JP4670711B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP4670711B2
JP4670711B2 JP2006106735A JP2006106735A JP4670711B2 JP 4670711 B2 JP4670711 B2 JP 4670711B2 JP 2006106735 A JP2006106735 A JP 2006106735A JP 2006106735 A JP2006106735 A JP 2006106735A JP 4670711 B2 JP4670711 B2 JP 4670711B2
Authority
JP
Japan
Prior art keywords
discharge
discharge electrode
water
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006106735A
Other languages
Japanese (ja)
Other versions
JP2007275797A (en
Inventor
健太郎 小林
浩一 吉岡
勉 夏原
康一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006106735A priority Critical patent/JP4670711B2/en
Publication of JP2007275797A publication Critical patent/JP2007275797A/en
Application granted granted Critical
Publication of JP4670711B2 publication Critical patent/JP4670711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Electrotherapy Devices (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、静電霧化現象によりナノメータサイズのマイナスイオンミストを発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates nanometer-sized negative ion mist by an electrostatic atomization phenomenon.

静電霧化装置とは、放電電極と、放電電極に対向して位置する対向電極と、放電電極に水を供給する供給手段とを備え、放電電極と対向電極との間に高電圧を印加することで放電電極に保持される水を霧化させてナノメータサイズで強い電荷を持つマイナスイオンミスト(以下、これをナノイオンミストという)を発生させるものである(特許文献1参照)。ナノイオンミストの粒径は3〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、広範囲に飛散し、滞留時間が長く、壁面などの内部にも浸透し、高い脱臭効果や殺菌効果を発揮することができ、また、皮膚に対してはナノイオンミストの暴露により角質層表面の奥までも水分が十分に補給されて、高い保湿効果が得られ、また、毛髪の保湿効果等の効果も得られるようになっているので、多様な商品に備えることで多様な効果が得られるものである。   The electrostatic atomizer includes a discharge electrode, a counter electrode positioned opposite the discharge electrode, and a supply means for supplying water to the discharge electrode, and applies a high voltage between the discharge electrode and the counter electrode. In this way, water held in the discharge electrode is atomized to generate a negative ion mist (hereinafter referred to as nano ion mist) having a strong charge in the nanometer size (refer to Patent Document 1). The nano ion mist has a particle size of about 3 to several tens of nanometers, which is smaller than 70 nm, which is the size of the keratinocytes of the human body. Can penetrate the skin, exhibit high deodorizing and bactericidal effects, and the skin can be sufficiently replenished with water by the exposure of nano ion mist, resulting in a high moisturizing effect. In addition, since the effect of moisturizing the hair and the like can be obtained, various effects can be obtained by preparing for various products.

しかし、上記特許文献1に示されたような従来の静電霧化装置は、水の供給手段として、水が充填される水タンクと、水タンク内の水を毛細管現象により放電電極にまで搬送する水搬送部を備えた構造であることから、使用者は水タンク内に継続的に水を補給する必要があり、面倒な水補給の手間が強いられるという問題があった。また、上記の静電霧化装置においては、水タンクに補給する水が水道水のようなCa、Mg等の不純物を含む水であった場合には、この不純物が空気中のCOと反応して水搬送部の先端にCaCOやMgO等を析出付着させ、ナノイオンミストの発生を妨げるという問題があった。 However, the conventional electrostatic atomizer as disclosed in the above-mentioned Patent Document 1 uses, as water supply means, a water tank filled with water and transports the water in the water tank to the discharge electrode by capillary action. Since it has a structure including a water transporting unit, the user needs to continuously replenish water in the water tank, and there is a problem that troublesome water replenishment is required. In the above electrostatic atomizer, when the water to be supplied to the water tank is water containing impurities such as Ca and Mg such as tap water, the impurities react with CO 2 in the air. As a result, CaCO 3 , MgO, or the like is deposited on the tip of the water transport section, thereby preventing the generation of nano ion mist.

そこで、本発明者は本発明に至る過程で、放電電極を冷却して空気中の水分を結露させることで放電電極に結露水を生成させることを考えた。これだと、上記特許文献1に示される従来例のような水の補給作業が必要でなく、また、空気中の水分を結露させて結露水を得るので、従来のような水道水を供給するもののようにCaCOやMgO等を析出付着させるというようなこともないことが判った。 Therefore, the present inventor considered that in the process leading to the present invention, the discharge electrode is cooled to condense moisture in the air to generate dew condensation water on the discharge electrode. If this is the case, water supply work as in the conventional example shown in Patent Document 1 is not necessary, and moisture in the air is condensed to obtain condensed water, so that conventional tap water is supplied. It has been found that there is no such thing as depositing and depositing CaCO 3 , MgO, or the like as in the case of the conventional one.

ところが、放電電極を冷却して空気中の水分を結露させることで放電電極に結露水を生成する場合、放電電極の先端の放電部以外の部分も冷却されて結露水が生成されるので、構造や使用環境によっては、放電部(又は放電部と放電部付近)の冷却効果、つまり、放電部(又は放電部と放電部付近)における結露水の生成効果が低下するという問題がある。更に、構造や使用環境によっては、放電部(又は放電部と放電部付近)に生成した結露水が放電電極の上記以外の部分に生成した結露水側に引かれて放電部の水が少なくなったりして、安定したテーラコーンの形成ができず、安定した放電ができないという問題があることが判明した。   However, when the condensed water is generated on the discharge electrode by condensing moisture in the air by cooling the discharge electrode, the structure other than the discharge part at the tip of the discharge electrode is also cooled to generate condensed water. Depending on the usage environment, there is a problem that the cooling effect of the discharge part (or the vicinity of the discharge part and the discharge part), that is, the generation effect of condensed water in the discharge part (or the vicinity of the discharge part and the discharge part) decreases. Furthermore, depending on the structure and usage environment, the condensed water generated in the discharge part (or in the vicinity of the discharge part and the discharge part) is drawn to the condensed water side generated in other parts of the discharge electrode, and the water in the discharge part decreases. As a result, it has been found that there is a problem that stable tailor cones cannot be formed and stable discharge cannot be performed.

これを解決するため本発明者は、図8に示すように放電電極1の周りに断熱材7を密着させると共に先端の放電部4aを外部に露出させることで、放電電極1を冷却手段2で冷却して空気中の水分を放電電極1に結露させるに当たって放電電極1の放電部4a(又は放電部4aと放電部4a付近)のみに結露水を生成させ、放電電極1の外部への露出部分以外の部分には結露水が生成しないようにすることを考えた。   In order to solve this, the inventor makes the heat insulating material 7 tightly contact the discharge electrode 1 as shown in FIG. 8 and exposes the discharge portion 4a at the tip to the outside, so that the discharge electrode 1 is cooled by the cooling means 2. When the moisture in the air is condensed on the discharge electrode 1 by cooling, dew condensation water is generated only in the discharge part 4a (or in the vicinity of the discharge part 4a and the discharge part 4a) of the discharge electrode 1, and the exposed part to the outside of the discharge electrode 1 It was considered to prevent the formation of condensed water in other parts.

