JP5314606B2 - Electrostatic atomization method - Google Patents

Electrostatic atomization method Download PDF

Info

Publication number
JP5314606B2
JP5314606B2 JP2010010005A JP2010010005A JP5314606B2 JP 5314606 B2 JP5314606 B2 JP 5314606B2 JP 2010010005 A JP2010010005 A JP 2010010005A JP 2010010005 A JP2010010005 A JP 2010010005A JP 5314606 B2 JP5314606 B2 JP 5314606B2
Authority
JP
Japan
Prior art keywords
discharge electrode
water
air
cooling
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010010005A
Other languages
Japanese (ja)
Other versions
JP2010155239A (en
Inventor
修 今堀
利久 平井
晃秀 須川
史生 三原
昭輔 秋定
智治 渡邉
浩一 吉岡
健太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010010005A priority Critical patent/JP5314606B2/en
Publication of JP2010155239A publication Critical patent/JP2010155239A/en
Application granted granted Critical
Publication of JP5314606B2 publication Critical patent/JP5314606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomizing method used without the need for users to take time and effort for water replenishment or the removal of a deposited material, by which the rapid mist production can be achieved. <P>SOLUTION: The ion mist is produced by cooling a discharge electrode 11 by heat exchange to cool air around the discharge electrode 11 to produce the dew-condensed water on the surface of the discharge electrode 11 and applying high voltage to concentrate the electrical charge to the tip of the discharge electrode 11 on which water is dew-condensed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、静電霧化方法に関するものである。   The present invention relates to an electrostatic atomization method.

静電霧化装置とは、放電極と、放電極に対向して位置する対向電極と、放電極に水を供給する供給手段とを備え、放電極と対向電極との間に高電圧を印加することで放電極に保持される水を霧化させ、ナノサイズで強い電荷を持つマイナスイオンミスト(以下、これをナノイオンミストという)を発生させるものである(特許文献1参照)。ナノイオンミストの粒径は3〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、このナノイオンミストの暴露により角質層表面の奥までも水分が十分に補給されて、高い保湿効果が得られるようになっている。また、脱臭効果や毛髪の保湿効果等の他の効果も得られるようになっているので、多様な商品に備えることで多様な効果が得られるものである。   The electrostatic atomizer includes a discharge electrode, a counter electrode positioned opposite the discharge electrode, and a supply means for supplying water to the discharge electrode, and applies a high voltage between the discharge electrode and the counter electrode. By doing so, the water held by the discharge electrode is atomized to generate a negative ion mist (hereinafter referred to as nano ion mist) having a strong charge in the nano size (see Patent Document 1). The particle size of the nano ion mist is about 3 to several tens of nm, which is smaller than 70 nm, which is the size of the horny cells of the human body. Therefore, exposure of the nano ion mist causes moisture to reach the back of the stratum corneum surface. It is fully replenished and has a high moisturizing effect. Moreover, since other effects, such as a deodorizing effect and the moisture retention effect of hair, are also acquired now, various effects are acquired by preparing for various goods.

しかし、上記特許文献1に示されたような従来の静電霧化装置は、水の供給手段として、水が充填される水タンクと、水タンク内の水を毛細管現象により放電極にまで搬送する水搬送部を備えた構造であることから、使用者は水タンク内に水を補給し続ける必要があり、面倒な水補給の手間が強いられるという問題があった。また、上記の静電霧化装置においては、水タンクに補給する水が水道水のようなCa,Mg等の不純物を含む水であった場合には、この不純物が空気中のCOと反応して水搬送部の先端部にCaCOやMgO等を析出付着させ、ナノイオンミストの発生を妨げるという問題があった。 However, the conventional electrostatic atomizer as shown in the above-mentioned Patent Document 1 uses, as water supply means, a water tank filled with water and transports the water in the water tank to the discharge electrode by capillary action. Since it has a structure including a water transporting unit, the user needs to continue to replenish water in the water tank, and there is a problem that troublesome water replenishment is required. In the above electrostatic atomizer, when the water to be supplied to the water tank is water containing impurities such as Ca and Mg such as tap water, the impurities react with CO 2 in the air. As a result, CaCO 3 , MgO, or the like is deposited on the tip of the water transport unit to prevent the generation of nano ion mist.

そこで、上記問題を解決するためには、上記水タンクの代りに、空気を冷却することで水を生成する熱交換部を備え、この熱交換部に生成された水を水搬送部により放電極にまで搬送させることが考えられる。上記構成によれば、水を補給する手間が不要になるとともに、得られた水には不純物が含まれないことからCaCOやMgO等の析出付着が防止されるからである。しかしながら、上記構成の静電霧化装置にあっては、熱交換部で冷却を開始してから、生成した水を放電極にまで搬送してナノイオンミストを発生させるまでの間に、少なくとも数分程度の時間がかかってしまい、ヘアドライヤ等の短時間だけ使用する商品に備えるには不適であるという問題がある。 In order to solve the above problem, instead of the water tank, a heat exchanging unit that generates water by cooling air is provided, and the water generated in the heat exchanging unit is discharged by the water transport unit. It is conceivable to transport the product to According to the above configuration, it is unnecessary to supply water and impurities are not contained in the obtained water, so that deposition of CaCO 3 or MgO is prevented. However, in the electrostatic atomizer having the above-described configuration, at least several minutes from when cooling is started in the heat exchange unit to when the generated water is conveyed to the discharge electrode to generate nano ion mist. It takes a certain amount of time, and there is a problem that it is unsuitable for preparing products that are used only for a short time such as a hair dryer.

特許第3260150号公報Japanese Patent No. 3260150

本発明は上記問題点に鑑みて発明したものであって、使用者に水補給の手間や付着物除去の手間を強いることなく使用することの可能な静電霧化方法を、素早くミストを発生させることが可能なものとして提供することを課題とするものである。   The present invention has been invented in view of the above problems, and quickly generates a mist that can be used without requiring the user to replenish water or remove deposits. It is an object of the present invention to provide it as something that can be performed.

