JP2003039437A - Molding mold with passage for fluid for adjusting temperature and its production method - Google Patents

Molding mold with passage for fluid for adjusting temperature and its production method

Info

Publication number
JP2003039437A
JP2003039437A JP2001230983A JP2001230983A JP2003039437A JP 2003039437 A JP2003039437 A JP 2003039437A JP 2001230983 A JP2001230983 A JP 2001230983A JP 2001230983 A JP2001230983 A JP 2001230983A JP 2003039437 A JP2003039437 A JP 2003039437A
Authority
JP
Japan
Prior art keywords
members
mold
fluid passage
passage
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001230983A
Other languages
Japanese (ja)
Other versions
JP2003039437A5 (en
JP4671554B2 (en
Inventor
Yoshito Miyasaka
好人 宮坂
Masao Tokita
正雄 鴇田
Hitoshi Karasawa
均 唐沢
Fumitake Nishiyama
文毅 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Suwa Netsu Kogyo Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Suwa Netsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd, Suwa Netsu Kogyo Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP2001230983A priority Critical patent/JP4671554B2/en
Publication of JP2003039437A publication Critical patent/JP2003039437A/en
Publication of JP2003039437A5 publication Critical patent/JP2003039437A5/ja
Application granted granted Critical
Publication of JP4671554B2 publication Critical patent/JP4671554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding mold with a passage for fluid for adjusting temperature which can form the fluid circuit of an optimum pattern at a low cost corresponding to a molding and a method for producing the molding mold. SOLUTION: The molding mold 10 has at least two members 20 and 30 arranged coaxially inside and outside to overlap each other and end members 40 and 50 which are arranged adjacently to both ends of the two members and joined to the end faces of the members. A channel 25 for forming fluid passage for passing fluid is formed at least in one of the outside surface of the inside member and the inside surface of the outside member. At least one of an inlet 26 and outlet 26' each communicating with the channel is formed at least in one of the end members. The members and the end members, after being bonded provisionally to each other by a pulse voltage application welding method, are heat-treated to be joined completely. At least one of molding cores 60 and 70 for partitioning the cavity of the molding mold is inserted attachably/ detachably into an axial hole formed in the inside member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温度調節用流体通
路付き成形型及びその製造方法に関し、詳しくは加熱用
流体或いは冷却用流体を流す通路が形成されている成形
型及びその製造方法並びにそのような成形型とその成形
型を収容する金型母材との組合せ体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding die having a temperature adjusting fluid passage and a method of manufacturing the same, and more specifically, a molding die having a passage through which a heating fluid or a cooling fluid flows and a method of manufacturing the same. The present invention relates to a combination of such a mold and a mold base material that houses the mold.

【0002】プラスチック成形型或いはゴム成形型、ガ
ラス成形型或いはダイキャスト型等の成形型の温度を調
節するために成形型の本体内に流体通路を形成し、その
流体通路内に冷却流体或いは加熱流体を流すことは従来
から知られている。このような既知の成形型及びその製
造方法では、流体通路は図15に示されるように成形型
1の本体2に外周面から複数の貫通孔3を互いに交差す
るように空け、その貫通孔の外周面の開口部のいくつか
を栓4で塞いで残りを入り口ポート5及び出口ポート6
とし、複数の貫通孔によって画成された流体通路内に冷
却液又は加熱液を流して成形型1の温度を調節するよう
にしている。流体は液体でも気体でもよい。
A fluid passage is formed in the body of the molding die for controlling the temperature of the molding die such as a plastic molding die, a rubber molding die, a glass molding die or a die casting die, and a cooling fluid or heating is provided in the fluid passage. Flowing fluid is known in the art. In such a known molding die and manufacturing method thereof, as shown in FIG. 15, a fluid passage is formed in the main body 2 of the molding die 1 from the outer peripheral surface so as to intersect a plurality of through holes 3 with each other, and Some of the openings on the outer peripheral surface are blocked with plugs 4, and the rest are inlet port 5 and outlet port 6.
The cooling liquid or the heating liquid is caused to flow in the fluid passage defined by the plurality of through holes to adjust the temperature of the molding die 1. The fluid may be liquid or gas.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0003】しかしながら、かかる従来の成形型では、
流体通路が複数の直線の貫通孔の組合せで構成されてい
るため、流体回路の形状が限られてしまい、成形品に応
じて最適なパターンの流体回路を形成することが極めて
困難であるだけでなく、製造工程も工数が多くなり、コ
スト高になる問題もある。更に、従来の流体通路付き成
形型では、成形型の中心部に貫通穴を設け、その貫通穴
の中に成形型のキャビティを画成する少なくとも一つの
成形コアを着脱可能に挿入する構造の成形型では、それ
自体には冷却通路を形成することが困難なため、図16
に示されるように、成形型が挿入される空洞Cvを画成
する矩形の金型母材7aに互いに接続する複数の貫通穴
3aを直線的に形成し、その貫通穴3aの一部を栓4a
で塞いで通路にしていた。このため成形型を成形品近傍
の位置で形状に合わせ近接させ精度良く加熱、冷却温度
制御を行うことが困難なため、温度制御を適切に行うこ
とが困難で、成形可能な材料にも温度むらが生じ、制限
があった。
However, in such a conventional molding die,
Since the fluid passage is composed of a combination of multiple straight through holes, the shape of the fluid circuit is limited, and it is extremely difficult to form the fluid circuit with the optimum pattern according to the molded product. However, there is also a problem that the number of manufacturing steps increases and the cost increases. Further, in the conventional molding die with a fluid passage, a through hole is provided at the center of the molding die, and at least one molding core that defines the cavity of the molding die is removably inserted into the through hole. In the mold, it is difficult to form a cooling passage in itself, so that
, A plurality of through holes 3a connected to each other are linearly formed in a rectangular mold base material 7a defining a cavity Cv into which a molding die is inserted, and a part of the through holes 3a is plugged. 4a
It was closed with a passage. For this reason, it is difficult to control the heating and cooling temperature accurately by bringing the molding die close to the shape at a position near the molded product. There was a limitation.

【0004】本発明が解決しようとする一つの課題は、
放電プラズマ焼結、放電焼結、プラズマ活性化焼結法等
のパルス通電焼結法(パルス通電加圧焼結法)を応用し
た接合技術(パルス通電接合法と称する)により従来の
成形型及びその製造方法の欠点をなくした新規な温度調
節用流体通路付き成形型及びその製造方法を提供するこ
とである。本発明が解決しようとする他の課題は、温度
調節用の流体通路の回路パターンを任意のパターンに自
由度を広げて設計できる温度調節用流体通路付き成形型
及びその製造方法を提供することである。本発明が解決
しようとする別の課題は、温度調節用の流体通路の回路
を複数層に亘って低コストでできる温度調節用流体通路
付き成形型及びその製造方法を提供することである。本
発明が解決しようとする更に別の課題は、温度調節用流
体通路付き成形型と、そのような成形型とを収容する空
洞を画成する金型母材との新規な組み合わせを提供する
ことである。
One problem to be solved by the present invention is
A conventional molding die using a joining technique (called pulse energization joining method) to which pulse energization sintering method (pulse energization pressure sintering method) such as spark plasma sintering, spark sintering, and plasma activated sintering method is applied. It is an object of the present invention to provide a novel mold with a fluid passage for temperature control which eliminates the drawbacks of the manufacturing method and a manufacturing method thereof. Another problem to be solved by the present invention is to provide a mold with a temperature control fluid passage and a method of manufacturing the same, in which the circuit pattern of the temperature control fluid passage can be designed by expanding the degree of freedom to any pattern. is there. Another problem to be solved by the present invention is to provide a mold with a temperature control fluid passage and a method for manufacturing the same, which is capable of forming a temperature control fluid passage circuit over a plurality of layers at low cost. Still another problem to be solved by the present invention is to provide a novel combination of a mold having a temperature controlling fluid passage and a mold base material defining a cavity for accommodating such a mold. Is.

【0005】[0005]

【課題を解決するための手段】本願の一つの発明は、流
体を流して温度を調節できる温度調節用流体通路付き成
形型において、内外にほぼ同軸にして重ねて配置された
少なくとも二つの部材と、前記二つの部材の両端に隣接
して配置されていて前記部材の端面において接合された
端部材とを備え、内側の部材の外周面外側の部材の内
周面との間には前記流体を流すための流体通路が形成さ
れ、前記端部材のうち少なくとも一つの端部材には前記
流体通路とそれぞれ連通する入口ポート及び出口ポート
の少なくとも一方が形成され、少なくとも前記部材と前
記端部材とがパルス通電接合法により仮接合された後熱
処理されて接合が完成されており、前記内側の部材に形
成された軸穴内には、前記軸穴内で成形型のキャビティ
を画成する少なくとも一つの成形コアが着脱可能に挿入
されて構成されている。上記成形型の一つ実施形態にお
いて、前記内外に重ねられた部材の対向する面同士が及
び前記部材と前記端部材とがパルス通電接合法により仮
接合されていて、もよく、また、前記軸穴が軸方向に貫
通する貫通穴であり、前記成形コアが協同して前記キャ
ビティを画成する複数のコア部材から成り、前記コア部
材の少なくとも一つが前記軸穴内に着脱可能に挿入され
ていても良い。上記成形型の別の実施形態において、前
記端部材の一方に前記入口ポート及び出口ポートが形成
され、前記通路が、前記内側の部材の外周面と前記外側
の部材の内周面の少なくとも一方に形成されていて、円
周方向に伸びかつ軸方向に隔てられた複数の環状溝によ
り構成され、前記内側の部材の外周面及び前記外側の部
材の内周面の少なくとも一方には前記環状溝と前記入口
ポートとを連通する第1の軸方向通路が形成され、前記
内側の部材の外周面及び前記外側の部材の内周面の少な
くとも一方には前記第1の軸方向通路とは円周方向に異
なる位置において前記環状溝と前記出口ポートとを連通
する第2の軸方向通路が形成されていても、前記通路
が、前記内側の部材の外周面と前記外側の部材の内周面
の少なくとも一方に形成された少なくとも1条の螺旋溝
により構成され、前記内側の部材及び前記外側の部材の
少なくとも一方には前記螺旋溝の一端と前記入口ポート
とを連通する第1の軸方向通路が形成され、前記内側の
部材及び前記外側の部材少なくとも一方には前記第1の
軸方向通路とは円周方向に異なる位置において前記螺旋
溝の他端と前記出口ポートとを連通する第2の軸方向通
路が形成されていても、或いは、前記通路が、前記内側
の部材の外周面と前記外側の部材の内周面の少なくとも
一方に形成されていて、軸線方向に伸びかつ円周方向に
隔てられた複数の軸方向溝により構成され、前記両端部
材には前記軸方向溝と連通する通路が形成され、前記通
路の一方と前記入口ポートとが連通可能であり、前記通
路の他方と前記出口ポートとが連通可能であっても良
い。
One of the inventions of the present application is to provide a molding die having a temperature adjusting fluid passage, in which a temperature can be adjusted by flowing a fluid, with at least two members arranged substantially coaxially inside and outside. An end member that is disposed adjacent to both ends of the two members and is joined at the end faces of the members, and the fluid is provided between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. Is formed, and at least one of the end members has at least one of an inlet port and an outlet port communicating with the fluid passage, and at least the member and the end member are formed. After temporary joining by the pulse current joining method, heat treatment is performed to complete the joining, and in the shaft hole formed in the inner member, a cavity for the molding die is defined within the shaft hole. One of the molding core is constituted by removably inserted also. In one embodiment of the molding die, the facing surfaces of the members stacked inside and outside and the member and the end member may be temporarily joined by a pulse current joining method, and the shaft A hole is a through hole that penetrates in the axial direction, the molding core is composed of a plurality of core members that cooperate to define the cavity, and at least one of the core members is removably inserted into the shaft hole; Is also good. In another embodiment of the above mold, the inlet port and the outlet port are formed in one of the end members, and the passage is formed in at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. Is formed by a plurality of annular grooves extending in the circumferential direction and separated in the axial direction, and the annular groove is provided on at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. A first axial passage that communicates with the inlet port is formed, and at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member has a circumferential direction with the first axial passage. Even if a second axial passage that communicates the annular groove and the outlet port is formed at different positions, the passage is formed on at least the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. Little formed on one side Both of the inner member and the outer member are formed with a first axial passage that communicates one end of the spiral groove with the inlet port. At least one of the member and the outer member is formed with a second axial passage that communicates the other end of the spiral groove with the outlet port at a position circumferentially different from the first axial passage. Alternatively, the passage is formed on at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and extends in the axial direction and is divided into a plurality of axial directions. A groove is formed, and a passage communicating with the axial groove is formed in the both end members, one of the passages can communicate with the inlet port, and the other of the passages can communicate with the outlet port. Good to have .

