JP3986550B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP3986550B2
JP3986550B2 JP2007100983A JP2007100983A JP3986550B2 JP 3986550 B2 JP3986550 B2 JP 3986550B2 JP 2007100983 A JP2007100983 A JP 2007100983A JP 2007100983 A JP2007100983 A JP 2007100983A JP 3986550 B2 JP3986550 B2 JP 3986550B2
Authority
JP
Japan
Prior art keywords
water
unit
heat
electrostatic atomizer
transport unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007100983A
Other languages
Japanese (ja)
Other versions
JP2007181837A (en
Inventor
修 今堀
利久 平井
晃秀 須川
昭輔 秋定
俊幸 山内
成正 岩本
洋 須田
隆行 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007100983A priority Critical patent/JP3986550B2/en
Publication of JP2007181837A publication Critical patent/JP2007181837A/en
Application granted granted Critical
Publication of JP3986550B2 publication Critical patent/JP3986550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ナノイオンミストを発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates nano ion mist.

静電霧化装置とは、毛細管現象によって水を搬送する水搬送部と、水搬送部に水を供給する水供給部と、水搬送部が搬送する水に対して電圧を印加する印加電極と、水搬送部と対向して位置する対向電極と、印加電極と対向電極との間に高電圧を印加する高電圧印加部とを備え、高電圧印加部により印加される高電圧によって、水搬送部の先端に保持される水を対向電極に向けて霧化させ、ナノサイズで強い電荷を持つミストであるナノイオンミストを発生させるものである。ナノイオンミストの粒径は1〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、このナノイオンミストの暴露により角質層表面の奥までも水分が十分に補給されて、高い保湿効果が得られるものである。 The electrostatic atomizer includes a water transport unit that transports water by capillary action, a water supply unit that supplies water to the water transport unit, and an application electrode that applies a voltage to the water transported by the water transport unit. A counter electrode positioned opposite to the water transfer unit, and a high voltage application unit that applies a high voltage between the application electrode and the counter electrode, and the water transfer by the high voltage applied by the high voltage application unit. the water retained in the front end parts is atomized toward the opposite electrode, Ru der those for generating nano-ion mist is mist having a strong charge at the nano size. Since the particle size of the nano ion mist is about 1 to several tens of nanometers and smaller than 70 nm, which is the size of the horny cells of the human body, the exposure of the nano ion mist causes moisture to reach the back of the stratum corneum surface. It is sufficiently replenished to obtain a high moisturizing effect.

しかしながら、上記した従来の静電霧化装置は、水搬送部に水分を供給するための水供給部として水タンクを備えた構造であることから、この水タンク内に水が所定量以上満たされるように水を補給し続ける必要があり、使用者には継続的な水補給の手間が要求されるものであった。また、従来の静電霧化装置においては、水タンクに補給する水が、水道水のようなCa,Mg等の不純物を含む水であった場合には、この不純物が空気中のCOと反応して水搬送部の先端部にCaCOやMgO等を析出付着させ、ナノイオンミストの発生を妨げることがあった。このため、使用者にはCaCOやMgO等の付着物を取り除く定期的なメンテナンスが要求されるものであった。
特許第3260150号公報
However, since the conventional electrostatic atomizer described above has a structure including a water tank as a water supply unit for supplying moisture to the water transport unit, the water tank is filled with a predetermined amount or more. Thus, it is necessary to continue to replenish water, and the user is required to have continuous water replenishment. Moreover, in the conventional electrostatic atomizer, when the water replenished to the water tank is water containing impurities such as Ca and Mg, such as tap water, these impurities are combined with CO 2 in the air. The reaction may cause CaCO 3 , MgO, or the like to deposit and adhere to the tip of the water conveyance unit, thereby preventing the generation of nano ion mist. For this reason, the user is required to perform regular maintenance to remove deposits such as CaCO 3 and MgO.
Japanese Patent No. 3260150

本発明は上記問題点に鑑みて発明したものであって、使用者に水補給の手間や付着物除去の手間を強いることなく、乾燥等の結露水が生じ難い時であっても継続的に使用することの可能な静電霧化装置を提供することを課題とするものである。 The present invention has been invented in view of the above-mentioned problems, and does not force the user to replenish water or remove deposits , and even when it is difficult to generate condensed water such as drying. It is an object of the present invention to provide an electrostatic atomizer that can be used.

上記課題を解決するために本発明を、毛細管現象によって水を搬送する水搬送部11と、水搬送部に水を供給する水供給部20と、水搬送部20が搬送する水に対して電圧を印加する印加電極21と、印加電極21に高電圧を印加することで水搬送部11の先端部11aにて水を霧化させる高電圧印加部14とを備えた静電霧化装置において、上記水供給部20が、吸熱面8を有するとともに該吸熱面8上で空気を冷却して結露水Dを生成する熱交換部4であり、該熱交換部4で生成した結露水Dを蓄えて水搬送部11に供給する保水部40を該吸熱面8の周縁部に備え、該保水部40と水搬送部11とが接していることを特徴としたものとする。このように、水搬送部11に供給するための水が、吸熱面8上での結露水Dとして自動的に採取される構造とすることで、使用者が面倒な水補給を行わずとも、複数の水搬送部11の先端部11aでレイリー分裂により継続的にナノイオンミストMを発生させることができる。また、結露水Dは水道水のようにCaやMgを含まないので各水搬送部11の先端部11aで付着物が生じることもなく、面倒なメンテナンスを行う必要もない。加えて、吸熱面8の周縁部に保水部40を備えたことで、乾燥した昼間等の結露水Dが生じ難い時間帯であっても、結露水Dが多く生成される時間帯に蓄えておいた結露水Dを用いて、継続的にナノイオンミストMを発生させることができる。 In order to solve the above-described problems, the present invention can be applied to a water transport unit 11 that transports water by capillary action, a water supply unit 20 that supplies water to the water transport unit, and a voltage with respect to water that the water transport unit 20 transports In an electrostatic atomizer comprising: an application electrode 21 for applying water; and a high voltage application unit 14 for atomizing water at the distal end portion 11a of the water transport unit 11 by applying a high voltage to the application electrode 21. The water supply unit 20 is a heat exchanging unit 4 that has an endothermic surface 8 and cools air on the endothermic surface 8 to generate condensed water D, and stores the condensed water D generated by the heat exchanging unit 4. Te water retention portion 40 supplies the water conveying section 11 provided on the periphery of the absorbing heat surfaces 8, and those features that you have contact and a-holding water 40 and the water conveying section 11. Thus, the water to be supplied to the water transport unit 11 is automatically collected as the condensed water D on the endothermic surface 8, so that the user can perform troublesome water replenishment. The nano ion mist M can be continuously generated by Rayleigh splitting at the front end portions 11a of the plurality of water transport units 11. Moreover, since the dew condensation water D does not contain Ca or Mg like tap water, no adhering matter is generated at the tip end portion 11a of each water transport section 11, and there is no need for troublesome maintenance. In addition, the provision of the water retaining portion 40 at the peripheral edge of the heat absorbing surface 8 allows the condensed water D to be generated in a time zone where a large amount of the condensed water D is generated even in a time zone in which the condensed water D is difficult to occur during the daytime. Nano ion mist M can be continuously generated using dew condensation water D.