しかしながら、このものにおいては断熱材7を放電電極1の周りに密着させて設けるので、放電電極1の外部への露出部分で余剰の結露水が多量に生成された場合、放電に寄与しない余剰結露水が断熱材7の表面側に流れて溜まって余剰結露水が図8のように断熱材7から放電電極1の外部への露出部分全体を覆うように比較的大きな水の塊Wとなり、このため安定したテーラコーンが形成できず、安定した放電ができなくなってしまうという問題が発生することが判った。
特許第3260150号公報
However, in this case, since the heat insulating material 7 is provided in close contact with the periphery of the discharge electrode 1, when a large amount of excessive dew condensation water is generated at the exposed portion of the discharge electrode 1, excessive dew condensation that does not contribute to the discharge. Water flows and accumulates on the surface side of the heat insulating material 7 and the excessive dew condensation water becomes a relatively large water mass W so as to cover the entire exposed portion from the heat insulating material 7 to the outside of the discharge electrode 1 as shown in FIG. Therefore, it has been found that there is a problem that a stable tailor cone cannot be formed and stable discharge cannot be performed.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、水の補給の手間がかからず、しかもCaCOやMgO等を析出付着させ、ナノイオンミストの発生を妨げるという現象もなく、更に、放電電極の先端部を効果的に冷やして放電霧化で必要な箇所でのみ結露水を生成させて、安定したテーラコーンの形成ができて安定した放電ができ、しかも、放電電極の外部への露出部分で余剰に結露水が生成された場合に、放電に寄与しない余剰結露水が断熱材の表面側に溜まって断熱材の表面から放電電極の先端部全体を覆うような水の塊ができず放電を安定させ、更に、周囲の環境が乾燥化した際に周囲環境に水分を供給できて安定して結露水の生成ができて安定した放電ができる静電霧化装置を提供することを課題とするものである。 The present invention has been invented in view of the above-mentioned conventional problems, and does not require the trouble of replenishing water, and there is no phenomenon of preventing the generation of nano ion mist by depositing and adhering CaCO 3 or MgO. Furthermore, the tip of the discharge electrode is effectively cooled to generate dew condensation water only where it is necessary for discharge atomization, so that a stable tailor cone can be formed and stable discharge can be achieved. When excessive condensed water is generated at the exposed part of the water, excess condensed water that does not contribute to discharge accumulates on the surface of the heat insulating material and covers the entire tip of the discharge electrode from the surface of the heat insulating material. Provided is an electrostatic atomizer capable of stabilizing discharge and stabilizing discharge, and further capable of supplying moisture to the surrounding environment when the surrounding environment is dried, stably generating condensed water, and performing stable discharge. This is a problem.

上記課題を解決するために本発明に係る静電霧化装置は、放電電極1と、該放電電極1を冷却して空気中の水分を結露させて放電電極1に結露水を供給するための冷却手段2と、放電電極1に生成した上記結露水を静電霧化するために放電電極1に高電圧を印加するための高電圧印加部3とを備え、放電電極1の周りに放電電極1の突出方向側が開口となった小間隙6を介して断熱材7を設けると共に放電電極1の先端の放電部4aを露出させて成ることを特徴とするものである。   In order to solve the above-mentioned problems, an electrostatic atomizer according to the present invention is provided for supplying condensed water to the discharge electrode 1 by cooling the discharge electrode 1 to condense moisture in the air to condense. A cooling means 2 and a high voltage application unit 3 for applying a high voltage to the discharge electrode 1 to electrostatically atomize the condensed water generated on the discharge electrode 1 are provided. 1 is provided with a heat insulating material 7 through a small gap 6 having an opening on the projecting direction side, and the discharge portion 4a at the tip of the discharge electrode 1 is exposed.

このような構成とすることで、放電電極1には空気中の水分を基にして水が供給されるので水を補給する必要がなく、しかも生成される水には不純物が含まれないので付着物除去の手間も不要な静電霧化装置となる。加えて、放電電極1に直接水が生成される構造なので冷却を開始してから素早い時間でミストを発生させることが可能であり、例えばヘアドライヤ等の短時間だけ使用する商品に備えるにも適したものとなる。そして、放電電極1の周りに放電電極1の突出方向側が開口となった小間隙6を介して断熱材7を設けてあるので、小隙間6が外部空間の空気流れの影響を受け難くてこの部分が断熱空間として機能し、放電電極1を冷却手段2で冷却して空気中の水分を放電電極1に結露させるに当たって放電電極1の外部に露出した部分でのみに結露水が生成され、他の部分には結露水が生成せず、これにより放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)の冷却効果が向上し、放電電極1の放電部4a(又は、放電部4aと放電部4a付近の部分)に安定して結露水を生成でき、また、この部分に生成された結露水の量が多い場合には小隙間6の放電電極1の突出方向側の開口5から小隙間6内に余剰結露水が流れ込み、これにより、断熱材7から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。また、周囲環境が乾燥化した場合、小隙間6に入った水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成でき、この点でも安定して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成して静電霧化を行える。   With this configuration, water is supplied to the discharge electrode 1 based on the moisture in the air, so there is no need to replenish water, and the generated water contains no impurities. It becomes an electrostatic atomizer which does not require the trouble of kimono removal. In addition, since water is directly generated in the discharge electrode 1, it is possible to generate mist in a short time after the start of cooling, and it is also suitable for preparing products that are used only for a short time such as a hair dryer. It will be a thing. And since the heat insulating material 7 is provided around the discharge electrode 1 through the small gap 6 in which the projecting direction side of the discharge electrode 1 is an opening, the small gap 6 is hardly affected by the air flow in the external space. The portion functions as an adiabatic space, and when the discharge electrode 1 is cooled by the cooling means 2 and moisture in the air is condensed on the discharge electrode 1, condensed water is generated only at the portion exposed to the outside of the discharge electrode 1. Condensed water is not generated in this portion, thereby improving the cooling effect of the discharge portion 4a at the tip of the discharge electrode 1 (or the portion near the discharge portion 4a and the discharge portion 4a), and the discharge portion 4a of the discharge electrode 1 Condensation water can be stably generated in the discharge part 4a and the vicinity of the discharge part 4a, and when the amount of the dew condensation water generated in this part is large, the protrusion of the discharge electrode 1 in the small gap 6 Excess dew condensation water flows into the small gap 6 from the opening 5 on the direction side, Les allows stable discharge mass of water to cover the entire exposed portion of the heat insulating material 7 to the outside of the discharge electrode 1 is made so as not to generate. Further, when the surrounding environment is dried, the water that has entered the small gap 6 is supplied to the surrounding environment and condensed water is discharged to the discharge part 4a at the tip of the discharge electrode 1 (or the part near the discharge part 4a and the discharge part 4a). In this respect as well, it is possible to stably generate dew condensation water in the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 and perform electrostatic atomization.

また、断熱材7の表面を放電電極1に近づく程放電電極1の突出方向側となるように傾斜した傾斜面8とすることが好ましい。   Moreover, it is preferable to make the surface of the heat insulating material 7 into the inclined surface 8 inclined so that it may become the protrusion direction side of the discharge electrode 1 as it approaches the discharge electrode 1.

