を狭くして流速を速くして熱交換効率を向上できると共に、断面をほぼ円形としたことで流体抵抗も低減することができ、さらに流体通路に溶接補助材が出ることがなく、流体通路の内面を平滑に保つことができる。   According to the first aspect of the present invention, the area in the flow path of the liquid for cooling can be narrowed to increase the flow velocity to improve the heat exchange efficiency, and the fluid resistance can also be reduced by making the section substantially circular. In addition, no welding auxiliary material appears in the fluid passage, and the inner surface of the fluid passage can be kept smooth.

請求項2の発明によれば、流体通路を有するキャビティ形成部材を簡便に形成できる。   According to invention of Claim 2, the cavity formation member which has a fluid channel | path can be formed simply.

請求項3の発明によれば、溶接補助材をまったく使用せずに強固に接合でき、しかも、接合面の全面を均一に接合することができる。そして、溶接補助材を使用しないから、流体通路に溶接補助材が出ることがなく、流体通路の内面が平滑なものが得られる。   According to invention of Claim 3, it can join firmly, without using a welding auxiliary material at all, and also the whole surface of a joining surface can be joined uniformly. And since a welding auxiliary material is not used, a welding auxiliary material does not come out to a fluid passage, and the thing whose inner surface of a fluid passage is smooth is obtained.

請求項4の発明によれば、研磨後に仮接合を行っても、溶接補助材を用いないため、流体通路の内面を平滑に保つことができる。   According to the invention of claim 4, even if temporary joining is performed after polishing, the welding auxiliary material is not used, so that the inner surface of the fluid passage can be kept smooth.

請求項5の発明によれば、前記圧力を50メガパスカル以下とするから、加圧のための装置の大型化を招くことがない。   According to invention of Claim 5, since the said pressure shall be 50 megapascals or less, the enlargement of the apparatus for pressurization is not caused.

請求項6の発明によれば、前記熱処理を不活性雰囲気中で行うから、接合箇所の品質が安定する。   According to invention of Claim 6, since the said heat processing is performed in inert atmosphere, the quality of a joining location is stabilized.

請求項7の発明によれば、前記熱処理の温度を接合すべき部材の融点の55%〜85%の温度範囲とするから、熱処理上から好ましく、良好な接合状態が得られる。   According to the seventh aspect of the present invention, the temperature of the heat treatment is set to a temperature range of 55% to 85% of the melting point of the members to be joined.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

図は実施例1を示しており、図中1は固定型、2は可動型で、型体であるこれら固定型1および可動型2は、互いに図示上下方向(型開閉方向)に移動して開閉し、型閉時に光ディスクを形成するキャビティ3を相互間に形成するものである。   The figure shows Example 1, in which 1 is a fixed mold, 2 is a movable mold, and the fixed mold 1 and the movable mold 2 which are mold bodies are moved in the vertical direction (mold opening / closing direction) shown in the drawing. A cavity 3 is formed between the two to open and close and to form an optical disk when the mold is closed.

前記固定型1は、固定側型板6と、この固定側型板6における可動型2と反対側の面に固定された固定側取り付け板7とを備えている。この固定側取り付け板7は、図示しない射出成形機の固定プラテンP1に取り付けられるものである。そして、固定側取り付け板7の中央部には、図示しない射出成形機のノズルが接続されるスプルーブッシュ8がボルト9により固定されている。このスプルーブッシュ8は、内部が材料通路であるスプルー10になっているが、固定側取り付け板7を貫通し、固定側型板6側へ突出している。さらに、前記スプルーブッシュ8における可動型2と反対側の面にはローケートリング11がボルト12により固定されている。   The fixed mold 1 includes a fixed mold 6 and a fixed mounting plate 7 fixed to the surface of the fixed mold 6 opposite to the movable mold 2. This fixed side mounting plate 7 is mounted on a fixed platen P1 of an injection molding machine (not shown). A sprue bush 8 to which a nozzle of an injection molding machine (not shown) is connected is fixed to the center portion of the fixed side mounting plate 7 by bolts 9. The sprue bushing 8 is a sprue 10 having a material passage inside, but penetrates the fixed side mounting plate 7 and protrudes toward the fixed side mold plate 6 side. Further, a locate ring 11 is fixed by a bolt 12 on the surface of the sprue bushing 8 opposite to the movable mold 2.

前記固定側型板6は、前記固定側取り付け板7にボルト16により着脱可能に固定されキャビティ3に臨む後述するスタンパー27が当接する成形面17A側を有するキャビティ形成部材としてのキャビティブロック17と、このキャビティブロック17の外周側に嵌合して位置し固定側取り付け板7にボルト18により固定された位置決めリング19とからなっている。前記キャビティブロック17はキャビティ3を形成するものである。さらに、前記キャビティブロック17における可動型2側の部分の外周部には段差部22が形成されているが、この段差部22には円環状の外周スタンパー押え23が嵌合されてボルト24により固定されている。一方、前記キャビティブロック17の中央部に形成された貫通孔25内にはほぼ円筒状の内周スタンパー押え26が嵌合されて固定されている。前記キャビティブロック17には、光ディスクに記憶情報を転写させるスタンパー27が着脱可能に装着されるようになっているが、前記外周スタンパー押え23はスタンパー27の外周部を押え、内周スタンパー押え26はスタンパー27の内周部を押えるものである。また、前記スプルーブッシュ8は、筒状の内周スタンパー押え26内に嵌合している。そして、スプルーブッシュ8における可動型2側の先端面には凹部28が形成されている。   The fixed-side template 6 is detachably fixed to the fixed-side mounting plate 7 by bolts 16 and has a cavity block 17 serving as a cavity forming member having a molding surface 17A side on which a later-described stamper 27 facing the cavity 3 abuts. It comprises a positioning ring 19 that is fitted on the outer peripheral side of the cavity block 17 and is fixed to the fixed side mounting plate 7 with bolts 18. The cavity block 17 forms the cavity 3. Further, a stepped portion 22 is formed on the outer peripheral portion of the cavity block 17 on the movable mold 2 side. An annular outer peripheral stamper presser 23 is fitted into the stepped portion 22 and fixed by a bolt 24. Has been. On the other hand, a substantially cylindrical inner stamper presser 26 is fitted and fixed in a through hole 25 formed in the central portion of the cavity block 17. A stamper 27 for transferring stored information to the optical disk is detachably mounted on the cavity block 17, but the outer peripheral stamper presser 23 presses the outer peripheral portion of the stamper 27, and the inner peripheral stamper presser 26 The inner periphery of the stamper 27 is pressed. The sprue bushing 8 is fitted in a cylindrical inner stamper presser 26. A recess 28 is formed on the front end surface of the sprue bushing 8 on the movable mold 2 side.