【0006】本願の他の発明は、流体を流して温度を調
節できる温度調節用流体通路付き成形型を製造する方法
において、両端面を有していて内外にほぼ同軸にして重
ねて配置される少なくとも二つの部材と、前記両端面に
接合される二つの端部材とを用意することと、内外に重
ねられたとき互いに向き合う面の間に前記流体通路を形
成することと、前記端部材のうち少なくとも一つの端部
材には前記通路とそれぞれ連通する入口ポート及び出口
ポートの少なくとも一方を形成することと、前記部材の
前記端面と前記端部材の一方の面とを互いに当接させ、
少なくとも前記端面と前記端部材の面とをパルス通電接
合法により仮接合し、その後熱処理して接合を完成させ
て母材をつくることと、前記母材に機械加工を施してコ
ア部材挿入用の軸穴を形成することと、前記穴内には成
形型のキャビティを画成する少なくとも一つのコア部材
を挿入することと、を含んで構成されている。上記製造
方法の一つの実施例において、前記接合面を鏡面に加工
してもよい。また、他の実施例において、前記熱処理を
真空雰囲気内で前記ブロックの材質の溶融温度の55な
いし85%の温度範囲で行なってもよい。
Another aspect of the present invention is a method for producing a molding die having a temperature controlling fluid passage capable of controlling a temperature by flowing a fluid, which has both end faces and is arranged substantially coaxially inside and outside. Preparing at least two members and two end members joined to the both end faces; forming the fluid passage between the faces facing each other when being stacked inside and outside; Forming at least one of an inlet port and an outlet port respectively communicating with the passage in at least one end member, and bringing the end surface of the member and one surface of the end member into contact with each other,
At least the end face and the face of the end member are temporarily joined by a pulse current joining method, and then heat treated to complete the joining to form a base material, and the base material is machined to insert a core member. The method includes forming an axial hole and inserting at least one core member that defines a cavity of a mold into the hole. In one embodiment of the above manufacturing method, the joint surface may be processed into a mirror surface. Further, in another embodiment, the heat treatment may be performed in a vacuum atmosphere in a temperature range of 55 to 85% of a melting temperature of the material of the block.

【0007】本願の別の発明は、流体を流して温度を調
節できる温度調節用流体通路付き成形型と、前記成形型
を収容する収容空間を画成する金型母材との組合せ体に
おいて、前記成形型が、内外にほぼ同軸にして重ねて配
置された少なくとも二つの部材と、前記二つの部材の両
端に隣接して配置されていて前記部材の端面において接
合された端部材とを備え、内側の部材の外周面と外側の
部材の内周面との間には前記流体を流すための流体通路
が形成され、前記端部材のうち少なくとも一つの端部材
には前記流体通路とそれぞれ連通する入口ポート及び出
口ポートの少なくとも一方が形成され、少なくとも前記
部材と前記端部材とがパルス通電接合法により仮接合さ
れた後熱処理されて接合が完成されており、前記内側の
部材に形成された軸穴内には、前記軸穴内で成形型のキ
ャビティを画成する少なくとも一つの成形コアが着脱可
能に挿入されて形成され、前記金型母材と前記成形型と
の間に断熱層が設けられて構成されている。上記組合せ
体において、前記断熱層が断熱空間の層及び断熱材の層
の少なくとも一方の層であってもよい。
Another invention of the present application is a combination of a molding die having a temperature controlling fluid passage for controlling a temperature by flowing a fluid, and a mold base material defining an accommodating space for accommodating the molding die, The molding die includes at least two members that are arranged substantially coaxially inside and outside, and end members that are arranged adjacent to both ends of the two members and that are joined at the end faces of the members, A fluid passage for flowing the fluid is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and at least one of the end members communicates with the fluid passage. At least one of the inlet port and the outlet port is formed, and at least the member and the end member are provisionally joined by the pulse current joining method and then heat-treated to complete the joining, which is formed on the inner member. At least one molding core that defines a cavity of the molding die in the shaft hole is detachably inserted into the hole, and a heat insulating layer is provided between the mold base material and the molding die. It is configured. In the above combination, the heat insulating layer may be at least one of a heat insulating space layer and a heat insulating material layer.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施形態につ
いて説明する。まず、図1ないし図6において、本発明
による成形型及びその製造方法の一実施形態が、プラス
チックギヤ成形型及びその製造方法として示されてい
る。この実施形態の成形型内に水、油等の冷却液を流す
ための流体通路を形成するために予め分割された複数
(この実施例では4個)の部材を用意し、その部材の1
個又は2個に流体通路を形成した後それらの部材を放電
プラズマ焼結、放電焼結、プラズマ活性化焼結法等のパ
ルス通電焼結法を応用した接合方法(パルス通電接合方
法)により接合して成形型用の母材11として一体化
し、その後にその母材に機械工等を施した後コア部材を
取り付けてプラスチックギヤ成形型10にするものであ
る。この成形型用の母材11は、成形型用の材質として
適した材質、例えばSUS420J2(ステンレス鋼)
でつくられ、内外に同軸状にして重ねて配置された二つ
の筒状の部材20及び30と、それらの部材の両端に配
置された二つの環状の端部材40及び50を備えてい
る。部材20及び30は同じ軸方向(図1及び図3で上
下方向)長さを有している。下側(図1において)の端
部材40の一方の面(図2において上面)41は平坦面
(好ましくは鏡面)に加工されている。また、内外の部
材20及び30の両端面21及び31(図2において上
端面)並びに22及び32(図2において下端面)もそ
れぞれ平坦面(好ましくは鏡面)に加工されている。更
に、上側(図1において)の端部材50の下面(図2に
おいて)52も平坦面(好ましくは鏡面)に加工されて
いる。更に、部材20及び30の互いに対向する面すな
わち部材20の外周面24及び部材30の内周面33も
鏡面に加工されている。なお、鏡面に付いての数値的範
囲は必ずしも明確でないが、ここでは、Ra0.3以下
の数値の平滑度(数値が小さくなれば平滑度は高くな
る)を有する表面加工状態を言う。内側の部材20の外
周面24には、全周に亘って円周方向に伸びる環状溝2
5が複数個(この実施形態では5個)軸方向に隔てて形
成されている。内側の部材20の外径と外側部材30の
内周面33の直径(内径)とは、部材20が部材30の
軸穴内に隙間なくぴったりと嵌合するような寸法(例え
ば外側の部材の内径と内側の部材の外形との寸法差が2
ないし50μm)に決められている。部材20の外周面
24には、更に、一方の端面(図2で上端面)からその
端面から最も離れた環状溝25まで軸方向に伸びる二つ
の軸方向溝26、26′が直径方向に隔てて形成されて
いる。軸方向溝26、26′は軸方向通路を形成してい
る。かかる環状溝及び軸方向溝は旋盤加工、フライス加
工等の機械加工によって形成しても、或いは鋳造によっ
て形成してもよい。なお、この実施形態において、内側
の部材20の内周面23の直径(内径)と端部材40及
び50の内周面の直径(内径)とは同じに形成され、ま
た、外側の部材30の外周面34の直径(外径)と端部
材40、50の外周面の直径(外径)とは同じに形成さ
れている。なお、端部材の外形を外側部材の外形より大
きくして必要に応じて後で機械加工により寸法を調整し
てもよい。また、部材20及び30の端面及びその端面
に当接する端部材の面は必ずしも平坦である必要はな
く、両者が同じ曲率ならば曲面でもよい。
Embodiments of the present invention will be described below with reference to the drawings. First, in FIG. 1 to FIG. 6, one embodiment of a molding die and a manufacturing method thereof according to the present invention is shown as a plastic gear molding die and a manufacturing method thereof. A plurality of (in this example, four) members divided in advance to form a fluid passage for flowing a cooling liquid such as water or oil is prepared in the molding die of this embodiment.
After forming fluid passages in one piece or two pieces, these members are joined by a joining method (pulse energization joining method) applying a pulse energization sintering method such as spark plasma sintering, spark sintering, and plasma activated sintering method. Then, it is integrated as a base material 11 for the forming die, and then the base material is subjected to a mechanic or the like and then a core member is attached to form a plastic gear forming die 10. The base material 11 for the mold is a material suitable as a material for the mold, for example, SUS420J2 (stainless steel).
And two tubular members 20 and 30 which are made of the above-mentioned material and which are arranged coaxially and overlapped with each other, and two annular end members 40 and 50 which are arranged at both ends of these members. The members 20 and 30 have the same axial length (vertical direction in FIGS. 1 and 3). One surface (upper surface in FIG. 2) 41 of the lower end member 40 (in FIG. 1) is processed into a flat surface (preferably a mirror surface). Both end surfaces 21 and 31 (upper end surface in FIG. 2) and 22 and 32 (lower end surface in FIG. 2) of the inner and outer members 20 and 30 are also processed into flat surfaces (preferably mirror surfaces). Further, the lower surface (in FIG. 2) 52 of the upper end member 50 (in FIG. 1) is also processed into a flat surface (preferably a mirror surface). Further, the surfaces of the members 20 and 30 facing each other, that is, the outer peripheral surface 24 of the member 20 and the inner peripheral surface 33 of the member 30 are also mirror-finished. The numerical range of the mirror surface is not necessarily clear, but here it means a surface-processed state having a smoothness of Ra 0.3 or less (the smaller the value, the higher the smoothness). On the outer peripheral surface 24 of the inner member 20, the annular groove 2 extending in the circumferential direction over the entire circumference.
A plurality of (5 in this embodiment) 5 are axially separated from each other. The outer diameter of the inner member 20 and the diameter (inner diameter) of the inner peripheral surface 33 of the outer member 30 are such that the member 20 fits snugly into the shaft hole of the member 30 without a gap (for example, the inner diameter of the outer member). And the dimensional difference between the outer shape of the inner member and 2
To 50 μm). The outer peripheral surface 24 of the member 20 is further provided with two diametrically spaced axial grooves 26, 26 'extending axially from one end surface (upper end surface in FIG. 2) to an annular groove 25 furthest from the end surface. Is formed. The axial grooves 26, 26 'form an axial passage. The annular groove and the axial groove may be formed by machining such as lathe processing, milling processing or the like, or may be formed by casting. In this embodiment, the diameter (inner diameter) of the inner peripheral surface 23 of the inner member 20 and the inner peripheral surface of the end members 40 and 50 (inner diameter) are formed to be the same, and the outer member 30 The diameter (outer diameter) of the outer peripheral surface 34 and the diameter (outer diameter) of the outer peripheral surfaces of the end members 40 and 50 are formed to be the same. The outer shape of the end member may be made larger than the outer shape of the outer member, and the dimensions may be adjusted later by machining if necessary. Further, the end faces of the members 20 and 30 and the faces of the end members that abut against the end faces do not necessarily need to be flat, and may be curved as long as they have the same curvature.

