JP5238047B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP5238047B2
JP5238047B2 JP2011028644A JP2011028644A JP5238047B2 JP 5238047 B2 JP5238047 B2 JP 5238047B2 JP 2011028644 A JP2011028644 A JP 2011028644A JP 2011028644 A JP2011028644 A JP 2011028644A JP 5238047 B2 JP5238047 B2 JP 5238047B2
Authority
JP
Japan
Prior art keywords
water
space
discharge electrode
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011028644A
Other languages
Japanese (ja)
Other versions
JP2011169574A (en
Inventor
友宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011028644A priority Critical patent/JP5238047B2/en
Publication of JP2011169574A publication Critical patent/JP2011169574A/en
Application granted granted Critical
Publication of JP5238047B2 publication Critical patent/JP5238047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、静電霧化現象を利用して帯電微粒子水を生成する静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates charged fine particle water using an electrostatic atomization phenomenon.

従来から、マイクロサイズの大径のミストと、静電霧化装置を用いたナノサイズの小径のミスト(帯電微粒子水)とを同時に放出するようにした加湿機が特許文献1により知られている。   Conventionally, Patent Document 1 discloses a humidifier configured to simultaneously release a micro-size large-diameter mist and a nano-size small-diameter mist (charged fine particle water) using an electrostatic atomizer. .

上記特許文献1に示された従来例においては、大径ミスト吐出口と小径ミスト吐出口とをそれぞれ別々に設け、加湿機本体内に設けた釜を加熱することで、大径ミストを発生させ、この大径ミストを大径ミスト吐出口から外部に吐出するようになっており、また静電霧化装置で発生させた小径のミストを小径ミスト吐出口から外部に吐出するようになっている。そして、加湿機内に備えられた静電霧化装置は、上記大径ミストの一部が供給されて大径ミストを凝集する水凝集部と、水凝集部で生成した凝集水を水搬送部を介して放電電極に供給し、放電電極に高電圧を印加することで放電電極に供給された水を静電霧化して小径ミストを生成して上記のように小径ミスト吐出口から外部に放出するようになっている。   In the conventional example shown in Patent Document 1, a large diameter mist discharge port and a small diameter mist discharge port are separately provided, and a large diameter mist is generated by heating a pot provided in the humidifier body. The large diameter mist is discharged to the outside from the large diameter mist discharge port, and the small diameter mist generated by the electrostatic atomizer is discharged to the outside from the small diameter mist discharge port. . And the electrostatic atomizer provided in the humidifier includes a water aggregating part that a part of the large-diameter mist is supplied to agglomerate the large-diameter mist, and a water conveying part that agglomerates water generated in the water aggregating part. To the discharge electrode, and by applying a high voltage to the discharge electrode, the water supplied to the discharge electrode is electrostatically atomized to generate a small-diameter mist and discharge it from the small-diameter mist outlet as described above. It is like that.

しかしながら、上記従来例にあっては、凝集部で生成した水を水搬送部を介して放電電極の先端部まで搬送する必要があり、長期間使用していくと水搬送部や放電電極が目詰まりしたりして放電電極の先端への水の供給が十分行われなくなる可能性がある。また、放電電極も水搬送部で放電電極の後端に搬送された水を放電電極の先端部まで毛細管現象などを利用して送る必要があるため、多孔質材料で形成したり、細孔を形成したりする必要があり、このため、放電電極を形成するための材料の制約や、孔明け加工が必要となる。   However, in the above conventional example, it is necessary to transport the water generated in the agglomeration part to the tip of the discharge electrode through the water transport part. There is a possibility that the water will not be sufficiently supplied to the tip of the discharge electrode due to clogging. In addition, since it is necessary for the discharge electrode to send the water transported to the rear end of the discharge electrode in the water transport section to the front end of the discharge electrode using a capillary phenomenon or the like, the discharge electrode is formed of a porous material or has pores. For this reason, restrictions on materials for forming the discharge electrode and drilling are required.

特開2004−361009号公報JP 2004-361909 A

本発明は上記の従来の問題点に鑑みて発明したものであって、加湿空気に加えて帯電微粒子水を放出して人体に潤いを与えると共に消臭、除菌効果が期待でき、しかも、帯電微粒子水の生成が安定して効果的にできる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and discharges charged fine particle water in addition to humidified air to moisturize the human body and can be expected to have a deodorizing and sterilizing effect. It is an object of the present invention to provide an electrostatic atomizer that can stably and effectively produce fine particle water.