また、前記キャビティブロック17内には、キャビティ3を囲んで冷却水などの冷却液を通すための流体通路31が軸線Zを中心にほぼ渦巻き状に形成されている。また、この流体通路31に連通する入口側流体通路32が前記固定側取り付け板7内に形成されている。   In the cavity block 17, a fluid passage 31 that surrounds the cavity 3 and allows cooling liquid such as cooling water to pass therethrough is formed in a substantially spiral shape about the axis Z. Further, an inlet side fluid passage 32 communicating with the fluid passage 31 is formed in the fixed side mounting plate 7.

さらに、前記キャビティブロック17は、成形面17Aを有する成形用部材33と、該成形用部材33よりキャビティ3の反対側に位置して固定側取り付け板7と一体的となって固定プラテンP1、ひいては成形機に取り付けられる型体本体34とを備えており、これら成形用部材33と型体本体34のそれぞれの接合面33A,34Aの両方には、断面がほぼ半割り円形の流体分割通路部35,36とを備えており、これら流体分割通路部35,36がそれぞれ合致すると流体通路31の断面がほぼ円形に形成されるようになっている。尚、ほぼ円形には楕円形を含むものである。   Further, the cavity block 17 includes a molding member 33 having a molding surface 17A, a fixed platen P1, which is located on the opposite side of the cavity 3 from the molding member 33 and is integrally formed with the fixed-side mounting plate 7. A mold body 34 attached to the molding machine is provided, and both of the molding member 33 and the joining surfaces 33A and 34A of the mold body 34 have fluid split passage portions 35 each having a substantially half-circular cross section. , 36, and when these fluid dividing passage portions 35, 36 are matched, the cross section of the fluid passage 31 is formed in a substantially circular shape. The substantially circular shape includes an ellipse.

そして、接合面33A,34Aを平坦面に加工し、好ましくは鏡面に加工する。接合面33A,34Aは、粗面(表面荒さがJIS規格で▽印程度)でもよいが、鏡面に加工する方が部材の接合強度が高くかつ、接合による変形を小さくすることができるので好ましく、接合面33A,34Aにおける鏡面についての数値的範囲は必ずしも明確でないが、ここではRa0.3以下の数値の平滑度(数値が小さいなれば平滑度は高くなる)を有する表面加工状態を言う。また、流体分割通路部35,36の内面を予め研磨加工して平滑面にして仕上げ加工をしておく。   Then, the joint surfaces 33A and 34A are processed into flat surfaces, preferably mirror surfaces. The joining surfaces 33A and 34A may be rough surfaces (surface roughness is about ▽ in JIS standard), but it is preferable to process into a mirror surface because the joining strength of the member is high and deformation due to joining can be reduced. The numerical range of the mirror surfaces on the joint surfaces 33A and 34A is not necessarily clear, but here refers to a surface processed state having a smoothness with a numerical value of Ra 0.3 or less (the smaller the numerical value, the higher the smoothness). In addition, the inner surfaces of the fluid dividing passage portions 35 and 36 are polished in advance to be smooth and finished.

研磨が終了した後、接合面33A,34A同士を合わせ、公知の位置決め手段等を用いて成形用部材33、型体本体34を上下に重ね合わせ、この成形用部材33、型体本体34を上下に重ね合わせた積層体37を、後述する通電接合装置Tに装着して、接合面33A,34Aを接合する。   After the polishing is completed, the joining surfaces 33A and 34A are aligned with each other, and the molding member 33 and the mold body 34 are overlapped with each other using a known positioning means, and the molding member 33 and the mold body 34 are moved up and down. The laminated body 37 superposed on is attached to an energization joining apparatus T described later, and the joining surfaces 33A and 34A are joined.

前記可動型2は、可動側型板41と、この可動側型板41における固定型1と反対側の面に固定された可動側受け板42と、この可動側受け板42における固定型1と反対側の面にボルト43により固定された可動側取り付け板44とを備えている。この可動側取り付け板44は、射出成形機の可動プラテンP2に取り付けられるものである。前記可動側型板41は、前記可動側受け板42にボルト45により固定されたキャビティ3に臨む成形面46Aを有するキャビティ形成部材としてのコアブロック46と、このコアブロック46の外周側に嵌合して位置し可動側受け板42にボルト47により固定された位置決めリング48とからなっている。前記コアブロック46はキャビティ3を形成するものである。   The movable mold 2 includes a movable mold 41, a movable receiving plate 42 fixed to a surface of the movable mold 41 opposite to the fixed mold 1, and a fixed mold 1 of the movable receiving plate 42. A movable side mounting plate 44 fixed by bolts 43 is provided on the opposite surface. The movable attachment plate 44 is attached to the movable platen P2 of the injection molding machine. The movable side mold plate 41 is fitted to the core block 46 as a cavity forming member having a molding surface 46A facing the cavity 3 fixed to the movable side receiving plate 42 by bolts 45, and the outer peripheral side of the core block 46. And a positioning ring 48 fixed to the movable side receiving plate 42 by a bolt 47. The core block 46 forms the cavity 3.

また、前記コアブロック46における固定型1側の部分の外周部には段差部51が形成されているが、この段差部51には、円環状の外周リング52が前記型開閉方向へ所定範囲摺動自在に嵌合されている。尚、53は、外周リング52を抜け止めするボルトである。また、外周リング52は、スプリング55により固定型1側へ付勢されている。そして、外周リング52は、型閉時に前記固定型1側の外周スタンパー押え23に突き当たるものである。   Further, a stepped portion 51 is formed on the outer peripheral portion of the core block 46 on the fixed mold 1 side, and an annular outer peripheral ring 52 is slid within a predetermined range in the mold opening / closing direction. It is movably fitted. Reference numeral 53 denotes a bolt that prevents the outer ring 52 from coming off. The outer ring 52 is urged toward the fixed mold 1 by a spring 55. The outer peripheral ring 52 comes into contact with the outer peripheral stamper presser 23 on the fixed mold 1 side when the mold is closed.

また、図2に示すように、前記コアブロック46の中央部における固定型1側の面に形成された凹部61内には、ほぼ円環状のエア吹き出し入子62が嵌合されてボルト63により固定されている。このエア吹き出し入子62と凹部61の内周面との間の隙間には、コアブロック46や可動側受け板42内に形成された空気通路64が連通している。   Further, as shown in FIG. 2, a substantially annular air blowing insert 62 is fitted into a recess 61 formed on the surface of the fixed block 1 at the center of the core block 46, and is fastened by a bolt 63. It is fixed. An air passage 64 formed in the core block 46 and the movable side receiving plate 42 communicates with the gap between the air blowing insert 62 and the inner peripheral surface of the recess 61.