上記課題を解決するために本発明を、送風部15を駆動させることで外部空気を放電極11に供給し、熱交換によって放電極11を冷却することで、放電極11の周囲の空気を冷却して該放電極11の表面に結露水を生じさせ、放電極11に水が結露した状態で、放電極11の先端に電荷が集中するように高電圧を印加して、イオンミストを発生させ、放電極11に供給した外部空気は、更に、発生したイオンミストを外部に向けて誘引することを特徴とした静電霧化方法とする。上記のように、空気中の水分を基に放電極11部分において水が直接生成されるようにすることで、水補給や付着物除去の手間が不要になるとともに、使用を開始してからミストを発生させるまでの時間が短くて済むこととなる。また、装置全体の構造も簡素化されるものである。上記結露水は、放電極11の先端部分11aに直接生じさせることが好ましい。 In order to solve the above-described problems, the present invention is configured to cool the air around the discharge electrode 11 by supplying the external air to the discharge electrode 11 by driving the blower 15 and cooling the discharge electrode 11 by heat exchange. Then, condensed water is generated on the surface of the discharge electrode 11, and in a state where water is condensed on the discharge electrode 11, a high voltage is applied so that charges are concentrated on the tip of the discharge electrode 11 to generate ion mist. The external air supplied to the discharge electrode 11 is an electrostatic atomization method characterized by attracting the generated ion mist to the outside . As described above, since water is directly generated in the discharge electrode 11 portion based on the moisture in the air, there is no need for water replenishment and deposit removal, and the mist is started after use. It takes a short time to generate the error. Also, the structure of the entire apparatus is simplified. It is preferable that the dew condensation water is generated directly at the tip portion 11 a of the discharge electrode 11.

また、本発明が、送風部15を駆動させることで外部空気を放電極11に供給し、熱交換によって放電極11を冷却することで、放電極11の周囲の空気を冷却して該放電極11の表面に氷結を生じさせ、氷結した氷を溶解させて水を生成し、放電極11に水が保持された状態で、放電極11の先端に電荷が集中するように高電圧を印加して、イオンミストを発生させ、放電極11に供給した外部空気は、更に、発生したイオンミストを外部に向けて誘引することを特徴とした静電霧化方法であってもよい。 In addition, the present invention supplies the external air to the discharge electrode 11 by driving the air blower 15 and cools the discharge electrode 11 by heat exchange, thereby cooling the air around the discharge electrode 11 and the discharge electrode 11. The surface of the electrode 11 is frozen, and the frozen ice is melted to generate water. With the water held in the discharge electrode 11, a high voltage is applied so that charges are concentrated on the tip of the discharge electrode 11. Thus, the external air that generates ion mist and supplies it to the discharge electrode 11 may be an electrostatic atomization method that further attracts the generated ion mist toward the outside .

本発明は、使用者に水補給の手間や付着物除去の手間を強いることなく使用することの可能な静電霧化方法を、素早くミストを発生させることが可能なものとして提供することができるという効果を奏する。   INDUSTRIAL APPLICABILITY The present invention can provide an electrostatic atomization method that can be used without forcing a user to replenish water or remove deposits, as an apparatus that can quickly generate mist. There is an effect.

本発明の実施の形態における一例の静電霧化方法に用いる静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer used for the electrostatic atomization method of an example in embodiment of this invention. 同上の静電霧化装置の他の断面形状を示す説明図である。It is explanatory drawing which shows the other cross-sectional shape of an electrostatic atomizer same as the above. 同上の静電霧化装置の全体を示す説明図である。It is explanatory drawing which shows the whole electrostatic atomizer same as the above. 本発明の実施の形態における他例の静電霧化方法に用いる静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer used for the electrostatic atomization method of the other example in embodiment of this invention. 同上の放電極の保水部の別形態を示す概略断面図であり、(a)は軸心部分が保水部である形態、(b)は外表面が保水部である形態、(c)は二つ割りにして隙間を保水部とした形態を示している。It is a schematic sectional drawing which shows another form of the water retention part of a discharge electrode same as the above, (a) is a form whose axial center part is a water retention part, (b) is a form whose outer surface is a water retention part, (c) is divided into two. In this manner, the gap is used as a water retaining portion. 同上の放電極に保水面を設けた形態を示す概略断面図であり、(a)は保水面を平坦状にした形態、(b)は(a)の保水面に突起を設けた形態、(c)は保水面を凹曲面状にした形態、(d)は(c)の保水面に突起を設けた形態を示している。It is a schematic sectional drawing which shows the form which provided the water retention surface in the discharge electrode same as the above, (a) is the form which made the water retention surface flat, (b) is the form which provided the protrusion in the water retention surface of (a), ( c) shows a form in which the water retention surface is formed into a concave curved surface, and (d) shows a form in which protrusions are provided on the water retention surface in (c).

以下、本発明を添付図面に示す実施形態に基いて説明する。図1〜図3には、本発明の実施の形態における一例の静電霧化方法に用いる静電霧化装置を示している。本例の静電霧化装置の外殻を成す本体ケース10は、両端の開口した四角筒状のミスト発生ケース1と、一端側が開口した四角筒状の送風・放熱ケース2とを連通接続させることで形成されている。送風・放熱ケース2のミスト発生ケース1との接続側には熱交換部配置口3を開口させており、この熱交換部配置口3内に熱交換部4を嵌合させている。熱交換部4は、半導体電子熱交換素子であるぺルチェ素子5の吸熱側に平板状の冷却部6を接続させるとともに、該ぺルチェ素子5の放熱側にフィン形状の放熱部7を接続させて形成したものでる。なお、上記の放熱部7は熱伝導率が高い材料(本例ではアルミニウム)で形成したものであり、上記の冷却部6は熱伝導率が高く且つ電気伝導率が低い(絶縁性の)材料で形成したものである。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. 1 to 3 show an electrostatic atomizer used in an electrostatic atomization method as an example in the embodiment of the present invention. The main body case 10 constituting the outer shell of the electrostatic atomizer of this example connects the square cylinder-shaped mist generating case 1 having both ends opened and the square cylinder-shaped air blowing / radiating case 2 having one end opened. It is formed by that. A heat exchange section arrangement port 3 is opened on the connection side of the blower / heat radiation case 2 with the mist generating case 1, and the heat exchange section 4 is fitted in the heat exchange section arrangement port 3. The heat exchanging unit 4 connects the flat cooling unit 6 to the heat absorption side of the Peltier element 5 which is a semiconductor electronic heat exchange element, and connects the fin-shaped heat dissipation unit 7 to the heat dissipation side of the Peltier element 5. Is formed. The heat radiating portion 7 is formed of a material having high thermal conductivity (in this example, aluminum), and the cooling portion 6 is a material having high thermal conductivity and low electrical conductivity (insulating). It was formed by.