本発明は、使用者に水補給の手間や付着物除去の手間を強いることなく、乾燥等の結露水が生じ難い時であっても継続的に使用することができるという効果を奏する。
The present invention has an effect that it can be used continuously even when it is difficult for condensed water such as drying to occur without forcing the user to replenish water or remove deposits.

以下、本発明を添付図面に示す実施形態に基いて説明する。図1〜図3には、本発明の実施の形態における第1例の静電霧化装置を示している。本例の静電霧化装置の外殻を成す本体ケース10は、四角筒状のミスト発生ケース1と、これに連通接続される同じく四角筒状の送風ケース2とで形成されている。送風ケース2のミスト発生ケース1との接続側には熱交換部配置口3を開口させており、この熱交換部配置口3に熱交換部4を嵌合させている。熱交換部4は、半導体電子熱交換素子であるペルチェ素子5の吸熱側に吸熱板6を接続させるとともに該ペルチェ素子5の放熱側にフィン形状の放熱板7を接続させて形成したものであり、吸熱板6の空気と接触する側の平坦な外表面が、熱交換部4の結露水Dを生じる吸熱面8となり、放熱板7の空気と接触する側の外表面が、熱交換部4の放熱面9となっている。上記の吸熱板6や放熱板7は、アルミニウム等の熱伝導性の高い材料を用いて形成したものである。なお、ペルチェ素子5は水に弱いので、結露水Dがペルチェ素子5にまで浸入することを防止するために、吸熱板6とペルチェ素子5との間に、疎水性の熱伝導部として例えば防水グリース(図示せず)を介在させておくことが好ましい。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. 1 to 3 show a first example of the electrostatic atomizer according to the embodiment of the present invention. A main body case 10 constituting the outer shell of the electrostatic atomizer of this example is formed of a square cylinder-shaped mist generating case 1 and a similarly rectangular cylinder-shaped air blowing case 2 connected in communication therewith. A heat exchange section arrangement port 3 is opened on the connection side of the blower case 2 with the mist generating case 1, and the heat exchange section 4 is fitted to the heat exchange section arrangement port 3. The heat exchanging portion 4 is formed by connecting a heat absorbing plate 6 to the heat absorbing side of the Peltier element 5 which is a semiconductor electronic heat exchanging element and connecting a fin-shaped heat radiating plate 7 to the heat radiating side of the Peltier element 5. The flat outer surface of the heat absorbing plate 6 that comes into contact with the air becomes the heat absorbing surface 8 that generates the condensed water D of the heat exchanging portion 4, and the outer surface of the heat radiating plate 7 that comes into contact with the air is the heat exchanging portion 4. The heat radiation surface 9 is. The heat absorbing plate 6 and the heat radiating plate 7 are formed using a material having high thermal conductivity such as aluminum. Since the Peltier element 5 is vulnerable to water, in order to prevent the dew condensation water D from entering the Peltier element 5, for example, a waterproof heat conduction portion is provided between the heat absorbing plate 6 and the Peltier element 5 as a waterproof heat conduction part. It is preferable to interpose grease (not shown).

熱交換部4の放熱板7は送風ケース2内に位置し、吸熱板6はミスト発生ケース1内に位置するものであり、ミスト発生ケース1内において吸熱板6の吸熱面8上に水搬送部11を立設させている。水搬送部11は、多孔質材であるセラミックを用いて形成される円筒形状の部材であり、その先端部11aは鋭利な円錐形状となっている。なお、水搬送部11はセラミック製に限定されず、毛細管現象を生じ得る多孔質材であればよい(例えばフェルト等)。ミスト発生ケース1の、水搬送部11の先端部11aとの対向側に開口させてあるミスト吐出口12の中央部分には、リング状の対向電極13を位置させている。この対向電極13と吸熱板6とは高電圧印加部14に接続されており、後述するように水搬送部11が水を搬送する状態において該水搬送部11の先端部11aと対向電極13との間に、水搬送部11の先端部11a側がマイナス電極となるように高電圧を印加するものである。   The heat radiating plate 7 of the heat exchanging section 4 is located in the blower case 2, and the heat absorbing plate 6 is located in the mist generating case 1, and the water is conveyed on the heat absorbing surface 8 of the heat absorbing plate 6 in the mist generating case 1. The part 11 is erected. The water conveyance part 11 is a cylindrical member formed using the ceramic which is a porous material, and the front-end | tip part 11a has a sharp cone shape. In addition, the water conveyance part 11 is not limited to the product made from a ceramic, What is necessary is just a porous material which can produce a capillary phenomenon (for example, felt etc.). A ring-shaped counter electrode 13 is positioned at the central portion of the mist discharge port 12 that is opened on the opposite side of the mist generating case 1 to the front end portion 11a of the water transport unit 11. The counter electrode 13 and the heat absorbing plate 6 are connected to a high voltage application unit 14, and the tip 11 a of the water transport unit 11 and the counter electrode 13 are in a state where the water transport unit 11 transports water as will be described later. During this time, a high voltage is applied so that the tip end 11a side of the water transport section 11 becomes a negative electrode.

送風ケース2内には、放熱板7と対向するようにモータファン15を配しており、モータファン15を駆動させることで送風ケース2側からミスト発生ケース1側に向けて空気の流れが発生するようになっている。送風ケース2の熱交換部配置口3の開口縁からは、放熱板7の側方を囲む筒状の隔壁16が内方に向けて延設されており、この隔壁16により囲まれる内部空間と送風ケース2の外部空間とを連通させる排出ダクト22が、送風ケース2の側周壁2aを貫通して外方に突設されている。また、送風ケース2の側周壁2aと隔壁16との間には所定の空隙17を設けており、この空隙17が、送風ケース2の熱交換部配置口3の近傍に形成した通風口18を介してミスト発生ケース1内と連通するようになっている。なお、図中の19は、モータファン15とペルチェ素子5と高電圧印加部14とに接続されて、それぞれに電源を供給する電源制御部である。   A motor fan 15 is disposed in the blower case 2 so as to face the heat radiating plate 7. When the motor fan 15 is driven, an air flow is generated from the blower case 2 side toward the mist generating case 1 side. It is supposed to be. A cylindrical partition wall 16 surrounding the side of the heat radiating plate 7 is extended inward from the opening edge of the heat exchange part arrangement port 3 of the blower case 2, and the internal space surrounded by the partition wall 16 is A discharge duct 22 that communicates with the external space of the blower case 2 penetrates the side peripheral wall 2a of the blower case 2 and protrudes outward. In addition, a predetermined gap 17 is provided between the side peripheral wall 2a of the blower case 2 and the partition wall 16, and the gap 17 has a vent hole 18 formed in the vicinity of the heat exchange part arrangement port 3 of the blower case 2. It communicates with the inside of the mist generating case 1. Reference numeral 19 in the figure denotes a power control unit that is connected to the motor fan 15, the Peltier element 5, and the high voltage application unit 14 and supplies power to each of them.