【0009】一方の端部材(図1及び2では上側の端部
材)50には一端が端部材50の下面(図1及び図2に
おいて)52に開口し他端が外周面54に開口する二つ
のポート56及び56′が形成されている。このポート
の一方は入口ポートとして機能し、かつ他方は出口ポー
トとして機能する。二つのポート56及び56′の下面
側の開口端の半径方向位置は、上記の内側の部材20に
形成された軸方向溝26及び26′と整合する位置であ
る。部材20の両端面21及び22には、一対の位置決
めピン用の位置決め穴27が、それぞれ、直径方向に隔
てて形成されている。また、端面21に当接する端部材
50の下面52には位置決め穴27と整合する一対の位
置決め穴57が形成され、端面22に当接する端部材4
0の上面41には位置決め穴27と整合する一対の位置
決め穴47が形成されている。
One end member (upper end member in FIGS. 1 and 2) 50 has one end opening to the lower surface (in FIGS. 1 and 2) 52 of the end member 50 and the other end opening to the outer peripheral surface 54. Two ports 56 and 56 'are formed. One of the ports functions as an inlet port and the other as an outlet port. The radial positions of the lower open ends of the two ports 56 and 56 'are aligned with the axial grooves 26 and 26' formed in the inner member 20 described above. Positioning holes 27 for a pair of positioning pins are formed in both end faces 21 and 22 of the member 20 so as to be separated from each other in the diametrical direction. Further, a pair of positioning holes 57 that are aligned with the positioning holes 27 are formed on the lower surface 52 of the end member 50 that contacts the end surface 21, and the end member 4 that contacts the end surface 22.
A pair of positioning holes 47 that are aligned with the positioning holes 27 are formed on the upper surface 41 of the No. 0.

【0010】上記のように予め機械加工された部材20
の外側に部材30が装着され、部材20及び30の両端
に端部材40及び50が配置される。そして、部材20
と端部材40及び50とは位置決め穴27、47及び5
7内に挿入された位置決めピンにより位置決めされる。
この状態で端部材40に形成された一対のポート46及
び46′の下面側開口端は、部材20に形成された軸方
向溝26及び26′の上面21の開口端と整合されてい
る。したがって、この実施形態では、部材20の上面2
1及び部材30の上面31と端部材40の下面42とが
互いに接合される一対の接合面に、また、部材20の下
面22及び部材30の下面32と端部材50の上面52
とが互いに接合される一対の接合面になる。この状態で
図7に示されるような、放電プラズマ焼結方法のような
パルス通電焼結方法を応用したパルス通電接合装置10
0の一対の通電電極間に配置し、このパルス通電接合装
置でブロックを各対の接合面間で接合して一体化し、母
材11をつくる。
Member 20 pre-machined as described above
The member 30 is attached to the outer side of the member, and the end members 40 and 50 are arranged at both ends of the members 20 and 30. And the member 20
And the end members 40 and 50 are provided with positioning holes 27, 47 and 5
Positioning is carried out by the positioning pin inserted in 7.
In this state, the lower surface side opening ends of the pair of ports 46 and 46 'formed in the end member 40 are aligned with the opening ends of the upper surfaces 21 of the axial grooves 26 and 26' formed in the member 20. Therefore, in this embodiment, the upper surface 2 of the member 20 is
1 and the upper surface 31 of the member 30 and the lower surface 42 of the end member 40 are joined to each other, and the lower surface 22 of the member 20 and the lower surface 32 of the member 30 and the upper surface 52 of the end member 50.
And become a pair of joint surfaces to be joined to each other. In this state, a pulse current welding apparatus 10 to which a pulse current sintering method such as a spark plasma sintering method is applied as shown in FIG.
It is arranged between a pair of 0 current-carrying electrodes, and the pulse current-carrying welding device joins the blocks between the pair of joining surfaces to integrate them to form the base material 11.

【0011】パルス通電接合装置100は、例えば、通
電接合部110と、熱処理部120とを備えている。通
電接合部110は、台111の上に絶縁部材を介して公
知の方法で台と電気的に絶縁させて固定された下通電電
極113と、台111の上方に配置され台に関して公知
の方法で固定された流体圧シリンダ114と、流体圧シ
リンダ114のピストンロッド115の先端(図で下
端)に絶縁部材を介して公知の方法でピストンロッド1
15と電気的に絶縁して固定された上通電電極116と
を備えている。流体圧シリンダは被接合材を押圧する加
圧装置として機能する。加圧装置としては流体圧シリン
ダの代わりに電動モータ及びねじ機構で上通電電極を上
下動させるようにしてもよい。上下通電電極は電源装置
117に電気的に接続されている。電源装置は直流のパ
ルス電流を供給できるようになっている。電源装置11
7は電源と通電電極との電気的接続及び切断を行うスイ
ッチ機構(図示せず)を内蔵している。電源装置が供給
できる電力は、電圧が100V以下で、電流が、例えば
2000〜8000Aの大電流の電力である。上記例で
は下通電電極を固定にして上通電電極を動かすようにし
たが、その逆でも、或いは両者を動くようにしてもよ
い。熱処理部120は真空雰囲気で熱処理可能な公知の
構造の真空熱処理炉或いは不活性ガス雰囲気で熱処理可
能なガス雰囲気炉でよい。また、パルス通電接合装置1
10と熱処理部120とを一体構造化してその間に製品
搬送ロボット装置を配置し、仮接合された母材を複数個
まとめてバッチ式に熱処理するような構造にしても、或
いはそれらを別個に配置してもよい。なお、上記実施例
では上通電電極を例えば複数の支柱(図示せず)で固定
し、流体圧シリンダのような加圧装置を台111の上に
配置してその加圧装置で下通電電極を上下動するように
してもよい。
The pulse current joining apparatus 100 is provided with, for example, a current joining section 110 and a heat treatment section 120. The current-carrying joint part 110 is formed on the table 111 via an insulating member by a known method so as to be electrically insulated and fixed to the table, and the lower current-carrying electrode 113, which is arranged above the table 111 and is known to the table. The fixed fluid pressure cylinder 114 and the piston rod 1 of the fluid pressure cylinder 114 are connected to the tip (lower end in the figure) of the piston rod 115 via an insulating member by a known method.
15 and an upper conducting electrode 116 electrically insulated and fixed. The fluid pressure cylinder functions as a pressure device that presses the materials to be joined. As the pressurizing device, the upper energizing electrode may be moved up and down by an electric motor and a screw mechanism instead of the fluid pressure cylinder. The upper and lower energizing electrodes are electrically connected to the power supply device 117. The power supply device can supply a DC pulse current. Power supply 11
Reference numeral 7 has a built-in switch mechanism (not shown) for electrically connecting and disconnecting the power source and the energizing electrode. The power that can be supplied by the power supply device is a high-current power having a voltage of 100 V or less and a current of 2000 to 8000 A, for example. In the above example, the lower energizing electrode is fixed and the upper energizing electrode is moved, but the opposite may be done, or both may be moved. The heat treatment unit 120 may be a vacuum heat treatment furnace having a known structure capable of heat treatment in a vacuum atmosphere or a gas atmosphere furnace capable of heat treatment in an inert gas atmosphere. Also, the pulse current welding device 1
10 and the heat treatment unit 120 are integrally structured and a product transfer robot device is arranged between them, and a structure is adopted in which a plurality of temporarily joined base materials are collectively heat treated, or they are separately arranged. You may. In the above embodiment, the upper energizing electrode is fixed by, for example, a plurality of columns (not shown), a pressurizing device such as a fluid pressure cylinder is arranged on the base 111, and the lower energizing electrode is used by the pressurizing device. You may make it move up and down.