このような構成とすることで、静電霧化により生成されたナノイオンミストを搬送するために送風手段により放電電極1の突出方向に送風した場合に、風の一部が断熱材7の表面に沿って流れるが、この断熱材7の表面が傾斜面8であるため、傾斜面8に沿って風が流れて放電電極1の突出方向に流れることになり、小隙間6の開口5付近で空気の渦を発生させるようなことがない。このため、生成されたナノイオンミストを渦に巻き込むことがなく、空気流に乗って効果的にナノイオンミストを放出することができる。また、開口5付近で空気の渦流の発生がないので、小隙間6内の空気を撹乱して放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)以外の部分から熱を奪うことがなくて、小隙間6の断熱性を低下させない。また、放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に生成された結露水の量が多い場合に、一部の結露水が小隙間6の開口5を越えて断熱材7の表面に流れても、傾斜面8に沿って放電電極1から離れる方向に流すことができて、これにより、断熱材7から放電電極1の外部に露出した部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。   By adopting such a configuration, when air is blown in the protruding direction of the discharge electrode 1 by the blowing means in order to convey the nano ion mist generated by electrostatic atomization, a part of the wind is applied to the surface of the heat insulating material 7. However, since the surface of the heat insulating material 7 is the inclined surface 8, the wind flows along the inclined surface 8 and flows in the protruding direction of the discharge electrode 1, and the air near the opening 5 of the small gap 6. There is no such thing as generating vortices. For this reason, the generated nano ion mist can be effectively discharged by riding on the air flow without involving the generated nano ion mist in a vortex. Further, since no eddy currents are generated in the vicinity of the opening 5, the air in the small gap 6 is disturbed and other than the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1. The heat is not taken away from the portion, and the heat insulating property of the small gap 6 is not lowered. In addition, when the amount of condensed water generated in the discharge part 4a at the tip of the discharge electrode 1 (or in the vicinity of the discharge part 4a and the discharge part 4a) is large, a part of the condensed water is opened in the small gap 6. Even if it flows over the surface of the heat insulating material 7 beyond the distance, it can flow in a direction away from the discharge electrode 1 along the inclined surface 8, and thus the entire portion exposed to the outside of the discharge electrode 1 from the heat insulating material 7 can be removed. Stable discharge can be achieved by avoiding the formation of covering water mass.

また、小隙間6に流れた水を溜めるための水溜め用凹所9を設けることが好ましい。   Further, it is preferable to provide a water reservoir recess 9 for storing the water flowing in the small gap 6.

このような構成とすることで、小隙間6に流れた余剰結露水を水溜め用凹所9に溜めることができて、よりいっそう断熱材7から放電電極1の外部に露出した部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、周囲環境が乾燥化した場合、水溜め用凹所9に溜まった水が周囲環境に供給されて放電電極1の外部に露出した部分に結露水を生成でき、この点でも安定して放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   By adopting such a configuration, surplus dew condensation water that has flowed into the small gap 6 can be stored in the water reservoir recess 9, and further covers the entire portion exposed to the outside of the discharge electrode 1 from the heat insulating material 7. Such a mass of water can be prevented and stable discharge can be performed. In addition, when the surrounding environment is dried, the water accumulated in the recess 9 for water reservoir is supplied to the surrounding environment and can generate condensed water in the exposed portion of the discharge electrode 1, and also in this respect, the discharge is stably performed. Electrostatic atomization can be performed by generating condensed water on the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the electrode 1.

また、断熱材7が保水性を有する多孔質材料により形成してあることが好ましい。   Moreover, it is preferable that the heat insulating material 7 is formed of a porous material having water retention.

このような構成とすることで、余剰結露水を多孔質材料の断熱材7に水を保水でき、よりいっそう断熱材7の表面から放電電極1の外部に露出した部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、周囲環境が乾燥化した場合、多孔質材料の断熱材7に保水した水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水を生成でき、より安定して放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   By adopting such a configuration, it is possible to retain excess condensed water in the heat insulating material 7 of the porous material, and water that covers the entire portion exposed from the surface of the heat insulating material 7 to the outside of the discharge electrode 1. Stable discharge can be achieved without generating lumps. Moreover, when the surrounding environment is dried, the water retained in the heat insulating material 7 of the porous material is supplied to the surrounding environment, and the discharge part 4a at the tip of the discharge electrode 1 (or the part near the discharge part 4a and the discharge part 4a) ) Can be generated, and the water can be more stably generated on the discharge part 4a (or the vicinity of the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 for electrostatic atomization.

また、断熱材7の表面に余剰結露水を入れる凹部10を形成することが好ましい。   Moreover, it is preferable to form the recessed part 10 which puts excess dew condensation water on the surface of the heat insulating material 7.

このような構成とすることで、断熱材7の凹部10に余剰結露水を保水でき、よりいっそう断熱材7から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、周囲環境が乾燥化した場合、断熱材7に設けた凹部10に保水した水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水を生成でき、より安定して放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   By adopting such a configuration, it is possible to retain excess condensed water in the recess 10 of the heat insulating material 7, so that a water mass that covers the entire exposed portion from the heat insulating material 7 to the outside of the discharge electrode 1 is not generated. And stable discharge. Moreover, when the surrounding environment is dried, the water retained in the recess 10 provided in the heat insulating material 7 is supplied to the surrounding environment, and the discharge part 4a at the tip of the discharge electrode 1 (or the vicinity of the discharge part 4a and the discharge part 4a). Condensed water can be generated in (part), and condensation can be generated more stably in the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 for electrostatic atomization. .

また、断熱材7の放電電極1の突出方向側の表面から水溜め用凹所9に至る孔11を形成することが好ましい。   Moreover, it is preferable to form the hole 11 from the surface of the heat insulating material 7 on the side of the discharge electrode 1 in the protruding direction to the water reservoir recess 9.

このような構成とすることで、余剰結露水を孔11から水溜め用凹所9にながして保水でき、よりいっそう断熱材7から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、周囲環境が乾燥化した場合、水溜め用凹所9に保水した水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水を生成でき、より安定して放電電極1の先端の放電部4a(又は、放電部4a及び放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   By adopting such a configuration, it is possible to retain excess dew condensation water from the hole 11 to the water storage recess 9, and water that covers the entire exposed portion from the heat insulating material 7 to the outside of the discharge electrode 1. Stable discharge can be achieved without generating lumps. In addition, when the surrounding environment is dried, the water retained in the water reservoir recess 9 is supplied to the surrounding environment and the discharge portion 4a at the tip of the discharge electrode 1 (or the portion near the discharge portion 4a and the discharge portion 4a). Condensed water can be generated in this manner, and the water can be more stably generated in the discharge part 4a (or the vicinity of the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 for electrostatic atomization.

また、断熱材7の表面を親水処理することが好ましい。   Moreover, it is preferable to hydrophilically treat the surface of the heat insulating material 7.

このような構成とすることで、断熱材7の表面の水が表面張力を失い、よりいっそう断熱材7の表面から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、断熱材7の表面の水が表面張力を失うので、水を小隙間6側にスムーズに流すことができる。   By setting it as such a structure, the water of the surface of the heat insulating material 7 loses surface tension, and the water lump which covers the whole exposed part from the surface of the heat insulating material 7 to the exterior of the discharge electrode 1 does not generate | occur | produce further. And stable discharge can be achieved. And since the water of the surface of the heat insulating material 7 loses surface tension, water can be smoothly flowed to the small clearance gap 6 side.