しかして、上記した静電霧化装置において、電源制御部19により熱交換部4のペルチェ素子5にDC電源を供給すると、ペルチェ素子5内において熱の移動が生じ、吸熱側に接続させてある吸熱板6の吸熱面8上にて空気が冷却されて結露水Dを生じる。本例の水搬送部11は、略正方形状を成す吸熱面8の中央に備えてあるので、この吸熱面8に生成される結露水Dは該吸熱面8上を滑ることで効率良く水搬送部11に送り込まれることとなる。このように、本例においては、吸熱面8上で空気を冷却して結露水Dを生成する熱交換部4が、水搬送部11に水を供給する水供給部20となっている。なお、水搬送部11の設置箇所としては吸熱面8の中央に限定されず、例えば吸熱面8の外周縁部に略等間隔を隔てて複数の水搬送部11を立設した構造としてもよい。この場合には、吸熱面8が任意方向に或る程度傾斜した状態であっても複数立設してある水搬送部11のうち少なくとも下方に位置する水搬送部11に結露水Dを送り込むことができ、ナノイオンミストMを継続して発生させることができる。結露水Dを更に効率良く生成して水搬送部11に送り込むには、吸熱面8の表面を疎水処理することや、吸熱面8の表面に水誘導用の溝(図示せず)を放射状に形成するといった、結露水Dを水搬送部11に導くための導水形状を設けることが好適である。   Thus, in the electrostatic atomizer described above, when DC power is supplied to the Peltier element 5 of the heat exchanging unit 4 by the power supply control unit 19, heat is generated in the Peltier element 5 and connected to the heat absorption side. The air is cooled on the heat absorbing surface 8 of the heat absorbing plate 6 to generate condensed water D. Since the water conveyance part 11 of this example is provided in the center of the heat absorption surface 8 which comprises substantially square shape, the dew condensation water D produced | generated on this heat absorption surface 8 can carry out water conveyance efficiently by sliding on this heat absorption surface 8. It will be sent to the part 11. Thus, in this example, the heat exchange unit 4 that cools the air on the heat absorption surface 8 to generate the condensed water D is the water supply unit 20 that supplies water to the water transport unit 11. In addition, as an installation location of the water conveyance part 11, it is not limited to the center of the heat absorption surface 8, For example, it is good also as a structure which installed the some water conveyance part 11 in the outer peripheral part of the heat absorption surface 8 at substantially equal intervals. . In this case, even if the heat absorption surface 8 is inclined to some extent in a certain direction, the condensed water D is fed into the water conveyance unit 11 located at least below among the plurality of water conveyance units 11 standing upright. The nano ion mist M can be continuously generated. In order to generate the condensed water D more efficiently and send it to the water transport unit 11, the surface of the endothermic surface 8 is subjected to a hydrophobic treatment, or grooves for guiding water (not shown) are radially formed on the endothermic surface 8. It is preferable to provide a water guide shape for guiding the condensed water D to the water transport unit 11 such as forming.

水搬送部11の基端部11bにまで送り込まれた結露水Dは、毛細管現象によって先端部11aにまで搬送される。このように水搬送部11が先端部11aにまで水を搬送した状態で、高電圧印加部14により水搬送部11の先端部11a側がマイナス電極となり電荷が集中するように高電圧を印加すると、先端部11aに保持される水が大きなエネルギを受けてレイリー分裂を繰り返し、ナノイオンミストMを大量に発生させる。ナノイオンミストMは、水搬送部11と対向して位置する対向電極13側に放出され、ミスト発生ケース1の外部へと吐出される。ここで、水搬送部11の先端部11aが鋭利に形成されている程に、電気力線が高密度に形成されて放電効率が高くなるものである。また、水搬送部11の先端部11aと対向電極13との間の距離は、電気力線が高密度に形成されてナノイオンミストMが高効率で発生するような、適当な空間距離に設定しておく。ミスト発生ケース1の材質については、これを絶縁材料とすることが好ましいが、仮に対向電極13等と同様の導電材料を用いる場合には、水搬送部11とミスト発生ケース1との間に十分な空気絶縁距離を設けておく必要がある。   The condensed water D sent to the base end part 11b of the water transport part 11 is transported to the front end part 11a by capillary action. In this state, when the water transport unit 11 transports water to the tip end part 11a, when the high voltage application unit 14 applies a high voltage so that the tip end part 11a side of the water transport unit 11 becomes a negative electrode and charges are concentrated, The water held at the tip 11a receives large energy and repeats Rayleigh splitting to generate a large amount of nano ion mist M. The nano ion mist M is discharged to the counter electrode 13 side facing the water transport unit 11 and discharged to the outside of the mist generation case 1. Here, as the tip end portion 11a of the water transport portion 11 is sharply formed, the lines of electric force are formed at a high density, and the discharge efficiency is increased. The distance between the tip 11a of the water transport unit 11 and the counter electrode 13 is set to an appropriate spatial distance so that the electric lines of force are formed at a high density and the nano ion mist M is generated with high efficiency. Keep it. The material of the mist generating case 1 is preferably an insulating material, but if a conductive material similar to the counter electrode 13 or the like is used, it is sufficient between the water transport unit 11 and the mist generating case 1. It is necessary to provide a sufficient air insulation distance.

本例においては、高電圧印加部14と接続される吸熱板6が、水搬送部11が搬送する水に対して電圧を印加する印加電極21の役割を成し、この印加電極21と対向電極13との間に高電圧印加部14により高電圧が印加されることで、水搬送部11の先端部11aに電荷が集中するようになっているが、上記構成に限らず、印加電極21となる部材を吸熱板6とは別部材で設けてこれを水搬送部11に接続させるようにしても構わない。なお、本例の吸熱板6と水搬送部11と対向電極13とは、水搬送部11の先端部11aにまで水が搬送された状態でいずれも3000Ω以下の抵抗値を示す導電体であることが要求される。   In this example, the heat absorbing plate 6 connected to the high voltage application unit 14 serves as an application electrode 21 that applies a voltage to the water conveyed by the water conveyance unit 11, and the application electrode 21 and the counter electrode 13, the high voltage is applied by the high voltage application unit 14, so that charges are concentrated on the tip end portion 11 a of the water transport unit 11. The member to be formed may be provided as a separate member from the heat absorbing plate 6 and connected to the water transport unit 11. The endothermic plate 6, the water transport unit 11, and the counter electrode 13 of this example are conductors each having a resistance value of 3000Ω or less when water is transported to the tip end part 11 a of the water transport unit 11. Is required.