上記課題を解決するために本発明に係る静電霧化装置は、放電電極3と、冷却部5及び放熱部9を備えた熱交換部7と、前記冷却部5により空気中の水分を結露させて、前記放電電極3に供給された水に高電圧を印加する高電圧印加部16と、を備えた静電霧化装置4において、加湿空気を生成する加湿手段2と、前記放電電極3を配置した静電霧化空間47に前記加湿空気の一部を送り込む流路と、前記放熱部9を配置した放熱部配置空間48に前記加湿空気の他の一部を送り込む流路と、前記各流路に風を分岐させて送り込む送風路46とを備え、前記各流路および前記送風路46は、前記静電霧化空間47の温度よりも前記放熱部配置空間48の温度が低くなるように設定されていることを特徴とするものである。 In order to solve the above problems, the electrostatic atomizer according to the present invention condenses moisture in the air by the discharge electrode 3, the heat exchange unit 7 including the cooling unit 5 and the heat dissipation unit 9, and the cooling unit 5. Then, in the electrostatic atomizer 4 including a high voltage application unit 16 that applies a high voltage to the water supplied to the discharge electrode 3, humidification means 2 that generates humid air, and the discharge electrode 3. A flow path for sending a part of the humidified air to the electrostatic atomization space 47 where the heat dissipating part 9 is disposed, a flow path for sending another part of the humidified air to the heat dissipating part disposition space 48 where the heat dissipating part 9 is disposed, The air passages 46 are provided to divide the air into the respective flow paths, and the temperature of the heat dissipating portion arrangement space 48 is lower than the temperature of the electrostatic atomization space 47. It is characterized by being set as follows.

このような構成とすることで、静電霧化空間47内の加湿空気を基にして結露水生成することができ、安定して確実に放電電極3に水を供給してナノサイズの帯電微粒子水を生成し加湿手段2で生成した大径のマイクロサイズのミストである加湿空気と共に放出することができる。この場合、帯電微粒子水はナノサイズなので人体に潤いを与え、また、ラジカルを含んでいるので、消臭、除菌効果を発揮する。しかも本発明においては空気中の水分を結露させるための熱交換部7を設け、熱交換部7の放熱部9を、加湿空気の他の一部が送り込まれる放熱部配置空間48に配置するので、放熱部9における放熱が加湿空気の吸熱効果で向上し、この結果、放電電極3の冷却効率が向上し、効率的に放電電極3に結露水を生成することができる。加えて、静電霧化空間47の温度よりも放熱部配置空間48の温度が低くなるように設定されているので、放熱部9における放熱が、より効果的に行われる。 With such a configuration, dew condensation water can be generated based on the humidified air in the electrostatic atomization space 47 , and water can be stably and reliably supplied to the discharge electrode 3 so that the nano-size charging can be performed. generate water particles, with the humidified air which is micro-sized mist diameter generated by the humidifying unit 2, it can be released. In this case, since the charged fine particle water is nano-sized, it moisturizes the human body and contains radicals, so that it exerts deodorizing and sterilizing effects. Moreover , in the present invention, the heat exchanging part 7 for condensing moisture in the air is provided, and the heat dissipating part 9 of the heat exchanging part 7 is arranged in the heat dissipating part arrangement space 48 into which other part of the humidified air is sent. Therefore, the heat radiation in the heat radiating section 9 is improved by the heat absorption effect of the humidified air, and as a result, the cooling efficiency of the discharge electrode 3 is improved and the condensed water can be efficiently generated in the discharge electrode 3. In addition, since the temperature of the heat dissipating part arrangement space 48 is set to be lower than the temperature of the electrostatic atomization space 47, the heat dissipating in the heat dissipating part 9 is more effectively performed.

本発明の静電霧化装置は、安定して結露水を生成でき、帯電微粒子水を安定して生成することができるものであって、加湿空気に加えて帯電微粒子水を放出して人体に潤いを与えると共に消臭、除菌効果期待することができる。しかも、熱交換部の放熱部を、加湿空気の他の一部が送り込まれる放熱部配置空間に配置するので、上記帯電微粒子水の生成が安定して効果的になされる加えて、静電霧化空間の温度よりも放熱部配置空間の温度が低くなるように設定されているので、放熱部における放熱がより効果的に行われる。 The electrostatic atomizer of the present invention can stably generate dew condensation water and can stably generate charged fine particle water, and releases charged fine particle water in addition to humidified air to the human body. deodorant together with moisturizing, Ru can expect the sterilization effect. Moreover, the heat radiating portion of the heat exchange section, since the arrangement in addition to the heat radiating portion arranged space part is sent in humidified air, the generation of the charged water particles are effectively made stable. In addition, since the temperature of the heat dissipating part arrangement space is set to be lower than the temperature of the electrostatic atomization space, heat dissipation in the heat dissipating part is performed more effectively.