【0012】互いに重ね合わされかつ位置決めされた複
数の部材20、30、40及び50を上記接合装置10
0の一対の通電電極113と116との間にセットした
後、加圧装置で所定の圧力、例えば0ないし50メガパ
スカルの範囲の圧力で加圧した状態で、被接合体の体
積、断面積、材質、形状、大きさ等に応じて通電電極間
で所定の電圧で所定の電流の直流パルス電流を流すと、
接触抵抗の高い当接界面部分がジュール加熱により高温
に熱せされる。また、材料自体の抵抗値により全体がジ
ュール加熱される。また、上下一軸加圧力による塑性変
形と熱膨張により内外に重ねられた部材の当接界面には
高い圧力が発生する。更にon−offパルス電流の流
れの方向に沿って電場が生じ、電界拡散が生じる。この
電界拡散効果と前述の熱拡散の機械的圧力が固相拡散接
合に寄与し金属結晶構造の配向性をもとらすと考えられ
る。このため、それらの部材は対の接合面間、すなわち
部材20及び30の対向する当接面間、部材20及び3
0の上面21及び31と部材50の下面52との間、下
面22及び32と部材40の上面41との間で互いに接
合する。この接合は、従来のホットプレス焼結法に比べ
緻密化速度が速いことが接合実験結果で分かっている。
その結果この状態での隣接するブロック間の接合は、エ
ネルギー量的に拡散層は浅く接合強度の点で見た場合ま
だ完全なものではないが、接合界面の金属格子の配列状
態はより拡散し易い方向に揃うものと考えられる。そこ
でこの接合状態を仮接合と呼び、仮接合された部材を仮
接合体と呼ぶ。仮接合された部材20、30、40及び
50により構成される仮接合体は、次に熱処理部120
の熱処理炉内で熱処理が行なわれる。このように、仮接
合する処理と熱処理とを行うので、ここでは2段処理法
と呼ぶ。熱処理温度及び時間は部材の材質及び大きさに
よって異なるが、従来の熱処理のみによる固相拡散接合
に要する時間に比べて1/10ないし1/20に大幅に
短縮される。この熱処理を行うことにより仮接合されて
いた接合面間の接合は、緻密化拡散速度の速い時間によ
り短い時間で完全なものになって完全な接合体になり、
その接合体の接合強度は部材の材質の強度に匹敵する値
になる。これにより母材11の製造が完了する。上記パ
ルス通電接合による加圧力、パルス電流の電圧及び電流
並びに熱処理温度及び時間等はブロックの材質及びサイ
ズによって異なるが、部材の材料としてSUS420J
2を使用し、部材20の内径を40mm、外径を70m
m、部材30の内径を70mm、外径を110mmとし
かつ両者の軸方向長さを30mmとし、また、端部材4
0及び50の内径を40mm、外径を110mmとし、
更に端部材40及び50の厚さをそれぞれ5mm及び2
5mmとした場合、圧力は30メガパスカルで、電圧を
3ないし10Vで電流値を5000ないし6000アン
ペア、真空熱処理温度及び時間はそれぞれ950ないし
1100℃及び60ないし120分の範囲で行うのが良
い結果を得るのに好ましい。なお、加熱時に、部材20
の外周面は中心軸から外側に膨張しようとしと、部材3
0との外周は中心軸から外側に膨張し、内周面は中心軸
方向に膨張しようとする。これにより部材20が部材3
0内に締まり嵌めによって嵌合されていなくても両者の
当接面間の隙間輪小さくなる。更に冷却時に部材30が
先に冷却され、収縮により部材20が一層締め付けられ
るため、通電接合時に外から加圧しなくても加圧した状
態と同じ状態になり、接合はより完全なものになる。部
材30の内周面は形状によっては外側に膨張する場合も
あるが、部材20の外周面の外側への熱膨張との差が隙
間を縮める方向に働くように両部材の肉厚を設定し、熱
膨張、収縮により隙間がなくなる隙間範囲及び部材の肉
厚にするのが好ましい。
A plurality of members 20, 30, 40 and 50, which are superposed and positioned on each other, are connected to the joining device 10 described above.
After being set between the pair of current-carrying electrodes 113 and 116 of 0, the volume and cross-sectional area of the article to be bonded are pressurized with a predetermined pressure by a pressure device, for example, a pressure in the range of 0 to 50 megapascals. When a direct current pulse current of a predetermined current is passed between the energized electrodes at a predetermined voltage according to the material, shape, size, etc.,
The contact interface portion with high contact resistance is heated to a high temperature by Joule heating. Further, the entire material is Joule heated by the resistance value of the material itself. Further, a high pressure is generated at the contact interface of the members that are stacked inside and outside due to the plastic deformation and the thermal expansion due to the vertical uniaxial pressure. Further, an electric field is generated along the direction of the flow of the on-off pulse current, and electric field diffusion occurs. It is considered that this electric field diffusion effect and the mechanical pressure of the above-mentioned thermal diffusion contribute to the solid-phase diffusion bonding to obtain the orientation of the metal crystal structure. For this reason, these members are provided between the joining surfaces of the pair, that is, between the abutting contact surfaces of the members 20 and 30, and between the members 20 and 3.
The upper surfaces 21 and 31 of 0 and the lower surface 52 of the member 50, and the lower surfaces 22 and 32 and the upper surface 41 of the member 40 are joined to each other. It is known from the joining experiment result that this joining has a higher densification rate than the conventional hot press sintering method.
As a result, the junction between adjacent blocks in this state is not perfect in terms of energy quantity because the diffusion layer is shallow and in terms of junction strength, but the arrangement state of the metal lattice at the junction interface is more diffuse. It is considered that they are aligned in an easy direction. Therefore, this joined state is called temporary joining, and the temporarily joined member is called a temporary joined body. The temporary bonded body constituted by the temporarily bonded members 20, 30, 40 and 50 is then subjected to the heat treatment section 120.
The heat treatment is performed in the heat treatment furnace. Since the temporary joining process and the heat treatment are performed as described above, the method is referred to as a two-step process here. Although the heat treatment temperature and time differ depending on the material and size of the member, the heat treatment temperature and time are greatly reduced to 1/10 to 1/20 as compared with the time required for solid phase diffusion bonding only by conventional heat treatment. By performing this heat treatment, the joining between the joining surfaces, which were temporarily joined, becomes complete in a short time due to the high time of the densification diffusion rate, and becomes a complete joined body.
The joining strength of the joined body has a value comparable to the strength of the material of the member. This completes the manufacture of the base material 11. The pressure applied by the pulse current welding, the voltage and current of the pulse current, the heat treatment temperature and time, etc. differ depending on the material and size of the block, but as the material of the member, SUS420J
2, the inner diameter of the member 20 is 40 mm, the outer diameter is 70 m
m, the inner diameter of the member 30 is 70 mm, the outer diameter is 110 mm, and the axial length of both is 30 mm.
The inner diameter of 0 and 50 is 40 mm, the outer diameter is 110 mm,
Further, the thickness of the end members 40 and 50 is 5 mm and 2 respectively.
When the pressure is 5 mm, the pressure is 30 MPa, the voltage is 3 to 10 V, the current value is 5000 to 6000 amps, and the vacuum heat treatment temperature and time are 950 to 1100 ° C. and 60 to 120 minutes, respectively. To obtain In addition, at the time of heating, the member 20
When the outer peripheral surface of the member tries to expand outward from the central axis, the member 3
The outer circumference with 0 expands outward from the central axis, and the inner peripheral surface tries to expand in the central axis direction. As a result, the member 20 becomes the member 3
Even if they are not fitted into each other by means of an interference fit, the clearance ring between the contact surfaces of the two becomes smaller. Further, since the member 30 is first cooled during cooling and the member 20 is further tightened due to contraction, the state is the same as the state in which pressure is applied from the outside during energization joining, and the joining is more complete. The inner peripheral surface of the member 30 may expand outward depending on the shape, but the wall thicknesses of both members are set so that the difference from the outer thermal expansion of the outer peripheral surface of the member 20 acts in the direction of reducing the gap. It is preferable to make the gap range and the wall thickness of the member that eliminate the gap due to thermal expansion and contraction.

【0013】このようにしてつくられた成形型用の母材
11には、部材20に形成された複数の環状の溝25及
び軸方向溝26、26′によって画成される温度調節用
流体が流れる流体通路が形成されている。そして軸方向
溝26と連通する一方のポート46を入口ポートとし、
軸方向溝26′と連通するポート46′を出口ポートと
すると、流体は軸方向溝26から複数の環状溝25内を
並列に流れ、軸方向溝26′を介して出口ポート46′
から流出する。なお、各対の接合面間では予め鏡面加工
が施されているため密な接合が行われ、流体通路から接
合面間を通して流体が外部に流出することはない。母材
11には、後の機械加工工程において、中心部(円形の
溝より半径方向内側でその溝と干渉しない位置)に図3
に示されるように貫通穴12が形成され、成形型の本体
11’につくり上げられる。貫通穴12は、この実施例
では、直径D1の横断面が円形の部分13と、直径D2
(D2>D1)の横断面が円形の部分14と、部分13
と14との中間にあって内周に多数の凹凸がスプライン
状に形成された部分15とを有している。部分15の内
周に形成される凹凸は成形品であるプラスチックギヤの
複数の歯を形成する部分であるから、そのプラスチック
ギヤの形状及び寸法に合わせて形成される。なお、上記
実施形態のように内側の部材20として筒状の部材を使
用しかつ端部材として環状の部材を使用する場合には、
それらの内径が上記のように加工される部分の最小直径
より小さい値を有する材料を使用する必要がある。予め
筒状の部材及び環状の端部材を使用することにより上記
のような機械加工の手間を少なくできるが、部材20と
して中実の円柱体を使用しかつ端部材として円盤状のも
のを使用してもよい。また、プラスチックギヤの歯が直
ぐ歯歯車でなくヘリカルギヤの場合には、部分15に形
成される凹凸はそのヘリカルギヤに対応した形状にする
のはもちろんである。
The base material 11 for the molding tool thus produced is provided with a temperature control fluid defined by a plurality of annular grooves 25 and axial grooves 26, 26 'formed in the member 20. A flowing fluid passage is formed. And one port 46 communicating with the axial groove 26 is used as an inlet port,
When the port 46 'communicating with the axial groove 26' is used as an outlet port, the fluid flows from the axial groove 26 in the plurality of annular grooves 25 in parallel, and the fluid flows through the axial groove 26 'through the outlet port 46'.
Drained from. In addition, since the mirror surfaces are preliminarily processed between the pair of joint surfaces, a tight joint is performed, and the fluid does not flow out from the fluid passage through the joint surfaces. In the subsequent machining process, the base material 11 has a central portion (a position radially inward of the circular groove that does not interfere with the groove) shown in FIG.
A through hole 12 is formed as shown in FIG. 1 and is built up in the main body 11 'of the mold. In this embodiment, the through hole 12 includes a portion 13 having a circular cross section with a diameter D1 and a diameter D2.
A portion 14 having a circular cross section (D2> D1) and a portion 13
There is a part 15 in the middle of which is provided with a large number of irregularities in the form of splines in the middle. The unevenness formed on the inner circumference of the portion 15 is a portion for forming a plurality of teeth of the plastic gear that is a molded product, and therefore is formed according to the shape and size of the plastic gear. When a tubular member is used as the inner member 20 and an annular member is used as the end member as in the above embodiment,
It is necessary to use materials whose inner diameters are smaller than the smallest diameter of the part processed as described above. By using a tubular member and an annular end member in advance, it is possible to reduce the time and effort for the machining as described above, but a solid cylindrical body is used as the member 20 and a disc-shaped member is used as the end member. May be. In addition, when the teeth of the plastic gear are helical gears instead of straight tooth gears, it goes without saying that the concavities and convexities formed in the portion 15 have a shape corresponding to the helical gear.