更に、本例の静電霧化装置において、電源制御部19によりモータファン15を駆動させると、前述のように送風ケース2側からミスト発生ケース1側に向けて空気の流れが発生する。ここで、本体ケース10内における空気の流路は、図3(a)に矢印で示すように送風ケース2の側周壁2aと隔壁16との間の空隙17を通り、通風口18を介してミスト発生ケース1内に流入した後に外部に吐出されるミスト誘引用流路R1と、図3(b)に矢印で示すように送風ケース2の隔壁16内に流入した後に排出ダクト22を通って外部に吐出される冷却用流路R2とに分岐して形成されている。ミスト誘引用流路R1を通る空気は、ミスト発生ケース1内にて吸熱面8近傍を通り、水搬送部11から対向電極13へと向かう方向に沿って外部に吐出されるものであり、この際にナノイオンミストMを外部に向けて勢い良く誘引するようになっている。また、冷却用流路R2を通る空気は、隔壁16内にて放熱板7の近傍を通過して放熱面9から熱を奪った後に外部に吐出され、熱交換部4の放熱性能を向上させるようになっている。即ち、本例においてはモータファン15が、熱交換部4の吸熱面8側と放熱面9側のそれぞれに空気を送り出す送風部23となっており、送風部23からの空気を吸熱面8側に送り出すミスト誘引用流路R1と放熱面9側に送り出す冷却用流路R2とを別々に備えている。仮に、放熱面9側で温められて乾燥した空気が吸熱面8側に送り出されて冷却された場合には、相対湿度が上がり辛いために結露水Dが生じ難いが、本例のように吸熱面8側への流路R1と放熱面側への流路R2とを別流路にすることで、吸熱面8側において相対湿度が上がり易くなり、結露水Dが生じ易くなるものである。   Furthermore, in the electrostatic atomizer of this example, when the motor fan 15 is driven by the power supply control unit 19, an air flow is generated from the blower case 2 side toward the mist generating case 1 side as described above. Here, the air flow path in the main body case 10 passes through the air gap 18 between the side peripheral wall 2a of the blower case 2 and the partition wall 16 as shown by an arrow in FIG. A mist inducing flow path R1 that is discharged to the outside after flowing into the mist generating case 1, and through the discharge duct 22 after flowing into the partition wall 16 of the blower case 2 as shown by an arrow in FIG. It is branched to a cooling flow path R2 discharged to the outside. The air passing through the mist inducing flow path R1 passes through the vicinity of the heat absorbing surface 8 in the mist generating case 1, and is discharged to the outside along the direction from the water transport unit 11 to the counter electrode 13. At the same time, the nanoion mist M is attracted toward the outside vigorously. Further, the air passing through the cooling flow path R2 passes through the vicinity of the heat radiating plate 7 in the partition wall 16 and is discharged to the outside after taking heat away from the heat radiating surface 9, thereby improving the heat radiating performance of the heat exchanging section 4. It is like that. That is, in this example, the motor fan 15 is a blower unit 23 that sends out air to the heat absorption surface 8 side and the heat dissipation surface 9 side of the heat exchange unit 4, and the air from the blower unit 23 is moved to the heat absorption surface 8 side. Are provided separately with a mist inducing flow path R1 sent out to the heat sink and a cooling flow path R2 sent out to the heat radiation surface 9 side. If the air heated and dried on the side of the heat radiating surface 9 is sent to the side of the heat absorbing surface 8 and cooled, the relative humidity is difficult to rise, so that the dew condensation water D is not easily generated. By making the flow path R1 to the surface 8 side and the flow path R2 to the heat radiating surface side separate, the relative humidity is likely to increase on the heat absorbing surface 8 side, and the condensed water D is likely to be generated.

上記した本例の静電霧化装置にあっては、モータファン15により送り出された空気に誘引されて、1時間に20兆個程度のナノイオンミストMが外部に吐出され、吐出後20分程度空気中に漂う性質を有しているので、ナノイオンミストMの暴露による高い保湿効果や脱臭効果等の多様な効果が得られるものである。なお、ここでの脱臭効果は、ナノイオンミストM中に包まれるラジカルが、例えば下記の反応式のように各種の臭い成分を分解することによると推察される。
アンモニア: 2NH+6・OH→N+6H
アセトアルデヒド: CHCHO+6・OH+O→2CO+5H
酢酸: CHCOOH+4・OH+O→2CO+4H
メタンガス: CH+4・OH+O→CO+H
一酸化炭素: CO+2・OH→CO+H
一酸化窒素: 2NO+4・OH→N+2CO+2H
ホルムアルデヒド: HCHO+4・OH→CO+3H
しかも、本例の静電霧化装置にあっては、結露により空気中から水を採取する構造であるとともに、ミスト発生に要する水の消費量も0.5g/hという僅かな程度で済むことから、面倒な水補給を行わずとも継続してナノイオンミストMを発生させることができる。また、結露水Dは水道水のようにCaやMgを含まないので水搬送部11の先端部11aに付着物が生じることもなく、したがって面倒なメンテナンスを行う必要もない。更に、熱交換部4としてペルチェ素子5のような小型の半導体電子熱交換素子を用いることで装置全体が小型化されるものである。このように、本例の静電霧化装置は、室内湿度を上昇させずに高い保湿効果や脱臭効果が得られることに加えて、水補給や付着物除去の手間が不要であり、且つ、装置全体もコンパクトに形成されるものであるから、加湿器やエステスチーマーや空気清浄機等に用ることは勿論、例えばヘアドライヤー、髪質改善器具等の手持ち式電気器具や、室内照明器具、スタンド照明器具等の室内常設器具等に装備させて付加価値を得ることも容易である。
In the electrostatic atomizer of this example described above, about 20 trillion nano ion mists M are attracted to the air sent out by the motor fan 15 and discharged to the outside for about 20 minutes after discharge. Since it has a property of drifting in the air, various effects such as a high moisturizing effect and deodorizing effect by exposure to the nano ion mist M can be obtained. In addition, it is guessed that the deodorizing effect here is because the radical enclosed in nano ion mist M decompose | disassembles various odor components like following reaction formula, for example.
Ammonia: 2NH 3 + 6 · OH → N 2 + 6H 2 O
Acetaldehyde: CH 3 CHO + 6 · OH + O 2 → 2CO 2 + 5H 2 O
Acetic acid: CH 3 COOH + 4 · OH + O 2 → 2CO 2 + 4H 2 O
Methane gas: CH + 4 · OH + O 2 → CO 2 + H 2 O
Carbon monoxide: CO + 2 · OH → CO 2 + H 2 O
Nitric oxide: 2NO + 4 · OH → N 2 + 2CO 2 + 2H 2 O
Formaldehyde: HCHO + 4 · OH → CO 2 + 3H 2 O
Moreover, the electrostatic atomizer of this example has a structure for collecting water from the air by condensation, and the amount of water required for mist generation can be as little as 0.5 g / h. Therefore, the nano ion mist M can be continuously generated without troublesome water supply. Moreover, since the dew condensation water D does not contain Ca or Mg like tap water, no adhering matter is generated at the tip end portion 11a of the water transport unit 11, and therefore no troublesome maintenance is required. Furthermore, by using a small semiconductor electronic heat exchange element such as the Peltier element 5 as the heat exchange part 4, the entire apparatus can be miniaturized. Thus, the electrostatic atomizer of the present example does not require the effort of water replenishment and removal of deposits in addition to obtaining a high moisturizing effect and deodorizing effect without increasing the indoor humidity, and Since the entire device is also compactly formed, it can be used for humidifiers, esthetic steamers, air purifiers, etc., as well as hand-held electric appliances such as hair dryers and hair quality improvement appliances, indoor lighting appliances, It is also easy to obtain added value by being installed in indoor permanent fixtures such as stand lighting fixtures.