熱交換部4の放熱部7は送風・放熱ケース2内に位置し、冷却部6はミスト発生ケース1内に位置するものであり、ミスト発生ケース1内において冷却部6の中央に円錐台状に隆起させてある基台部6aに放電極11の基端部11bを埋設させることで、この放電極11を冷却部6上に立設させている。放電極11は、熱伝導率が高く且つ電気伝導率が高い材料(本例ではアルミニウム)を用いて形成される円柱形状の部材であり、その先端部11aは鋭利な円錐形状となっている。ミスト発生ケース1の、放電極11の先端部11aとの対向側に開口させてあるミスト吐出口12の中央部分には、リング状の対向電極13を位置させている。この対向電極13と放電極11とは高電圧印加部14を介して接続されており、放電極11の先端部11aと対向電極13との間に、放電極11の先端部11a側がマイナス電極となるように高電圧が印加されるようになっている。   The heat radiating part 7 of the heat exchanging part 4 is located in the air blowing / heat radiating case 2, and the cooling part 6 is located in the mist generating case 1. The discharge electrode 11 is erected on the cooling unit 6 by embedding the base end portion 11b of the discharge electrode 11 in the base portion 6a that is raised. The discharge electrode 11 is a cylindrical member formed using a material having high thermal conductivity and high electrical conductivity (aluminum in this example), and the tip end portion 11a has a sharp conical shape. A ring-shaped counter electrode 13 is positioned at the center portion of the mist discharge port 12 that is opened on the side of the mist generating case 1 facing the tip portion 11 a of the discharge electrode 11. The counter electrode 13 and the discharge electrode 11 are connected via a high voltage application unit 14, and the tip 11 a side of the discharge electrode 11 is a negative electrode between the tip 11 a of the discharge electrode 11 and the counter electrode 13. Thus, a high voltage is applied.

送風・放熱ケース2内には、モーターファンである送風部15を放熱部7と対向するように配しており、送風部15を駆動させることで送風・放熱ケース2側からミスト発生ケース1側に向けて空気の流れが発生するようになっている。送風・放熱ケース2内には、熱交換部配置口3の開口縁から放熱部7側に向けて、放熱部7の周囲を囲む隔壁16を延設しており、この隔壁16により囲まれて放熱部7が位置することとなる内部空間と、送風・放熱ケース2の外部とを、送風・放熱ケース2の側周壁2aであって放熱部7と近接する部分に開口させてある放熱口22を介して連通させている。また、送風・放熱ケース2の側周壁2aと隔壁16との間には所定の空隙17を設けており、この空隙17が、送風・放熱ケース2の熱交換部配置口3の近傍に形成した通風口18を介してミスト発生ケース1内と連通するようになっている。   In the blower / heat radiating case 2, a blower 15 that is a motor fan is arranged so as to face the heat radiating part 7, and by driving the blower 15, from the blower / heat radiating case 2 side to the mist generating case 1 side. An air flow is generated toward the In the air blowing / radiating case 2, a partition wall 16 surrounding the heat radiating unit 7 is extended from the opening edge of the heat exchange unit arrangement port 3 toward the heat radiating unit 7, and is surrounded by the partition wall 16. A heat radiating port 22 in which the internal space where the heat radiating portion 7 is located and the outside of the air blowing / heat radiating case 2 are opened in the side peripheral wall 2a of the air radiating / heat radiating case 2 and in the vicinity of the heat radiating portion 7. Communicating via In addition, a predetermined gap 17 is provided between the side peripheral wall 2 a of the air blowing / heat radiating case 2 and the partition wall 16, and the air gap 17 is formed in the vicinity of the heat exchange portion arrangement port 3 of the air blowing / heat radiating case 2. It communicates with the inside of the mist generating case 1 through the ventilation port 18.

なお、図中の19は、送風部15への電源供給を制御することで送風部15から発生する送風量を制御する送風制御部19であり、図中の20は、ぺルチェ素子5への電源供給を制御することで該ぺルチェ素子5(即ち熱交換部4)の冷却能力を制御する冷却制御部である。   Reference numeral 19 in the figure denotes a blow control unit 19 that controls the amount of air generated from the blower 15 by controlling the power supply to the blower 15, and 20 in the figure denotes the Peltier element 5. It is a cooling control part which controls the cooling capacity of this Peltier element 5 (namely, heat exchange part 4) by controlling power supply.

しかして、上記した静電霧化装置において、冷却制御部20により熱交換部4のぺルチェ素子5にDC電源を供給すると、ペルチェ素子5内において熱の移動が生じ、吸熱側に接続させてある冷却部6を介して放電極11が冷却され、放電極11の周囲の空気が冷却されて結露点以下に至ることで該放電極11の表面上に結露水が生じる。そして、放電極11の特に先端部11aに水が結露した状態で、高電圧印加部14により放電極11の先端部11a側がマイナス電極となり電荷が集中するように高電圧を印加すると、先端部11aに保持される水(即ち結露水)が大きなエネルギを受けてレイリー分裂を繰り返し、ナノイオンミストMを大量に発生させる。ナノイオンミストMは、放電極11と対向して位置する対向電極13側に放出され、ミスト吐出口12を介してミスト発生ケース1の外部へと吐出される。なお、本例においては放電極11を先端部11aを除いては同一断面形状としているが、基端部11bを平板状に形成するとともに該基端部11bの平面部分が熱交換部4の冷却部6に接続されるように配した場合には、放電極11を更に効率的に冷却してナノイオンミストMを効率良く発生させることができる。また、放電極11の先端部11aが鋭利に形成する程に電気力線を高密度に形成して放電効率を高くすることができる。放電極11の先端部11aと対向電極13との間の距離は、電気力線が高密度に形成されてナノイオンミストMが高効率で発生するような、適当な空間距離に設定しておくことが好適である。ミスト発生ケース1の材質については、これを絶縁材料とすることが好ましいが、仮に対向電極13と同様の導電材料を用いる場合には、放電極11とミスト発生ケース1との間に十分な空気絶縁距離を設けておくことが必要である。   Thus, in the electrostatic atomizer described above, when DC power is supplied to the Peltier element 5 of the heat exchanging unit 4 by the cooling control unit 20, heat transfer occurs in the Peltier element 5 and is connected to the heat absorption side. The discharge electrode 11 is cooled via a certain cooling unit 6, and the air around the discharge electrode 11 is cooled to reach a dew point or lower, so that dew condensation water is generated on the surface of the discharge electrode 11. When high voltage is applied by the high voltage application unit 14 so that the tip 11a side of the discharge electrode 11 becomes a negative electrode and water is condensed in the state where water is condensed particularly on the tip 11a of the discharge electrode 11, the tip 11a. The water (that is, the dew condensation water) held in the tank receives a large amount of energy and repeats Rayleigh splitting to generate a large amount of nano ion mist M. The nano-ion mist M is discharged to the counter electrode 13 side facing the discharge electrode 11 and discharged to the outside of the mist generating case 1 through the mist discharge port 12. In this example, the discharge electrode 11 has the same cross-sectional shape except for the tip end portion 11a. However, the base end portion 11b is formed in a flat plate shape, and the flat portion of the base end portion 11b is used for cooling the heat exchanging portion 4. When arranged so as to be connected to the part 6, the discharge electrode 11 can be more efficiently cooled to generate the nano ion mist M efficiently. Further, the electric field lines can be formed with a high density so that the tip end portion 11a of the discharge electrode 11 is sharply formed, and the discharge efficiency can be increased. The distance between the distal end portion 11a of the discharge electrode 11 and the counter electrode 13 should be set to an appropriate spatial distance so that the lines of electric force are formed at a high density and the nano ion mist M is generated with high efficiency. Is preferred. The material of the mist generating case 1 is preferably an insulating material. However, if a conductive material similar to the counter electrode 13 is used, sufficient air is provided between the discharge electrode 11 and the mist generating case 1. It is necessary to provide an insulation distance.