本発明は、放電電極を冷却手段で冷却して放電電極に結露水を生成させるので水の補給の手間がかからず、水道水を毛細管現象で放電電極の先端に供給するもののようにCaCOやMgO等が析出付着してナノイオンミストの発生を妨げるという現象もなく、更に、放電電極の周りに小隙間を介して設けた断熱材の存在により静電霧化に必要な箇所でのみ効果的に結露水を発生させて、安定したテーラコーンの形成ができて安定して静電霧化ができ、しかも、放電電極の外部への露出部分に余剰に結露水が生成された場合に、断熱材の表面から放電電極の外部に露出した部分全体を覆うような水の塊が発生しないようにできて安定した放電ができ、更に、周囲の環境が乾燥化した際に周囲環境に水分を供給できて安定して結露水の生成ができて安定した放電ができる。 In the present invention, since the discharge electrode is cooled by the cooling means to generate dew condensation water on the discharge electrode, there is no need for replenishment of water, and CaCO 3 is supplied like tap water to the tip of the discharge electrode by capillary action. There is no phenomenon that deposits and deposits of MgO, etc. and prevents the generation of nano ion mist, and furthermore, it is effective only at the place necessary for electrostatic atomization due to the presence of a heat insulating material provided around the discharge electrode through a small gap In the case where condensation water is generated, a stable tailor cone is formed, electrostatic atomization is stable, and excessive condensation water is generated on the exposed part of the discharge electrode. It is possible to prevent the formation of a mass of water that covers the whole exposed part of the discharge electrode from the surface of the electrode, and it is possible to discharge stably and to supply moisture to the surrounding environment when the surrounding environment dries. Condensed water is generated stably And stable discharge.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の静電霧化装置の概略構成図を示し、図2には要部断面図を示している。本例の静電霧化装置は、放電電極1と、該放電電極1を冷却して空気中の水分を結露させて放電電極1に結露水を供給するための冷却手段2と、放電電極1に生成した上記結露水を静電霧化するために放電電極1に高電圧を印加するための高電圧印加部3とを備えて構成してある。   FIG. 1 shows a schematic configuration diagram of the electrostatic atomizer of the present invention, and FIG. The electrostatic atomizer of this example includes a discharge electrode 1, a cooling means 2 for cooling the discharge electrode 1 to condense moisture in the air and supplying condensed water to the discharge electrode 1, and the discharge electrode 1. And a high voltage application unit 3 for applying a high voltage to the discharge electrode 1 to electrostatically atomize the condensed water generated in the above.

冷却手段2は熱交換器により構成してあって実施例ではペルチェユニット13を用いてある。ペルチェユニット13は、熱伝導性の高いアルミナや窒化アルミニウムから成る絶縁板の片面側に回路を形成してある一対のペルチェ回路板を、互いの回路側が向い合うように対向させ、多数列設してあるBiTe系の熱電素子を両ペルチェ回路板間で挟持するとともに隣接する熱電素子同士を両側の回路で電気的に接続させてペルチェモジュール14を構成し、ペルチェ入力リード線15を介して為される熱電素子への通電により一方のペルチェ回路板側から他方のペルチェ回路板側に向けて熱が移動するように設けたものであり、上記ペルチェモジュール14の一方の側が冷却側、他方の側が放熱側となっている。   The cooling means 2 is constituted by a heat exchanger, and in the embodiment, a Peltier unit 13 is used. The Peltier unit 13 is arranged in multiple rows by a pair of Peltier circuit boards having a circuit formed on one side of an insulating plate made of alumina or aluminum nitride having high thermal conductivity so that the circuit sides face each other. BiTe-based thermoelectric elements are sandwiched between both Peltier circuit boards, and adjacent thermoelectric elements are electrically connected by circuits on both sides to constitute a Peltier module 14, which is made via a Peltier input lead wire 15. The Peltier module 14 is arranged such that heat is transferred from one Peltier circuit board side to the other Peltier circuit board side, with one side of the Peltier module 14 being a cooling side and the other side radiating heat. On the side.

ペルチェモジュール14の冷却側のペルチェ回路板の外側にはセラミック、アルミナや窒化アルミニウム等から成り高熱伝導性及び電気的絶縁性の高い冷却用絶縁板16を接続させており、上記他方の側(以下、放熱側という)のペルチェ回路板の外側にはアルミニウム等の金属から成る高熱伝導性の放熱板17を接続させている。なお、上記ペルチェ回路板としてはエポキシ樹脂やポリイミド樹脂から成る絶縁板に回路を形成したものであってもよいし、これら樹脂に熱伝導性の高いフィラーを含有させたものであってもよい。   A cooling insulating plate 16 made of ceramic, alumina, aluminum nitride or the like and having high thermal conductivity and high electrical insulation is connected to the outside of the Peltier circuit board on the cooling side of the Peltier module 14, and the other side (hereinafter referred to as “the other side”). On the outside of the Peltier circuit board (referred to as the heat dissipation side), a highly heat-conductive heat sink 17 made of a metal such as aluminum is connected. In addition, as said Peltier circuit board, the circuit may be formed in the insulating board consisting of an epoxy resin or a polyimide resin, and the resin was made to contain the filler with high heat conductivity.

放電電極1は銅や銅合金等の熱伝導性のよい材料により形成してあり、放電電極1の先端部4の先端が放電部4aとなったもので後端をペルチェユニット13の冷却側、図1の実施形態では冷却用絶縁板16に接続してある。先端部4は球状や先端が尖った錘状の部分を備えていてその最先端が放電部4aとなっている。   The discharge electrode 1 is formed of a material having good thermal conductivity such as copper or copper alloy, and the tip of the tip 4 of the discharge electrode 1 is a discharge part 4a. The rear end is the cooling side of the Peltier unit 13, In the embodiment of FIG. 1, it is connected to a cooling insulating plate 16. The tip portion 4 includes a spherical portion or a weight-like portion with a sharp tip, and the leading end thereof is a discharge portion 4a.

上記ペルチェモジュール14は冷却用絶縁板16及び冷却用絶縁板16と放電電極1の後端の接続部を含めて樹脂製のハウジング21の下部のペルチェユニット収納用凹部19を被せて覆うと共にハウジング21のペルチェユニット収納用凹部19の上底部に設けた孔20から放電電極1を突出させてハウジング21の内部の放電用空所内に位置させている。ここで、冷却用絶縁板16とハウジング21のペルチェユニット収納用凹部19の底面とが熱硬化性樹脂などの封止用の接着剤30を介して水密的に固着してあり、更に、ハウジング21の下部が放熱板17に熱硬化性樹脂などの封止用の接着剤30を介して水密的に固着してある。これによりハウジング21のペルチェユニット収納用凹部19内に内装されたペルチェモジュール14内が封止され水が浸入しないようになっている。また、
また、ハウジング21には高電圧印加板22が装着してあり、金属製の高電圧印加板22を放電電極1に圧入して高電圧印加板22と放電電極1とを機械的、電気的に接続してある。
The Peltier module 14 covers and covers the cooling insulating plate 16 and the cooling insulating plate 16 and the connecting portion at the rear end of the discharge electrode 1 so as to cover and cover the Peltier unit housing recess 19 at the bottom of the resin housing 21. The discharge electrode 1 protrudes from a hole 20 provided in the upper bottom portion of the Peltier unit housing recess 19 and is positioned in the discharge space inside the housing 21. Here, the insulating plate 16 for cooling and the bottom surface of the concave portion 19 for housing the Peltier unit of the housing 21 are fixed in a watertight manner through a sealing adhesive 30 such as a thermosetting resin. Is fixed to the heat radiating plate 17 in a watertight manner through a sealing adhesive 30 such as a thermosetting resin. As a result, the interior of the Peltier module 14 housed in the Peltier unit housing recess 19 of the housing 21 is sealed so that water does not enter. Also,
The housing 21 is provided with a high voltage application plate 22, and the metal high voltage application plate 22 is press-fitted into the discharge electrode 1 to mechanically and electrically connect the high voltage application plate 22 and the discharge electrode 1. Connected.

ハウジング21の上部には上記放電電極1の先端の放電部4aから一定の距離をおいて対向電極12が設けてあり、この対向電極12はSUSなどの腐蝕に強い材料により形成してある。   A counter electrode 12 is provided at an upper portion of the housing 21 at a certain distance from the discharge part 4a at the tip of the discharge electrode 1, and the counter electrode 12 is formed of a material resistant to corrosion such as SUS.