次に、本発明の実施の形態における第2例の静電霧化装置について図4、図5に基づいて説明するが、本例の基本的構成は既述した第1例の構成と同様であることから、第1例と一致する構成については説明を省略するとともに、第1例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、熱交換部4を構成する吸熱板6の吸熱面8を、中心部に向かう程に凹み量が増加するような擂り鉢凹部30を有する凹面形状とし、この中心部に水搬送部11を立設させたものである。上記凹面形状の吸熱面8が上方を向くように(水搬送部11の先端部11aが上方を向くように)装置全体を設置し、ペルチェ素子5への電流供給により吸熱面8を冷却させると、吸熱面8の擂り鉢凹部30上に生成された結露水Dは次第に大きくなり、或る程度の大きさに至れば自重により中央部分に滑り落ちて、水搬送部11の基端部11bにまで送り込まれることとなる。このように、本例の静電霧化装置においては、吸熱面8の上記凹面形状が結露水Dを自重により水搬送部11に導くための導水形状となっており、この導水形状を備えることで、生成した結露水Dが蒸発等により減少してしまう前に水搬送部11にまで送り込むことができ、高効率での水供給が可能となるものである。   Next, a second example of the electrostatic atomizer according to the embodiment of the present invention will be described with reference to FIGS. 4 and 5. The basic configuration of this example is the same as the configuration of the first example described above. Therefore, the description of the configuration that matches the first example is omitted, and only the characteristic configuration that is different from the first example is described in detail below. In the electrostatic atomizer of this example, the endothermic surface 8 of the endothermic plate 6 constituting the heat exchanging unit 4 is formed into a concave shape having a bowl-shaped concave portion 30 in which the amount of recesses increases toward the center. The water conveyance part 11 is made to stand in the center part. When the entire apparatus is installed such that the concave heat absorption surface 8 faces upward (the tip portion 11a of the water transport portion 11 faces upward), and the heat absorption surface 8 is cooled by supplying current to the Peltier element 5 The condensed water D generated on the bowl recess 30 of the endothermic surface 8 gradually increases, and when it reaches a certain size, it slides down to the central portion due to its own weight, and reaches the base end portion 11b of the water conveyance portion 11. It will be sent to. Thus, in the electrostatic atomizer of this example, the concave shape of the heat absorbing surface 8 is a water guide shape for guiding the condensed water D to the water transport unit 11 by its own weight, and has this water guide shape. Thus, before the generated condensed water D is reduced due to evaporation or the like, it can be sent to the water transport unit 11 and water can be supplied with high efficiency.

次に、本発明の実施の形態における第3例の静電霧化装置について図6、図7に基づいて説明するが、本例の基本的構成は既述した第2例の構成と同様であることから、第2例と一致する構成については説明を省略するとともに、第2例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、吸熱面8の擂り鉢凹部30の中心部分に、フェルト等の多孔質材を用いてリング状に形成した保水部40を備えている。保水部40は、水搬送部11の基端部11bに嵌合された状態で吸熱面8上に載置されるものであり、長時間に亘って水を蓄えておくことが可能になっている。したがって、吸熱面8上を中心部に向けて滑り落ちた結露水Dは、一旦保水部40に蓄えられた後に水搬送部11に供給されることとなり、例えば気温や湿度が高く水搬送部11の先端部11aでミスト化される水量よりも吸熱面8上で生成される結露水Dの量が多い場合には余剰分を保水部40に蓄えておき、気温や湿度が低く水搬送部11の先端部11aでミスト化される水量よりも吸熱面8上で生成される結露水Dの量が少ない場合に、保水部40に蓄えておいた水を水搬送部11に供給することができる。即ち、上記のような保水部40を備えておくことで、乾燥した昼間等の結露水Dが生じ難い時間帯であってもナノイオンミストMを継続的に発生させることができるものである。   Next, a third example of the electrostatic atomizer according to the embodiment of the present invention will be described with reference to FIGS. 6 and 7. The basic configuration of this example is the same as the configuration of the second example described above. Therefore, the description of the configuration that matches the second example is omitted, and only the characteristic configuration that is different from the second example is described in detail below. The electrostatic atomizer of the present example includes a water retaining portion 40 formed in a ring shape using a porous material such as felt at the center of the bowl recess 30 of the heat absorbing surface 8. The water retaining part 40 is placed on the heat absorbing surface 8 in a state fitted to the base end part 11b of the water transporting part 11, and can store water for a long time. Yes. Therefore, the dew condensation water D that has slid down on the heat absorption surface 8 toward the center is temporarily stored in the water retention unit 40 and then supplied to the water conveyance unit 11. For example, the water conveyance unit 11 has high temperature and humidity. When the amount of condensed water D generated on the endothermic surface 8 is larger than the amount of water misted at the front end portion 11a, the surplus is stored in the water retaining portion 40, and the temperature and humidity are low and the water transport portion 11 is low. When the amount of condensed water D generated on the endothermic surface 8 is less than the amount of water misted at the tip portion 11a, the water stored in the water retention unit 40 can be supplied to the water transport unit 11. . That is, by providing the water retention part 40 as described above, the nano ion mist M can be continuously generated even in a time zone in which the condensed water D such as dry daytime is difficult to occur.