また、前記エア吹き出し入子62内にはほぼ円筒状の突き出しスリーブ66が前記型開閉方向へ所定範囲摺動自在に嵌合されている。この突き出しスリーブ66は、前記コアブロック46を貫通し一端側が可動側受け板42内に位置しているが、この可動側受け板42との間にはスライドベアリング67が介在させてある。さらに、突き出しスリーブ66は、スプリング68により固定型1と反対側へ付勢されている。尚、69は、突き出しスリーブ66の摺動範囲を規制するために可動側受け板42内に固定された規制板である。   Further, a substantially cylindrical protruding sleeve 66 is fitted in the air blowing insert 62 so as to be slidable within a predetermined range in the mold opening / closing direction. The protruding sleeve 66 passes through the core block 46 and has one end located in the movable receiving plate 42. A slide bearing 67 is interposed between the protruding sleeve 66 and the movable receiving plate 42. Further, the protruding sleeve 66 is urged to the opposite side of the fixed mold 1 by a spring 68. Reference numeral 69 denotes a restricting plate fixed in the movable side receiving plate 42 in order to restrict the sliding range of the protruding sleeve 66.

また、前記突き出しスリーブ66内にはほぼ円筒状のゲートカットスリーブ71が前記型開閉方向へ所定範囲摺動自在に嵌合されている。このゲートカットスリーブ71は、突き出しスリーブ66および前記規制板69を貫通しているが、ゲートカットスリーブ71と突き出しスリーブ66との間にはスライドベアリング72が介在させてある。そして、ゲートカットスリーブ71の一端部に形成されたフランジ部73が前記規制板69よりも可動側取り付け板44側に位置している。さらに、ゲートカットスリーブ71は、スプリング74により固定型1と反対側へ付勢されている。   Further, a substantially cylindrical gate cut sleeve 71 is fitted in the protruding sleeve 66 so as to be slidable within a predetermined range in the mold opening / closing direction. The gate cut sleeve 71 passes through the protruding sleeve 66 and the regulating plate 69, but a slide bearing 72 is interposed between the gate cut sleeve 71 and the protruding sleeve 66. A flange 73 formed at one end of the gate cut sleeve 71 is located on the movable attachment plate 44 side with respect to the restriction plate 69. Further, the gate cut sleeve 71 is biased to the opposite side of the fixed mold 1 by a spring 74.

また、前記可動側取り付け板44には、突き出し板76が前記型開閉方向へ所定範囲摺動自在に支持されている。この突き出し板76は、スプリング77により固定型1と反対側へ付勢されている。そして、突き出し板76に固定された突き出しピン78が前記ゲートカットスリーブ71内に摺動自在に嵌合されている。また、突き出し板76に固定された連動ピン79が前記ゲートカットスリーブ71のフランジ部73および規制板69を貫通して前記突き出しスリーブ66に突き当たるようになっている。さらに、前記ゲートカットスリーブ71のフランジ部73に突設された受け部80が前記突き出し板76を摺動自在に貫通している。   In addition, a protruding plate 76 is supported on the movable side mounting plate 44 so as to be slidable within a predetermined range in the mold opening / closing direction. The protruding plate 76 is urged to the opposite side of the fixed mold 1 by a spring 77. An ejection pin 78 fixed to the ejection plate 76 is slidably fitted into the gate cut sleeve 71. Further, the interlocking pin 79 fixed to the protruding plate 76 penetrates the flange portion 73 of the gate cut sleeve 71 and the restricting plate 69 and hits the protruding sleeve 66. Further, a receiving portion 80 projecting from the flange portion 73 of the gate cut sleeve 71 penetrates the protruding plate 76 in a slidable manner.

さらに、前記コアブロック46内には、冷却水などの冷却液を通すための流体通路81が軸線Zを中心にほぼ渦巻き状に形成されている。また、この流体通路81に連通する入口側流体通路82が前記可動側受け板42内に形成されている。   Further, in the core block 46, a fluid passage 81 for allowing a cooling liquid such as cooling water to pass therethrough is formed in a substantially spiral shape about the axis Z. Further, an inlet side fluid passage 82 communicating with the fluid passage 81 is formed in the movable side receiving plate 42.

さらに、前記コアブロック46は、成形面46Aを有する成形用部材83と、該成形用部材83よりキャビティ3の反対側に位置して可動側取り付け板44と一体的となって可動プラテン、ひいては成形機に取り付けられる型体本体84とを備えており、これら成形用部材83と型体本体84のそれぞれの接合面83A,84Aの両方には、断面がほぼ半割り円形の流体分割通路部85,86とを備えており、これら流体分割通路部85,86がそれぞれ合致すると流体通路81の断面がほぼ円形に形成されるようになっている。   Further, the core block 46 includes a molding member 83 having a molding surface 46A, a movable platen integrated with the movable side mounting plate 44 located on the opposite side of the cavity 3 from the molding member 83, and thus molding. A mold body 84 to be attached to the machine, and both of the molding member 83 and the joint surfaces 83A and 84A of the mold body 84 have fluid dividing passages 85 each having a substantially half-circular cross section. 86. When the fluid dividing passages 85 and 86 are respectively matched, the cross section of the fluid passage 81 is formed in a substantially circular shape.

そして、接合面83A,84Aを平坦面に加工し、好ましくは鏡面に加工する。接合面83A,84Aは、粗面(表面荒さがJIS規格で▽印程度)でもよいが、鏡面に加工する方が部材の接合強度が高くかつ、接合による変形を小さくすることができるので好ましく、接合面83A,84Aにおける鏡面についての数値的範囲は必ずしも明確でないが、ここではRa0.3以下の数値の平滑度(数値が小さいなれば平滑度は高くなる)を有する表面加工状態を言う。また、流体分割通路部85,86の内面を予め研磨加工して平滑面にして仕上げ加工をしておく。   Then, the joint surfaces 83A and 84A are processed into flat surfaces, preferably mirror surfaces. The joint surfaces 83A and 84A may be rough surfaces (surface roughness is about ▽ in JIS standard), but it is preferable to process the mirror surface because the joint strength of the member is high and deformation due to the joint can be reduced. The numerical range of the mirror surfaces at the joint surfaces 83A and 84A is not necessarily clear, but here refers to a surface processed state having a numerical smoothness of Ra 0.3 or less (the smaller the numerical value, the higher the smoothness). Further, the inner surfaces of the fluid dividing passage portions 85 and 86 are polished in advance to make a smooth surface and finished.

研磨が終了した後、接合面83A,84A同士を合わせ、公知の位置決め手段等を用いて成形用部材83、型体本体84を上下に重ね合わせ、この成形用部材83、型体本体84を上下に重ね合わせた積層体87を、後述する通電接合装置Tに装着して、接合面33A,34Aを接合する。   After the polishing is completed, the joining surfaces 83A and 84A are aligned with each other, and the molding member 83 and the mold body main body 84 are vertically stacked using a known positioning means or the like, and the molding member 83 and the mold body main body 84 are moved up and down. The laminated body 87 superposed on is attached to an energization joining device T described later, and the joining surfaces 33A and 34A are joined.