本発明の静電霧化装置の一使用例の断面図である。It is sectional drawing of one usage example of the electrostatic atomizer of this invention. 同上の全体斜視図である。It is a whole perspective view same as the above. 本発明の静電霧化装置の概略構成図である。It is a schematic block diagram of the electrostatic atomizer of this invention. 本発明の静電霧化装置の他の使用例の断面図である。It is sectional drawing of the other usage example of the electrostatic atomizer of this invention. 同上の要部拡大断面図である。It is a principal part expanded sectional view same as the above.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の一実施形態が示してある。加湿機本体1には一端部が吸い込み口10となり、他端部が吐出口11となった流路12が設けてあり、該流路12の途中にファン13と、加湿空気を生成するための加湿手段2が設けてある。   FIG. 1 shows an embodiment of the present invention. The humidifier body 1 is provided with a flow path 12 having one end portion serving as a suction port 10 and the other end portion serving as a discharge port 11. The fan 13 and the humidified air are generated in the middle of the flow path 12. Humidification means 2 is provided.

図1に示す実施形態では加湿機本体1内に設けた水貯蔵部14内の水を加湿手段2により加湿して流路12内に加湿空気を発生させ、ファン13の運転により生じる流路12を流れる空気流に乗って加湿空気として吐出口11から吐出されるようになっている。   In the embodiment shown in FIG. 1, the water in the water storage unit 14 provided in the humidifier body 1 is humidified by the humidifying means 2 to generate humid air in the flow channel 12, and the flow channel 12 generated by the operation of the fan 13. It is discharged from the discharge port 11 as humidified air on the airflow flowing through the air.

なお、水貯蔵部14の水が消費されるとその分だけ水タンク15から水が補給されるようになっている。   In addition, when the water in the water storage unit 14 is consumed, the water is supplied from the water tank 15 correspondingly.

上記流路12の加湿手段2よりも下流側は加湿空気が流れる部分、つまり加湿空間8となっている。   On the downstream side of the humidifying means 2 of the flow path 12 is a portion through which humidified air flows, that is, a humidified space 8.

この加湿空間8には放電電極3に供給された水を静電霧化することで帯電微粒子水を生成する静電霧化装置4が配置してある。   In the humidification space 8, there is disposed an electrostatic atomizer 4 that generates charged fine particle water by electrostatic atomization of water supplied to the discharge electrode 3.

静電霧化装置4は空気中の水分を結露させて放電電極3に水を供給し、高電圧印加部16により高電圧を印加して放電電極3に供給された水を静電霧化することで帯電微粒子水を生成するようになっている。ここで、静電霧化装置4には冷却部5と放熱部9とを備えたペルチェユニットのような熱交換部7を設け、熱交換部7の冷却部5を放電電極3側に設け、冷却部5で放電電極3を冷却することで空気中の水分を結露させて放電電極3に結露水を生成させるようになっている。   The electrostatic atomizer 4 condenses moisture in the air to supply water to the discharge electrode 3, and applies a high voltage by the high voltage application unit 16 to electrostatically atomize the water supplied to the discharge electrode 3. Thus, charged fine particle water is generated. Here, the electrostatic atomizer 4 is provided with a heat exchange unit 7 such as a Peltier unit including a cooling unit 5 and a heat radiating unit 9, and the cooling unit 5 of the heat exchange unit 7 is provided on the discharge electrode 3 side. The discharge electrode 3 is cooled by the cooling unit 5 so that moisture in the air is condensed, and the condensed water is generated in the discharge electrode 3.

図3には本発明に用いる静電霧化装置4の概略構成図が示してある。   FIG. 3 shows a schematic configuration diagram of the electrostatic atomizer 4 used in the present invention.