次に、本発明の実施の形態における第4例の静電霧化装置について図8に基づいて説明するが、本例の基本的構成は既述した第1例の構成と同様であることから、第1例と一致する構成については説明を省略するとともに、第1例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、熱交換部4の吸熱面8上に、フェルト等の多孔質材を用いてリング状に形成した保水部40を備えており、保水部40によって吸熱面8の外周縁部を覆うようになっている。加えて、上記保水部40には、複数個の水搬送部11をそれぞれ円周方向に略等間隔を隔てて立設している。したがって、本例の静電霧化装置においては、吸熱面8が上方を向く状態から任意方向に或る程度傾斜した姿勢で装置全体が設置された場合であっても、吸熱面8上に生成された結露水Dは、吸熱面8の外周縁部に備えてある保水部40に一旦吸収される。そして、毛細管現象により保水部40内の全体に水が行き渡るとともに、保水部40を介して全ての水搬送部11に水が供給されるものである。また、保水部40を備えておくことで、乾燥した昼間等の結露水Dの生じ難い時間帯であってもナノイオンミストMが継続的に発生可能であることは、第3例と同様である。   Next, the electrostatic atomizer of the fourth example in the embodiment of the present invention will be described with reference to FIG. 8, but the basic configuration of this example is the same as the configuration of the first example described above. The description of the configuration that matches the first example will be omitted, and only the characteristic configuration that is different from the first example will be described in detail below. The electrostatic atomizer of this example is provided with a water retaining part 40 formed in a ring shape using a porous material such as felt on the heat absorbing surface 8 of the heat exchanging part 4. It covers the outer peripheral edge. In addition, the water retaining unit 40 is provided with a plurality of water transport units 11 standing at substantially equal intervals in the circumferential direction. Therefore, in the electrostatic atomizer of the present example, even when the entire apparatus is installed in a posture inclined to a certain direction from the state where the heat absorption surface 8 faces upward, it is generated on the heat absorption surface 8. The condensed water D thus formed is once absorbed by the water retention part 40 provided at the outer peripheral edge of the heat absorbing surface 8. And water spreads the whole inside of the water holding part 40 by capillary action, and water is supplied to all the water conveyance parts 11 via the water holding part 40. Moreover, it is the same as that of the 3rd example that the nano ion mist M can be continuously generated by providing the water retaining part 40 even in a time zone in which the condensed water D is unlikely to be generated during dry daytime or the like. .

次に、本発明の実施の形態における第5例の静電霧化装置について図9、図10に基づいて説明するが、本例の基本的構成は既述した第4例の構成と同様であることから、第4例と一致する構成については説明を省略するとともに、第4例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、熱交換部4の吸熱面8を、中心部に向かう程に突出量が増加するような円錐凸部50を有する凸面形状とし、該吸熱面8の外周縁部に、円錐凸部50を囲むようにリング状の保水部40を配し、上記保水部40に複数個の水搬送部11をそれぞれ円周方向に略等間隔を隔てて立設している。本例の静電霧化装置においては、吸熱面8が上方を向く状態から任意方向に或る程度傾斜した姿勢で装置全体が設置された場合であっても、保水部40を介して全ての水搬送部11に水が供給されることは勿論、特に吸熱面8が上方を向く状態に設置された場合に、吸熱面8に生成した結露水Dは図10(c)に示すように円錐凸部50の傾斜面上を滑り落ち、効率的に保水部40及び水搬送部11に供給されるものである。このように、本例の静電霧化装置においては、吸熱面8の上記凸面形状が結露水Dを自重により水搬送部11に導くための導水形状となっている。   Next, a fifth example of the electrostatic atomizer in the embodiment of the present invention will be described with reference to FIGS. 9 and 10. The basic configuration of this example is the same as the configuration of the fourth example described above. Therefore, the description of the configuration that matches the fourth example is omitted, and only the characteristic configuration that is different from the fourth example is described in detail below. In the electrostatic atomizer of this example, the endothermic surface 8 of the heat exchanging portion 4 is formed into a convex shape having a conical convex portion 50 such that the amount of protrusion increases toward the center, and the outer peripheral edge of the endothermic surface 8 A ring-shaped water retaining part 40 is arranged in the part so as to surround the conical convex part 50, and a plurality of water transport parts 11 are erected on the water retaining part 40 at substantially equal intervals in the circumferential direction. . In the electrostatic atomization device of this example, even when the entire device is installed with a certain degree of inclination in an arbitrary direction from the state where the heat absorbing surface 8 faces upward, Of course, when water is supplied to the water transport unit 11, the condensed water D generated on the heat absorbing surface 8 is conical as shown in FIG. It slides down on the inclined surface of the convex part 50, and is efficiently supplied to the water retention part 40 and the water conveyance part 11. FIG. Thus, in the electrostatic atomizer of this example, the convex surface shape of the heat absorbing surface 8 has a water guide shape for guiding the condensed water D to the water transport unit 11 by its own weight.

次に、本発明の実施の形態における第6例の静電霧化装置について図11に基づいて説明するが、本例の基本的構成は既述した第2例の構成と同様であることから、第2例と一致する構成については説明を省略するとともに、第2例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、熱交換部4を構成する吸熱板6の吸熱面8に、フィン状を成す多数の突起60を形成したものである。上記の突起60を備えることで、空気と接触する吸熱面8の面積が増大して多くの結露水Dが生成され、したがって空気中から効率良く水が採取されるものである。突起60としては上記のフィン状に限らず、例えば先端に角を有する微細な凸状を成すものであってもよい。この場合には、吸熱面8の面積が増大することに加えて、先端の角部分が結露の核となるので結露水Dが生成され易くなるという利点がある。なお、本例と同様の突起60を、第1例や第3〜5例の静電霧化装置の吸熱面8に設けた場合にも同様の効果が得られることは勿論である。   Next, an electrostatic atomizer of a sixth example in the embodiment of the present invention will be described with reference to FIG. 11, but the basic configuration of this example is the same as the configuration of the second example described above. The description of the configuration that matches the second example will be omitted, and only the characteristic configuration that is different from the second example will be described in detail below. In the electrostatic atomizer of this example, a large number of fin-shaped protrusions 60 are formed on the heat-absorbing surface 8 of the heat-absorbing plate 6 constituting the heat exchange unit 4. By providing the projection 60, the area of the heat absorbing surface 8 that comes into contact with air is increased, and a large amount of condensed water D is generated. Therefore, water is efficiently collected from the air. The protrusion 60 is not limited to the fin shape described above, and may be a fine protrusion having a corner at the tip, for example. In this case, in addition to an increase in the area of the endothermic surface 8, there is an advantage that the condensed water D is easily generated because the corner portion of the tip serves as a condensation core. It is needless to say that the same effect can be obtained when the same protrusion 60 as in this example is provided on the heat absorbing surface 8 of the electrostatic atomizer of the first example or the third to fifth examples.