上記高電圧印加板22と対向電極12とは高電圧印加部3にそれぞれ高圧リード線を介して接続してあり、高電圧印加部3から放電電極1と対向電極12との間に高電圧が印加されるようになっている。   The high voltage application plate 22 and the counter electrode 12 are connected to the high voltage application unit 3 via high-voltage leads, respectively, and a high voltage is applied between the high voltage application unit 3 and the discharge electrode 1 and the counter electrode 12. It is to be applied.

ハウジング21のペルチェユニット収納用凹部19の上底部の孔20からハウジング21の放電用空所内に突出した放電電極1は周りに小隙間6を介して断熱材7を設けてあると共に放電電極1の先端の放電部4aが外部に露出している。ここで、添付図面に示す実施形態では、放電電極1の球状や錘状となった部分を備えた先端部4が外部に露出している例が示してある(つまり、先端(最先端)の放電部4aだけでなく、放電部4a付近の部分も外部に露出しているが、必ずしもこれにのみ限定されず、放電電極1の先端の放電部4aのみが外部に露出するものであってもよい。小隙間6は放電電極1の突出方向側が放電電極1の周方向を囲むように環状をした開口5となっている。この小隙間6は隙間寸法が短くて外部空間の空気の流れに影響されないようになっていて断熱用空間として機能するようになっていて、放電電極1の外部に露出した部分である放電部4a(又は、放電部4aと放電部4a付近の部分)の冷却効果を向上させるようになっていると共に放電電極1の外部に露出した部分(先端部4)以外の部分で結露が発生しないようになっている。この小隙間6の隙間巾寸法は0.2〜1.0mmとするのが好ましく、0.2mm以下だと水が表面張力により開口5側から小間隙6内に十分に排出されず、余剰結露水が放電電極1の先端の放電部4a付近に溜まって放電が不安定になるため好ましくなく、また、隙間巾寸法が1.0mm以上となると、放電電極1に流入した風が放電電極1に当たる面積が増加し、小間隙6による断熱性能が低下して放電電極1の放電部4a(又は、放電部4aと放電部4a付近の部分)の冷却性能の低下を引き起こすので好ましくない。   The discharge electrode 1 projecting into the discharge cavity of the housing 21 from the hole 20 in the upper bottom portion of the Peltier unit housing recess 19 of the housing 21 is provided with a heat insulating material 7 around the small gap 6 and the discharge electrode 1. The discharge part 4a at the tip is exposed to the outside. Here, in the embodiment shown in the accompanying drawings, there is shown an example in which the tip portion 4 having a spherical or weight-like portion of the discharge electrode 1 is exposed to the outside (that is, the tip (leading edge)). Not only the discharge part 4a but also the part in the vicinity of the discharge part 4a is exposed to the outside. However, the present invention is not necessarily limited to this, and only the discharge part 4a at the tip of the discharge electrode 1 is exposed to the outside. The small gap 6 is an opening 5 having an annular shape so that the projecting direction side of the discharge electrode 1 surrounds the circumferential direction of the discharge electrode 1. The small gap 6 has a short gap size and can flow into the air in the external space. Cooling effect of the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) that is not affected and functions as a space for heat insulation and exposed to the outside of the discharge electrode 1 It is designed to improve the discharge electrode Condensation does not occur in a portion other than the portion exposed to the outside (tip portion 4), and the width of the small gap 6 is preferably 0.2 to 1.0 mm, preferably 0.2 mm. If it is below, water is not sufficiently discharged from the opening 5 side into the small gap 6 due to surface tension, and excessive dew condensation water accumulates in the vicinity of the discharge part 4a at the tip of the discharge electrode 1 and discharge becomes unstable. Further, when the gap width dimension is 1.0 mm or more, the area where the wind that has flowed into the discharge electrode 1 hits the discharge electrode 1 increases, the heat insulating performance due to the small gap 6 decreases, and the discharge portion 4a (or This is not preferable because the cooling performance of the discharge part 4a and the vicinity of the discharge part 4a) is reduced.

小隙間6の放電電極1の突出方向と反対側の端部側には小隙間6に流れた水を溜めるための水溜め用凹所9を設けてあり、水溜め用凹所9は添付図面に示す実施形態では断熱材7の裏面側の中央部を凹ませることで形成してある。   On the end of the small gap 6 opposite to the direction in which the discharge electrode 1 protrudes, there is provided a water reservoir recess 9 for collecting water flowing in the small gap 6, and the water reservoir recess 9 is attached to the drawing. In the embodiment shown in FIG. 4, the center portion on the back surface side of the heat insulating material 7 is recessed.

上記の構成の静電霧化装置は、熱電素子に対して通電を行うと、各熱電素子内において同一方向への熱の移動が生じ、ペルチェユニット13の片面側が冷却される。このペルチェユニット13の片面の冷却側に設けた冷却用絶縁板16を介して放電電極1が冷却され、放電電極1の周囲の空気が冷却されることで、空気中の水分が結露等により液化されて放電電極1の外部に露出した部分である先端部4に結露水が生成される。そして、放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水が生成され且つ保持された状態で、高電圧印加部3により放電電極1の放電部側がマイナス電極となって電荷が集中するように該放電電極1と対向電極12との間に5kV程度の高電圧を印加すると、放電部に保持される水が帯電し、帯電した水にクーロン力が働き、水の液面が局所的に円錐形状(テイラーコーン)に盛り上がり、円錐形状となった水の先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして水が分裂・飛散(レーリー分裂)を繰り返して静電霧化を行い、ナノイオンミストを大量に発生させる。ナノイオンミストは放電電極1と対向して位置する対向電極12に向けて移動し、ハウジング21の開口内に固定される対向電極12の中央穴を通過して静電霧化装置の外部へと放出される。   In the electrostatic atomizer having the above-described configuration, when the thermoelectric elements are energized, heat is transferred in the same direction in each thermoelectric element, and one side of the Peltier unit 13 is cooled. The discharge electrode 1 is cooled via the cooling insulating plate 16 provided on the cooling side of one side of the Peltier unit 13, and the air around the discharge electrode 1 is cooled, so that moisture in the air is liquefied due to condensation or the like. As a result, dew condensation water is generated at the tip 4 which is the portion exposed to the outside of the discharge electrode 1. Then, in a state in which condensed water is generated and held in the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1, the discharge part of the discharge electrode 1 by the high voltage application part 3 When a high voltage of about 5 kV is applied between the discharge electrode 1 and the counter electrode 12 so that the charge is concentrated on the negative electrode side, the water held in the discharge portion is charged, and the Coulomb force is applied to the charged water. The water level rises locally in a cone shape (Taylor cone), the charge concentrates on the tip of the cone-shaped water, the charge density becomes high, and the repulsive force of the high-density charge Water is split and scattered (Rayleigh splitting) repeatedly to perform electrostatic atomization and generate a large amount of nano ion mist. The nano ion mist moves toward the counter electrode 12 positioned opposite to the discharge electrode 1, passes through the center hole of the counter electrode 12 fixed in the opening of the housing 21, and is released to the outside of the electrostatic atomizer. Is done.