【0014】一方、貫通穴内でプラスチックの成形に必
要なキャビティ(プラスチック材を流し込む空洞)を画
成するコア部材は別の製造工程で製造される。この実施
例のコア部材は、図4及び図5に示される二つのコア部
材60及び70で構成されている。一方のコア部材60
には本体11′に形成された貫通穴12の直径D1の部
分に密に嵌合される外径を有する大径部分63と、貫通
穴12内で本体11の部分15と協同して環状のキャビ
ティを画成する直径d1の小径部64とが形成されてい
る。またコア部材60の軸心O−Oには一方の面(図4
で上面であって、本体の貫通穴12の内側になる面)6
1から他方の面62に貫通する段付きの芯穴65が形成
されている。面61の中心には直径d2の円形の凹部6
6が形成されている。更に、コア部材60には軸心O−
Oから半径r1及びr2の円周上の位置に円周方向に隔
てて複数の貫通穴67及び68が形成されている。これ
らの貫通穴内には成形品を押し出す押し出しピン82、
83が挿入されている。他方のコア部材70は本体11
に形成された貫通穴12の直径D2の部分内に密に嵌合
される外径を有する大径部73と、貫通穴内12で本体
11と協同して環状のキャビティを画成する直径d1の
小径部74とが形成されている。またコア部材70には
一方の面(図5で上面であって、本体の貫通穴12の内
側になる面)71から他方の面72に貫通する成形材注
入ポート75が形成されている。面71の中心には直径
d2の円形の凹部76が形成されている。上記のような
コア部材60及び70は、図6に示されるように本体1
1′の貫通穴12内に、軸81と共に挿入され、成形型
10が作られる。なお、貫通穴の部分14を本体の外側
に向かって広がるテーパー付き穴にしても良い。その場
合には、コア部材70の部分73の外周もテーパ付きに
する。
On the other hand, the core member defining the cavity (cavity into which the plastic material is poured) necessary for molding the plastic in the through hole is manufactured by another manufacturing process. The core member of this embodiment is composed of two core members 60 and 70 shown in FIGS. One core member 60
Has a large-diameter portion 63 having an outer diameter closely fitted to the diameter D1 portion of the through hole 12 formed in the body 11 ', and an annular portion in cooperation with the portion 15 of the body 11 in the through hole 12. A small diameter portion 64 having a diameter d1 that defines a cavity is formed. The axis O-O of the core member 60 has one surface (see FIG. 4).
Is the upper surface and is the inner surface of the through hole 12 of the main body) 6
A stepped core hole 65 penetrating from 1 to the other surface 62 is formed. A circular recess 6 having a diameter d2 is formed at the center of the surface 61.
6 is formed. Further, the core member 60 has an axis O-
A plurality of through holes 67 and 68 are formed at positions on the circumference of O with radii r1 and r2 and are circumferentially separated. Extrusion pins 82 for extruding a molded product are provided in these through holes.
83 is inserted. The other core member 70 is the main body 11
A large-diameter portion 73 having an outer diameter closely fitted in a portion of the through hole 12 having a diameter D2 formed therein, and a diameter d1 that cooperates with the main body 11 in the through hole 12 to define an annular cavity. A small diameter portion 74 is formed. Further, the core member 70 is provided with a molding material injection port 75 penetrating from one surface (the upper surface in FIG. 5, which is the inner surface of the through hole 12 of the main body) 71 to the other surface 72. A circular recess 76 having a diameter d2 is formed at the center of the surface 71. The core members 60 and 70 as described above may be used as shown in FIG.
The molding die 10 is made by inserting the shaft 81 into the through hole 12 of 1 '. The through hole portion 14 may be a tapered hole that widens toward the outside of the main body. In that case, the outer periphery of the portion 73 of the core member 70 is also tapered.

【0015】上記実施形態において、内外に配置された
二つの部材のうち内側の部材20の外周面24に環状溝
25を形成して流体通路を構成したが、(1)外側の部
材30の内周面33に環状溝を形成して流体通路にして
も、また、(2)部材20の外周面及び部材30の内周
面に互いに整合する環状溝を形成してそれらの環状溝に
より流体通路を構成してもよい。前記(1)の場合、軸
方向溝は部材30の内周面33に形成され、(2)の場
合には軸方向溝は部材20の外周面及び部材30の内周
面の両方に形成するのが好ましい。更に、円周方向に伸
びる溝を環状溝とするのでなく、図8に示されるように
内側の部材20aの外周面24aに形成された螺旋溝2
5a、又は外側の部材30bの内周面33bに形成され
た螺旋溝35bとし、その螺旋溝の一端(図8で上端)
を軸方向通路26a、26bを介して端部材50a、5
0bに形成された一方のポート56a、56bに接続
し、他端(図8で下端)を軸方向通路26a′、26
b′を介して他方のポート56a′、56b′に接続し
てもよい。また、螺旋溝を1条でなく複数条にして別々
に流体を流せるようにしてもよい。更にまた、内外に重
ねて配置される二つの部材間に形成される流体通路を、
図9に示されるように、内側の部材20cの外周24c
に軸方向に全長に亘って伸びる複数の軸方向溝25c
を、例えばスプラインのように円周方向に隔てて、形成
し、その軸方向溝によって構成してもよい。もちろん、
図示しないが、軸方向溝を外側の部材の内周面に形成
し、それによって流体通路を構成してもよい。軸方向通
路により流体通路を形成する場合には、図10に示され
るように、端部材40cの上面41c及び端部材50c
の下面52cに軸方向溝と連通する環状の溝47c及び
57cをそれぞれ設け、溝57cをポート56cに接続
しかつ溝47cを内側部材20cに形成された連通孔2
6cを介して他のポート57c′に接続するようにして
もよい。
In the above embodiment, the annular groove 25 is formed in the outer peripheral surface 24 of the inner member 20 of the two members arranged inside and outside to form the fluid passage. An annular groove is formed on the peripheral surface 33 to form a fluid passage, or (2) an annular groove that is aligned with the outer peripheral surface of the member 20 and an inner peripheral surface of the member 30 is formed, and the fluid passage is formed by these annular grooves. May be configured. In the case of (1), the axial groove is formed on the inner peripheral surface 33 of the member 30, and in the case of (2), the axial groove is formed on both the outer peripheral surface of the member 20 and the inner peripheral surface of the member 30. Is preferred. Further, the circumferentially extending groove is not an annular groove but a spiral groove 2 formed on the outer peripheral surface 24a of the inner member 20a as shown in FIG.
5a or the spiral groove 35b formed on the inner peripheral surface 33b of the outer member 30b, and one end of the spiral groove (upper end in FIG. 8)
The end members 50a, 5 through the axial passages 26a, 26b.
0b, one of the ports 56a, 56b is connected to the other end (lower end in FIG. 8) of the axial passages 26a ', 26b.
It may be connected to the other port 56a ', 56b' via b '. Further, the spiral groove may be formed in plural lines instead of one line so that the fluids can flow separately. Furthermore, a fluid passage formed between two members that are arranged inside and outside is
As shown in FIG. 9, the outer periphery 24c of the inner member 20c
A plurality of axial grooves 25c extending in the axial direction over the entire length
May be formed so as to be separated in the circumferential direction like a spline, and may be constituted by the axial groove. of course,
Although not shown, the axial groove may be formed on the inner peripheral surface of the outer member to form the fluid passage. When the fluid passage is formed by the axial passage, as shown in FIG. 10, the upper surface 41c of the end member 40c and the end member 50c are formed.
The lower surface 52c of each of the circular holes 47c and 57c, which communicate with the axial grooves, are provided, the groove 57c is connected to the port 56c, and the groove 47c is formed in the inner member 20c.
It may be connected to another port 57c 'via 6c.

【0016】上記のようにつくられた成形型10は、金
型母材の装着用の空洞内に挿入されるが、この場合、図
11に示されるように金型母材200の上下に貫通する
空洞201内に、成形型10dの外側の部材30dの外
周と空洞の内周との間に断熱空間Icが形成されるよう
になっている。このため、成形型10dのように、空洞
201の内径を部材30dの外径より大きくしてそれら
の間に断熱空間ができるようにすると共に、端部材40
d及び50dの外径を空洞内にぴったりと入る大きさ
(例えば外側の部材の内径と内側の部材の外形との寸法
差が2ないし50μm)にする。端部材の外径を大きく
する代わりに部材30dの外径と同じ外径の端部材に断
熱材製のリングを勘合して断熱を行っても良い。また、
図12に示されるように、成形型10eの外径を大きく
した端部材40e、50eの外側にスリーブ80を嵌合
して溶接等により固定し、スリーブと外側の部材30e
との間に真空状態(負圧状態)に保持した真空空洞Vc
を設け、それによって、断熱効果を高めてもよい。な
お、81は補強リブである。更には、図13に示される
ように、成形型10fの端部材40f、50fの外径を
部材30fの外径より大きくすると共に端部材の外側に
断熱スリーブ85を固定し、断熱スリーブ付きの成形型
を挿入してもよい。このように、成形型と金型母材との
間に断熱空間及び断熱材の少なくとも一方による断熱層
を形成することによって成形型の温度制御をより容易に
且つ効率良く行うことができ、高温での成形が必要な樹
脂材(例えば300℃以上)による成形が可能となる。
The molding die 10 manufactured as described above is inserted into a cavity for mounting the die base material. In this case, as shown in FIG. 11, the die base material 200 is vertically penetrated. In the hollow 201, a heat insulating space Ic is formed between the outer circumference of the member 30d on the outer side of the molding die 10d and the inner circumference of the hollow. For this reason, like the molding die 10d, the inner diameter of the cavity 201 is made larger than the outer diameter of the member 30d so that a heat insulating space is formed between them, and at the same time, the end member 40 is formed.
The outer diameters of d and 50d are set to fit within the cavity (for example, the dimensional difference between the inner diameter of the outer member and the outer shape of the inner member is 2 to 50 μm). Instead of increasing the outer diameter of the end member, the end member having the same outer diameter as the outer diameter of the member 30d may be fitted with a ring made of a heat insulating material to perform heat insulation. Also,
As shown in FIG. 12, the sleeve 80 is fitted to the outside of the end members 40e and 50e of the molding die 10e having the increased outer diameter, and fixed by welding or the like.
Vacuum cavity Vc held in a vacuum state (negative pressure state) between
May be provided, thereby enhancing the heat insulating effect. Reference numeral 81 is a reinforcing rib. Further, as shown in FIG. 13, the outer diameter of the end members 40f and 50f of the molding die 10f is made larger than the outer diameter of the member 30f, and the heat insulating sleeve 85 is fixed to the outer side of the end member to form a heat insulating sleeve. A mold may be inserted. As described above, by forming the heat insulating layer by at least one of the heat insulating space and the heat insulating material between the molding die and the die base material, the temperature control of the molding die can be performed more easily and efficiently, and at a high temperature. Molding with a resin material (for example, 300 ° C. or higher) that requires molding is possible.