次に、本発明の実施の形態における第7例の静電霧化装置について図12に基づいて説明するが、本例の基本的構成は既述した第2例の構成と同様であることから、第2例と一致する構成については説明を省略するとともに、第2例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、送風ケース2から側方に突出した排出ダクト22の外周面上に、モータ71を用いた振動発生部70を備えている。上記振動発生部70は、モータ71から突出したモータ軸71aに錘部72を取付けて成る振動モータであって、錘部72の重心とモータ軸71aの軸心とを適度にずらすことで、モータ71を駆動すると錘部72の回転によって振動を発生させるようになっている。そして、上記のように本体ケース10に配置した振動発生部70にて振動を発生させると、本体ケース10内に配置された熱交換部4の吸熱面8が振動し、吸熱面8上に生成された微細な結露水Dが振動により結合して大きな水滴となることで、早い段階で水搬送部11に向けて滑り落ちることとなる。即ち、本例の静電霧化装置は、振動発生部70を備えることで結露水Dの採集を早めて、装置を起動した後に素早くナノイオンミストMが発生するようにしたものである。なお、本例と同様の振動発生部70を、第1例や第3〜6例の静電霧化装置に設けた場合にも同様の効果が得られることは勿論である。   Next, an electrostatic atomizer of a seventh example in the embodiment of the present invention will be described with reference to FIG. 12, but the basic configuration of this example is the same as the configuration of the second example described above. The description of the configuration that matches the second example will be omitted, and only the characteristic configuration that is different from the second example will be described in detail below. The electrostatic atomizer of this example includes a vibration generating unit 70 using a motor 71 on the outer peripheral surface of the discharge duct 22 protruding sideways from the blower case 2. The vibration generating unit 70 is a vibration motor in which a weight part 72 is attached to a motor shaft 71a protruding from the motor 71, and the motor 72 is appropriately displaced from the center of gravity of the weight part 72 and the axis of the motor shaft 71a. When 71 is driven, vibration is generated by the rotation of the weight portion 72. When vibration is generated by the vibration generating unit 70 arranged in the main body case 10 as described above, the heat absorbing surface 8 of the heat exchange unit 4 arranged in the main body case 10 vibrates and is generated on the heat absorbing surface 8. The fine dew condensation water D is combined by vibration to form large water droplets, so that it slides down toward the water transport unit 11 at an early stage. In other words, the electrostatic atomizer of this example is provided with the vibration generator 70 to accelerate the collection of the condensed water D so that the nano ion mist M is generated quickly after the apparatus is started. Needless to say, the same effect can be obtained when the vibration generating unit 70 similar to the present example is provided in the electrostatic atomizer of the first example or the third to sixth examples.

次に、本発明の実施の形態における第8例の静電霧化装置について図13に基づいて説明するが、本例の基本的構成は既述した第1例の構成と同様であることから、第1例と一致する構成については説明を省略するとともに、第1例とは相違する特徴的な構成についてのみ以下に詳しく述べる。本例の静電霧化装置は、送風部23として熱交換部4の側方にモータファン15を備えるとともに、このモータファン15から送り込まれる空気の流路として、モータファン15から水搬送部11と対向電極13との間のナノイオンミストM発生部分に送り込まれた後に外部に吐出されるミスト誘引用流路R1と、モータファン15から放熱面9側に直接送り込まれた後に外部に吐出される冷却用流路R2と、モータファン15から吸熱面8側に送り込まれた後に放熱面9側に送り込まれて外部に吐出される第二の冷却用流路R3とを、別々に備えている。したがって、本例の静電霧化装置においてはモータファン15の駆動により、ミスト誘引用流路R1を通る空気によってナノイオンミストMを勢い良く外部に吐出させることと、冷却用流路R2を通る空気によって放熱面9の熱を奪うことに加えて、第二の冷却用流路R3を通って吸熱面8側で冷却された空気を用いて放熱面9側の熱を奪うことができる。このように、吸熱面8側から放熱面9側に移動する空気によっても放熱面9から熱を奪う構造とすることで、熱交換部4での吸熱と放熱が効率よく行われることとなる。なお、本例と同様の流路を、第2〜7例の静電霧化装置に設けた場合にも同様の効果が得られることは勿論である。   Next, an electrostatic atomizer of an eighth example according to the embodiment of the present invention will be described with reference to FIG. 13, but the basic configuration of this example is the same as the configuration of the first example described above. The description of the configuration that matches the first example will be omitted, and only the characteristic configuration that is different from the first example will be described in detail below. The electrostatic atomizer of this example includes a motor fan 15 on the side of the heat exchanging unit 4 as the air blowing unit 23, and also serves as a flow path for air sent from the motor fan 15 to the water transport unit 11. Mist inducing flow path R1 that is discharged to the outside after being sent to the portion where the nano ion mist M is generated between the counter electrode 13 and the counter electrode 13, and is directly sent from the motor fan 15 to the heat radiation surface 9 side and then discharged to the outside. A cooling flow path R2 and a second cooling flow path R3 which is sent from the motor fan 15 to the heat absorption surface 8 side and then sent to the heat radiation surface 9 side and discharged to the outside are separately provided. Therefore, in the electrostatic atomizer of this example, the driving of the motor fan 15 causes the nano ion mist M to be ejected to the outside with the air passing through the mist inducing channel R1, and the air passing through the cooling channel R2. In addition to depriving the heat radiation surface 9 by heat, the heat on the heat radiation surface 9 side can be deprived using the air cooled on the heat absorption surface 8 side through the second cooling channel R3. Thus, by adopting a structure in which heat is removed from the heat dissipation surface 9 even by air moving from the heat absorption surface 8 side to the heat dissipation surface 9 side, heat absorption and heat dissipation at the heat exchanging portion 4 are efficiently performed. It is needless to say that the same effect can be obtained when the same flow path as in this example is provided in the electrostatic atomizers of the second to seventh examples.

なお、上記した第1〜8例の静電霧化装置はいずれも、熱交換部4の吸熱板6と水搬送部11とを別体で備えた構造であるが、これに限らず、吸熱板6と水搬送部11とを、セラミック等の毛細管現象を生じ得る多孔質材を用いて一体に形成しても構わない。この場合には、吸熱板6の吸熱面8上で生成した結露水Dがそのまま吸熱板6内に吸収されるとともに、該吸熱板6と一体に形成された水搬送部11にまで毛細管現象によって効率良く送り込まれることとなる。セラミック等の材料は、吸水性が高い一方で熱伝導性は低い材料であるが、薄膜状に形成することで表面温度が低下し易く設けることできるので、吸熱板6の材料として問題なく使用可能である。   In addition, although the electrostatic atomizer of the above-described first to eighth examples has a structure in which the heat absorption plate 6 of the heat exchange unit 4 and the water conveyance unit 11 are provided separately, the present invention is not limited thereto, and the heat absorption unit You may integrally form the board 6 and the water conveyance part 11 using the porous material which can produce capillary phenomena, such as a ceramic. In this case, the condensed water D generated on the endothermic surface 8 of the endothermic plate 6 is absorbed as it is into the endothermic plate 6, and capillarity is caused to the water conveyance unit 11 formed integrally with the endothermic plate 6. It will be sent efficiently. A material such as ceramic is a material having high water absorption but low thermal conductivity, but it can be used as a material for the heat absorbing plate 6 because the surface temperature can be easily lowered by forming a thin film. It is.