このように放電電極1を冷却手段2であるペルチェユニット13により冷却して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に空気中の水分を結露させて水を生成させ、この生成した水を放電霧化することで、従来のように水を補給する手間が必要でなく、また、空気中の水分を結露させて水を放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に生成させるので水道水のように不純物を含まないので付着物除去の手間が不要となり、更に、放電電極1に直接水が生成される構造なので冷却を開始してから素早い時間でミストを発生させることが可能であり、例えばヘアドライヤ等の短時間だけ使用する商品に備えるにも適したものとなる。   In this way, the discharge electrode 1 is cooled by the Peltier unit 13 which is the cooling means 2, and moisture in the air is condensed on the discharge portion 4a (or the portion near the discharge portion 4a and the discharge portion 4a) at the tip of the discharge electrode 1. In this way, the generated water is discharged and atomized, so that there is no need to replenish water as in the prior art, and water in the air is condensed to remove the water at the tip of the discharge electrode 1. Since it is generated in the discharge part 4a (or in the vicinity of the discharge part 4a and the discharge part 4a), it does not contain impurities like tap water, so there is no need to remove deposits, and water is directly generated in the discharge electrode 1. Because of this structure, it is possible to generate mist in a short time after the start of cooling, and for example, it is suitable for preparation for products that are used for a short time such as a hair dryer.

しかも、上記のように、放電電極1を冷却して結露水を生成させるものであるにもかかわらず、放電電極1の周りに小隙間6を介して断熱材7を設けたので、放電電極1を冷却手段2で冷却して空気中の水分を放電電極1に結露させるに当たって外部への露出部分である放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水が生成され、他の部分には結露水が生成しない、または抑制されることなる。したがって、本発明によれば、放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)を効果的に冷却させて安定して結露水を生成でき、安定した放電ができて、安定して静電霧化ができる。また、放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成する際に余剰結露水が生じた場合は、発生した余剰結露水が開口5から小隙間6内に流れ込む。小隙間6に流れ込んだ余剰結露水は小隙間6に連通した水溜め用凹所9に溜まる。したがって、断熱材7の表面(放電電極1の突出方向側の面)から放電電極1の外部への露出部分全体を覆うような水の塊ができるのを防止でき、安定した放電ができる。また、周囲環境が乾燥化した場合、湿度が低下して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)における結露が発生しないような事態が生じるおそれがあるが、このような場合、小隙間6、水溜め用凹所9に入った余剰結露水が蒸発して周囲環境に供給されて放電電極1の外部への露出部分に結露水を生成でき、この点でも安定して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水の生成をして静電霧化を行えることになる。   Moreover, although the discharge electrode 1 is cooled to generate condensed water as described above, the heat insulating material 7 is provided around the discharge electrode 1 through the small gap 6. When the water is cooled by the cooling means 2 and the moisture in the air is condensed on the discharge electrode 1, the discharge part 4a at the tip of the discharge electrode 1, which is an exposed part to the outside (or the part near the discharge part 4a and the discharge part 4a) Condensed water is generated in this area, and condensed water is not generated or suppressed in other parts. Therefore, according to the present invention, the discharge portion 4a (or the portion near the discharge portion 4a and the discharge portion 4a) at the tip of the discharge electrode 1 can be effectively cooled to stably generate condensed water, and stable discharge. And can be stably electrostatic atomized. In addition, when excessive dew condensation water is generated when generating dew condensation water at the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1, the generated excess dew condensation water is opened 5 Into the small gap 6. Excess dew condensation water that has flowed into the small gap 6 accumulates in a water reservoir recess 9 that communicates with the small gap 6. Therefore, it is possible to prevent the formation of a mass of water that covers the entire exposed portion of the heat insulating material 7 (the surface on the protruding direction side of the discharge electrode 1) to the outside of the discharge electrode 1, and stable discharge can be performed. In addition, when the surrounding environment is dried, there is a possibility that the humidity is lowered and a situation in which dew condensation does not occur in the discharge part 4a (or the vicinity of the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 may occur. However, in such a case, the excess condensed water that has entered the small gap 6 and the recess 9 for water accumulation evaporates and is supplied to the surrounding environment so that the condensed water can be generated in the exposed portion to the outside of the discharge electrode 1. Also in this respect, electrostatic atomization can be performed by stably generating condensed water on the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1.

ところで、断熱材7の表面を図4のように放電電極1の突出方向と直角となるような面とした場合、静電霧化により生成されたナノイオンミストを搬送するために送風手段により放電電極1の突出方向に送風すると、図4の矢印ロのように断熱材7の表面に沿って流れた空気流が放電電極1に衝突して放電電極1の衝突部分で空気流が渦を巻き、発生したナノイオンミストを巻き込んで効率よくナノイオンミストを放出できず、更に、開口5付近で空気の渦流の発生し、小隙間6内の空気を撹乱して放電電極1の外部への露出部分以外の部分でも熱を奪うことになって、小隙間6の断熱性を低下させ、放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)の冷却効果が低下する場合が生じ得るが、上記のように、断熱材7の表面を放電電極1に近づく程放電電極1の突出方向側となるように傾斜した傾斜面8とすることで、図3の矢印イのように傾斜面8に沿って風が流れて放電電極1の突出方向に流れることになり、生成されたナノイオンミストを空気流にのせて効果的に放出することができ、また、小隙間6の開口5付近で空気の渦が発生しないので、小隙間6内の空気を撹乱して放電電極1の外部への露出部分以外の部分から熱を奪うことがなくて、小隙間6の断熱性を低下させない。しかも、断熱材7の表面を放電電極1に近づく程放電電極1の突出方向側となるように傾斜した傾斜面8とすることで、放電電極1の外部への露出部分に生成された結露水の量が多い場合に、一部の結露水が小隙間6の開口5を越えて断熱材7の表面に流れても、傾斜面8に沿って放電電極1から離れる方向に流すことができ、断熱材7の表面から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができることになる。   By the way, when the surface of the heat insulating material 7 is a surface that is perpendicular to the protruding direction of the discharge electrode 1 as shown in FIG. 4, the discharge electrode is used by the blowing means to convey the nano ion mist generated by electrostatic atomization. 1, the air flow that flows along the surface of the heat insulating material 7 collides with the discharge electrode 1 as shown by the arrow b in FIG. 4, and the air flow swirls at the collision portion of the discharge electrode 1, The generated nano ion mist cannot be efficiently discharged and the nano ion mist cannot be efficiently discharged. Further, an air vortex is generated in the vicinity of the opening 5, and the air in the small gap 6 is disturbed so that the portion other than the portion exposed to the outside of the discharge electrode 1. When heat is removed even at the portion, the heat insulating property of the small gap 6 is reduced, and the cooling effect of the discharge portion 4a at the tip of the discharge electrode 1 (or the portion near the discharge portion 4a and the discharge portion 4a) is reduced. Can occur, but as above, the insulation 7 is made to be an inclined surface 8 that is inclined so as to be closer to the discharge direction of the discharge electrode 1 as it approaches the discharge electrode 1, so that wind flows along the inclined surface 8 as shown by the arrow a in FIG. Since it flows in the protruding direction of the electrode 1, the generated nano ion mist can be effectively discharged on the air flow, and no air vortex is generated near the opening 5 of the small gap 6. The air in the gap 6 is not disturbed and heat is not taken away from portions other than the exposed portion of the discharge electrode 1, and the heat insulation of the small gap 6 is not deteriorated. Moreover, the surface of the heat insulating material 7 is the inclined surface 8 that is inclined so as to be closer to the discharge electrode 1 in the projecting direction of the discharge electrode 1, so that the dew condensation water generated at the exposed portion of the discharge electrode 1. In the case where the amount of water is large, even if some condensed water flows over the opening 5 of the small gap 6 and flows to the surface of the heat insulating material 7, it can flow in a direction away from the discharge electrode 1 along the inclined surface 8. It is possible to prevent a water mass from covering the entire exposed portion from the surface of the heat insulating material 7 to the outside of the discharge electrode 1 and to perform stable discharge.