【0017】図14において、本願の成形型の更に別の
実施形態が示されている。前の実施形態では内外に重ね
られる部材が2個の例を示したが、この実施形態では3
個にして異なる領域を加熱又は冷却して温度制御できる
ようにしている。同図において、内外に同軸状にして重
ねて配置された二つの筒状の部材20gと30gとの間
には、筒状の別の部材90gが配置されている。それら
の部材は同じ軸方向長さを有し、両端には端部材40g
及び50gが配置されている。なお、以下において図1
ないし図6の実施形態と共通の部分に付いては説明は省
略する。部材20gの外周面24gには全周に亘って円
周方向に伸びる環状溝25gが複数個(この実施形態で
は6個)軸方向に隔てて形成されている。部材20gの
外周面24gには、更に、一方の端面(図2で上端面)
から他方の端面まで軸方向に伸びる二つの軸方向溝26
g、26g′が直径方向に隔てて形成されている。軸方
向溝26g、26g′は軸方向通路を形成している。部
材90gの外周面94gには全周に亘って円周方向に伸
びる環状溝95gが複数個(この実施形態では3個)部
材90gの軸方向中央部に軸方向に隔てて形成されてい
る。部材90gの外周面94gには、更に、一方の端面
(図14で上端面)からその端面から最も離れた環状溝
95gまで軸方向に伸びる軸方向溝96gと、他方の端
面(図14で上端面)からその端面から最も離れた環状
溝95gまで軸方向に伸びる軸方向溝96g′とが直径
方向に隔てて形成されている。軸方向溝96g、96
g′は軸方向通路を形成している。部材2に形成される
軸方向溝26g、26g′と部材90に形成される軸方
向溝96g、96g′とは、部材20、90、30及び
端部材40、50が一体的に接合されるときは、軸方向
溝26g、26g′と96g、96g′とが円周方向に
90度ずれるようにする。
In FIG. 14, yet another embodiment of the mold of the present application is shown. In the previous embodiment, the example in which there are two members that are stacked inside and outside is shown, but in this embodiment, 3
The individual regions are heated or cooled to control the temperature. In the figure, another tubular member 90g is disposed between the two tubular members 20g and 30g that are coaxially stacked inside and outside. The members have the same axial length and end members 40g at both ends.
And 50 g are arranged. In addition, in FIG.
The description of the same parts as those of the embodiment of FIG. 6 will be omitted. The outer peripheral surface 24g of the member 20g is formed with a plurality of (six in this embodiment) annular grooves 25g that extend in the circumferential direction over the entire circumference and are separated in the axial direction. The outer peripheral surface 24g of the member 20g further has one end surface (upper end surface in FIG. 2).
Two axial grooves 26 extending axially from one end face to the other end face
g and 26g 'are formed so as to be separated in the diametrical direction. The axial grooves 26g and 26g 'form an axial passage. The outer peripheral surface 94g of the member 90g is formed with a plurality of (three in this embodiment) annular grooves 95g that extend in the circumferential direction over the entire circumference in the axial center portion of the member 90g so as to be separated in the axial direction. The outer peripheral surface 94g of the member 90g further includes an axial groove 96g extending axially from one end surface (upper end surface in FIG. 14) to an annular groove 95g furthest from the end surface, and the other end surface (upper end in FIG. 14). An axial groove 96g 'extending in the axial direction from the end surface) to an annular groove 95g furthest from the end surface is formed at a diametrical distance. Axial groove 96g, 96
g'defines an axial passage. When the axial grooves 26g, 26g 'formed in the member 2 and the axial grooves 96g, 96g' formed in the member 90 are integrally joined with the members 20, 90, 30 and the end members 40, 50. Causes the axial grooves 26g, 26g 'and 96g, 96g' to be circumferentially offset by 90 degrees.

【0018】一方の端部材(図1及び2では上側の端部
材)50gには一端が端部材50gの下面52gに開口
し他端が外周面54に開口する二対のポート56g及び
56g′及び59g、59g′が形成されている。この
ポートの一方は入口ポートとして機能し、かつ他方は出
口ポートとして機能する。二つのポート56gと56
g′とは直径方向に(円周方向に180°)隔てて形成
され、同様に二つのポート59gと59g′とも直径方
向に隔てて形成されている。ポート56gの下面側の開
口端の半径方向位置は、図14の[B]に示されるよう
に、上記の内側の部材20に形成された軸方向溝26と
整合する位置であり、ポート56g′の下面側の開口端
の半径方向位置は、部材30に軸方向に貫通して形成さ
れかつ他方の軸方向溝26g′と端部材に形成された溝
46gを介して連通している通路36g′と整合する位
置である。ポート59gの下面側の開口端の半径方向位
置は、図14の[B]に示されるように、上記の内側の
部材90gに形成された軸方向溝96gと整合する位置
であり、ポート59g′の下面側の開口端の半径方向位
置は、部材30に軸方向に貫通して形成されかつ他方の
軸方向溝59g′と端部材に形成された溝49gを介し
て連通している通路39g′と整合する位置である。こ
のように三つの筒状の部材を設けることによって二つの
異なる流体通路を設け、しかもその位置を異ならせるこ
とによって加熱、冷却の範囲を調節する事が可能とな
る。なお、上記実施形態では内側の部材の外周面及び外
側の部材の内周面の少なくとも一方、更には中間の部材
の内周面及び外周面の少なくとも一方に溝を形成する例
を示したが、それらの内周面、外周面に溝を形成せず
に、内外に重ねられる部材の面間に流体が流れる程度の
隙間を設けておき(したがって内外に重ねられた部材間
では接合されていない)、そこに温度調節用の流体を流
してもよい。
One end member (upper end member in FIGS. 1 and 2) 50g has two pairs of ports 56g and 56g ', one end of which opens on the lower surface 52g of the end member 50g and the other end of which opens on the outer peripheral surface 54. 59g and 59g 'are formed. One of the ports functions as an inlet port and the other as an outlet port. Two ports 56g and 56
It is formed diametrically (180 ° in the circumferential direction) apart from each other, and similarly, the two ports 59g and 59g 'are also formed diametrically apart from each other. The radial position of the open end on the lower surface side of the port 56g is a position aligned with the axial groove 26 formed in the inner member 20 as shown in FIG. 14B, and the port 56g ' The radial position of the open end on the lower surface side of the passage 36g 'is formed so as to penetrate the member 30 in the axial direction and communicates with the other axial groove 26g' through the groove 46g formed in the end member. It is a position that matches with. The radial position of the opening end on the lower surface side of the port 59g is a position aligned with the axial groove 96g formed in the inner member 90g as shown in FIG. 14B, and the port 59g ' The radial position of the opening end on the lower surface side of the passage 39g 'which is formed so as to penetrate the member 30 in the axial direction and communicates with the other axial groove 59g' through the groove 49g formed in the end member. It is a position that matches with. By providing the three tubular members in this way, two different fluid passages are provided, and by making the positions different, the heating and cooling ranges can be adjusted. In the above embodiment, at least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, further, an example of forming a groove on at least one of the inner peripheral surface and the outer peripheral surface of the intermediate member, No grooves are formed on the inner and outer peripheral surfaces of the members, and a gap is provided between the surfaces of the members that are stacked inside and outside to allow the fluid to flow (thus, the members that are stacked inside and outside are not joined). Alternatively, a temperature adjusting fluid may be flowed there.

【0019】[0019]

【効果】本発明によれば次の様な効果を奏することがで
きる。 (イ)筒の部材又は柱状の部材の外周又は筒状の部材の
内周に流体通路を画成する溝を形成してその部材をパル
ス通電焼結法を応用した接合方法(パルス通電接合法)
で接合しているので、従来のロー付けや溶接法に比べ大
面積の接合界面を全域に亙り隙間なく均質、高品位に漏
れのないように接合できるので成形品面により近接した
位置に所望の温度調節用流体通路の回路パターンを正確
に成形型内部につくることができ成形型の温度調節効率
を向上できる。 (ロ)表面に流体通路を画成する溝を形成したブロック
をパルス通電焼結法を応用した接合方法で接合している
ので、Oリング溝を設けOリングでブロック間をシール
する従来方法が不要となり、所望の流体通路の回路パタ
ーンを簡単につくることができ、熱伝導率をベースに有
限要素法による熱分布シュミレーションの結果にほぼ近
似の構造を設計できるため自由度を広げて効率の良い冷
却加熱構造となりかつ製造コストの削減を図れる。 (ハ)複数の流体通路が画成できるので、部分的温度調
節が可能となり、成形製品の品質を向上させることがで
きる。 (ニ)同様な考え方で凸型内部にも流体通路が画成で
き、更に詳細な温度管理ができる。 (ホ)成形型の温度制御を容易にかつより精密に行うこ
とができる。
[Effect] According to the present invention, the following effects can be obtained. (A) A joining method in which a groove for defining a fluid passage is formed on the outer periphery of a cylindrical member or a columnar member or the inner periphery of a cylindrical member, and the pulse energization sintering method is applied to the member (pulse energization joining method). )
Since it is joined by the conventional brazing method and welding method, it is possible to join a large area of the joining interface over the entire area with no gaps and with a high quality without leaks. The circuit pattern of the temperature control fluid passage can be accurately formed inside the mold, and the temperature control efficiency of the mold can be improved. (B) Since the block having the groove defining the fluid passage on the surface is joined by the joining method applying the pulse current sintering method, the conventional method of providing the O-ring groove and sealing between the blocks with the O-ring is used. It is not necessary, you can easily create the circuit pattern of the desired fluid passage, and you can design a structure that is almost approximate to the result of the heat distribution simulation by the finite element method based on the thermal conductivity. It has a cooling and heating structure and can reduce the manufacturing cost. (C) Since a plurality of fluid passages can be defined, it is possible to partially control the temperature and improve the quality of the molded product. (D) By the same idea, a fluid passage can be defined inside the convex mold, and more detailed temperature control can be performed. (E) The temperature of the molding die can be controlled easily and more precisely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度調節通路付き成形型の一実施形態
に使用する母材の斜視図である。
FIG. 1 is a perspective view of a base material used in an embodiment of a mold with a temperature control passage according to the present invention.