つまり、本例の静電霧化装置は、放電極11に水を供給する供給手段として、熱交換部4を用いて放電極11を冷却し、結露により放電極11部分(特に先端部11a)に直接水を生成させる水生成手段を用いたものであり、このような手段を用いることで、使用者自身が水を補給する手間が不要になるとともに、結露により生成された水には不純物が含まれないことからCaCOやMgO等の析出付着が防止されることとなる。しかも、水が放電極11に直接生成されることから、運転を開始(つまり熱交換部4で冷却を開始)してからナノイオンミストMを発生させるまでの時間が短くて済み、ヘアドライヤ等の短時間だけ使用する商品にも問題なく備えることができる。加えて、水を充填させておく為の水タンクや、水タンク内の水を放電極11にまで搬送する水搬送部といった部材を備える必要がないので装置全体がコンパクト化されるものである。 That is, in the electrostatic atomizer of this example, the discharge electrode 11 is cooled by using the heat exchange unit 4 as supply means for supplying water to the discharge electrode 11, and the discharge electrode 11 portion (particularly, the tip end portion 11a) is formed by condensation. The water generation means for directly generating water is used. By using such means, the user himself does not need to replenish water, and the water generated by condensation has impurities. Since it is not included, deposition of CaCO 3 or MgO is prevented. In addition, since water is directly generated on the discharge electrode 11, the time from the start of operation (that is, cooling is started by the heat exchanging unit 4) to the generation of the nano ion mist M can be shortened. It is possible to prepare for products used only for time without any problems. In addition, since it is not necessary to provide a member such as a water tank for filling water or a water transport unit for transporting the water in the water tank to the discharge electrode 11, the entire apparatus is made compact.

本例においては、放電極11が高電圧印加部14と直接接続される構成としているが、上記構成に限らず、例えば冷却部6を放電極11と同様に熱伝導率が高く且つ電気伝導率が高い(導電性の)材料で形成するとともに該冷却部6を高電圧印加部14と接続させ、高電圧印加部14により冷却部6と対向電極13との間に高電圧を印加することで、放電極11の先端部11aに電荷を集中させる構成にしても構わない。冷却部6と放電極11をアルミニウム等の同一材料で形成する場合には、冷却部6と放電極11を一体に形成してもよく、これによれば熱伝導のロスも少なく且つ構造もコンパクト化されるという利点がある。但し、上記のように冷却部6を熱伝導率の高い材料で形成する場合は、ぺルチェ素子5と冷却部6との間に、熱伝導率が高く且つ電気伝導率が低い材料を介在させることが好ましい。   In this example, the discharge electrode 11 is configured to be directly connected to the high voltage application unit 14. However, the configuration is not limited to the above configuration. For example, the cooling unit 6 has a high thermal conductivity and a high electrical conductivity like the discharge electrode 11. The cooling unit 6 is connected to the high voltage application unit 14 and a high voltage is applied between the cooling unit 6 and the counter electrode 13 by the high voltage application unit 14. The charge may be concentrated on the distal end portion 11 a of the discharge electrode 11. In the case where the cooling unit 6 and the discharge electrode 11 are formed of the same material such as aluminum, the cooling unit 6 and the discharge electrode 11 may be integrally formed. According to this, the heat conduction loss is small and the structure is compact. There is an advantage that However, when the cooling unit 6 is formed of a material having high thermal conductivity as described above, a material having high thermal conductivity and low electrical conductivity is interposed between the Peltier element 5 and the cooling unit 6. It is preferable.

また、本例の静電霧化装置においては、放電極11部分に水を生成する手段として、放電極11の冷却により空気中の水分を放電極11に直接結露させる結露手段を用いているが、熱交換部4による冷却能力が強過ぎる場合には、空気中の水分が冷却により放電極11に氷結して生成されることとなる。この場合、熱交換部4は放電極11の冷却により空気中の水分を放電極11に氷結させる氷結手段として働くこととなるが、この放電極11に氷結した氷を溶解させて水を生成する溶解手段を備えることで、問題なく放電極11に水を生成することができる。上記溶解手段としては、やはり熱交換部4が好適に用いられ、冷却制御部20からの通電制御により一時的に熱交換部4への通電を低下又は停止させて放電極11の温度を上げること、若しくは、極性を逆転させることで熱交換部4の吸熱側と放熱側とを入換えて放電極11を加熱することで、氷結した氷を溶解させることができる。   Further, in the electrostatic atomizer of this example, as means for generating water in the discharge electrode 11 portion, dew condensation means for directly condensing moisture in the air to the discharge electrode 11 by cooling the discharge electrode 11 is used. When the cooling capacity of the heat exchange unit 4 is too strong, moisture in the air is generated by freezing on the discharge electrode 11 by cooling. In this case, the heat exchanging unit 4 functions as an icing means for icing moisture in the air to the discharge electrode 11 by cooling the discharge electrode 11, but the ice frozen on the discharge electrode 11 is dissolved to generate water. By providing the dissolving means, water can be generated in the discharge electrode 11 without any problem. As the melting means, the heat exchanging unit 4 is also preferably used, and the temperature of the discharge electrode 11 is raised by temporarily lowering or stopping energization to the heat exchanging unit 4 by energization control from the cooling control unit 20. Alternatively, the frozen ice can be melted by heating the discharge electrode 11 by switching the heat absorption side and the heat dissipation side of the heat exchange unit 4 by reversing the polarity.