本発明において使用する断熱材7の材質としては例えばポリカーボネート、ジュラコン、ABS、PP、PBT、PA、ウレタン系樹脂等の樹脂、あるいは、セラミックやフェルト等が使用できる。   As a material of the heat insulating material 7 used in the present invention, for example, a resin such as polycarbonate, Duracon, ABS, PP, PBT, PA, urethane resin, ceramic, felt, or the like can be used.

ここで、断熱材7が保水性を有する多孔質材料により形成してもよい。断熱材7を多孔質製のセラミック、フェルト、発泡性ポリアミド、あるは発泡性ウレタン樹脂等の多孔質材料で形成してもよい。このように断熱材7を保水性を有する多孔質材料により形成することで、多孔質材料の断熱材7に余剰結露水を保水でき、よりいっそう断熱材7から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができることになる。しかも、周囲環境が乾燥化した場合、多孔質材料の断熱材7に保水した水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成でき、この点でもより安定して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   Here, you may form the heat insulating material 7 with the porous material which has water retention. The heat insulating material 7 may be formed of a porous material such as porous ceramic, felt, expandable polyamide, or expandable urethane resin. Thus, by forming the heat insulating material 7 with a porous material having water retention capacity, it is possible to retain excess condensed water in the heat insulating material 7 of the porous material, and further, the exposed portion from the heat insulating material 7 to the outside of the discharge electrode 1. A stable discharge can be achieved by avoiding the formation of a mass of water that covers the entire surface. Moreover, when the surrounding environment is dried, the water retained in the heat insulating material 7 made of the porous material is supplied to the surrounding environment, and the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 Condensed water can be generated at this point, and in this respect as well, the condensed water is generated more stably at the discharge part 4a (or the part near the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 and electrostatic atomization. Can be done.

図5には本発明の他の実施形態が示してある。本実施形態においては、断熱材7の表面に余剰結露水を入れる凹部10を形成してある。放電電極1の外部への露出部分で結露水が生成される際に余剰結露水が生成された場合、前述のように開口5から余剰結露水が小隙間6内に流れ込むのであるが、余剰結露水が多い場合、一部の余剰結露水が断熱材7の表面に流れることがある。このように余剰結露水の一部が断熱材7の表面に流れても、この余剰結露水が断熱材7の表面の凹部10に溜まって保水されることになり、断熱材7の表面から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにでき、安定した放電ができる。しかも、周囲環境が乾燥化した場合、断熱材7に設けた凹部10に保水した水が蒸発して周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成でき、より安定して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水の生成をして静電霧化を行えることになる。   FIG. 5 shows another embodiment of the present invention. In the present embodiment, a recess 10 is formed on the surface of the heat insulating material 7 to put excess dew condensation water. When the dew condensation water is generated when the dew condensation water is generated at the exposed portion of the discharge electrode 1, the excess dew condensation water flows from the opening 5 into the small gap 6 as described above. When there is much water, a part of excessive dew condensation water may flow on the surface of the heat insulating material 7. Thus, even if a part of the excessive dew condensation water flows on the surface of the heat insulating material 7, the surplus dew condensation water is accumulated in the recess 10 on the surface of the heat insulating material 7 and is retained and discharged from the surface of the heat insulating material 7. It is possible to prevent the formation of a water mass that covers the entire exposed portion of the electrode 1 and stable discharge. Moreover, when the surrounding environment is dried, the water retained in the recess 10 provided in the heat insulating material 7 is evaporated and supplied to the surrounding environment, and the discharge part 4a (or the discharge part 4a and the discharge part at the tip of the discharge electrode 1) is supplied. 4a) (condensed water can be generated in the vicinity of the discharge electrode 4a), and condensation water can be generated more stably in the discharge part 4a at the tip of the discharge electrode 1 (or the part near the discharge part 4a and the discharge part 4a). Can be made.

図6には本発明の更に他の実施形態が示してある。本実施形態は断熱材7の表面から水溜め用凹所9に至る孔11を形成してある。本実施形態においては、余剰結露水の一部が断熱材7の表面に流れても、この余剰結露水は断熱材7の表面の孔11から水溜め用凹所9に流れて溜まって保水されることになり、断熱材7の表面から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにでき、安定した放電ができる。しかも、周囲環境が乾燥化した場合、水溜め用凹所9に保水した水が周囲環境に供給されて放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水を生成でき、より安定して放電電極1の先端の放電部4a(又は、放電部4aと放電部4a付近の部分)に結露水の生成をして静電霧化を行える。   FIG. 6 shows still another embodiment of the present invention. In this embodiment, a hole 11 is formed from the surface of the heat insulating material 7 to the water reservoir recess 9. In the present embodiment, even if a part of the surplus dew condensation water flows on the surface of the heat insulating material 7, this surplus dew condensation water flows from the hole 11 on the surface of the heat insulating material 7 to the water storage recess 9 and is retained and retained. As a result, a mass of water that covers the entire exposed portion of the heat insulating material 7 to the outside of the discharge electrode 1 can be prevented, and stable discharge can be performed. In addition, when the surrounding environment is dried, the water retained in the water reservoir recess 9 is supplied to the surrounding environment and the discharge portion 4a at the tip of the discharge electrode 1 (or the portion near the discharge portion 4a and the discharge portion 4a). Condensed water can be generated in this manner, and the water can be more stably generated in the discharge part 4a (or the vicinity of the discharge part 4a and the discharge part 4a) at the tip of the discharge electrode 1 for electrostatic atomization.

図7には本発明の更に他の実施形態が示してある。本実施形態においては、断熱材7の放電電極1の表面を親水処理して親水処理部24を形成してある。本実施形態においては、余剰結露水の一部が断熱材7の表面に流れても、断熱材7の表面が親水処理してあるので断熱材7の表面の水が表面張力を失い、よりいっそう断熱材7の表面から放電電極1の外部への露出部分全体を覆うような水の塊が発生しないようにできて安定した放電ができる。しかも、断熱材7の放電電極1の突出方向側の面の水が表面張力を失うので、水を開口5から小隙間6側にスムーズに流すことができ、また、凹部10を設けた場合には凹部10にスムーズに入って保水することができ、また、孔11を設けた場合には孔11にスムーズに水を流すことができる。   FIG. 7 shows still another embodiment of the present invention. In the present embodiment, the surface of the discharge electrode 1 of the heat insulating material 7 is subjected to a hydrophilic treatment to form a hydrophilic treatment portion 24. In the present embodiment, even if a part of the surplus dew condensation flows on the surface of the heat insulating material 7, the surface of the heat insulating material 7 is subjected to hydrophilic treatment, so that the water on the surface of the heat insulating material 7 loses the surface tension, and more. A stable discharge can be achieved by preventing the generation of a water mass that covers the entire exposed portion of the heat insulating material 7 to the outside of the discharge electrode 1. Moreover, since the water on the surface of the heat insulating material 7 on the projecting direction side of the discharge electrode 1 loses surface tension, the water can flow smoothly from the opening 5 to the small gap 6 side, and when the recess 10 is provided. Can smoothly enter the recess 10 to retain water, and when the hole 11 is provided, the water can flow smoothly into the hole 11.

なお、いずれの実施形態においても、水溜め用凹所9は単なる空間であってもよいが、吸水性を有する部材を充填し、水溜め用凹所9内において吸水性を有する部材に水を保水させてもよい。   In any of the embodiments, the water reservoir recess 9 may be a simple space, but a water-absorbing member 9 is filled and water is absorbed in the water-absorbing recess 9. Water may be retained.