【図2】図1の成形型の各部材を分解した状態で示す斜
視図であって、各部材に形成された溝、位置決め穴等の
配置関係を示す図である。
2 is a perspective view showing each member of the molding die of FIG. 1 in an exploded state, and is a view showing an arrangement relationship of grooves, positioning holes and the like formed in each member. FIG.

【図3】図1の母材に機械加工を施してできた成形型の
本体の断面図である。
FIG. 3 is a cross-sectional view of a main body of a mold made by machining the base material of FIG.

【図4】図3の本体内に挿入される一方のコア部材の斜
視図である。
4 is a perspective view of one core member inserted into the main body of FIG. 3. FIG.

【図5】図3の本体内に挿入される他方のコア部材の斜
視図である。。
FIG. 5 is a perspective view of the other core member inserted into the main body of FIG. .

【図6】成形型の断面図である。FIG. 6 is a cross-sectional view of a molding die.

【図7】パルス通電接合装置の概略構成を示す図であ
る。
FIG. 7 is a diagram showing a schematic configuration of a pulse current joining device.

【図8】部材に形成される溝の変形例を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a modified example of the groove formed in the member.

【図9】部材に形成される溝の別の変形例を示す断面図
である。
FIG. 9 is a cross-sectional view showing another modified example of the groove formed in the member.

【図10】図9の溝を有する母材における溝とポートと
の接続方法を説明する断面図である。
10 is a cross-sectional view illustrating a method of connecting the groove and the port in the base material having the groove of FIG.

【図11】成形型の金型母材の空洞内への取り付け状態
を説明する図である。
FIG. 11 is a diagram illustrating a mounting state of a molding die in a cavity of a die base material.

【図12】成形型の金型母材の空洞内への他の取り付け
状態を説明する図である。
FIG. 12 is a diagram illustrating another mounting state of the mold base material in the cavity of the molding die.

【図13】成形型の金型母材の空洞内への更に他の取り
付け状態を説明する図である。
FIG. 13 is a view for explaining still another mounting state of the molding die into the cavity of the die base material.

【図14】本発明の成形型の更に別の実施形態の断面図
である。
FIG. 14 is a sectional view of still another embodiment of the molding die of the present invention.

【図15】従来の流体通路付き成形型の一例を示す図で
ある。
FIG. 15 is a view showing an example of a conventional mold with a fluid passage.

【図16】従来の流体通路付き金型母材の一例を示す図
である。
FIG. 16 is a diagram showing an example of a conventional die base material with a fluid passage.

【符号の説明】[Explanation of symbols]

10、10a、10d、10e、10f 成形型 11、11a、11b、11c、11g 母材 12 貫通穴 20、20a、20b、20c 部材 30、30a、30b、30c、30d、30e、30
f、 部材 40、40a、40b、40c、40d、40e、40
f、 端部材 50、50a、50b、50c、50d、50e、50
f、 部材 24、24a、24b、24c 外周 25、25a、25c 溝 35b 溝 56、56′、56a、56a′、56b、56b′、
56c、56c′ポート60、70 コア部材 90g 部材
10, 10a, 10d, 10e, 10f Molds 11, 11a, 11b, 11c, 11g Base material 12 Through holes 20, 20a, 20b, 20c Members 30, 30a, 30b, 30c, 30d, 30e, 30
f, members 40, 40a, 40b, 40c, 40d, 40e, 40
f, end members 50, 50a, 50b, 50c, 50d, 50e, 50
f, member 24, 24a, 24b, 24c outer circumference 25, 25a, 25c groove 35b groove 56, 56 ', 56a, 56a', 56b, 56b ',
56c, 56c 'port 60, 70 core member 90g member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鴇田 正雄 東京都港区西新橋三丁目20番4号 住友石 炭鉱業株式会社内 (72)発明者 唐沢 均 長野県諏訪市大字中洲4750番地11 諏訪熱 工業株式会社内 (72)発明者 西山 文毅 長野県諏訪市大字中洲4750番地11 諏訪熱 工業株式会社内 Fターム(参考) 4F202 CA30 CK42 CN01 CN05 CN14 CN21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masao Tokita             Sumitomo Stone, 3-20-4, Nishishimbashi, Minato-ku, Tokyo             Coal Mining Co., Ltd. (72) Inventor Hitoshi Karasawa             4750 Nakasu, Suwa City, Nagano Prefecture 11 Suwa Heat             Industry Co., Ltd. (72) Inventor Fumitake Nishiyama             4750 Nakasu, Suwa City, Nagano Prefecture 11 Suwa Heat             Industry Co., Ltd. F term (reference) 4F202 CA30 CK42 CN01 CN05 CN14                       CN21