本発明の実施の形態における第1例の静電霧化装置を示す分解斜視図である。It is a disassembled perspective view which shows the electrostatic atomizer of the 1st example in embodiment of this invention. 同上の静電霧化装置を示しており、(a)は平面図、(b)は側面図、(c)は正面図、(d)は底面図である。The electrostatic atomizer same as the above is shown, (a) is a plan view, (b) is a side view, (c) is a front view, and (d) is a bottom view. 同上の静電霧化装置を示しており、(a)は図2(c)のA−A線断面図、(b)は図2(b)のB−B線断面図である。The electrostatic atomizer same as the above is shown, (a) is the sectional view on the AA line of FIG.2 (c), (b) is the sectional view on the BB line of FIG.2 (b). 本発明の実施の形態における第2例の静電霧化装置を示す分解斜視図である。It is a disassembled perspective view which shows the electrostatic atomizer of the 2nd example in embodiment of this invention. 同上の静電霧化装置を示しており、(a)は側断面図、(b)は正断面図である。The electrostatic atomizer same as the above is shown, (a) is a sectional side view, (b) is a front sectional view. 本発明の実施の形態における第3例の静電霧化装置を示す分解斜視図である。It is a disassembled perspective view which shows the electrostatic atomizer of the 3rd example in embodiment of this invention. 同上の静電霧化装置を示しており、(a)は側断面図、(b)は正断面図である。The electrostatic atomizer same as the above is shown, (a) is a sectional side view, (b) is a front sectional view. 本発明の実施の形態における第4例の静電霧化装置の主要部を示しており、(a)は全体斜視図、(b)は分解斜視図である。The principal part of the electrostatic atomizer of the 4th example in embodiment of this invention is shown, (a) is a whole perspective view, (b) is a disassembled perspective view. 本発明の実施の形態における第5例の静電霧化装置の主要部を示しており、(a)は全体斜視図、(b)は分解斜視図である。The principal part of the electrostatic atomizer of the 5th example in embodiment of this invention is shown, (a) is a whole perspective view, (b) is a disassembled perspective view. 同上の静電霧化装置の主要部を示しており、(a)は平面図、(b)は正面図、(c)は(a)のC−C線断面図である。The principal part of the electrostatic atomizer same as the above is shown, (a) is a plan view, (b) is a front view, and (c) is a sectional view taken along the line CC of (a). 本発明の実施の形態における第6例の静電霧化装置の主要部を示す斜視図である。It is a perspective view which shows the principal part of the electrostatic atomizer of the 6th example in embodiment of this invention. 本発明の実施の形態における第7例の静電霧化装置を示しており、(a)は分解斜視図、(b)は正断面図である。The electrostatic atomizer of the 7th example in embodiment of this invention is shown, (a) is a disassembled perspective view, (b) is a front sectional view. 本発明の実施の形態における第8例の静電霧化装置を示しており、(a)は側断面図、(b)は正断面図である。The electrostatic atomizer of the 8th example in embodiment of this invention is shown, (a) is a sectional side view, (b) is a front sectional view.

符号の説明Explanation of symbols

4 熱交換部
8 吸熱面
11 水搬送部
14 高電圧印加部
20 水供給部
21 印加電極
D 結露水
4 Heat exchange part 8 Endothermic surface 11 Water transport part 14 High voltage application part 20 Water supply part 21 Application electrode D Condensation water

Claims (1)

毛細管現象によって水を搬送する水搬送部と、水搬送部に水を供給する水供給部と、水搬送部が搬送する水に対して電圧を印加する印加電極と、印加電極に高電圧を印加することで水搬送部の先端部にて水を霧化させる高電圧印加部とを備えた静電霧化装置において、上記水供給部が、吸熱面を有するとともに該吸熱面上で空気を冷却して結露水を生成する熱交換部であり、該熱交換部で生成した結露水を蓄えて水搬送部に供給する保水部を該吸熱面の周縁部に備え、該保水部と水搬送部とが接していることを特徴とする静電霧化装置。 A water transport unit that transports water by capillary action, a water supply unit that supplies water to the water transport unit, an application electrode that applies voltage to the water that the water transport unit transports, and a high voltage that is applied to the application electrode In the electrostatic atomizer having a high voltage application unit that atomizes water at the tip of the water transport unit, the water supply unit has a heat absorption surface and cools the air on the heat absorption surface. A heat exchange unit that generates condensed water, and a water retention unit that stores the dew condensation water generated in the heat exchange unit and supplies the water conveyance unit to the peripheral portion of the heat absorption surface, the water retention unit and the water conveyance unit electrostatic atomizer characterized that you have bets are in contact.
JP2007100983A 2007-04-06 2007-04-06 Electrostatic atomizer Expired - Lifetime JP3986550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100983A JP3986550B2 (en) 2007-04-06 2007-04-06 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100983A JP3986550B2 (en) 2007-04-06 2007-04-06 Electrostatic atomizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003370902A Division JP4016934B2 (en) 2003-10-30 2003-10-30 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007181837A JP2007181837A (en) 2007-07-19
JP3986550B2 true JP3986550B2 (en) 2007-10-03

Family

ID=38338330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100983A Expired - Lifetime JP3986550B2 (en) 2007-04-06 2007-04-06 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP3986550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818399B2 (en) 2009-06-15 2011-11-16 三菱電機株式会社 Electrostatic atomizer and air conditioner
JP2012021763A (en) * 2011-08-22 2012-02-02 Mitsubishi Electric Corp Air conditioner
CN206810524U (en) * 2017-05-31 2017-12-29 北京小米移动软件有限公司 A kind of water particulate generating means

Also Published As

Publication number Publication date
JP2007181837A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4016934B2 (en) Electrostatic atomizer
JP4625267B2 (en) Electrostatic atomizer
JP4534853B2 (en) Electrostatic atomizer
JP3986549B2 (en) Electrostatic atomizer
JP4036886B2 (en) Electrostatic atomizer
JP4442444B2 (en) Electrostatic atomizer
JP2004358362A (en) Electrostatic atomization apparatus and humidification apparatus provided with the same
WO2007052583A1 (en) Electrostatic atomizer
JP4942799B2 (en) Dehumidifying / humidifying device and air conditioner equipped with the same
JP2010035584A (en) Hair care device
WO2008007704A1 (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
JP3986550B2 (en) Electrostatic atomizer
JP4036887B2 (en) Electrostatic atomizer
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
JP4862779B2 (en) Electrostatic atomizer and hair dryer provided with the same
JP5342464B2 (en) Electric appliance
JP3980051B2 (en) Electrostatic atomizer
JP2008241093A (en) Humidifier
JP5314606B2 (en) Electrostatic atomization method
JP2005254208A (en) Electrostatic atomization apparatus
JP3983277B2 (en) Electrostatic atomizer
JP4752798B2 (en) Electrostatic atomizer
JP5238047B2 (en) Electrostatic atomizer
JP5279683B2 (en) Air cleaner and electrostatic atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070413

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R151 Written notification of patent or utility model registration

Ref document number: 3986550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

EXPY Cancellation because of completion of term