そして、前記固定型1側のスプルーブッシュ8の先端面外周部と可動型2側のゲートカットスリーブ71の先端面外周部との間に、固定型1側のスプルー10をキャビティ3に連通させるゲート88が形成されるようになっている。また、ゲートカットスリーブ71がスプルーブッシュ8の凹部28に嵌合することにより、ゲート88においてスプルー10内の成形材料である樹脂とキャビティ3内の樹脂すなわち光ディスクとが切断され、この光ディスクの中央部の開口孔が形成されるようになっている。したがって、固定型1においては、キャビティブロック17に加えて内周スタンパー押え26およびスプルーブッシュ8の先端面外周部によって、光ディスクが形成される。また、可動型2においては、コアブロック46および外周リング52に加えてエア吹き出し入子62および突き出しスリーブ66によって光ディスクが形成される。   Then, the gate that allows the sprue 10 on the fixed die 1 side to communicate with the cavity 3 between the outer peripheral portion on the tip end surface of the sprue bush 8 on the fixed die 1 side and the outer peripheral portion on the tip end surface of the gate cut sleeve 71 on the movable die 2 side. 88 is to be formed. Further, when the gate cut sleeve 71 is fitted into the recess 28 of the sprue bushing 8, the resin as the molding material in the sprue 10 and the resin in the cavity 3, that is, the optical disk are cut at the gate 88, and the central part of the optical disk is cut. The opening hole is formed. Therefore, in the fixed mold 1, an optical disc is formed by the inner peripheral stamper presser 26 and the outer peripheral portion of the front end surface of the sprue bushing 8 in addition to the cavity block 17. In the movable mold 2, an optical disk is formed by the air blowing insert 62 and the protruding sleeve 66 in addition to the core block 46 and the outer peripheral ring 52.

図3には本例の通電接合装置の全体構成を示してある。この図に示すように、本例の通電接合装置Tは、通電接合機90と熱処理機100を備えている。通電接合機90は、基台92の上に絶縁部材を介して公知の方法で基台92と電気的に絶縁して固定された下側通電電極93と、基台92の上方に配置され当該基台92に公知の方法で支持された流体圧シリンダ94と、流体圧シリンダ94のピストンロッド95の先端に絶縁部材を介して公知の方法でピストンロッド95と電気的に絶縁して固定された上側通電電極96とを備えている。   FIG. 3 shows the overall configuration of the current-carrying apparatus of this example. As shown in this figure, the energization joining apparatus T of this example includes an energization joining machine 90 and a heat treatment machine 100. The energization bonding machine 90 is disposed above the base 92 and the lower energizing electrode 93 that is electrically insulated from the base 92 and fixed on the base 92 by a known method via an insulating member. A fluid pressure cylinder 94 supported on the base 92 by a known method, and fixed to the tip of the piston rod 95 of the fluid pressure cylinder 94 by being electrically insulated from the piston rod 95 by a known method via an insulating member. An upper energizing electrode 96 is provided.

流体圧シリンダ94は被接合材を押圧する加圧装置として機能する。加圧装置としては流体圧シリンダの代わりに電動モータ、ねじ機構などを用いて上側通電電極96を昇降させるようにしてもよい。上側および下側の通電電極93,96は、電源装置97に電気的に接続されており、電源装置97は、直流のパルス電流を供給できるようになっている。本例の電源装置97の供給電力は、電圧が100V以下で、電流が2000から5000Aの範囲内の大電流電力である。尚、本例では上側通電電極96を移動可能としてあるが、逆に下側通電電極93を移動可能とすることもでき、また、双方を移動可能にすることも可能である。   The fluid pressure cylinder 94 functions as a pressurizing device that presses the material to be joined. As the pressurizing device, the upper energizing electrode 96 may be moved up and down using an electric motor, a screw mechanism or the like instead of the fluid pressure cylinder. The upper and lower energization electrodes 93 and 96 are electrically connected to a power supply device 97, and the power supply device 97 can supply a DC pulse current. The power supply of the power supply device 97 of this example is a large current power having a voltage of 100 V or less and a current in the range of 2000 to 5000A. In this example, the upper energizing electrode 96 is movable, but conversely, the lower energizing electrode 93 can be movable, or both can be moved.

次に、熱処理機100は公知の構造の真空熱処理炉を備えた構成となっている。尚、通電接合機90と熱処理機100を一体化した装置構成とすることもでき、また、これらを移動可能な構造とすることもできる。勿論、これらを別個に配置してもよい。   Next, the heat treatment machine 100 is configured to include a vacuum heat treatment furnace having a known structure. It should be noted that the current-carrying machine 90 and the heat treatment machine 100 can be integrated into an apparatus configuration, or these can be moved. Of course, these may be arranged separately.

次に、この構造の通電接合装置Tを用いて、積層体37を構成している成形用部材33、型体本体34を相互に接合する手順を説明する。   Next, a procedure for mutually joining the molding member 33 and the mold body 34 constituting the laminated body 37 using the current-carrying joining apparatus T having this structure will be described.

まず、通電電極93,96の間に積層体37を挟み、流体圧シリンダ97を駆動して、ピストンロッド95により上側通電電極96を降下させる。この結果、積層体37Sは、通電電極93,96の間に挟まれて、所定の押圧力で押し付けられた状態になる。成形用部材33、型体本体34の接合面33A,34Aとの間に所定の押圧力が作用した状態になる。この押圧力は部材の材質によっても異なるが50メガパスカル以下でよい。   First, the laminate 37 is sandwiched between the energizing electrodes 93 and 96, the fluid pressure cylinder 97 is driven, and the upper energizing electrode 96 is lowered by the piston rod 95. As a result, the laminated body 37S is sandwiched between the energizing electrodes 93 and 96 and is pressed with a predetermined pressing force. A predetermined pressing force is applied between the molding member 33 and the joint surfaces 33A and 34A of the mold body 34. Although this pressing force varies depending on the material of the member, it may be 50 megapascals or less.

この結果、各接合面33A,34Aの間が互いに接合された状態になる。この接合の正確な原理は必ずしも明確ではないが、接合面間での放電プラズマの発生、ジュール熱による熱拡散効果、電場による電解拡散効果などにより接合されるものと考えられる。   As a result, the joint surfaces 33A and 34A are joined to each other. Although the exact principle of this joining is not necessarily clear, it is thought that joining is performed by the generation of discharge plasma between joining surfaces, the thermal diffusion effect by Joule heat, the electrolytic diffusion effect by an electric field, and the like.

ここで、積層体37に所定の値の直流電流のみを流しても、また、直流電流およびパルス電流の双方を同時に流しても、接合面33A,34A間が互いに接合された状態を形成できることが確認された。   Here, even when only a direct current of a predetermined value is passed through the laminated body 37, or when both a direct current and a pulse current are passed simultaneously, a state where the joint surfaces 33A and 34A are joined to each other can be formed. confirmed.