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 流体を流して温度を調節できる温度調節
用流体通路付き成形型において、内外にほぼ同軸にして
重ねて配置された少なくとも二つの部材と、前記二つの
部材の両端に隣接して配置されていて前記部材の端面に
おいて接合された端部材とを備え、内側の部材の外周面
と外側の部材の内周面との間には前記流体を流すための
流体通路が形成され、前記端部材のうち少なくとも一つ
の端部材には前記流体通路とそれぞれ連通する入口ポー
ト及び出口ポートの少なくとも一方が形成され、少なく
とも前記部材と前記端部材とがパルス通電接合法により
仮接合された後熱処理されて接合が完成されており、前
記内側の部材に形成された軸穴内には、前記軸穴内で成
形型のキャビティを画成する少なくとも一つの成形コア
が着脱可能に挿入されている温度調節用流体通路付き成
形型。
1. A molding die having a temperature-adjusting fluid passage capable of flowing a fluid to adjust the temperature, wherein at least two members are arranged substantially coaxially inside and outside and adjacent to both ends of the two members. An end member that is arranged and joined at the end surface of the member, and a fluid passage for flowing the fluid is formed between the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, At least one of the inlet port and the outlet port, which communicates with the fluid passage, is formed in at least one of the end members, and at least the member and the end member are temporarily joined by a pulse current joining method and then heat treated. And the joining is completed, and at least one molding core defining a mold cavity in the shaft hole is detachably inserted into the shaft hole formed in the inner member. Mold with temperature control fluid passage.
【請求項2】 請求項1に記載の温度調節用流体通路付
き成形型において、前記内外に重ねられた部材の対向す
る面同士が及び前記部材と前記端部材とがパルス通電接
合法により仮接合されている温度調節用流路付き成形
型。
2. The mold with temperature control fluid passage according to claim 1, wherein the facing surfaces of the members stacked inside and outside and the member and the end member are temporarily bonded by a pulse current bonding method. Molds with temperature control channels.
【請求項3】 請求項1又は2に記載の温度調節用流体
通路付き成形型において、前記軸穴が軸方向に貫通する
貫通穴であり、前記成形コアが協同して前記キャビティ
を画成する複数のコア部材から成り、前記コア部材の少
なくとも一つが前記軸穴内に着脱可能に挿入されている
成形型。
3. The mold with temperature control fluid passage according to claim 1, wherein the shaft hole is a through hole that penetrates in the axial direction, and the molding core cooperates to define the cavity. A mold comprising a plurality of core members, and at least one of the core members being removably inserted into the shaft hole.
【請求項4】 請求項1、2又は3に記載の温度調節用
流体通路付き成形型において、前記端部材の一方に前記
入口ポート及び出口ポートが形成され、前記通路が、前
記内側の部材の外周面と前記外側の部材の内周面の少な
くとも一方に形成されていて、円周方向に伸びかつ軸方
向に隔てられた複数の環状溝により構成され、前記内側
の部材の外周面及び前記外側の部材の内周面の少なくと
も一方には前記環状溝と前記入口ポートとを連通する第
1の軸方向通路が形成され、前記内側の部材の外周面及
び前記外側の部材の内周面の少なくとも一方には前記第
1の軸方向通路とは円周方向に異なる位置において前記
環状溝と前記出口ポートとを連通する第2の軸方向通路
が形成されている成形型。
4. The mold with temperature control fluid passage according to claim 1, 2 or 3, wherein the inlet port and the outlet port are formed in one of the end members, and the passage is formed in the inner member. The outer peripheral surface and the inner peripheral surface of the outer member are formed on at least one of the outer peripheral surface, and the outer peripheral surface of the inner member and the outer surface are formed by a plurality of annular grooves extending in the circumferential direction and separated in the axial direction. A first axial passage that communicates the annular groove with the inlet port is formed on at least one of the inner peripheral surfaces of the inner member, and at least the outer peripheral surface of the inner member and the inner peripheral surface of the outer member. A molding die having a second axial passage that communicates the annular groove and the outlet port with each other at a position circumferentially different from the first axial passage.
【請求項5】 請求項1、2又は3に記載の温度調節用
流体通路付き成形型において、前記通路が、前記内側の
部材の外周面と前記外側の部材の内周面の少なくとも一
方に形成された少なくとも1条の螺旋溝により構成さ
れ、前記内側の部材及び前記外側の部材の少なくとも一
方には前記螺旋溝の一端と前記入口ポートとを連通する
第1の軸方向通路が形成され、前記内側の部材及び前記
外側の部材少なくとも一方には前記第1の軸方向通路と
は円周方向に異なる位置において前記螺旋溝の他端と前
記出口ポートとを連通する第2の軸方向通路が形成され
ている成形型。
5. The mold with temperature control fluid passage according to claim 1, 2 or 3, wherein the passage is formed on at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. A first axial passage that connects one end of the spiral groove and the inlet port is formed in at least one of the inner member and the outer member. A second axial passage that connects the other end of the spiral groove and the outlet port is formed in at least one of the inner member and the outer member at a position that is circumferentially different from the first axial passage. Mold that is used.
【請求項6】 請求項1、2又は3に記載の温度調節用
流体通路付き成形型において、前記通路が、前記内側の
部材の外周面と前記外側の部材の内周面の少なくとも一
方に形成されていて、軸線方向に伸びかつ円周方向に隔
てられた複数の軸方向溝により構成され、前記両端部材
には前記軸方向溝と連通する通路が形成され、前記通路
の一方と前記入口ポートとが連通可能であり、前記通路
の他方と前記出口ポートとが連通可能である成形型。
6. The mold with temperature control fluid passage according to claim 1, 2 or 3, wherein the passage is formed on at least one of an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. A plurality of axial grooves extending in the axial direction and circumferentially separated from each other, a passage communicating with the axial groove is formed in the both end members, and one of the passages and the inlet port are formed. A mold capable of communicating with the other of the passages and the outlet port.
【請求項7】 流体を流して温度を調節できる温度調節
用流体通路付き成形型を製造する方法において、 両端面を有していて内外にほぼ同軸にして重ねて配置さ
れる少なくとも二つの部材と、前記両端面に接合される
二つの端部材とを用意することと、 内外に重ねられたとき互いに向き合う面の間に前記流体
通路を形成することと、 前記端部材のうち少なくとも一つの端部材には前記通路
とそれぞれ連通する入口ポート及び出口ポートの少なく
とも一方を形成することと、 前記部材の前記端面と前記端部材の一方の面とを互いに
当接させ、少なくとも前記端面と前記端部材の面とをパ
ルス通電接合法により仮接合し、その後熱処理して接合
を完成させて母材をつくることと、 前記母材に機械加工を施してコア部材挿入用の軸穴を形
成することと、 前記穴内には成形型のキャビティを画成する少なくとも
一つのコア部材を挿入することと、を含む成形型の製造
方法。
7. A method of manufacturing a mold having a temperature-adjusting fluid passage capable of adjusting a temperature by flowing a fluid, comprising: at least two members having both end faces and arranged substantially coaxially inside and outside. Preparing two end members to be joined to the both end surfaces; forming the fluid passage between the surfaces facing each other when stacked inside and outside, and at least one end member of the end members Forming at least one of an inlet port and an outlet port respectively communicating with the passage, and bringing the end face of the member and one face of the end member into contact with each other, and at least the end face and the end member of the end member. The surface is temporarily joined by a pulse current joining method, and then heat treatment is performed to complete the joining to form a base material, and the base material is machined to form a shaft hole for inserting a core member. When, a method of manufacturing the mold comprising, and inserting at least one core member mold cavity image Narusuru in the bore.
【請求項8】 請求項6に記載の温度調節用流体通路付
き成形型を製造する方法において、前記端面と前記端部
材の面とを及び前記内外に重ねられた部材の対向する面
同士をパルス通電接合法により仮接合する製造方法。
8. The method for manufacturing a mold with a fluid passage for temperature control according to claim 6, wherein the end face and the face of the end member and the facing faces of the members laminated inside and outside are pulsed. A manufacturing method in which temporary joining is performed by a current joining method.
【請求項9】 請求項7又は8に記載の温度調節用流体
通路付き成形型を製造する方法において、前記部材の対
向する面並びに前記部材の端面及び前記端部材の面を鏡
面に加工する成形型の製造方法。
9. The method of manufacturing a mold with a fluid passage for temperature control according to claim 7 or 8, wherein the facing surface of the member and the end surface of the member and the surface of the end member are mirror-finished. Mold manufacturing method.
【請求項10】 請求項6、7又は8に記載の温度調節
用流体通路付き成形型を製造する方法において、前記熱
処理を所望の雰囲気内で前記ブロックの材質の溶融温度
の55ないし85%の温度範囲で行なう成形型の製造方
法。
10. The method of manufacturing a mold with a temperature controlling fluid passage according to claim 6, 7 or 8, wherein the heat treatment is performed in a desired atmosphere at 55 to 85% of a melting temperature of a material of the block. A method for manufacturing a molding die in a temperature range.
【請求項11】 流体を流して温度を調節できる温度調
節用流体通路付き成形型と、前記成形型を収容する収容
空間を画成する金型母材との組合せ体において、 前記成形型が、内外にほぼ同軸にして重ねて配置された
少なくとも二つの部材と、前記二つの部材の両端に隣接
して配置されていて前記部材の端面において接合された
端部材とを備え、内側の部材の外周面と外側の部材の内
周面との間には前記流体を流すための流体通路が形成さ
れ、前記端部材のうち少なくとも一つの端部材には前記
流体通路とそれぞれ連通する入口ポート及び出口ポート
の少なくとも一方が形成され、少なくとも前記部材と前
記端部材とがパルス通電接合法により仮接合された後熱
処理されて接合が完成されており、前記内側の部材に形
成された軸穴内には、前記軸穴内で成形型のキャビティ
を画成する少なくとも一つの成形コアが着脱可能に挿入
されて形成され、 前記金型母材と前記成形型との間に断熱層が設けられて
いる、ことを特徴とする温度調節用流体通路付き成形型
と金型母材との組合せ体。
11. A combination of a molding die having a temperature-adjusting fluid passage capable of flowing a fluid to regulate the temperature, and a mold base material defining an accommodation space for accommodating the molding die, wherein the molding die comprises: An outer periphery of an inner member, which includes at least two members that are arranged substantially coaxially inside and outside and are overlapped with each other, and end members that are arranged adjacent to both ends of the two members and joined at end faces of the members. A fluid passage for flowing the fluid is formed between the surface and the inner peripheral surface of the outer member, and at least one of the end members has an inlet port and an outlet port that communicate with the fluid passage. At least one of which is formed, and at least the member and the end member are provisionally joined by a pulse current joining method and then heat-treated to complete the joining, and in the shaft hole formed in the inner member, At least one molding core that defines a cavity of the molding die is detachably inserted in the axial hole, and a heat insulating layer is provided between the mold base material and the molding die. A combination of a mold with a temperature control fluid passage and a mold base material.
【請求項12】 請求項11に記載の組合せ体におい
て、前記断熱層が断熱空間の層及び断熱材の層の少なく
とも一方の層である組合せ体。
12. The combination according to claim 11, wherein the heat insulating layer is at least one of a layer of a heat insulating space and a layer of a heat insulating material.
JP2001230983A 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof Expired - Fee Related JP4671554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230983A JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230983A JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003039437A true JP2003039437A (en) 2003-02-13
JP2003039437A5 JP2003039437A5 (en) 2008-08-21
JP4671554B2 JP4671554B2 (en) 2011-04-20

Family

ID=19063104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230983A Expired - Fee Related JP4671554B2 (en) 2001-07-31 2001-07-31 Mold with temperature-controlling fluid passage and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4671554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130902A (en) * 2005-11-10 2007-05-31 Ricoh Co Ltd Injection mold
WO2015045671A1 (en) * 2013-09-24 2015-04-02 株式会社エンプラス Injection molding die

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146954U (en) * 1981-03-09 1982-09-16
JPH0243009A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Plastic molding mold
JPH03124420A (en) * 1989-10-09 1991-05-28 Toshiba Corp Cooling method and heat exchange parts for mold
JPH06238728A (en) * 1993-02-18 1994-08-30 Mitsubishi Heavy Ind Ltd Mold
JPH11156857A (en) * 1997-11-28 1999-06-15 Mitsuboshi Belting Ltd Method and apparatus for vulcanizing belt sleeve and others
JPH11222607A (en) * 1997-12-03 1999-08-17 Asahi Optical Co Ltd Method for joining ceramic and metal and joined body thereby
JP2001162350A (en) * 1999-12-06 2001-06-19 Suwa Netsukogyo Kk Metallic mold including heating and cooling circuits of fluid and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146954U (en) * 1981-03-09 1982-09-16
JPH0243009A (en) * 1988-08-03 1990-02-13 Hitachi Ltd Plastic molding mold
JPH03124420A (en) * 1989-10-09 1991-05-28 Toshiba Corp Cooling method and heat exchange parts for mold
JPH06238728A (en) * 1993-02-18 1994-08-30 Mitsubishi Heavy Ind Ltd Mold
JPH11156857A (en) * 1997-11-28 1999-06-15 Mitsuboshi Belting Ltd Method and apparatus for vulcanizing belt sleeve and others
JPH11222607A (en) * 1997-12-03 1999-08-17 Asahi Optical Co Ltd Method for joining ceramic and metal and joined body thereby
JP2001162350A (en) * 1999-12-06 2001-06-19 Suwa Netsukogyo Kk Metallic mold including heating and cooling circuits of fluid and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130902A (en) * 2005-11-10 2007-05-31 Ricoh Co Ltd Injection mold
WO2015045671A1 (en) * 2013-09-24 2015-04-02 株式会社エンプラス Injection molding die
JP2015063013A (en) * 2013-09-24 2015-04-09 株式会社エンプラス Injection molding die
US10011059B2 (en) 2013-09-24 2018-07-03 Enplas Corporation Injection molding die

Also Published As

Publication number Publication date
JP4671554B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
KR100784745B1 (en) Electric joining method and apparatus and a joined unit of members
CN100500319C (en) Injection mould hot runner nozzle and method of making same
EP1254001B1 (en) Mould having embedded heating element and improved thermal conductivity
US4705473A (en) Dual feed bushing for multi-cavity injection molding
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
JP2003103324A (en) Manufacturing method of mold
WO2011047552A1 (en) Heating and cooling rod for mould and mould capable of rapid heating and cooling
JPS6378720A (en) Molding die
JPH09220735A (en) Injection molding nozzle
JP2014509960A (en) Method of manufacturing mold part having channel for temperature control, and mold part manufactured by the method
EP1633547B1 (en) A gate cooling structure in a molding stack
US20060138698A1 (en) Method for making a tool for forming a material and tool obtainable by said method
JPH04247920A (en) Socket holder for injection molding
JP2003039437A (en) Molding mold with passage for fluid for adjusting temperature and its production method
JP6744097B2 (en) Injection mold and method of controlling injection mold
JP2002200620A (en) Mold with fluid passage for regulating temperature and method for manufacturing the same
JP2016028862A (en) Injection molding die and injection molding method
JP7106170B2 (en) Manufacturing method for center pillar hot forming mold provided with cooling means
CN111842849B (en) Workpiece processing die, workpiece processing method and pipe embedding structure
JP2005335187A (en) Valve gate type mold assembly and its manufacturing method
JPH0531725A (en) Mold and preparation thereof
CN215095492U (en) Cable extrusion double-layer offset-adjustment-free co-extrusion machine head middle die
CN215040095U (en) Cable extrusion double-layer offset-adjustment-free co-extrusion machine head core die
CN108995159B (en) Cooling structure of mold core
JP2005335188A (en) Valve gate type mold assembly and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees