JPH03124420A - Cooling method and heat exchange parts for mold - Google Patents

Cooling method and heat exchange parts for mold

Info

Publication number
JPH03124420A
JPH03124420A JP26205389A JP26205389A JPH03124420A JP H03124420 A JPH03124420 A JP H03124420A JP 26205389 A JP26205389 A JP 26205389A JP 26205389 A JP26205389 A JP 26205389A JP H03124420 A JPH03124420 A JP H03124420A
Authority
JP
Japan
Prior art keywords
heat exchange
liquid
liquid path
cooling
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26205389A
Other languages
Japanese (ja)
Inventor
Isao Suzuki
勲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26205389A priority Critical patent/JPH03124420A/en
Publication of JPH03124420A publication Critical patent/JPH03124420A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7362Heating or cooling of the mould turbulent flow of heating or cooling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency by circulating a cooling liquid repeatedly in order toward the shallowest part from the deepest part of a heat exchange part. CONSTITUTION:A cooling liquid is pressure-fed forcibly in the direction of an arrow toward a water stop pillar 28 of a heat exchange parts 23. The cooling liquid is led to one side of a peripheral direction of the first liquid path 29a, after circulation of the same almost a round, the same flows into the second liquid path 29b by passing through the first circulation hole 31 in the vicinity of the water stop pillar 24. The cooling liquid is led in the direction opposite to the first liquid path 29a and passes through the second circulation hole 32 in the vicinity of the water stop pillar 24, in the second liquid path 29b. The cooling liquid passed through the second circulation hole 32 flows into the third liquid path 29c and flows in the direction opposite to the second liquid path 29b. Then the cooling liquid is discharged outside through the third circulation hole 33 formed at a thermal part of the third liquid path 29c. A turbulent flow is generated, by inverting a flowing direction every stage of a liquid path like this and a high heat exchange ratio, which is not obtained with convertional structure, can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば樹脂製品を射出成形するのに使用され
る成形金型の冷却方法と熱交換部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cooling method and heat exchange parts for a molding die used for injection molding, for example, resin products.

(従来の技術) 例えば樹脂製品を射出成形するための成形金型は、その
要部が例えば第5図に示されるように構成されている。
(Prior Art) For example, a mold for injection molding a resin product has a main part configured as shown in FIG. 5, for example.

図中に示される固定側型板1と可動側型板2との間に形
成されたキャビティー3に対して、上記固定側型板1に
形成されたスプルー4から溶融状態の樹脂を射出して成
形するようになっており、これにより成形品5が成形さ
れる。
Molten resin is injected from the sprue 4 formed on the fixed side template 1 into the cavity 3 formed between the fixed side template 1 and the movable side template 2 shown in the figure. The molded product 5 is thereby molded.

こうした成形品5は射出直後は形状が安定していないの
で、冷却時間を必要とする。このため、成形作業の効率
を高める目的で上記固定側型板2の上記キャビティー3
の近傍の肉厚部分に冷却水が循環される水管路6がを穿
設し、樹脂を成形した後に冷却水を循環して、金型の冷
却時間を短縮することが行われている。
Since the shape of such a molded product 5 is not stable immediately after injection, it requires cooling time. Therefore, in order to improve the efficiency of molding work, the cavity 3 of the fixed side template 2 is
A water pipe 6 through which cooling water is circulated is bored in a thick walled portion near the mold, and the cooling water is circulated after the resin is molded to shorten the cooling time of the mold.

さらに、可動側型板2側においては、特にコア7の部分
に対して第6図および第7図に示されるような冷却水の
循環回路が設けられることがある。
Furthermore, on the movable mold plate 2 side, a cooling water circulation circuit as shown in FIGS. 6 and 7 may be provided particularly for the core 7 portion.

第6図に示されるスポット方式の循環回路は上記コア7
の底部近傍にこの底面に沿って第1循環回路8が穿設さ
れており、この第1循環回路8の中途部からコア7のキ
ャビティー3に近接する肉厚部方向に向かって例えば2
本の第2循環回路9゜10が穿設されている。これらの
第2循環回路9.10の中央部にはそれぞれ基端部が上
記コア7に固定された仕切板11.12が挿入され、こ
れら仕切板11.12の先端部が非結合状態で表裏側の
水回路を連通している。そして、上記第1循環回路8の
一端から流入した冷却水は矢印で示されるごとく上記仕
切板11.12によりコア7のキャビティー3の近傍ま
で流れ折り返し循環されるようになっている。しかしな
がら高い冷却効果を得るためには、上記第2循環回路9
.10と同様の循環回路をさらに複数穿設する必要があ
り、構造が複雑化するもので製造コストの高いものとな
りやすかった。
The spot type circulation circuit shown in FIG.
A first circulation circuit 8 is bored along the bottom near the bottom of the core 7, and from the middle of the first circulation circuit 8 toward the thick part of the core 7 close to the cavity 3, for example, two
A second book circulation circuit 9.10 is drilled. Partition plates 11.12 whose proximal ends are fixed to the core 7 are inserted into the center of these second circulation circuits 9.10, and the distal ends of these partition plates 11.12 are exposed in an uncoupled state. It communicates with the water circuit on the back side. The cooling water flowing in from one end of the first circulation circuit 8 flows through the partition plates 11, 12 to the vicinity of the cavity 3 of the core 7, as shown by the arrow, and is circulated back. However, in order to obtain a high cooling effect, the second circulation circuit 9
.. It is necessary to provide a plurality of circulation circuits similar to 10, which complicates the structure and tends to increase manufacturing costs.

次ぎに第7図に示されるスパイラル方式の循環回路につ
いて説明すれば、上記コア7に対して、熱交換部品13
を挿入する円柱形状の挿入孔14が穿設されている。そ
して、上記熱交換部品13は円柱状の本体部15の基端
部に上記コア7の底部に係合する例えば円形のベース1
6が一体に設けられており、さらに、上記本体部15の
外周部には上記キャビティー3側から上記ベース16ま
で所定のピッチをもって形成された螺旋状の流路壁17
が設けられている。この流路壁17の外周縁部は上記挿
入孔14の内壁面との間を仕切るように形成されている
。この流路壁17によって螺旋状の循環回路18が形成
されている。そして、上記ベース1.6の側部から穿設
された循環孔19は上記本体部15のほぼ中心部分に沿
って上記熱交換部品の先端部近傍まで延長され上記流路
壁17によって形成される上記循環回路18の先端部に
連通されている。
Next, the spiral type circulation circuit shown in FIG. 7 will be explained.
A cylindrical insertion hole 14 into which the holder is inserted is bored. The heat exchange component 13 has a circular base 1, for example, which engages with the bottom of the core 7 at the base end of the cylindrical main body 15.
Further, a spiral channel wall 17 is formed at a predetermined pitch from the cavity 3 side to the base 16 on the outer periphery of the main body 15.
is provided. The outer peripheral edge of this flow path wall 17 is formed so as to partition it from the inner wall surface of the insertion hole 14. A spiral circulation circuit 18 is formed by this channel wall 17 . A circulation hole 19 bored from the side of the base 1.6 is extended along approximately the center of the main body 15 to near the tip of the heat exchange component and is formed by the flow path wall 17. It is connected to the tip of the circulation circuit 18.

この螺旋状の循環回路18の基端部には冷却水が吐出さ
れる吐出孔20が穿設されている。
A discharge hole 20 through which cooling water is discharged is provided at the base end of the spiral circulation circuit 18 .

このように形成された熱交換部品13により上記循環孔
19から流入した冷却水が本体部15内を通って最深部
へ流れ、この最深部で上記螺旋状の循環回路18に流入
し、本体部15の外周側に沿って旋回しながら基端側へ
流れ、上記吐出孔20から吐出する。
With the heat exchange component 13 formed in this way, the cooling water flowing in from the circulation hole 19 passes through the main body part 15 to the deepest part, flows into the spiral circulation circuit 18 at the deepest part, and then flows into the main body part 15. It flows toward the base end while turning along the outer circumferential side of the tube 15, and is discharged from the discharge hole 20.

このようにコア7のキャビティー3に近接する部分に沿
って旋回させながら熱交換することにより、熱交換率を
向上することができる。しかしながら上述のような螺旋
形状の流路壁17を加工するためにはNC旋盤又はNC
フライス盤に対して加工に同期するインデックステーブ
ルを使用する必要がある等、製造コストの高価なものと
なっていた。
By exchanging heat while rotating the core 7 along the portion of the core 7 close to the cavity 3 in this manner, the heat exchange rate can be improved. However, in order to process the spiral channel wall 17 as described above, an NC lathe or NC
It is necessary to use an index table that synchronizes the processing with the milling machine, resulting in high manufacturing costs.