熱交換部7であるペルチェユニットは、熱伝導性の高いアルミナや窒化アルミニウムからなる絶縁板の片面側に回路を形成してある一対のペルチェ回路板27を、互いの回路が向き合うように対向させ、多数列設してあるBiTe系の熱電素子28を両ペルチェ回路板27間で挟持すると共に隣接する熱電素子28同士を両側の回路で電気的に接続させ、ペルチェ入力リード線29を介してなされる熱電素子28への通電により一方のペルチェ回路板27側から他方のペルチェ回路板27側に向けて熱が移動するように構成したものである。更に、上記一方の側のペルチェ回路板27の外側には冷却部5を接続してあり、また、上記他方の側のペルチェ回路板27の外側には放熱部9が接続してあり、実施形態では放熱部9として放熱フィンの例が示してある。ペルチェユニットの冷却部5には放電電極3の後端部が接続してある。   The Peltier unit, which is the heat exchanging unit 7, is a pair of Peltier circuit boards 27 having a circuit formed on one side of an insulating plate made of alumina or aluminum nitride having high thermal conductivity so that the circuits face each other. The BiTe thermoelectric elements 28 arranged in a large number of rows are sandwiched between the two Peltier circuit boards 27 and the adjacent thermoelectric elements 28 are electrically connected to each other by the circuits on both sides. Thus, heat is transferred from one Peltier circuit board 27 side to the other Peltier circuit board 27 side by energizing the thermoelectric element 28. Further, the cooling part 5 is connected to the outside of the one side Peltier circuit board 27, and the heat dissipating part 9 is connected to the outside of the other side Peltier circuit board 27. Then, an example of a heat radiating fin is shown as the heat radiating portion 9. The rear end of the discharge electrode 3 is connected to the cooling part 5 of the Peltier unit.

放電電極3は絶縁材料からなる筒体30で囲まれており、筒体30の周壁には筒体30内外を連通する窓30aが設けてある。また、筒体30の先端開口部にリング状をした対向電極25が配設され、放電電極3の軸心の延長線上にリング状の対向電極25のリングの中心が位置するように放電電極3と対向電極25とが対向していて筒体30内が霧化空間となっている。   The discharge electrode 3 is surrounded by a cylinder 30 made of an insulating material, and a window 30 a that communicates the inside and outside of the cylinder 30 is provided on the peripheral wall of the cylinder 30. Further, a ring-shaped counter electrode 25 is disposed at the tip opening of the cylindrical body 30, and the center of the ring of the ring-shaped counter electrode 25 is positioned on an extension line of the axial center of the discharge electrode 3. And the counter electrode 25 are opposed to each other, and the inside of the cylindrical body 30 is an atomization space.

上記静電霧化装置4は、ペルチェユニットに通電することで、冷却部5が冷却され、冷却部5が冷却されることで放電電極3が冷却され、空気中の水分を結露して放電電極3に水(結露水)を供給するようになっている。   In the electrostatic atomizer 4, the cooling unit 5 is cooled by energizing the Peltier unit, the discharge unit 3 is cooled by cooling the cooling unit 5, and moisture in the air is condensed to form the discharge electrode. 3 is supplied with water (condensation water).

このように放電電極3に水が供給された状態で上記放電電極3と対向電極25との間に高電圧を印加すると、放電電極3と対向電極25との間にかけられた高電圧により放電電極3の先端部に供給された水と対向電極25との間にクーロン力が働いて、水の液面が局所的に錐状に盛り上がり(テーラーコーン)が形成される。このようにテーラーコーンが形成されると、該テーラーコーンの先端に電荷が集中してこの部分における電界強度が大きくなって、これによりこの部分に生じるクーロン力が大きくなり、更にテーラーコーンを成長させる。このようにテーラーコーンが成長し該テーラーコーンの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受け、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してマイナスに帯電したナノメータサイズの帯電微粒子水を大量に生成される。   When a high voltage is applied between the discharge electrode 3 and the counter electrode 25 in a state where water is supplied to the discharge electrode 3 in this way, the discharge electrode is caused by the high voltage applied between the discharge electrode 3 and the counter electrode 25. The Coulomb force acts between the water supplied to the tip 3 and the counter electrode 25, and the liquid level of the water locally rises in a cone shape (tailor cone). When the tailor cone is formed in this way, the electric charge concentrates on the tip of the tailor cone and the electric field strength in this portion increases, thereby increasing the Coulomb force generated in this portion and further growing the tailor cone. . When the tailor cone grows like this and the charge concentrates on the tip of the tailor cone and the density of the charge becomes high, the water at the tip of the tailor cone has a large energy (repulsive force of the charge that has become dense). In response to this, a large amount of nanometer-sized charged fine particle water charged negatively by repeating splitting and scattering (Rayleigh splitting) exceeding the surface tension is generated.

生成された帯電微粒子水は流路12を流れる加湿空気の流れに乗って吐出口11から加湿対象空間に吐出される。   The generated charged particulate water rides on the flow of humidified air flowing through the flow path 12 and is discharged from the discharge port 11 into the humidification target space.

加湿対象空間に放出された帯電微粒子水を含む加湿空気は、加湿対象空間の加湿をすると共に、帯電微粒子水はナノメータサイズのミストであるため非常に小さく、また、活性種を有しているため、加湿対象空間を浮遊して加湿対象空間内の隅々まで飛翔し、加湿対象空間内の臭いの成分やアレルゲン物質、ウイルスや菌を効果的に分解、不活性化あるいは抑制あるいは除菌する。特に、帯電微粒子水はナノメータサイズの水粒子であるため、水の浸透により、加湿対象空間の壁面や加湿対象空間内に存在する物の内部に浸透して壁や物の内部に蓄積している臭い成分やアレルゲン物質等の分解、不活性化、あるいはウイルスや菌の抑制あるいは除菌ができる。   The humidified air containing charged fine particle water released to the humidification target space humidifies the humidification target space, and since the charged fine particle water is a nanometer-size mist, it is very small and has active species. Then, it floats in the humidification target space and flies to every corner of the humidification target space, and effectively decomposes, inactivates, suppresses or disinfects odor components, allergen substances, viruses and bacteria in the humidification target space. In particular, since the charged fine particle water is nanometer-sized water particles, it penetrates into the wall surface of the humidification target space or the object existing in the humidification target space and accumulates inside the wall or the object due to the penetration of water. Decomposes and inactivates odorous components and allergens, or suppresses or eliminates viruses and bacteria.

ここで、本発明においては、放電電極3及び放熱部9を加湿機本体1内の加湿空間8に配置してあるので、放電電極3を冷却して加湿空間8内の加湿空気を放電電極3に結露水として生成させることになり、安定して確実に放電電極3に水を供給してナノサイズの帯電微粒子水を生成して加湿手段2で生成した大径のマイクロサイズのミストである加湿空気と共に放出して室内を加湿でき、この場合、帯電微粒子水はナノサイズなので人の肌や喉に潤いを与え、また、ラジカルを含んでいるので、消臭、除菌効果を発揮するものであり、特に、ナノサイズの帯電微粒子水は遠くまで飛翔し、壁やカーテンの奥深くまで浸透し、壁やカーテンに染み込んだ臭いも確実に脱臭することができる。また、ペルチェユニットよりなる熱交換部7の放熱部9も加湿空間8に配置するので、放熱部9における放熱が加湿空気の吸熱効果で向上し、この結果、冷却部5の冷却効率が向上し、放電電極3の冷却効率が向上することになる。したがって、必要な量の結露水を生成するに当って省エネルギーが図れることになる。   Here, in the present invention, since the discharge electrode 3 and the heat radiating portion 9 are arranged in the humidification space 8 in the humidifier body 1, the discharge electrode 3 is cooled and the humidified air in the humidification space 8 is discharged to the discharge electrode 3. Is generated as dew condensation water, stably and reliably supplying water to the discharge electrode 3 to generate nano-sized charged fine particle water, and humidifying which is a large-sized micro-sized mist generated by the humidifying means 2 It can be released together with the air to humidify the room. In this case, the charged fine particle water is nano-sized and moisturizes the human skin and throat, and also contains radicals, so it exhibits deodorizing and disinfecting effects. In particular, nano-sized charged fine particle water flies far and penetrates deep into walls and curtains, so that odors that permeate walls and curtains can be reliably deodorized. Further, since the heat dissipating part 9 of the heat exchanging part 7 made of the Peltier unit is also arranged in the humidifying space 8, the heat dissipating in the heat dissipating part 9 is improved by the heat absorbing effect of the humidified air, and as a result, the cooling efficiency of the cooling part 5 is improved. As a result, the cooling efficiency of the discharge electrode 3 is improved. Therefore, energy can be saved in generating the necessary amount of condensed water.

次に、図4、図5に基づいて本発明の他の実施形態につき説明する。   Next, another embodiment of the present invention will be described with reference to FIGS.

加湿機本体1には釜40とヒータ41とよりなる加湿手段2が設けてあり、ヒータ41で釜40を加熱することで、釜40内の水を加熱蒸発させて水蒸気を発生させようになっている。図中42は釜40内の水を加熱蒸発することで発生させた高温の水蒸気が流れるための流路であり、一端部が釜40の上面部に連通し且つ他端部が合流室43となり、合流室43の下流側が加湿機本体1の外面に開口した吐出口44となっている。   The humidifier body 1 is provided with a humidifying means 2 comprising a hook 40 and a heater 41. By heating the hook 40 with the heater 41, water in the pot 40 is heated and evaporated to generate water vapor. ing. In the figure, reference numeral 42 denotes a flow path through which high-temperature water vapor generated by heating and evaporating water in the pot 40 flows. The downstream side of the merging chamber 43 is a discharge port 44 that is open to the outer surface of the humidifier body 1.

加湿機本体1にはファン45により送られる風が流れる送風路46が設けてあり、送風路46の先端部の送風口46aが合流室43内に開口している。送風口46aは合流室43内において合流室43の下流側(つまり吐出口44側)に向けて横向きに開口している。   The humidifier body 1 is provided with a blower passage 46 through which the wind sent by the fan 45 flows, and a blower port 46 a at the tip of the blower passage 46 opens into the merge chamber 43. The air blowing port 46 a is opened laterally in the merge chamber 43 toward the downstream side of the merge chamber 43 (that is, the discharge port 44 side).

加湿機本体1には更に静電霧化装置4の放電電極3を配置する静電霧化空間47と、静電霧化装置4に設けた熱交換部7の放熱部9を配置する放熱部配置空間48とが設けてある。   The humidifier body 1 further includes an electrostatic atomization space 47 in which the discharge electrode 3 of the electrostatic atomizer 4 is disposed, and a heat radiation portion in which the heat radiator 9 of the heat exchange unit 7 provided in the electrostatic atomizer 4 is disposed. An arrangement space 48 is provided.

放電電極3を配置する静電霧化空間47は上記合流室43に連通しており、更に、静電霧化空間47は加湿機本体1に開口する帯電微粒子水放出口53を介して外部と連通している。   The electrostatic atomization space 47 in which the discharge electrode 3 is disposed communicates with the merge chamber 43. Further, the electrostatic atomization space 47 is connected to the outside via a charged fine particle water discharge port 53 that opens in the humidifier body 1. Communicate.

なお、静電霧化装置4は前述の実施形態と同様の構造であるので、詳細な説明は省略する。   In addition, since the electrostatic atomizer 4 is the same structure as the above-mentioned embodiment, detailed description is abbreviate | omitted.

流路42には放熱部配置空間48と連通する連通部49が設けてある。また、送風路46から分岐流路50が分岐してあり、分岐流路50の先端開口51が放熱部配置空間48に連通している。これら連通部49、先端開口51はいずれも放熱部配置空間48内において放熱部9よりも上流側に位置している。また、図に示す実施形態では連通部49が先端開口51よりも上流側に位置している。放熱部配置空間48は加湿機本体1に開口する出口用開口52を介して外部と連通している。   The flow path 42 is provided with a communication portion 49 that communicates with the heat radiation portion arrangement space 48. A branch channel 50 is branched from the blower channel 46, and a tip opening 51 of the branch channel 50 communicates with the heat dissipating portion arrangement space 48. The communication portion 49 and the tip opening 51 are both located upstream of the heat radiating portion 9 in the heat radiating portion arrangement space 48. Further, in the embodiment shown in the figure, the communication portion 49 is located upstream of the tip opening 51. The heat dissipating portion arrangement space 48 communicates with the outside through an outlet opening 52 that opens in the humidifier body 1.

また、静電霧化空間47と放熱部配置空間48とは仕切りにより仕切られているが、図4、図5に示す実施形態では静電霧化装置の筒体30が仕切りとなっており、また、この実施形態では、筒体30の周壁に設けた窓30aを介して静電霧化空間47と合流室43とが連通している。   Moreover, although the electrostatic atomization space 47 and the heat radiation part arrangement space 48 are partitioned by a partition, the cylindrical body 30 of the electrostatic atomizer is a partition in the embodiment shown in FIGS. 4 and 5. In this embodiment, the electrostatic atomization space 47 and the merge chamber 43 communicate with each other through a window 30 a provided on the peripheral wall of the cylindrical body 30.

釜40内の水を加熱することで水蒸気が発生すると、高温の水蒸気は流路42を通って合流室43に流れ、一方、ファン45を運転することで送風路46を経て送風口46aから合流室43内に流れ、合流室43内で上記高温の水蒸気と送風口46aから送風された空気流とが合流し、吐出口44から外部に向けて吐出される。このようにして吐出口44から加湿対象空間に吐出される水蒸気はマイクロサイズのミストであるため、加湿対象空間を効果的に加湿することができる。   When steam is generated by heating the water in the pot 40, the high-temperature steam flows through the flow path 42 to the merge chamber 43, and on the other hand, the fan 45 is operated to merge from the blower port 46 a via the blower path 46. The high-temperature water vapor and the air flow blown from the blower port 46a merge in the merge chamber 43 and are discharged from the discharge port 44 to the outside. Thus, since the water vapor discharged from the discharge port 44 to the humidification target space is a micro-size mist, the humidification target space can be effectively humidified.

上記合流室43において空気流と合流した高温の水蒸気の一部は静電霧化空間47に流れ込む。このように水蒸気が流れ込むことで静電霧化空間47は加湿空間8(8a)となる。つまり、放電電極3は加湿空間8a内に配置されていることになる。したがって、冷却部5を冷却して放電電極3を冷却すると、静電霧化空間47内に流れ込んだ水蒸気を結露させて結露水を生成することで放電電極3に安定して水を供給することができる。このように放電電極3に水が供給された状態で高電圧を印加することで、静電霧化によりナノメータサイズの帯電微粒子水を生成する。生成された帯電微粒子水は帯電微粒子水放出口53から加湿対象空間に放出される。   Part of the high-temperature water vapor that merges with the air flow in the merge chamber 43 flows into the electrostatic atomization space 47. As the water vapor flows in this way, the electrostatic atomization space 47 becomes the humidification space 8 (8a). That is, the discharge electrode 3 is disposed in the humidification space 8a. Therefore, when the cooling unit 5 is cooled and the discharge electrode 3 is cooled, water vapor flowing into the electrostatic atomization space 47 is condensed to generate dew condensation water, thereby supplying water to the discharge electrode 3 stably. Can do. By applying a high voltage in a state where water is supplied to the discharge electrode 3 in this way, nanometer-sized charged fine particle water is generated by electrostatic atomization. The generated charged fine particle water is discharged from the charged fine particle water discharge port 53 to the humidification target space.

一方、流路42を流れる高温の水蒸気の大部分は上記のように合流室43に流れるが一部は連通部49から放熱部配置空間48に流れ込み(したがって、放熱部配置空間48は加湿空間8(8bとなる))、更に、送風路46から分岐流路50を通って先端開口51から放熱部配置空間48に空気流が流れ込み、該空気流により流路42から入った水蒸気が冷やされ、放熱部9と熱交換をして放熱部9を冷却し、出口用開口52から加湿対象空間に排出される。   On the other hand, most of the high-temperature water vapor flowing through the flow path 42 flows into the merge chamber 43 as described above, but a part flows from the communication portion 49 into the heat radiating portion arrangement space 48 (the heat radiating portion arrangement space 48 is therefore the humidification space 8). Furthermore, the airflow flows from the blower passage 46 through the branch passage 50 to the heat dissipating portion arrangement space 48 from the tip opening 51, and the water vapor entering the passage 42 is cooled by the airflow, Heat exchange with the heat radiating section 9 is performed to cool the heat radiating section 9 and discharged from the outlet opening 52 to the humidification target space.

ここで、本実施形態においては、放電電極3を配置した加湿空間8aよりも、熱交換部7の放熱部9を配置する加湿空間8bの温度を低くなるように設定してある。すなわち、放電電極3を配置した加湿空間8aよりも、熱交換部7の放熱部9を配置する加湿空間8bの温度を低くなるように、連通部49から放熱部配置空間48に流れ込む高温の水蒸気と、分岐流路50を経て放熱部配置空間48に流れ込む空気流との混合割合、合流室43における高温の水蒸気と空気流の混合割合の関係をあらかじめ設定してある。   Here, in this embodiment, it sets so that the temperature of the humidification space 8b which arrange | positions the thermal radiation part 9 of the heat exchange part 7 may become lower than the humidification space 8a which has arrange | positioned the discharge electrode 3. FIG. That is, the high-temperature water vapor flowing from the communication part 49 into the heat radiation part arrangement space 48 so that the temperature of the humidification space 8b in which the heat radiation part 9 of the heat exchange part 7 is arranged is lower than the humidification space 8a in which the discharge electrode 3 is arranged. The relationship between the mixing ratio of the air flow flowing into the heat dissipating portion arrangement space 48 via the branch flow path 50 and the mixing ratio of the high-temperature water vapor and the air flow in the merge chamber 43 is set in advance.

これにより放熱部9を加湿空間8bに配置することで加湿空気の吸熱効果により放熱部9による放熱を効果的に行うと共に加湿空気の温度を低下させることで放熱部9における放熱がより効果的に行えることになる。   Thus, by disposing the heat dissipating part 9 in the humidifying space 8b, heat dissipating by the heat dissipating part 9 is effectively performed by the heat absorbing effect of the humidified air, and the heat dissipating in the heat dissipating part 9 is more effectively performed by reducing the temperature of the humidified air. It will be possible.

なお、添付図面に示す実施形態では放電電極と対向電極との間に高電圧を印加して帯電微粒子水を生成する静電霧化装置4の例を示したが、対向電極を設けない場合であってもよい。   In the embodiment shown in the accompanying drawings, an example of the electrostatic atomizer 4 that generates charged fine particle water by applying a high voltage between the discharge electrode and the counter electrode is shown. However, the counter electrode is not provided. There may be.

2 加湿手段
3 放電電極
4 静電霧化装置
5 冷却部
7 熱交換部
8 加湿空間
8a 加湿空間
8b 加湿空間
9 放熱部
2 Humidification means 3 Discharge electrode 4 Electrostatic atomizer 5 Cooling unit 7 Heat exchange unit 8 Humidification space 8a Humidification space 8b Humidification space 9 Heat dissipation unit

Claims (1)

放電電極と、
冷却部及び放熱部を備えた熱交換部と、
前記冷却部により空気中の水分を結露させて、前記放電電極に供給された水に高電圧を印加する高電圧印加部と、を備えた静電霧化装置において、
加湿空気を生成する加湿手段と、
前記放電電極を配置した静電霧化空間に前記加湿空気の一部を送り込む流路と、
前記放熱部を配置した放熱部空間に前記加湿空気の他の一部を送り込む流路と、
前記各流路に風を分岐させて送り込む送風路とを備え、
前記各流路および前記送風路は、前記静電霧化空間の温度よりも前記放熱部空間の温度が低くなるように設定されていることを特徴とする静電霧化装置
A discharge electrode;
A heat exchanging unit having a cooling unit and a heat radiating unit;
In the electrostatic atomizer, comprising: a high voltage application unit that condenses moisture in the air by the cooling unit and applies a high voltage to the water supplied to the discharge electrode.
Humidifying means for generating humidified air ;
A flow path for sending a part of the humidified air to the electrostatic atomization space in which the discharge electrode is disposed,
A flow path for sending another part of the humidified air to the heat dissipating part space where the heat dissipating part is disposed,
An air passage that divides the wind into each of the flow paths and sends the air;
Each said flow path and the said air flow path are set so that the temperature of the said thermal radiation part space may become lower than the temperature of the said electrostatic atomization space, The electrostatic atomizer characterized by the above-mentioned .
JP2011028644A 2011-02-14 2011-02-14 Electrostatic atomizer Expired - Fee Related JP5238047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028644A JP5238047B2 (en) 2011-02-14 2011-02-14 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028644A JP5238047B2 (en) 2011-02-14 2011-02-14 Electrostatic atomizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007080654A Division JP4872746B2 (en) 2007-03-27 2007-03-27 Humidifier

Publications (2)

Publication Number Publication Date
JP2011169574A JP2011169574A (en) 2011-09-01
JP5238047B2 true JP5238047B2 (en) 2013-07-17

Family

ID=44683877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028644A Expired - Fee Related JP5238047B2 (en) 2011-02-14 2011-02-14 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP5238047B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032589B2 (en) * 2012-04-02 2016-11-30 パナソニックIpマネジメント株式会社 Ion generator and mobile device equipped with the same
US11850617B2 (en) 2018-04-06 2023-12-26 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method
EP3626622B1 (en) 2018-09-21 2021-08-18 Panasonic Intellectual Property Management Co., Ltd. Liquid container, and electrostatic atomizing apparatus with liquid container
TW202118372A (en) * 2019-06-26 2021-05-01 日商松下知識產權經營股份有限公司 Effective component generation device and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089517B2 (en) * 2003-06-04 2008-05-28 松下電工株式会社 Humidifier
JP2006097955A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Air conditioner
JP4534853B2 (en) * 2005-04-25 2010-09-01 パナソニック電工株式会社 Electrostatic atomizer
JP2007040571A (en) * 2005-08-01 2007-02-15 Sharp Corp Humidifier

Also Published As

Publication number Publication date
JP2011169574A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4872746B2 (en) Humidifier
JP4534853B2 (en) Electrostatic atomizer
JP4625267B2 (en) Electrostatic atomizer
EP2047179B1 (en) Humidifeir with controlled heated scent mechanism
CN104641181B (en) Humidifier and the air regulator with humidifier
JP5238047B2 (en) Electrostatic atomizer
JP2013144117A (en) Vacuum cleaner
JP2008264778A (en) Dehumidifier
JP4551288B2 (en) Air conditioner
JP2013079755A (en) Ion delivery device and air conditioner with the same
JP2004361009A (en) Humidifier
JP2009274069A (en) Electrostatic atomizing device
JP2008238017A (en) Dehumidifier
JP2010194439A (en) Dehumidifier
JP2011075164A (en) Blowing device including electrostatic atomizer
JP4893344B2 (en) Fan heater
JP2009127912A (en) Blowing apparatus
JP5513787B2 (en) Discharge device
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
JP5279683B2 (en) Air cleaner and electrostatic atomizer
JP5054402B2 (en) Closed space dehumidification system
JP5314606B2 (en) Electrostatic atomization method
JP5342464B2 (en) Electric appliance
JP5558924B2 (en) Electrostatic atomizer and vacuum cleaner
JP6335418B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees