JP4258497B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP4258497B2
JP4258497B2 JP2005207577A JP2005207577A JP4258497B2 JP 4258497 B2 JP4258497 B2 JP 4258497B2 JP 2005207577 A JP2005207577 A JP 2005207577A JP 2005207577 A JP2005207577 A JP 2005207577A JP 4258497 B2 JP4258497 B2 JP 4258497B2
Authority
JP
Japan
Prior art keywords
discharge electrode
water
heat insulating
tip
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005207577A
Other languages
Japanese (ja)
Other versions
JP2007021369A (en
Inventor
晃秀 須川
利久 平井
史生 三原
純章 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005207577A priority Critical patent/JP4258497B2/en
Publication of JP2007021369A publication Critical patent/JP2007021369A/en
Application granted granted Critical
Publication of JP4258497B2 publication Critical patent/JP4258497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Description

本発明は、静電霧化現象によりナノメータサイズのマイナスイオンミストを発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates nanometer-sized negative ion mist by an electrostatic atomization phenomenon.

静電霧化装置とは、放電電極と、放電電極に対向して位置する対向電極と、放電電極に水を供給する水供給手段とを備え、放電電極と対向電極との間に高電圧を印加することで放電電極に保持される水を霧化させてナノメータサイズで強い電荷を持つマイナスイオンミスト(以下、これをナノイオンミストという)を発生させるものである(特許文献1参照)。ナノイオンミストの粒径は3〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、広範囲に飛散し、滞留時間が長く、壁面などの内部にも浸透し、高い脱臭効果や殺菌効果を発揮することができ、また、皮膚に対してハナノイオンミストの暴露により角質層表面の奥までも水分が十分に補給されて、高い保湿効果が得られ、また、毛髪の保湿効果等の他の効果も得られるようになっているので、多様な商品に備えることで多様な効果が得られるものである。   The electrostatic atomizer includes a discharge electrode, a counter electrode positioned opposite the discharge electrode, and water supply means for supplying water to the discharge electrode, and a high voltage is applied between the discharge electrode and the counter electrode. When applied, the water held by the discharge electrode is atomized to generate a negative ion mist having a strong charge in the nanometer size (hereinafter referred to as nano ion mist) (see Patent Document 1). The nano ion mist has a particle size of about 3 to several tens of nanometers, which is smaller than 70 nm, which is the size of the keratinocytes of the human body. Penetration of the horny layer, and the skin can be highly deodorized and sterilized, and the surface of the stratum corneum is sufficiently replenished by exposure of the Hanano ion mist to the skin, resulting in a high moisturizing effect. In addition, since other effects such as a moisturizing effect of hair can be obtained, various effects can be obtained by preparing for various products.

しかし、上記特許文献1に示されたような従来の静電霧化装置は、水供給手段として、水が充填される水タンクと、水タンク内の水を毛細管現象により放電電極にまで搬送する水搬送部を備えた構造であることから、使用者は水タンク内に継続的に水を補給する必要があり、面倒な水補給の手間が強いられるという問題があった。また、上記の静電霧化装置においては、水タンクに補給する水が水道水のようなCa,Mg等の不純物を含む水であった場合には、この不純物が空気中のCOと反応して水搬送部の先端部にCaCOやMgO等を析出付着させ、ナノイオンミストの発生を妨げるという問題があった。 However, the conventional electrostatic atomizer as disclosed in Patent Document 1 serves as a water supply means to transport a water tank filled with water and water in the water tank to the discharge electrode by capillary action. Since the structure has a water transport unit, the user needs to continuously replenish water in the water tank, and there is a problem that troublesome water replenishment is required. In the above electrostatic atomizer, when the water to be supplied to the water tank is water containing impurities such as Ca and Mg such as tap water, the impurities react with CO 2 in the air. As a result, CaCO 3 , MgO, or the like is deposited on the tip of the water transport unit to prevent the generation of nano ion mist.

そこで、本発明者は本発明に至る過程で、放電電極を冷却して空気中の水分を結露させることで放電電極に結露水を生成させることを考えた。これだと、上記特許文献1に示される従来例のような水の補給作業が必要でなく、また、空気中の水分を結露させて結露水を得るので、従来のような水道水を供給するもののようにCaCOやMgO等を析出付着させるというようなこともないことが判った。 Therefore, the present inventor considered that in the process leading to the present invention, the discharge electrode is cooled to cause moisture in the air to condense, thereby generating condensed water on the discharge electrode. If this is the case, it is not necessary to replenish water as in the conventional example shown in Patent Document 1 above, and water in the air is condensed to obtain condensed water, so that conventional tap water is supplied. It has been found that there is no such thing as depositing and depositing CaCO 3 , MgO, or the like as in the case of the conventional one.