このようにして各接合面33A,34Aが接合された状態は、接合強度の点からはまだ完全なものではない。そこで、この接合状態を仮接合状態と呼び、仮接合状態にある積層体37を仮接合体と呼ぶ。   The state in which the respective joint surfaces 33A and 34A are joined in this manner is not yet complete from the viewpoint of joint strength. Therefore, this bonded state is referred to as a temporary bonded state, and the laminate 37 in the temporary bonded state is referred to as a temporary bonded body.

この仮接合体を、熱処理機100の熱処理炉内において不活性雰囲気中で熱処理する。熱処理温度および時間は部材の材質および大きさによって異なるが、熱処理温度は、接合すべき部材の最も低い融点の55%〜85%の温度範囲とすることが望ましい。相互拡散熱処理を行うことにより、仮接合状態の接合面33A,34A間の接合が完全なものになって完全接合体になる。すなわち、接合面33A,34A間の接合強度が部材の材質強度に匹敵する値になったキャビティブロック17が得られる。尚、相互拡散処理を行った後、なましを行う。   This temporary joined body is heat-treated in an inert atmosphere in a heat treatment furnace of the heat treatment machine 100. The heat treatment temperature and time vary depending on the material and size of the member, but the heat treatment temperature is desirably in the temperature range of 55% to 85% of the lowest melting point of the members to be joined. By performing the interdiffusion heat treatment, the bonding between the bonded surfaces 33A and 34A in the temporarily bonded state becomes perfect and becomes a complete bonded body. That is, the cavity block 17 in which the bonding strength between the bonding surfaces 33A and 34A is equal to the material strength of the member is obtained. Note that annealing is performed after the mutual diffusion processing is performed.

本発明で用いる接合方法及び装置で使用する電流は、直流電流、パルス電流、及び直流電流とパルス電流との組み合わせ電流であるが、このうちパルス電流及び直流電流とパルス電流の組み合わせ電流を使用する場合にはパルス電流が必ず流されるのでパルス通電接合方法及び装置と呼ぶこともできる。   The current used in the bonding method and apparatus used in the present invention is a direct current, a pulse current, and a combination current of a direct current and a pulse current. Among these, a pulse current and a combination current of a direct current and a pulse current are used. In some cases, a pulse current always flows, so it can be called a pulse energization joining method and apparatus.

また、この接合方法では、次の様な効果を奏する。従来の放電プラズマ焼結法のようにグラファイト製の型を用いる必要がない。溶接補助材を全く使用せずに接合が可能である。接合面の全面を、かつ全面に渡って均一に接合できる。接合面を平面にするだけで容易に接合できる。接合面の平面精度を上げることによって接合強度を高くできる。接合強度を接合される金属部材の材質の強度と同一にできる。接合部の変形を微小にして接合できる。接合部周辺における溶接補助材、蝋の削除のような後加工が不要である。微細部分の接合も簡単に行うことができる。被接合部品を部品として完成してから接合できるので複雑な形状のものを接合により組立可能である。被接合部材の性質を損なうことなく接合することが可能である。異なる材質の金属部材を容易に接合可能である。接合部以外の部分温度を適正に制御して接合可能である。異なる形状の複数の部品を同時に接合可能である。   Moreover, this joining method has the following effects. There is no need to use a graphite mold unlike the conventional spark plasma sintering method. Joining is possible without using any welding aids. The entire joining surface can be joined uniformly over the entire surface. It can be easily joined only by making the joining surface flat. The joint strength can be increased by increasing the planar accuracy of the joint surface. The joint strength can be made the same as the strength of the material of the metal member to be joined. Bonding can be performed with a small deformation of the bonding portion. There is no need for post-processing such as removal of welding aids and wax around the joint. It is possible to easily join the fine portions. Since the parts to be joined can be joined after being completed as parts, those having complicated shapes can be assembled by joining. It is possible to join without impairing the properties of the members to be joined. Metal members of different materials can be easily joined. Bonding is possible by appropriately controlling the temperature of the portion other than the bonding portion. A plurality of parts having different shapes can be joined simultaneously.

上述した熱処理を経て、断面がほぼ円形をなした流体通路31を備えたキャビティブロック17が得られる。このキャビティブロック17は、成形用部材33と型体本体34を接合することにより、それらの接合面33A,34A間に流体通路31が形成されている。従って、従来のような切削により製造する場合に比べて、簡単に製造できる。すなわち、接合面33A,34Aに、研削などにより断面がほぼ半割り円形の流体分割通路部35,36を構成する溝を形成すればよいので、それを曲線状に形成することも、また、その内面に鏡面仕上げを施すことも容易である。しかも、溶接補助材をまったく使用せずに接合できるから、接合後、材料通路21に溶接補助材が出ることがなく、断面がほぼ半割り円形の流体分割通路部35,36の内面を平滑に保つことができる。   Through the heat treatment described above, the cavity block 17 having the fluid passage 31 having a substantially circular cross section is obtained. In the cavity block 17, a fluid passage 31 is formed between the joining surfaces 33A and 34A by joining the molding member 33 and the mold body 34. Therefore, it can manufacture easily compared with the case where it manufactures by the conventional cutting. In other words, the grooves forming the fluid dividing passage portions 35 and 36 having a substantially half-circular cross section may be formed on the joint surfaces 33A and 34A by grinding or the like. It is also easy to give a mirror finish to the inner surface. Moreover, since it is possible to join without using any welding auxiliary material, the welding auxiliary material does not come out in the material passage 21 after joining, and the inner surfaces of the fluid dividing passage portions 35 and 36 having a substantially half-circular cross section are smoothed. Can keep.

また、本例の方法によれば、成形用部材33と型体本体34の接合強度も、その母材強度程度の強さにでき、何ら不具合が発生しない。   In addition, according to the method of this example, the bonding strength between the molding member 33 and the mold body 34 can be made as strong as the strength of the base material, and no problem occurs.

さらに、流体分割通路部35,36の内面の鏡面加工も、成形用部材33と型体本体34を接合する前に行えばよいので、極めて簡単にできる。
また、コアブロック46も同様に製造される。
Further, the mirror finishing of the inner surfaces of the fluid dividing passage portions 35 and 36 can be performed very simply because it is performed before the molding member 33 and the mold body 34 are joined.
The core block 46 is manufactured in the same manner.

次に前記構成についてその作用を説明する。固定プラテンに固定型1が取り付けられ、可動プラテンに可動型2が取り付けられている状態で、型閉めする。尚、このように型閉した状態で、可動型2の外周リング52が固定型1の外周スタンパー押え23に突き当たる。そして、射出成形機のノズルからスプルー10へ熱可塑性の成形材料である溶融した熱可塑性樹脂を射出する。この樹脂は、スプルー10からゲート88を通ってキャビティ3内に流入する。尚、キャビティ3の中央部に開口したゲート88からキャビティ3内に樹脂が注入されるとき、この樹脂は、ゲート88すなわちキャビティ3の中央部から外周部へと放射状に広り、キャビティ3の外周部へは最後に樹脂が到達する。   Next, the operation of the above configuration will be described. The mold is closed with the fixed mold 1 attached to the fixed platen and the movable mold 2 attached to the movable platen. In this state, the outer peripheral ring 52 of the movable mold 2 abuts on the outer peripheral stamper presser 23 of the fixed mold 1 in the closed state. Then, a molten thermoplastic resin, which is a thermoplastic molding material, is injected from the nozzle of the injection molding machine to the sprue 10. This resin flows from the sprue 10 through the gate 88 into the cavity 3. When resin is injected into the cavity 3 from the gate 88 opened at the center of the cavity 3, the resin spreads radially from the gate 88, that is, from the center of the cavity 3 to the outer periphery, and the outer periphery of the cavity 3. Finally, the resin reaches the part.

そして、キャビティ3内に樹脂が充填された後、射出成形機側に設けられた図示していない押圧ロッドによってゲートカットスリーブ71の受け部80が固定型1の方へ押されることにより、ゲートカットスリーブ71が固定型1側へ移動し、この固定型1のスプルーブッシュ8の凹部28に嵌合する。これにより、ゲート88においてスプルー10内の樹脂とキャビティ3内の樹脂すなわち光ディスクとが切断される。また、固定型1および可動型2の型締力が強められることにより、コアブロック46を含めて可動型2のほぼ全体が固定型1の方へ移動してキャビティ3内の樹脂が圧縮される。これにより、スタンパ27の凹凸に応じた記憶情報が光ディスクに確実に転写される。   Then, after the cavity 3 is filled with the resin, the receiving portion 80 of the gate cut sleeve 71 is pushed toward the fixed mold 1 by a pressing rod (not shown) provided on the injection molding machine side, whereby the gate cut is performed. The sleeve 71 moves to the fixed mold 1 side and fits into the recess 28 of the sprue bush 8 of the fixed mold 1. As a result, the resin in the sprue 10 and the resin in the cavity 3, that is, the optical disk are cut at the gate 88. Further, by increasing the clamping force of the fixed mold 1 and the movable mold 2, almost the entire movable mold 2 including the core block 46 moves toward the fixed mold 1 and the resin in the cavity 3 is compressed. . Thereby, the stored information corresponding to the unevenness of the stamper 27 is reliably transferred to the optical disc.

さらに、キャビティ3内の樹脂が冷却して固化することによって光ディスクが成形される。尚、入口側流体通路32を介して冷却液がほぼ渦巻き状の流体通路31に流入し、そしてキャビティブロック17と熱交換して該キャビティブロック17の温度を低下する。さらに液体は図示しない出口より排水される。この際、流体通路31の断面はほぼ円形になって、流路面積が狭く形成されているので、溝状の従来のような流路面積が広いものに比較して流速が早くなり、熱交換効率を向上することができる。   Further, the resin in the cavity 3 is cooled and solidified to form an optical disk. Note that the coolant flows into the substantially spiral fluid passage 31 via the inlet-side fluid passage 32 and exchanges heat with the cavity block 17 to lower the temperature of the cavity block 17. Further, the liquid is drained from an outlet (not shown). At this time, since the cross section of the fluid passage 31 is substantially circular and the flow passage area is narrow, the flow velocity is faster than that of a conventional groove-like flow passage area and heat exchange is performed. Efficiency can be improved.

同様に流体通路81を介して冷却用の液体がほぼ渦巻き状の流体通路81に流入し、そしてコアブロック46と熱交換して該コアブロック46の温度を低下する。さらに流体は図示しない出口より排水される。この際、流体通路81の断面はほぼ円形になっているので、流路面積が狭く形成されているので流速が早くなり、熱交換効率を向上することができる。   Similarly, the cooling liquid flows into the substantially spiral fluid passage 81 through the fluid passage 81 and exchanges heat with the core block 46 to lower the temperature of the core block 46. Further, the fluid is drained from an outlet (not shown). At this time, since the cross section of the fluid passage 81 is substantially circular, the flow passage area is formed narrow, so that the flow velocity is increased and the heat exchange efficiency can be improved.

こうして光ディスクを成形した後、固定型1と可動型2とを型開される。この型開に伴い、成形された光ディスクおよびスプルー10内で固化した樹脂はまず固定型1から離れる。ついで、射出成形機側に設けられた図示していない押圧ロッドによって突き出し板76が固定型1の方へ押されることにより、突き出し板76と共に突き出しピン78が固定型1側へ移動し、スプルー10内で固化した樹脂を突き出して可動型2から離型させる。また、突き出し板76に固定された連動ピン79によって押されることにより突き出しスリーブ66が固定型1側へ移動し、光ディスクの内周部を突き出して可動型2から離型させる。離型時には、空気通路64から供給される空気がエア吹き出し入子62とコアブロック46との間の隙間から吹き出すことにより、光ディスクと可動型2との間の真空破壊が行われる。そして、離型した光ディスクは、図示していない取り出しロボットにより取り出される。こうして成形されるディスクは例えばDVDにおいては接着材によって二枚の光ディスクを貼り合わせる。   After forming the optical disk in this way, the fixed mold 1 and the movable mold 2 are opened. With this mold opening, the molded optical disk and the resin solidified in the sprue 10 are first separated from the fixed mold 1. Next, when the ejection plate 76 is pushed toward the fixed mold 1 by a not-shown pressing rod provided on the injection molding machine side, the ejection pin 78 moves to the fixed mold 1 side together with the ejection plate 76, and the sprue 10 The resin solidified inside is protruded and released from the movable mold 2. Further, when pushed by the interlocking pin 79 fixed to the ejecting plate 76, the ejecting sleeve 66 moves to the fixed mold 1 side, and the inner peripheral portion of the optical disk is ejected to be released from the movable mold 2. At the time of mold release, the air supplied from the air passage 64 is blown out from the gap between the air blow-in insert 62 and the core block 46, whereby the vacuum break between the optical disc and the movable mold 2 is performed. Then, the released optical disk is taken out by a take-out robot (not shown). For example, in the case of a DVD, two optical disks are bonded together by an adhesive.

以上のように実施例では、断面がほぼ半割り円形の流体分割通路部35,36,85,86を備え、流体分割通路部35,36,85,86がそれぞれ合致すると流体通路31,81の断面がほぼ円形に形成されることにより、冷却液の流路における面積を狭くして流速を速くして熱交換効率を向上できると共に、断面をほぼ円形としたことで流体抵抗も低減することができる。しかも、溶接補助材を使用せずに成形用部材33,83と型体本体34,84を接合でき、しかも、接合面33A,34A,83A,84Aの全面を均一に接合することができる。このように溶接補助材を使用しないから、流体通路31,81に溶接補助材が出ることがなく、流体通路31,81の内面を平滑に保つことができる。   As described above, in the embodiment, the fluid dividing passage portions 35, 36, 85, 86 having a substantially half-circular cross section are provided, and when the fluid dividing passage portions 35, 36, 85, 86 are matched, the fluid passages 31, 81 are provided. Since the cross section is formed in a substantially circular shape, the area of the coolant flow path can be narrowed to increase the flow velocity and improve the heat exchange efficiency, and the fluid resistance can also be reduced by making the cross section substantially circular. it can. In addition, the molding members 33 and 83 and the mold bodies 34 and 84 can be joined without using a welding auxiliary material, and the entire joining surfaces 33A, 34A, 83A and 84A can be joined uniformly. Since no welding auxiliary material is used in this way, no welding auxiliary material appears in the fluid passages 31 and 81, and the inner surfaces of the fluid passages 31 and 81 can be kept smooth.

また、キャビティブロック17、コアブロック46を2分割したものであるから、分割状態において、流体分割通路部35,36,85,86の内面の研磨を簡便に行うことができ、流体分割通路部35,36,85,86の内面を研磨した成形用部材33,83と型体本体34,84を接合することにより、平滑な内面の流体通路31,81を有するキャビティブロック17、コアブロック46を簡便に形成できる。   Further, since the cavity block 17 and the core block 46 are divided into two parts, the inner surfaces of the fluid dividing passage parts 35, 36, 85, 86 can be easily polished in the divided state, and the fluid dividing passage part 35 is obtained. , 36, 85, 86 by molding members 33, 83, and mold body bodies 34, 84, so that the cavity block 17 and the core block 46 having fluid passages 31, 81 with smooth inner surfaces can be simplified. Can be formed.

さらに製造方法において、成形用部材33,83と型体本体34,84間に流体通路31,81を形成し、接合面33A,34A,83A,84Aを所定の圧力で押し付け、この押し付けた状態を保持しながら、成形用部材33,83と型体本体34,84に、直流電流及び/又はパルス電流を流して、成形用部材33,83と型体本体34,84の接合面33A,34A,83A,84Aを仮接合し、仮接合された状態の成形用部材33,83と型体本体34,84を所定の雰囲気温度で熱処理するから、溶接補助材をまったく使用せずに接合でき、成形用部材33,83と型体本体34,84を強固に接合でき、しかも、接合面33A,34A,83A,84Aの全面を均一に接合することができる。そして、溶接補助材を使用しないから、キャビティブロック17、コアブロック46の流体通路31,81に溶接補助材が出ることがなく、流体通路31,81の内面が平滑なものが得られる。   Further, in the manufacturing method, fluid passages 31, 81 are formed between the molding members 33, 83 and the mold bodies 34, 84, and the joining surfaces 33A, 34A, 83A, 84A are pressed at a predetermined pressure, and this pressed state is obtained. While holding, a direct current and / or a pulse current is passed through the molding members 33 and 83 and the mold bodies 34 and 84 to join the molding surfaces 33A and 34A, 83A and 84A are temporarily joined, and the molding members 33 and 83 and the mold bodies 34 and 84 in the temporarily joined state are heat-treated at a predetermined atmospheric temperature, so that they can be joined without using any welding auxiliary material. The members 33, 83 and the mold bodies 34, 84 can be firmly bonded, and the entire surfaces of the bonding surfaces 33A, 34A, 83A, 84A can be bonded uniformly. Since no welding auxiliary material is used, the welding auxiliary material does not come out in the fluid passages 31 and 81 of the cavity block 17 and the core block 46, and a smooth inner surface of the fluid passages 31 and 81 is obtained.

また、流体分割通路部35,36,85,86を研磨した後、仮接合を行うから、研磨後に仮接合を行っても、溶接補助材を用いないため、流体通路31,81の内面を平滑に保つことができる。   In addition, since the fluid dividing passage portions 35, 36, 85, and 86 are ground and then temporarily joined, even if temporarily joined after grinding, no welding auxiliary material is used, so the inner surfaces of the fluid passages 31 and 81 are smoothed. Can be kept in.

また、前記圧力を50メガパスカル以下とするから、加圧のための装置の大型化を招くことがない。   Moreover, since the said pressure shall be 50 megapascals or less, the enlargement of the apparatus for pressurization is not caused.

また、前記熱処理を不活性雰囲気中で行うから、接合箇所の品質が安定する。   In addition, since the heat treatment is performed in an inert atmosphere, the quality of the joint portion is stabilized.

また、前記熱処理の温度を接合すべき部材の融点の55%〜85%の温度範囲とするから、熱処理上から好ましく、良好な接合状態が得られる。   Moreover, since the temperature of the heat treatment is set to a temperature range of 55% to 85% of the melting point of the members to be joined, it is preferable from the viewpoint of heat treatment, and a good joining state can be obtained.

以上のように本発明にかかる光ディスクのほかにも、比較的薄い製品などの用途にも適用できる。   As described above, in addition to the optical disk according to the present invention, it can be applied to uses such as relatively thin products.

本発明の実施例1を示す断面図である。It is sectional drawing which shows Example 1 of this invention. 本発明の実施例1を示すキャビティまわりの断面図である。It is sectional drawing around the cavity which shows Example 1 of this invention. 本発明の実施例1を示す通電接合装置の概略構成図である。It is a schematic block diagram of the electricity joining apparatus which shows Example 1 of this invention. 本発明の実施例1を示すキャビティブロック側の流体通路の断面図である。It is sectional drawing of the fluid passage by the side of the cavity block which shows Example 1 of this invention. 本発明の実施例1を示すコアブロック側の流体通路の断面図である。It is sectional drawing of the fluid passage by the side of the core block which shows Example 1 of this invention.

符号の説明Explanation of symbols

3 キャビティ
17 キャビティブロック(型体)
17A 成形面
31 流体通路
33 成形用部材
33A,34A 接合面
34 型体本体
35,36 流体分割通路部
46 コアブロック
46A 成形面
81 流体通路
83 成形用部材
83A,84A 接合面
84 型体本体
85,86 流体分割通路部
3 cavity
17 Cavity block (mold)
17A molding surface
31 Fluid passage
33 Molding parts
33A, 34A joint surface
34 body
35, 36 Fluid dividing passage
46 Core block
46A molding surface
81 Fluid passage
83 Molding parts
83A, 84A joint surface
84 body
85, 86 Fluid dividing passage

Claims (7)

互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に流体通路を設けた金型装置において、前記型体は前記キャビティに臨む成形面を有する成形用部材と、該成形用部材に固定され成形機側に装着される型体本体と、前記成形用部材と型体本体の接合面の両方にほぼ円形を半割りした断面がほぼ半円形の流体分割通路部とを備え、前記成形用部材と型体本体の接合面を所定の圧力で押し付け、この押し付けた状態を保持しながら、前記成形用部材と型体本体に、直流電流及び/又はパルス電流を流して、前記成形用部材と型体本体の接合面を仮接合し、仮接合された状態の前記成形用部材と型体本体を所定の雰囲気温度で熱処理して前記成形用部材と型体本体間に前記流体通路を形成したことを特徴とする金型装置。   In a mold apparatus comprising a pair of mold bodies that open and close each other to form a cavity between the mold bodies when closed, and in which a fluid passage is provided in the mold body, the mold body has a molding surface facing the cavity. A fluid dividing member having a substantially semicircular cross section obtained by dividing a substantially circular shape into both a member, a mold body fixed to the molding member and mounted on the molding machine side, and a joining surface between the molding member and the mold body body; A passage portion, pressing a joint surface between the molding member and the mold body with a predetermined pressure, and holding the pressed state, a direct current and / or a pulse current is applied to the molding member and the mold body. The molding member and the mold body are temporarily joined to each other, and the molding member and the mold body in the temporarily joined state are heat-treated at a predetermined atmospheric temperature to form the molding member and the mold body. The fluid passage is formed between the main bodies. Mold apparatus for. 前記成形用部材はキャビティ形成部材を分割して形成されたものであることを特徴とする請求項1記載の金型装置。   2. The mold apparatus according to claim 1, wherein the molding member is formed by dividing a cavity forming member. 互いに開閉して型閉時に相互間にキャビティを形成する一対の型体を備えると共に、前記型体に流体通路を設けた金型装置の製造方法において、前記型体は前記キャビティに臨む成形面を有する成形用部材と、該成形用部材に固定され成形機側に装着される型体本体と、前記成形用部材と型体本体の接合面の両方にほぼ円形を半割りした断面がほぼ半円形の流体分割通路部とを備え、前記成形用部材と型体本体にそれぞれ前記流体分割通路部を形成した後、前記成形用部材と型体本体の接合面を所定の圧力で押し付け、この押し付けた状態を保持しながら、前記成形用部材と型体本体に、直流電流及び/又はパルス電流を流して、前記成形用部材と型体本体の接合面を仮接合し、仮接合された状態の前記成形用部材と型体本体を所定の雰囲気温度で熱処理して前記成形用部材と型体本体間に前記流体通路を形成したことを特徴とする金型装置の製造方法。   In a method of manufacturing a mold apparatus having a pair of mold bodies that open and close to each other and form a cavity between the mold bodies when the mold is closed, the mold body has a molding surface facing the cavity. A molding member having a mold, a mold body fixed to the molding member and mounted on the molding machine side, and a substantially circular half-section of the joint surface between the molding member and the mold body. And forming the fluid dividing passages in the molding member and the mold body, respectively, and then pressing the joining surface of the molding member and the mold body with a predetermined pressure. While maintaining the state, a direct current and / or a pulse current is passed through the molding member and the mold body to temporarily join the joining surfaces of the molding member and the mold body, and the temporarily joined state. Predetermined atmosphere between molding member and mold body Production process of the mold apparatus, characterized in that the formation of the fluid path between said shaping member was heat-treated at every mold body. 前記流体分割通路部を研磨した後、前記仮接合を行うことを特徴とする請求項3記載の金型装置の製造方法。   4. The method of manufacturing a mold apparatus according to claim 3, wherein the temporary joining is performed after the fluid dividing passage portion is polished. 前記圧力を50メガパスカル以下とすることを特徴とする請求項3又は4に記載の金型装置の製造方法。   The method for manufacturing a mold apparatus according to claim 3 or 4, wherein the pressure is 50 megapascals or less. 前記熱処理を不活性雰囲気中で行うことを特徴とする請求項3〜5のいずれか1項に記載の金型装置の製造方法。   The method for manufacturing a mold apparatus according to claim 3, wherein the heat treatment is performed in an inert atmosphere. 前記熱処理の温度を接合すべき部材の融点の55%〜85%の温度範囲とする請求項3〜6のいずれか1項に記載の金型装置の製造方法。   The method for manufacturing a mold apparatus according to any one of claims 3 to 6, wherein the temperature of the heat treatment is in a temperature range of 55% to 85% of a melting point of members to be joined.
JP2004156800A 2004-05-26 2004-05-26 Molding equipment and its manufacturing method Withdrawn JP2005335195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156800A JP2005335195A (en) 2004-05-26 2004-05-26 Molding equipment and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156800A JP2005335195A (en) 2004-05-26 2004-05-26 Molding equipment and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005335195A true JP2005335195A (en) 2005-12-08

Family

ID=35489277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156800A Withdrawn JP2005335195A (en) 2004-05-26 2004-05-26 Molding equipment and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005335195A (en)

Similar Documents

Publication Publication Date Title
KR100189857B1 (en) Sprueless disc mold and disc molding method thereof
US20060115551A1 (en) Injection-mold pin
JPH11227007A (en) Injection molding method, injection mold and valve gate device
JP2006082096A (en) Laminated die for injection molding, injection molding method and laminated die for die casting
WO2006054647A1 (en) Injection molding machine, injection molding method, and injection molding die
JP5941946B2 (en) Injection mold and injection molding method
JP5267253B2 (en) Lens molding die and lens manufacturing method
JP2003291195A (en) Injection molding tool for manufacturing disk-shaped information medium
JP2005335195A (en) Molding equipment and its manufacturing method
JP2004001301A (en) Die and its manufacturing process
JP4717699B2 (en) DISC MOLDING DIE, Mirror Surface Board, and Mirror Surface Board Manufacturing Method
JP2005335209A (en) Mold assembly and its manufacturing method
JPWO2005084910A1 (en) DISC MOLDING DIE, ADJUSTING MEMBER AND DISC SUBSTRATE MOLDING METHOD
JP3936651B2 (en) Mold for molding disk substrate
JP7242286B2 (en) Hot runner nozzle, injection mold, method for manufacturing resin molded product, method for manufacturing hot runner nozzle
JP4594486B2 (en) Cavity forming mold manufacturing method and cavity forming mold
JP2005335194A (en) Valve device and its manufacturing method
JP2002172628A (en) Manufacturing method and device for rubber product
JP2005335188A (en) Valve gate type mold assembly and its manufacturing method
JP4671554B2 (en) Mold with temperature-controlling fluid passage and manufacturing method thereof
JP2005335187A (en) Valve gate type mold assembly and its manufacturing method
JP2006056203A (en) Valve gate type mold apparatus and its manufacturing method
JP2008284704A (en) Mold and method of manufacturing optical element
JP6558396B2 (en) Mold apparatus and molding apparatus provided with the mold apparatus
JP2005335189A (en) Valve gate type mold assembly and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807