更に、本例の静電霧化装置において、送風制御部19により送風部15を駆動させると、前述したように送風・放熱ケース2側からミスト発生ケース1側に向けて空気の流れが発生することとなる。送風・放熱ケース2の側周壁2aであって送風部15を挟んで放熱部7が配してある側と反対側の部分には、円形状を成す吸気口8を複数開口させており、送風部15の駆動によって外部空気が吸気口8を介して送風・放熱ケース2つまり本体ケース1内に導入され、放熱部7側に向けて送り出されるようになっている。送風部15からの流路は、放熱部7に至る前に、隔壁16で囲まれた内部空間に流入した後に放熱口22を通って外部に吐出される放熱流路R1と、送風・放熱ケース2の側周壁2aと隔壁16との間の空隙17を通り、通風口18を介してミスト発生ケース1内に流入して放電極11の先端部11a近傍を通過して冷却された後にミスト吐出口12から外部に吐出される冷却流路R2とに分岐される(図1、図2の矢印を参照)。ここで、放熱流路R1を通る空気は、隔壁16の内部空間中にて放熱部7の近傍を通過して熱を奪った後に外部に吐出され、熱交換部4の放熱性能を向上させるようになっている。また、冷却流路R2を通る空気は、放電極11の特に先端部11aに外部空気を継続的に供給して水の生成量を向上させるとともに、この生成水から発生したナノイオンミストMを外部に向けて勢い良く誘引するようになっている。   Furthermore, in the electrostatic atomizer of this example, when the blower control unit 19 drives the blower 15, an air flow is generated from the blower / heat radiating case 2 side toward the mist generating case 1 as described above. It will be. A plurality of circular inlets 8 are opened on the side peripheral wall 2a of the blower / heat radiating case 2 on the side opposite to the side where the heat radiating part 7 is arranged with the blower 15 interposed therebetween. External air is introduced into the blower / heat radiating case 2, that is, the main body case 1 through the intake port 8 by driving the portion 15, and is sent out toward the heat radiating portion 7. The flow path from the blower 15 includes a heat release flow path R1 that flows into the internal space surrounded by the partition wall 16 and then is discharged to the outside through the heat release port 22 and the blower / heat release case before reaching the heat release section 7. The mist is discharged after passing through the gap 17 between the side peripheral wall 2a of the second wall 2 and the partition wall 16 and flowing into the mist generating case 1 through the vent 18 and passing through the vicinity of the tip 11a of the discharge electrode 11 to be cooled. It branches off to the cooling flow path R2 discharged from the outlet 12 to the outside (see arrows in FIGS. 1 and 2). Here, the air passing through the heat radiating flow path R1 passes through the vicinity of the heat radiating portion 7 in the internal space of the partition wall 16 and is discharged outside, so that the heat radiating performance of the heat exchanging portion 4 is improved. It has become. In addition, the air passing through the cooling flow path R2 continuously supplies external air to the discharge electrode 11 in particular to the tip portion 11a to improve the amount of water generated, and the nano ion mist M generated from the generated water to the outside. Attracting momentum towards.

即ち、本例の送風部15は、放熱部7側と放電極11側のそれぞれに空気を送り出すものであるが、上記のように送風部15から放電極11に外部空気を供給する冷却流路R2と別流路で、送風部15から放熱部7に外部空気を送り込んだ後に外部に吐出させる放熱流路R1を設けることで、放電極11にて水が生成されやすくなっている。というのも、仮に放熱部7側で温められて乾燥した空気が放電極11側に送り出されて冷却された場合には、相対湿度が上がり辛いために水が生じ難くなるが、本例のように放電極11が放熱部7の下流に位置しないように外部空気の流路を別流路で形成することで、放電極11側において相対湿度が上がり易くなって水が生じ易くなるからである。また、仮に放電極11を通過した空気が放熱部7に送り出された場合には、放電極11で発生したナノイオンミストMが放熱部7に付着してしまって外部に吐出され難くなるので、本例のように放熱部7が放電極11の下流に位置しないように外部空気の流路を別流路で形成することで、ナノイオンミストMの吐出効率が向上するという利点もある。   That is, the air blower 15 of this example sends out air to each of the heat radiating part 7 side and the discharge electrode 11 side, but as described above, a cooling flow path for supplying external air from the air blower 15 to the discharge electrode 11 By providing a heat dissipation flow path R1 that is a flow path different from R2 and that is discharged from the blower 15 to the heat dissipation section 7 and then discharged to the outside, water is easily generated at the discharge electrode 11. This is because, if the air heated and dried on the side of the heat radiating section 7 is sent to the discharge electrode 11 side and cooled, the relative humidity is difficult to rise, so that it is difficult to produce water. In addition, by forming the external air flow path as a separate flow path so that the discharge electrode 11 is not positioned downstream of the heat radiating portion 7, the relative humidity is likely to increase on the discharge electrode 11 side, and water is likely to be generated. . In addition, if the air that has passed through the discharge electrode 11 is sent to the heat radiating portion 7, the nano ion mist M generated at the discharge electrode 11 adheres to the heat radiating portion 7 and is difficult to be discharged to the outside. There is also an advantage that the discharge efficiency of the nano ion mist M is improved by forming the flow path of the external air as a separate flow path so that the heat radiating portion 7 is not positioned downstream of the discharge electrode 11 as in the example.

また、本例の静電霧化装置においては、冷却制御部20や送風制御部19が、放電極11での水の生成状態に基づいて熱交換部4の冷却能力や送風部15から放電極11への送風量を制御して、水が生成され易い状態では水の生成を抑制し、水が生成され難い状態では水の生成を促進するようにしている。ここで、放電極11と対向電極13との間の印加電流や、放電極11に供給される外部空気の温度や湿度が、いずれも放電極11における水の生成状態と高い相関性を有していることから、本例においては放電極11での水の生成状態を検知する水生成検知手段として、放電極11と対向電極13との間の印加電流を検知する印加電流検知部23と、放電極11に供給される外部空気の温度と湿度の少なくとも一方を検知する温湿度センサ24とを備えている。例えば放電極11にて氷結が生じている場合には印加電流が低下するものであるが、これを印加電流検知部23で検知するとともに、印加電流検知部23の出力に基づいて冷却制御部20が熱交換部4の冷却能力を低下させるか、又は送風制御部19が送風部15からの送風量を増加させることで、放電極11の温度を上げて氷結した氷を溶解させることができる。また、一般的に放電極11に送り込む外部空気の温度や湿度が低い場合は結露等により水を生成し難いので、例えば、本体ケース1内の吸気口8付近に配してある温湿度センサ24にて検知した温度や湿度が低い場合には、温湿度センサ24の出力に基づいて冷却制御部20が熱交換部4の冷却能力を向上させるか、又は送風制御部19が送風部15からの送風量を低減させることで、放電極11の温度を下げて結露等により水を生成し易い状態にすることができる。つまり、上記構成によって、水を生成し易い環境であるか否かに関わらず放電極11に安定的に水を生成し、ナノイオンミストMを継続的に発生させることが可能となるのである。   Moreover, in the electrostatic atomizer of this example, the cooling control unit 20 and the air blowing control unit 19 are discharged from the cooling capacity of the heat exchanging unit 4 and the discharge unit 15 based on the water generation state in the discharge electrode 11. 11 is controlled so that the generation of water is suppressed in a state where water is easily generated, and the generation of water is promoted in a state where water is difficult to be generated. Here, the applied current between the discharge electrode 11 and the counter electrode 13 and the temperature and humidity of the external air supplied to the discharge electrode 11 are highly correlated with the water generation state in the discharge electrode 11. Therefore, in this example, as water generation detection means for detecting the generation state of water at the discharge electrode 11, an applied current detection unit 23 that detects an applied current between the discharge electrode 11 and the counter electrode 13, A temperature / humidity sensor 24 that detects at least one of the temperature and humidity of the external air supplied to the discharge electrode 11 is provided. For example, when icing occurs in the discharge electrode 11, the applied current decreases. This is detected by the applied current detection unit 23, and based on the output of the applied current detection unit 23, the cooling control unit 20. However, the cooling capacity of the heat exchanging unit 4 is reduced, or the air blowing control unit 19 increases the amount of air blown from the air blowing unit 15, whereby the temperature of the discharge electrode 11 can be raised and the frozen ice can be melted. In general, when the temperature or humidity of the external air sent to the discharge electrode 11 is low, it is difficult to generate water due to condensation or the like. For example, the temperature / humidity sensor 24 disposed near the inlet 8 in the main body case 1. When the temperature or humidity detected in step S3 is low, the cooling control unit 20 improves the cooling capacity of the heat exchange unit 4 based on the output of the temperature / humidity sensor 24, or the air blow control unit 19 By reducing the amount of blown air, the temperature of the discharge electrode 11 can be lowered to make it easy to generate water by condensation or the like. That is, according to the above configuration, it is possible to stably generate water on the discharge electrode 11 and continuously generate the nano ion mist M regardless of whether or not the environment easily generates water.

本例の静電霧化装置にあっては、送風部15により送り出された空気に誘引されて、1時間に20兆個程度のナノイオンミストMが外部に吐出され、吐出後20分程度空気中に漂う性質を有しているので、ナノイオンミストMの暴露による高い保湿効果や脱臭効果等の多様な効果が得られるものである。なお、ここでの脱臭効果は、ナノイオンミストM中に包まれるラジカルが、例えば下記の反応式のように各種の臭い成分を分解することによると推察される。
アンモニア: 2NH+6・OH→N+6H
アセトアルデヒド: CHCHO+6・OH+O→2CO+5H
酢酸: CHCOOH+4・OH+O→2CO+4H
メタンガス: CH+4・OH+O→CO+H
一酸化炭素: CO+2・OH→CO+H
一酸化窒素: 2NO+4・OH→N+2CO+2H
ホルムアルデヒド: HCHO+4・OH→CO+3H
即ち、本例の静電霧化装置は、高い保湿効果や脱臭効果が得られることに加えて、水補給や付着物除去の手間が不要であり、且つ、使用を開始してからナノイオンミストMを発生させるまでの時間が短くて済み、全体にコンパクトに形成されるものであることから、加湿器やエステスチーマーや空気清浄機等に用ることは勿論、例えばスタンド照明器具等の室内常設器具や、又はヘアドライヤ、髪質改善器具等の手持ち式電気器具等の、短時間だけ使用する商品にも、問題なく装備させて付加価値を得ることができるものである。
In the electrostatic atomizer of this example, about 20 trillion nano ion mists M are attracted to the air sent out by the blower 15 and discharged to the outside in one hour, and in the air for about 20 minutes after the discharge. Therefore, various effects such as high moisturizing effect and deodorizing effect due to exposure of the nano ion mist M can be obtained. In addition, it is guessed that the deodorizing effect here is because the radical enclosed in nano ion mist M decompose | disassembles various odor components like following reaction formula, for example.
Ammonia: 2NH 3 + 6 · OH → N 2 + 6H 2 O
Acetaldehyde: CH 3 CHO + 6 · OH + O 2 → 2CO 2 + 5H 2 O
Acetic acid: CH 3 COOH + 4 · OH + O 2 → 2CO 2 + 4H 2 O
Methane gas: CH + 4 · OH + O 2 → CO 2 + H 2 O
Carbon monoxide: CO + 2 · OH → CO 2 + H 2 O
Nitric oxide: 2NO + 4 · OH → N 2 + 2CO 2 + 2H 2 O
Formaldehyde: HCHO + 4 · OH → CO 2 + 3H 2 O
That is, the electrostatic atomizer of this example has a high moisturizing effect and a deodorizing effect, and does not require the need for water replenishment or removal of deposits. Since it takes only a short time to generate odor and is formed compactly as a whole, it can be used for humidifiers, esthetic steamers, air purifiers, etc. Or, it can be added to products that are used only for a short time, such as a hand-held electric appliance such as a hair dryer or a hair quality improvement appliance, without problems, and can provide added value.

次に、本発明の実施の形態における他例の静電霧化方法に用いる静電霧化装置について説明するが、一例と同様の構成については説明を省略するとともに、一例とは異なる特徴的な構成についてのみ以下に述べる。図4に示すように、本例の静電霧化装置は、放電極11に、毛細管現象により余剰分の水を長時間に亘って保持しておくことの可能な保水部25を備えたものである。上記保水部25は、円柱状を成す放電極11の外周部分を成す金属メッシュ部26により構成されており、放電極11はこの外周部分の金属メッシュ部26と軸心部分の放電極本体部27とで二層構造に形成されている。また、本体ケース1内における放電極11の基端部11bの周囲部分には、同じく毛細管現象により水を保持し得る保水部25であるフェルト部28を配しており、金属メッシュ部26とフェルト部28とを該フェルト部28側から突設した導水部28aを介して相互に水が行き交うように接続させている。   Next, although the electrostatic atomizer used for the electrostatic atomization method of the other example in embodiment of this invention is demonstrated, while omitting description about the structure similar to an example, it is different from an example. Only the configuration is described below. As shown in FIG. 4, the electrostatic atomizer of this example is provided with a water retaining portion 25 that can retain excess water over a long period of time by capillarity on the discharge electrode 11. It is. The water retaining portion 25 is composed of a metal mesh portion 26 that forms the outer peripheral portion of the discharge electrode 11 having a columnar shape. The discharge electrode 11 includes the metal mesh portion 26 at the outer peripheral portion and the discharge electrode main body portion 27 at the axial center portion. And a two-layer structure. In addition, a felt part 28 that is a water retaining part 25 that can hold water by capillarity is arranged around the base end part 11b of the discharge electrode 11 in the main body case 1, and the metal mesh part 26 and the felt are provided. The portion 28 is connected so that water flows between each other via a water guide portion 28a projecting from the felt portion 28 side.

上記構成により、本例の静電霧化装置においては、結露等による放電極11部分での水の生成量が多い場合には、余剰分の水が放電極11の外周部分を構成する金属メッシュ部26に蓄えられ、更に水の余剰量が多い場合には導水部28aを介してフェルト部28にまで送られて蓄えられるので、放電極11の先端部11aで霧化される水量よりも放電極11部分で生成される水量の方が多い場合には余剰分を金属メッシュ部26やフェルト部28から成る保水部25に蓄えておいて、放電極11の先端部11aで霧化される水量よりも放電極11部分で生成される水量の方が少ない場合に、保水部25に蓄えておいた水を放電極11の先端部11aに供給することができる。また、余剰分の水がぺルチェ素子5等の他の部材にまで流入して短絡を生じることが防止されるという利点もある。加えて、本例においては保水部25である金属メッシュ部26が放電極11の外周部分を構成するものであることから、この金属メッシュ部26においても結露等により水が直接生成されることとなり、効率良く水が生成されて保持されるという利点があり、また、放電極本体部27が軸心部分を構成するので先端部11aが冷却され易いという利点がある。   With the above configuration, in the electrostatic atomizer of the present example, when a large amount of water is generated in the discharge electrode 11 due to condensation or the like, a surplus of water constitutes the outer peripheral portion of the discharge electrode 11. In the case where the excess amount of water stored in the portion 26 is larger, the water is sent to the felt portion 28 via the water guide portion 28a and stored, so that the amount of water discharged is larger than the amount of water atomized at the tip portion 11a of the discharge electrode 11. When the amount of water generated in the electrode 11 portion is larger, the surplus is stored in the water retaining portion 25 including the metal mesh portion 26 and the felt portion 28, and the amount of water atomized at the tip portion 11a of the discharge electrode 11 When the amount of water produced in the discharge electrode 11 is smaller than that, the water stored in the water retention part 25 can be supplied to the tip part 11 a of the discharge electrode 11. In addition, there is an advantage that the excess water is prevented from flowing into other members such as the Peltier element 5 to cause a short circuit. In addition, in this example, since the metal mesh portion 26 that is the water retaining portion 25 constitutes the outer peripheral portion of the discharge electrode 11, water is also directly generated in the metal mesh portion 26 due to condensation or the like. There is an advantage that water is efficiently generated and held, and since the discharge electrode main body 27 constitutes an axial center portion, there is an advantage that the tip portion 11a is easily cooled.

また、本例の静電霧化装置は一つの冷却部6に複数の放電極11を立設した構成であり、上記の簡単な構成によりナノイオンミストMを大量に発生させることが可能になっている。   Moreover, the electrostatic atomizer of the present example has a configuration in which a plurality of discharge electrodes 11 are erected on one cooling unit 6, and a large amount of nano ion mist M can be generated by the above simple configuration. Yes.

図5には、放電極11の一部に形成される保水部25の別形態をそれぞれ示している。図5(a)には、円柱状を成す放電極11の軸心部分が多孔質セラミックス等の毛細管現象を生じ得る材料から成る保水部25であり、外周部分が熱伝導率と電気伝導率の高い金属材料等から成る放電極本体部27である二層構造のものを示している。また、図5(b)には、円柱状を成す放電極11の外表面部分29にエッチング等により溝を形成することで毛細管現象を生じ得る凹凸形状を設け、この外表面部分29を保水部25としたものを示しており、図5(c)には、円柱状を成す放電極11を軸方向に沿って二つ割りに形成するとともに、二つ割りした両半部を毛細管現象を生じ得る隙間30を介して突き合わせた構造であって、該隙間30が保水部25となるものを示している。   In FIG. 5, another form of the water retention part 25 formed in a part of the discharge electrode 11 is shown. In FIG. 5 (a), the axial center portion of the cylindrical discharge electrode 11 is a water retaining portion 25 made of a material capable of causing capillary action such as porous ceramics, and the outer peripheral portion has thermal conductivity and electrical conductivity. The thing of the two-layer structure which is the discharge electrode main-body part 27 which consists of a high metal material etc. is shown. Further, in FIG. 5 (b), the outer surface portion 29 of the cylindrical discharge electrode 11 is provided with an uneven shape capable of causing a capillary phenomenon by forming a groove by etching or the like, and this outer surface portion 29 is provided as a water retaining portion. In FIG. 5C, the discharge electrode 11 having a cylindrical shape is divided into two along the axial direction, and a gap 30 that can cause capillary action is formed on both halves. It is the structure which faced through, and this gap 30 serves as water retention part 25.

図5(a)〜(c)のいずれの構造においても、放電極11の一部のみを毛細管現象を生じ得る保水部25とし、保水部25以外の部分をバルク状(即ち、隙間の詰まった状態)に形成しているので、保水部25以外の部分で熱や電気を高効率で伝達してナノイオンミストMを発生させるとともに、保水部25においては既述のように余剰分の水を保持しておくことができる。なお、図5(a)の構造においては、保水部25のみ親水性に処理し、他の部分の表面は撥水性に処理しておくことが好ましい。また、図5(b)の構造のように放電極11の外表面部分29に保水部25を形成する他の手段として、外表面部分29にプラズマ処理やアルマイト処理を施して親水性を付与することや、外表面部分29に親水性付与材を塗布することも好適である。また、図5(c)に示す構造において放電極11は万年筆のような二つ割り形状でなくてもよく、軸方向に沿って三以上の複数の部分に分割されるとともに分割された各部分が毛細管現象を生じ得る隙間30を介して付き合わされた構造であればよいものである。   5 (a) to 5 (c), only a part of the discharge electrode 11 is used as a water retaining part 25 capable of causing capillary action, and a part other than the water retaining part 25 is in a bulk shape (that is, a gap is clogged). State), heat and electricity are transmitted with high efficiency at portions other than the water retention unit 25 to generate the nano ion mist M, and the water retention unit 25 retains excess water as described above. Can be kept. In the structure of FIG. 5A, it is preferable that only the water retaining portion 25 is treated to be hydrophilic and the surface of the other portion is treated to be water repellent. Further, as another means for forming the water retaining portion 25 on the outer surface portion 29 of the discharge electrode 11 as in the structure of FIG. 5B, the outer surface portion 29 is subjected to plasma treatment or alumite treatment to impart hydrophilicity. It is also preferable to apply a hydrophilicity imparting material to the outer surface portion 29. Further, in the structure shown in FIG. 5C, the discharge electrode 11 may not be divided into two parts like a fountain pen, and is divided into three or more parts along the axial direction, and each divided part is a capillary tube. Any structure may be used as long as it is associated with the gap 30 that may cause a phenomenon.

図6には、放電極11の更に別形態として、放電極11の円錐形状を成す先端部11aに、結露等により生成した水を表面張力により保持する為の保水面31を形成したものを示している。図6(a)、(b)に示すものは保水面31を平坦に設けた構造であり、図6(c)、(d)に示すものは保水面31を凹曲面状に設けた構造であるが、いずれの構造にあっても放電極11部分に生成した水が保水面31上に貯まるので霧化が連続的に且つ安定的に発生するものである。また、霧化量も増加することとなる。なお、図6(b)、(d)に示すものはそれぞれ保水面31上に一以上(本例では一つ)の針状の突起32を設けた構造であるが、突起32を設けることで該突起32部分に電荷を集中させて霧化量を増加させることができる。   FIG. 6 shows another embodiment of the discharge electrode 11 in which a water retaining surface 31 for holding water generated by condensation or the like by surface tension is formed on the tip portion 11a forming the conical shape of the discharge electrode 11. ing. 6 (a) and 6 (b) have a structure in which the water retaining surface 31 is provided flat, and those shown in FIGS. 6 (c) and 6 (d) have a structure in which the water retaining surface 31 is provided in a concave curved surface shape. However, in any structure, the water generated in the discharge electrode 11 portion is stored on the water retaining surface 31, so that the atomization occurs continuously and stably. Moreover, the amount of atomization will also increase. 6 (b) and 6 (d) each have a structure in which one or more (one in this example) needle-like protrusions 32 are provided on the water retention surface 31, but by providing the protrusions 32, the structure shown in FIGS. The amount of atomization can be increased by concentrating charges on the protrusion 32 portion.

4 熱交換部
6 冷却部
7 放熱部
11 放電極
13 対向電極
14 高電圧印加部
15 送風部
19 送風制御部
20 冷却制御部
23 印加電流検知部
24 温湿度センサ
25 保水部
R1 放熱流路
R2 冷却流路
M ナノイオンミスト
4 Heat Exchanger 6 Cooling Unit 7 Heat Dissipating Unit 11 Discharge Electrode 13 Counter Electrode 14 High Voltage Application Unit 15 Blower Unit 19 Blower Control Unit 20 Cooling Control Unit 23 Applied Current Detection Unit 24 Temperature / Humidity Sensor 25 Water Retention Unit R1 Heat Dissipation Channel R2 Cooling Channel M Nano ion mist

Claims (3)

送風部を駆動させることで外部空気を放電極に供給し、熱交換によって放電極を冷却することで、放電極の周囲の空気を冷却して該放電極の表面に結露水を生じさせ、放電極に水が結露した状態で、放電極の先端に電荷が集中するように高電圧を印加して、イオンミストを発生させ、放電極に供給した外部空気は、更に、発生したイオンミストを外部に向けて誘引することを特徴とする静電霧化方法。 External air is supplied to the discharge electrode by driving the air blower, and the discharge electrode is cooled by heat exchange, thereby cooling the air around the discharge electrode and generating condensed water on the surface of the discharge electrode. With water condensing on the electrode, high voltage is applied to concentrate the charge at the tip of the discharge electrode to generate ion mist, and the external air supplied to the discharge electrode further removes the generated ion mist to the outside. An electrostatic atomization method characterized by attracting toward the surface. 放電極の先端部分に結露水を直接生じさせることを特徴とする請求項1に記載の静電霧化方法。   2. The electrostatic atomization method according to claim 1, wherein condensed water is directly generated at a tip portion of the discharge electrode. 送風部を駆動させることで外部空気を放電極に供給し、熱交換によって放電極を冷却することで、放電極の周囲の空気を冷却して該放電極の表面に氷結を生じさせ、氷結した氷を溶解させて水を生成し、放電極に水が保持された状態で、放電極の先端に電荷が集中するように高電圧を印加して、イオンミストを発生させ、放電極に供給した外部空気は、更に、発生したイオンミストを外部に向けて誘引することを特徴とする静電霧化方法。 External air is supplied to the discharge electrode by driving the air blowing unit, and the discharge electrode is cooled by heat exchange, thereby cooling the air around the discharge electrode to cause icing on the surface of the discharge electrode, and freezing Ice was dissolved to produce water, and with the water held in the discharge electrode, a high voltage was applied so that the electric charge was concentrated on the tip of the discharge electrode, and ion mist was generated and supplied to the discharge electrode. The external atomizing method further comprises attracting the generated ion mist to the outside .
JP2010010005A 2010-01-20 2010-01-20 Electrostatic atomization method Expired - Lifetime JP5314606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010005A JP5314606B2 (en) 2010-01-20 2010-01-20 Electrostatic atomization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010005A JP5314606B2 (en) 2010-01-20 2010-01-20 Electrostatic atomization method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004114364A Division JP4625267B2 (en) 2004-04-08 2004-04-08 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2010155239A JP2010155239A (en) 2010-07-15
JP5314606B2 true JP5314606B2 (en) 2013-10-16

Family

ID=42573541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010005A Expired - Lifetime JP5314606B2 (en) 2010-01-20 2010-01-20 Electrostatic atomization method

Country Status (1)

Country Link
JP (1) JP5314606B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038800B2 (en) * 2007-07-09 2012-10-03 カルソニックカンセイ株式会社 In-vehicle air conditioner
AU2011297507A1 (en) * 2010-08-31 2013-04-11 Daikin Industries, Ltd. Electrostatic spray device
KR101982777B1 (en) 2012-09-24 2019-05-27 엘지전자 주식회사 Electrostatic atomizing device using a disposable capsule

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625267B2 (en) * 2004-04-08 2011-02-02 パナソニック電工株式会社 Electrostatic atomizer

Also Published As

Publication number Publication date
JP2010155239A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4625267B2 (en) Electrostatic atomizer
JP4016934B2 (en) Electrostatic atomizer
JP4534853B2 (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
JP2007054808A (en) Electrostatic atomization apparatus
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
JP3986549B2 (en) Electrostatic atomizer
JP4868005B2 (en) Hair care blower
JP5314606B2 (en) Electrostatic atomization method
JP5342464B2 (en) Electric appliance
JP2006247478A (en) Electrostatic atomization apparatus
JP4036886B2 (en) Electrostatic atomizer
JP4872746B2 (en) Humidifier
JP2010082213A (en) Hair care appliance incorporating reduced water mist spraying device
JP2013123473A (en) Beauty appliance
JP2009045208A (en) Electrostatic atomizer and hair dryer having the same
JP6465614B2 (en) Mist generator
JP4752798B2 (en) Electrostatic atomizer
JP3986550B2 (en) Electrostatic atomizer
JP4036887B2 (en) Electrostatic atomizer
JP5238047B2 (en) Electrostatic atomizer
JP5514342B2 (en) Skin moisturizer
JP6545865B2 (en) Mist generator
JP3980051B2 (en) Electrostatic atomizer
JP2007078251A (en) Humidifier

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150