なお、上記いずれの実施形態においても、水溜め用凹所9内に吸湿性を有する多孔質材料を内装してもよく、この場合には多孔質材料に水が保水されるので保水効果がより確実となる。   In any of the above-described embodiments, a porous material having hygroscopicity may be provided in the water reservoir recess 9. In this case, water is retained in the porous material, so that the water retention effect is further improved. It will be certain.

本発明の静電霧化装置の概略構成図である。It is a schematic block diagram of the electrostatic atomizer of this invention. 同上の静電霧化装置の要部断面図である。It is principal part sectional drawing of an electrostatic atomizer same as the above. 同上の断熱材の表面を傾斜面とした場合の風の流れを示す説明図である。It is explanatory drawing which shows the flow of the wind at the time of making the surface of a heat insulating material same as the above into an inclined surface. 同上の断熱材の表面を放電電極の突出方向と直交した場合の風の流れを示す説明図である。It is explanatory drawing which shows the flow of a wind when the surface of a heat insulating material same as the above is orthogonal to the protrusion direction of a discharge electrode. 同上の静電霧化装置の他の実施形態の要部断面図である。It is principal part sectional drawing of other embodiment of the electrostatic atomizer same as the above. 同上の静電霧化装置の更に他の実施形態の要部断面図である。It is principal part sectional drawing of other embodiment of an electrostatic atomizer same as the above. 同上の静電霧化装置の更に他の実施形態の要部断面図である。It is principal part sectional drawing of other embodiment of an electrostatic atomizer same as the above. 断熱材と放電電極とが密着している場合の問題点を示す要部断面図である。It is principal part sectional drawing which shows a problem in case the heat insulating material and the discharge electrode are closely_contact | adhered.

符号の説明Explanation of symbols

1 放電電極
2 冷却手段
3 高電圧印加部
4a 放電部
5 開口
6 小隙間
7 断熱材
8 傾斜面
9 水溜め用凹所
10 凹部
11 孔
DESCRIPTION OF SYMBOLS 1 Discharge electrode 2 Cooling means 3 High voltage application part 4a Discharge part 5 Aperture 6 Small gap 7 Heat insulating material 8 Inclined surface 9 Recess for water sump 10 Recess 11 Hole

Claims (7)

放電電極と、該放電電極を冷却して空気中の水分を結露させて放電電極に結露水を生成させるための冷却手段と、放電電極に生成した上記結露水を静電霧化するために放電電極に高電圧を印加するための高電圧印加部とを備え、放電電極の周りに放電電極の突出方向側が開口となった小間隙を介して断熱材を設けると共に放電電極の先端の放電部を露出させて成ることを特徴とする静電霧化装置。   A discharge electrode; cooling means for cooling the discharge electrode to condense moisture in the air to generate condensed water on the discharge electrode; and discharging to electrostatically atomize the condensed water generated on the discharge electrode. A high voltage application unit for applying a high voltage to the electrode, and a heat insulating material is provided around the discharge electrode through a small gap having an opening on the projecting direction side of the discharge electrode, and a discharge unit at the tip of the discharge electrode is provided. An electrostatic atomizer characterized by being exposed. 断熱材の表面を放電電極に近づく程放電電極の突出方向側となるように傾斜した傾斜面として成ることを特徴とする請求項1記載の静電霧化装置。   The electrostatic atomizer according to claim 1, wherein the surface of the heat insulating material is an inclined surface that is inclined so as to be closer to the discharge direction of the discharge electrode as it approaches the discharge electrode. 上記小隙間に流れた水を溜めるための水溜め用凹所を設けて成ることを特徴とする請求項1又は請求項2記載の静電霧化装置。   The electrostatic atomizer according to claim 1 or 2, wherein a water reservoir recess for storing water flowing in the small gap is provided. 断熱材が保水性を有する多孔質材料により形成してあることを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein the heat insulating material is formed of a porous material having water retention. 断熱材の表面に余剰結露水を入れる凹部を形成して成ることを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein a concave portion into which surplus dew condensation water is placed is formed on the surface of the heat insulating material. 断熱材の放電電極の突出側方向の表面から水溜め用凹所に至る孔を形成して成ることを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein a hole is formed from the surface of the heat insulating material in the protruding side direction of the discharge electrode to the water reservoir recess. 断熱材の表面を親水処理して成ることを特徴とする請求項1乃至請求項3又は請求項5乃至請求項6のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, or 5 to 6, wherein the surface of the heat insulating material is subjected to a hydrophilic treatment.
JP2006106735A 2006-04-07 2006-04-07 Electrostatic atomizer Active JP4670711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106735A JP4670711B2 (en) 2006-04-07 2006-04-07 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106735A JP4670711B2 (en) 2006-04-07 2006-04-07 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007275797A JP2007275797A (en) 2007-10-25
JP4670711B2 true JP4670711B2 (en) 2011-04-13

Family

ID=38677853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106735A Active JP4670711B2 (en) 2006-04-07 2006-04-07 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4670711B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330738B2 (en) * 2008-05-27 2013-10-30 パナソニック株式会社 Electrostatic atomizer
JP5331436B2 (en) * 2008-10-08 2013-10-30 日立アプライアンス株式会社 Air conditioner
JP5227281B2 (en) 2009-09-25 2013-07-03 パナソニック株式会社 Electrostatic atomizer
JP5508206B2 (en) * 2010-09-27 2014-05-28 パナソニック株式会社 Electrostatic atomizer
KR101684363B1 (en) * 2013-05-16 2016-12-08 이래오토모티브시스템 주식회사 Ionizer with Unitary Structure and Air Conditioning Apparatus for Vehicle Using the Same
CN104646214B (en) * 2013-11-21 2019-07-19 株式会社铁克诺弗隆帝亚 Discharge contact pin component, mist generates component and the electrostatic atomization apparatus using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000826A (en) * 2004-06-21 2006-01-05 Matsushita Electric Works Ltd Electrostatic atomizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000826A (en) * 2004-06-21 2006-01-05 Matsushita Electric Works Ltd Electrostatic atomizer

Also Published As

Publication number Publication date
JP2007275797A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP3952052B2 (en) Electrostatic atomizer
JP4449859B2 (en) Electrostatic atomizer
JP4670711B2 (en) Electrostatic atomizer
JP4625267B2 (en) Electrostatic atomizer
JP2009090192A (en) Electrostatically atomizing device
JP4595896B2 (en) Electrostatic atomizer
JP4442444B2 (en) Electrostatic atomizer
US8235312B2 (en) Electrostatic atomizer
US8366028B2 (en) Electrostatic atomizer
JP4371173B2 (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
JP4379536B2 (en) Electrostatic atomizer
JP4036886B2 (en) Electrostatic atomizer
JP4952294B2 (en) Electrostatic atomizer
JP4305534B2 (en) Electrostatic atomizer
JP2007167758A (en) Electrostatic atomization apparatus
JP4258497B2 (en) Electrostatic atomizer
JP4329725B2 (en) Electrostatic atomizer
JP4036887B2 (en) Electrostatic atomizer
JP4830788B2 (en) Electrostatic atomizer
JP4552905B2 (en) Electrostatic atomizer
JP3986550B2 (en) Electrostatic atomizer
JP5342464B2 (en) Electric appliance
JP2009101279A (en) Electrostatic atomizing apparatus
JP5314606B2 (en) Electrostatic atomization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3