(発明が解決しようとする課題) 成形金型のコアを冷却するために、従来よりスポット方
式やスパイラル方式等の冷却水の循環が行われているが
、上記スポット方式は冷却効率を向上することが困難な
構造であり、また、スパイラル方式は熱交換部品を必要
とするうえ、この熱交換部品の加工は非常に困難であり
、高価なものであった。
(Problem to be Solved by the Invention) In order to cool the core of a molding die, cooling water circulation such as a spot method or a spiral method has conventionally been used. However, the spot method has the ability to improve cooling efficiency. Moreover, the spiral method requires heat exchange parts, and the processing of these heat exchange parts is extremely difficult and expensive.

本発明は上記課題に着目してなされたものであり、汎用
の工作機械で製作することができ、がっ熱交換の効率が
高い成形金型の冷却方法と熱交換部品を提供することを
目的とする。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a cooling method for a molding die and a heat exchange component that can be manufactured using a general-purpose machine tool and that have high heat exchange efficiency. shall be.

[発明の構成] (課題を解決するための手段) (1)成形金型に挿入部を形成しこの挿入部に熱交換部
品を挿入し、第1工程で上記熱交換部品の軸心方向に沿
って最深部まで冷却液を流入させ、第2工程で上記熱交
換部品の最深部で上記冷却液を周方向の一方にほぼ一周
させ、第3工程で上記熱交換部品の軸心方向に沿って浅
部に戻す、第4工程で冷却液を周方向の他の方向にほぼ
一周させ、第5工程で熱交換部品の軸心方向に沿って浅
部に戻し、上記熱交換部品の最深部から最浅部に向けて
上記第2工程から第5工程を順次繰り返して冷却液を循
環する成形金型の冷却方法。
[Structure of the invention] (Means for solving the problem) (1) An insertion part is formed in a molding die, a heat exchange part is inserted into this insertion part, and in the first step, the heat exchange part is axially In a second step, the cooling liquid is caused to flow approximately once in one circumferential direction at the deepest part of the heat exchange component, and in a third step, the coolant is caused to flow along the axial direction of the heat exchange component. In the fourth step, the coolant is made to go around the other direction in the circumferential direction, and in the fifth step, it is returned to the shallow part along the axial direction of the heat exchange component, and the coolant is returned to the shallow part in the deepest part of the heat exchange component. A method for cooling a molding die, in which the cooling liquid is circulated by sequentially repeating the second to fifth steps from the top to the shallowest part.

(2)成形金型本体に円筒形状の挿入部を形成し、この
挿入部に管状の部品本体を径方向に隙間をもって同心状
に挿入し、この部品本体の外周部に成形金型の挿入部と
の間を軸心方向の所定間隔ごとに閉鎖し環状の液路を形
成する複数の隔壁部を設け、これら複数の隔壁部を貫通
し周方向のほぼ同一箇所で上記環状の液路をほぼ閉鎖し
、かつ部品本体の基端側から最深部の上記液路に冷却液
を周方向の一方に向けて供給する止水柱を設け、上記環
状の液路内のそれぞれの流れ方向の上記止水柱に近接す
る終点側に位置する上記隔壁部にそれぞれ流通孔を穿設
した熱交換部品。
(2) Form a cylindrical insertion part in the mold body, insert the tubular component body into this insertion part concentrically with a gap in the radial direction, and insert the mold part into the outer periphery of the part body. A plurality of partition walls are provided to form an annular liquid passage by closing the space between the partitions at predetermined intervals in the axial direction. A water stop column is provided which is closed and supplies cooling liquid from the proximal end side of the component body to the deepest part of the liquid path in one direction in the circumferential direction, and the water stop column is provided in each flow direction in the annular liquid path. A heat exchange component in which communication holes are formed in each of the partition wall portions located on the end point side close to the heat exchange parts.

(作 用) (1)熱交換部品の最深部まで導いた冷却液を最浅部ま
で導く間に、熱交換部品の外周方向の流れを与え、この
流れを一周ごとに逆転させることで、冷却液の循環に乱
流を発生させ、通常のスパイラル方式の冷却に比較して
熱交換率を高めることができる。
(Function) (1) While the coolant that has been led to the deepest part of the heat exchange part is guided to the shallowest part, a flow is applied to the outer circumference of the heat exchange part, and this flow is reversed every round to cool the part. It generates turbulent flow in the circulation of the liquid and can increase the heat exchange rate compared to normal spiral cooling.

(2)管状の部品本体の外周部に環状の隔壁部を所定間
隔で形成することや、止水柱を隔壁部に貫通して設ける
こと等は、汎用の工作機械で行うことができるので、安
価で製作することができ、かつ、管状に形成された部品
本体の内側を通過する成形品または外側に位置する成形
品を冷却できるので応用範囲が広く、単品で多種の熱交
換に使用できる。
(2) Forming annular partitions at predetermined intervals on the outer periphery of the tubular component body, and installing water stop columns penetrating the partitions can be done using general-purpose machine tools, making them inexpensive. It has a wide range of applications, and can be used for a variety of heat exchanges as a single product, as it can cool molded products that pass inside the tubular component body or molded products located outside.

(実施例) 本発明における第1実施例を第1図乃至第3図を参照し
て説明する。図中に示される一端閉鎖型の円筒形状のも
のは例えば成形金型のコア21であり、このコア210
基端面から先端部近傍までにかけて円柱形状の挿入部2
2が穿設されている。そして、この挿入部22には熱交
換部品23が挿入されている。この熱交換部品23は上
記挿入部22の内壁面との間に隙間をもって同心に形成
された管状の部品本体24を有し、この部品本体24の
外周部に複数の環状の隔壁部25が一体に形成されてい
る。なお、図中の隔壁部25は合計2つであり、最深部
(先端側)から第1隔壁部25a1第2隔壁部25bと
して説明する。これらの隔壁部25は上記部品本体24
の軸心方向に沿って所定間隔で形成されており、その外
周縁部は上記挿入部22の内壁面に接して環状の液路2
9を積層状態に形成している。また、上記部品本体24
の基端部にはベース26が一体的に形成されている。な
お、図中に示される環状の液路29は合計3つであり、
最深部(先端側)から第1液路29a1第2液路29b
1第3液路29cとして説明する。
(Embodiment) A first embodiment of the present invention will be described with reference to FIGS. 1 to 3. The cylindrical one with one end closed shown in the figure is, for example, the core 21 of a molding die, and this core 210
A cylindrical insertion section 2 from the proximal surface to the vicinity of the distal end.
2 is drilled. A heat exchange component 23 is inserted into this insertion portion 22 . This heat exchange component 23 has a tubular component body 24 formed concentrically with a gap between it and the inner wall surface of the insertion portion 22, and a plurality of annular partition walls 25 are integrally formed on the outer periphery of the component body 24. is formed. Note that there are a total of two partition walls 25 in the figure, and the explanation will be made from the deepest part (front end side) to the first partition part 25a1 and the second partition part 25b. These partition walls 25 are connected to the component main body 24.
are formed at predetermined intervals along the axial direction of the annular liquid passage 2, and the outer peripheral edge thereof is in contact with the inner wall surface of the insertion part 22.
9 are formed in a stacked state. In addition, the above-mentioned component body 24
A base 26 is integrally formed at the proximal end portion of. Note that there are a total of three annular liquid paths 29 shown in the figure,
From the deepest part (tip side) first liquid path 29a1 second liquid path 29b
1 will be explained as the third liquid path 29c.

さらに、上記ベース26と隔壁部25とのそれぞれの周
方向の同一箇所には上記部品本体24の軸心方向に貫通
する同一直径の貫通孔27がそれぞれ穿設されている。
Furthermore, through holes 27 having the same diameter and penetrating in the axial direction of the component body 24 are formed at the same circumferential location in the base 26 and the partition wall 25, respectively.

そして、これらの貫通孔27には止水柱28が挿入され
ている。この止水柱28は円管であり、挿入された端面
が閉鎖され、基端部から最深部(先端部)に形成された
第1液路29aに連通する流入孔3oが穿設されている
Water stop columns 28 are inserted into these through holes 27. This water stop column 28 is a circular pipe, the inserted end face is closed, and an inflow hole 3o is bored which communicates with a first liquid path 29a formed from the base end to the deepest part (tip part).

この流入孔30の上記第1液路29aに対する開口部は
、この環状の第1液路29aの周方向の一方に向けて開
口している。
The opening of the inflow hole 30 to the first liquid path 29a opens toward one side of the circumferential direction of the annular first liquid path 29a.

そして、この第1液路29aの流れ方向の終点部である
上記止水柱28の直前に対応する第1隔壁部25aには
上記部品本体24の軸心方向に貫通する第1流通孔31
が穿設されている。この第1流通孔31を通過した冷却
液は上記第2液路29bに流入され、上記第1液路29
aでの流れとは逆方向に流れるようになっている。そし
て、この第1液路29aの流れ方向の終点部である上記
止水柱28の直前に対応する第2隔壁部25bには上記
部品本体24の軸心方向に貫通する第2流通孔32が穿
設されている。
A first flow hole 31 penetrating in the axial direction of the component main body 24 is provided in the first partition portion 25a corresponding to the end point in the flow direction of the first liquid path 29a, which corresponds to the water stop column 28.
is drilled. The cooling liquid that has passed through the first flow hole 31 flows into the second liquid path 29b, and the cooling liquid passes through the first liquid path 29b.
The flow is in the opposite direction to the flow at point a. A second flow hole 32 penetrating in the axial direction of the component body 24 is bored in the second partition wall 25b corresponding to the end point in the flow direction of the first liquid path 29a, which corresponds to the water stop column 28. It is set up.

この第2流通孔32を通過した冷却液は上記第3液路2
9cに流入されて、上記第2液路29bとは逆方向に流
れる。そして、この第3液路29cの流れ方向の終点部
である上記止水柱28の直前部分に対応する上記ベース
26には上記部品本体24の軸心方向に貫通する第3流
通孔33が穿設されている。この第3流通孔33には部
品本体24の基端側外側から吐出管34が接続されてい
る。なお、上記止水柱28は上記環状の液路2つを完全
に閉鎖するものではなく、隙間部分35を残した状態で
挿入されている。このため少量の冷却水は上記止水柱2
8の隙間部分35を通過するようになっている。
The cooling liquid that has passed through the second flow hole 32 is transferred to the third liquid path 2.
9c and flows in the opposite direction to the second liquid path 29b. A third flow hole 33 penetrating in the axial direction of the component main body 24 is bored in the base 26 corresponding to the end point in the flow direction of the third liquid path 29c, which is the part immediately before the water stop column 28. has been done. A discharge pipe 34 is connected to the third communication hole 33 from the outer side of the base end of the component body 24 . Note that the water stop column 28 does not completely close the two annular liquid passages, but is inserted with a gap 35 left. Therefore, a small amount of cooling water is
8 through a gap 35.

上述のように形成された熱交換部品23はコア21に対
して挿入され、第3図に示されるように構成された成形
金型36に使用される。この成形金型36は固定金型3
7にスプルー38が形成されており、このスプルー38
に連通してキャビティー39が形成されている。
The heat exchange component 23 formed as described above is inserted into the core 21 and used in a mold 36 configured as shown in FIG. This molding die 36 is the fixed die 3
7 is formed with a sprue 38, and this sprue 38
A cavity 39 is formed in communication with the.

そして、上記キャビティー39に対して溶融樹脂を射出
することにより、樹脂製品を成形するが、射出直後の成
形品は直ちに凝固しない。こうした製品形状の不安定な
状態の時に上記熱交換部品23の上記止水柱28に対し
て冷却液を矢印方向に強制圧送する。冷却液は第1液路
29aの周方向の一方に導かれ、はぼ−周したところで
止水柱24の近傍で上記第1流通孔31を通過して第2
液路29bに流入する。この第2液路29bでは上記第
1液路29aとは逆方向に冷却液が導かれ、止水柱24
の近傍で上記第2流通孔32を通過する。この第2流通
孔32を通過した冷却液は上記第3液路29cに流入し
上記第2液路29bとは逆方向に流れる。そして、上記
第3液路29cの終点部に形成された第3流通孔33を
通して外部に吐出される。
A resin product is molded by injecting the molten resin into the cavity 39, but the molded product does not solidify immediately after injection. When the product shape is in an unstable state, the cooling liquid is forcibly fed to the water stop column 28 of the heat exchange component 23 in the direction of the arrow. The coolant is guided to one side in the circumferential direction of the first liquid path 29a, and after going around the circumference, it passes through the first flow hole 31 near the water stop column 24 and enters the second flow path 29a.
It flows into the liquid path 29b. In this second liquid path 29b, the cooling liquid is guided in the opposite direction to the first liquid path 29a, and the water stop column 24
It passes through the second flow hole 32 in the vicinity of . The coolant that has passed through the second flow hole 32 flows into the third liquid path 29c and flows in the opposite direction to the second liquid path 29b. Then, it is discharged to the outside through the third flow hole 33 formed at the end point of the third liquid path 29c.

このように、液路29の段階ごとに流れの方向を反転さ
せることにより、乱流を発生し、従来の構造では得られ
なかった高い熱交換率を得ることができる。具体的には
実験により深物筒形成形品の成形サイクルタイムを約3
5%以上短縮することができた。これは成形機械の生産
能力を1.5倍以上に引き上げることに相当する。また
、こうした冷却速度の向上により製品の成形時の変形を
低減し、成形の精度を高めることができる。
In this way, by reversing the direction of the flow at each stage of the liquid path 29, turbulence can be generated and a high heat exchange rate that could not be obtained with the conventional structure can be obtained. Specifically, through experiments, the molding cycle time for deep cylinder molded products was reduced to approximately 3.
We were able to shorten the time by more than 5%. This is equivalent to increasing the production capacity of the molding machine by more than 1.5 times. Further, by increasing the cooling rate, deformation during molding of the product can be reduced, and molding accuracy can be improved.

さらに、同様の熱交換部品23の他の使用状態を第2実
施例として第4図を参照して説明する。
Furthermore, another usage state of the similar heat exchange component 23 will be described as a second embodiment with reference to FIG. 4.

図中に示される成形金型40は固定側金型41であり、
スプルー42に対応する部分に挿入部43が穿設されて
いる。この挿入部43の底部の中央部にはキャビティー
44に連通ずるスプルー42の一部Sが形成されている
。そして、上記挿入部43に挿入された熱交換部品23
の管状に形成された部品本体24の中央部にはスプルー
42の一部を形成するように射出方向に順次口径が増大
する貫通孔24aが穿設されている。
The molding die 40 shown in the figure is a fixed side die 41,
An insertion portion 43 is bored in a portion corresponding to the sprue 42. A portion S of the sprue 42 communicating with the cavity 44 is formed in the center of the bottom of the insertion portion 43 . Then, the heat exchange component 23 inserted into the insertion portion 43
A through hole 24a whose diameter gradually increases in the injection direction is bored in the center of the tubular component body 24 so as to form a part of the sprue 42.

このように構成することで、上記熱交換部品23の内側
を冷却するように構成することもできる。つまり、1つ
の熱交換部品23は小型成形品に使用する場合には第1
実施例で示したごとくコア21の冷却に使用でき、また
、大型成形品に使用する場合には第2実施例で示したご
とくスプルー42の部分を冷却するために使用すること
ができる。熱交換部品23は互換性をもって形成するこ
とで複数の金型を冷却できるので、経済的であり、少量
多品種生産に対応する場合に生産コストの引き下げに効
果を発揮する。
By configuring in this way, it is also possible to configure the inside of the heat exchange component 23 to be cooled. In other words, when one heat exchange part 23 is used for a small molded product, the first
As shown in the embodiment, it can be used to cool the core 21, and when used in a large molded product, it can be used to cool the sprue 42 as shown in the second embodiment. Since the heat exchange parts 23 can cool a plurality of molds by forming them interchangeably, they are economical and are effective in reducing production costs when responding to low-volume, high-mix production.

なお、上記実施例で使用した熱交換部品23は金型の冷
却に使用されたが、これに限定されるものではなく、他
の熱交換部品に使用することもできる。例えば冷却でな
く加熱や保温に使用することもできる。
Although the heat exchange component 23 used in the above embodiment was used to cool the mold, it is not limited thereto, and can also be used for other heat exchange components. For example, it can be used not only for cooling but also for heating and keeping warm.

[発明の効果] (1)熱交換部品の軸心方向に沿って最深部まで流入さ
れた冷却液を上記熱交換部品の外側の周方向の一方に流
し、浅部に移動するに従って順次冷却液の周方向の流れ
を逆転することにより、熱交換中の冷却液に乱流を発生
させることができる。
[Effects of the Invention] (1) The cooling liquid that has flowed into the deepest part along the axial direction of the heat exchange part is allowed to flow to one side of the outer circumferential direction of the heat exchange part, and the cooling liquid is gradually poured as it moves to the shallower part. By reversing the circumferential flow of the cooling fluid, turbulence can be generated in the cooling fluid during heat exchange.

これにより従来の冷却方式では得ることのできなかった
高い熱交換率を得ることができる。
This makes it possible to obtain a high heat exchange rate that could not be obtained with conventional cooling methods.

(2)管状の部品本体の外周部に環状の隔壁部を形成し
た熱交換部品は汎用の工作機械で製作することができる
ので、安価であり、また止水柱を設は液路の流れ方向を
複数回逆転させるごとく流通孔を穿設することで、乱流
を発生させることができ従来構造のものに比較して熱交
換率を著しく向上できる。さらに、熱交換部品の内側と
外側との双方を冷却できるので、多種の熱交換部に応用
することができ、従来の成形金型用の熱交換部品に比較
して応用範囲が広く、少量多品種生産には極めて高い経
済性を得ることができ、製品のコスト低減に効果を発生
する。
(2) Heat exchange parts with an annular partition formed on the outer periphery of the tubular part body can be manufactured using general-purpose machine tools, so they are inexpensive, and water stop columns can be installed to control the flow direction of the liquid path. By drilling the flow holes so as to reverse the flow multiple times, turbulence can be generated and the heat exchange rate can be significantly improved compared to the conventional structure. Furthermore, since both the inside and outside of the heat exchange parts can be cooled, it can be applied to a wide variety of heat exchange parts, and has a wider range of applications than conventional heat exchange parts for molding molds. It is possible to obtain extremely high economic efficiency in the production of various types, and it is effective in reducing product costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明における第1実施例であり、
第1図は熱交換部品と成形金型に形成された挿入孔とを
示す斜視図、第2図は熱交換部品の斜視図、第3図は成
形金型の構成を示す断面図、第4図は本発明の第2実施
例であり熱交換部品が設けられた成形金型の要部を示す
断面図、第5図乃至第7図は従来例であり、第5図は成
形金型とその成形品を示す断面図1、第6図はコアに対
して冷却構造を設けた一例を示す′断面図、第7図はコ
アに対して冷却構造を設けた他の例を示す断面図である
。 23・・・熱交換部品、24・・・部品本体、25・・
・隔壁部、28・・・止水柱、31,32.33・・・
流通孔、36・・・成形金型。
1 to 3 show a first embodiment of the present invention,
Fig. 1 is a perspective view showing a heat exchange part and an insertion hole formed in a molding die, Fig. 2 is a perspective view of the heat exchange part, Fig. 3 is a sectional view showing the configuration of the forming die, and Fig. 4 The figure shows a second embodiment of the present invention, and is a sectional view showing the main parts of a molding die provided with heat exchange parts, and FIGS. 5 to 7 show a conventional example, and FIG. Cross-sectional views 1 and 6 showing the molded product are cross-sectional views showing one example in which a cooling structure is provided for the core, and FIG. 7 is a cross-sectional view showing another example in which a cooling structure is provided for the core. be. 23... Heat exchange part, 24... Part body, 25...
・Partition wall part, 28...Water stop column, 31, 32.33...
Distribution hole, 36...molding mold.

Claims (2)

【特許請求の範囲】[Claims] (1)成形金型に形成された挿入部に円筒状の熱交換部
品を挿入し、この熱交換部品の軸心方向へ沿って最深部
まで冷却液を流入させる第1工程と、上記熱交換部品の
最深部で上記冷却液を周方向の一方にほぼ一周させる第
2工程と、この後上記熱交換部品の軸心方向に沿って浅
部に戻す第3工程と、この後上記冷却液を周方向の他方
にほぼ一周させる第4工程と、再度上記熱交換部品の軸
心方向に沿って浅部に戻す第5工程とを具備し上記熱交
換部品の最深部から最浅部に向けて上記第2工程から第
5工程を順次繰り返し冷却液を循環する成形金型の冷却
方法。
(1) A first step of inserting a cylindrical heat exchange component into the insertion part formed in the molding die and flowing the cooling liquid to the deepest part along the axial direction of the heat exchange component, and the above-mentioned heat exchange A second step in which the cooling liquid is made to go around the entire circumferential direction at the deepest part of the part, a third step in which the cooling liquid is returned to a shallow part along the axial direction of the heat exchange part, and a third step in which the cooling liquid is returned to the shallow part along the axial direction of the heat exchange part; A fourth step of turning the heat exchanger almost once in the other circumferential direction, and a fifth step of returning the heat exchanger to a shallow part along the axial direction of the heat exchanger again, from the deepest part of the heat exchanger part to the shallowest part. A method for cooling a mold by sequentially repeating the second to fifth steps and circulating a cooling liquid.
(2)一端閉鎖型の円筒形状の壁面をもつ挿入部に径方
向に隙間をもって同心状に挿入される管状の部品本体と
、この部品本体の外周部に設けられ上記挿入部との間を
軸心方向に所定間隔ごとに閉鎖し層をなした環状の液路
を形成する複数の隔壁部と、これら複数の隔壁部に軸心
方向に貫通し上記環状の液路の周方向のほぼ同一箇所を
ほぼ閉鎖し、かつ内部を通じて基端側から最深部の環状
の液路に媒質液を一方の方向に向けて供給する止液柱と
、上記環状の液路の流れ方向の止水柱にほぼ閉鎖された
末端側に近接する上記隔壁部に穿設され隣接する液路と
連通する流通孔をそれぞれの隔壁部に穿設したことを特
徴とする熱交換部品。
(2) A tubular component body that is inserted concentrically with a gap in the radial direction into an insertion section with a cylindrical wall that is closed at one end, and an axis that is provided on the outer periphery of this component body and that is inserted into the insertion section. A plurality of partition wall portions that are closed at predetermined intervals in the axial direction to form a layered annular liquid path, and a plurality of partition wall portions that penetrate the plurality of partition wall portions in the axial direction and are located approximately at the same location in the circumferential direction of the annular liquid path. and a liquid stop column that supplies medium liquid in one direction from the proximal end side to the deepest annular liquid path through the interior, and a water stop column that is almost closed in the flow direction of the annular liquid path. A heat exchange component characterized in that each partition wall is provided with a communication hole that is formed in the partition wall adjacent to the distal end side of the partition wall and communicates with an adjacent liquid path.
JP26205389A 1989-10-09 1989-10-09 Cooling method and heat exchange parts for mold Pending JPH03124420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26205389A JPH03124420A (en) 1989-10-09 1989-10-09 Cooling method and heat exchange parts for mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26205389A JPH03124420A (en) 1989-10-09 1989-10-09 Cooling method and heat exchange parts for mold

Publications (1)

Publication Number Publication Date
JPH03124420A true JPH03124420A (en) 1991-05-28

Family

ID=17370380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26205389A Pending JPH03124420A (en) 1989-10-09 1989-10-09 Cooling method and heat exchange parts for mold

Country Status (1)

Country Link
JP (1) JPH03124420A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168415B1 (en) 1996-09-18 2001-01-02 Pleasant Precision, Inc. Baffle
JP2002531296A (en) * 1998-12-07 2002-09-24 ジョブスト、アルリッチ、ジェラート Cooling core for injection molding with ribbed cap
JP2003039437A (en) * 2001-07-31 2003-02-13 Suwa Netsukogyo Kk Molding mold with passage for fluid for adjusting temperature and its production method
EP2100981A2 (en) 2008-03-07 2009-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet and QFN package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168415B1 (en) 1996-09-18 2001-01-02 Pleasant Precision, Inc. Baffle
JP2002531296A (en) * 1998-12-07 2002-09-24 ジョブスト、アルリッチ、ジェラート Cooling core for injection molding with ribbed cap
JP2003039437A (en) * 2001-07-31 2003-02-13 Suwa Netsukogyo Kk Molding mold with passage for fluid for adjusting temperature and its production method
JP4671554B2 (en) * 2001-07-31 2011-04-20 諏訪熱工業株式会社 Mold with temperature-controlling fluid passage and manufacturing method thereof
EP2100981A2 (en) 2008-03-07 2009-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet and QFN package

Similar Documents

Publication Publication Date Title
CA2147177C (en) Process for the production of temperature-controlled tools or temperature- controlled moulds for the production of plastics mould parts and tools or moulds produced by said process
JP2662023B2 (en) Injection molding method and apparatus
CN105848850B (en) Injection mould, injection moulding tool comprising such an injection mould, method for using same and object obtained
US4187067A (en) Die for producing plastic resin pellets
US20070065536A1 (en) Cooling device for molds in an injection molding machine
DE602004012853T2 (en) COOLED CUTTING INSERT OF A FORMNEST
KR0178184B1 (en) Forming process of pump housing for hot water circulating pump
JP2010075939A (en) Die-casting die
JPH03124420A (en) Cooling method and heat exchange parts for mold
JP2009196138A (en) Apparatus for injection moulding and cooling method in apparatus for injection moulding
JP2005199684A (en) Molding assembly
DE19926322A1 (en) Plastics processing or metal casting tool has a closed structure and includes a cooling channel closely following the molding cavity profile and at a distance from it
JP2010194719A (en) Sprue bush and method for producing sprue bush
JPH0199716A (en) Die for extruding multi-hole pipe
JP2004155070A (en) Mold and method for molding disk board
US7214053B2 (en) Hot channel multiple injection molding die
KR102280830B1 (en) Double pipe injection core chiller
KR950012856B1 (en) Hot runner system
CN217573953U (en) Cooling system of injection mold and injection mold
KR100422748B1 (en) Manifold-type cooler for cooling a die
JPH03234508A (en) Mold
JP3186907B2 (en) Injection mold
JPH01256796A (en) Tube plate for heat exchanger and/or material exchanger and use and making thereof
JP2014205195A (en) Mold spool core and casting mold equipped with the same
CN217346564U (en) Water-cooling structure of mould