ところが、放電電極を冷却して空気中の水分を結露させることで放電電極に結露水を生成する場合、放電電極の先端部の放電部以外の部分においても結露水が生成されてこれが余剰水となり、先端部に生成された結露水と、放電部以外の上記余浄水とが繋がって放電部に必要以上に水が供給されたり、あるいは、放電部の水が放電部以外の余剰水側に引かれて放電部の水が少なくなったりして、安定したテーラコーンの形成ができず、安定した放電ができないという問題があり、更に、必要以上の余剰水が生成されると余剰水により短絡が生じたり、放電電極を冷却するための冷却手段の冷却能力が低下したりするという問題があることが判明した。
特許第3260150号公報
However, when the condensed water is generated on the discharge electrode by cooling the discharge electrode to condense moisture in the air, the condensed water is also generated in the portion other than the discharge portion at the tip of the discharge electrode, which becomes surplus water. The condensed water generated at the tip is connected to the above-described purified water other than the discharge part, and water is supplied to the discharge part more than necessary, or the water in the discharge part is drawn to the surplus water side other than the discharge part. As a result, there is a problem that the water in the discharge part is reduced, a stable tailor cone cannot be formed, and stable discharge cannot be performed, and if excessive water is generated more than necessary, a short circuit occurs due to the excessive water. It has been found that there is a problem that the cooling capacity of the cooling means for cooling the discharge electrode is lowered.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、水の供給の手間がかからず、しかも、CaCOやMgO等を析出させて、ナノイオンミストの発生を妨げるという現象もなく、更に、放電電極の必要な箇所にだけ結露水を生成させて必要以上の余剰水が生成し難いようにでき、また、霧化電極の先端部に生成した結露水が断熱部材の外面に流れて、断熱部材の外面側で余浄水として成長するのを防止でき、霧化が安定すると共に、余剰水により短絡が生じたり、冷却手段の冷却能力の低下が生じないようにできる静電霧化装置を提供することを課題とするものである。 The present invention has been invented in view of the above-described conventional problems, and does not require the trouble of supplying water, and also causes the phenomenon of preventing the generation of nano-ion mist by precipitating CaCO 3 or MgO. In addition, it is possible to generate dew condensation water only at the necessary location of the discharge electrode so that excessive water is not generated more than necessary, and the dew condensation water generated at the tip of the atomization electrode is formed on the outer surface of the heat insulating member. Electrostatic fog that can be prevented from flowing and growing as extra-purified water on the outer surface side of the heat insulating member, stabilizing the atomization, and preventing a short circuit from occurring due to the surplus water or reducing the cooling capacity of the cooling means. It is an object of the present invention to provide a computer apparatus.

上記課題を解決するために本発明に係る静電霧化装置は、放電電極1と、該放電電極1を冷却して空気中の水分を結露させて放電電極1に結露水を生成させるための冷却手段2と、放電電極1に生成した上記結露水を静電霧化するために放電電極1に高電圧を印加するための高電圧印加部3とを備え、放電電極1の先端部を除く周りに断熱部材5を設け、該断熱部材5の先端面を放電電極1に対して外向に段状に突出した段面5aとして成ることを特徴とするものである。   In order to solve the above problems, an electrostatic atomizer according to the present invention is a discharge electrode 1 and a method for cooling the discharge electrode 1 to condense moisture in the air and causing the discharge electrode 1 to generate condensed water. A cooling means 2 and a high voltage application unit 3 for applying a high voltage to the discharge electrode 1 to electrostatically atomize the condensed water generated on the discharge electrode 1 are provided, and the tip of the discharge electrode 1 is removed. The heat insulating member 5 is provided around, and the tip surface of the heat insulating member 5 is formed as a step surface 5 a that protrudes outwardly with respect to the discharge electrode 1.

このような構成とすることで、空気中の水分を基にして放電電極1に水が供給されることになって従来のように水を補給する必要がなく、しかも放電電極1に生成される水には不純物が含まれないので付着物除去の手間も不要な静電霧化装置となる。加えて、放電電極1に直接水が生成される構造なので冷却を開始してから素早い時間でミストを発生させることができる。そして、放電電極1の先端部を除く周りに断熱部材5を設けてあるので、放電電極1を冷却手段2で冷却して空気中の水分を放電電極1に結露させるに当たって放電電極1の先端部には結露水が生成されるが、放電電極1の先端部を除いた部分には結露水が生成し難いようにでき、これにより放電電極1の先端部以外の部分に余剰結露水が発生するのを抑制できる。また、断熱部材5の先端面を放電電極1に対して外向に段状に突出した段面5aとしてあるので、段面5aにより、放電電極1の先端部に生成された結露水が断熱部材5の外面に流れて余浄水として成長するのが防止できて、安定した霧化ができるものであり、また、放電電極1の先端部に生成された結露水が断熱部材5の外面の余剰水側に引っ張られることもなく、断熱部材5の放電電極1と反対側の端部での余浄水の成長を防止できて余剰水により短絡が生じたり、冷却手段の冷却能力の低下が生じないようにできる。   By adopting such a configuration, water is supplied to the discharge electrode 1 based on the moisture in the air, so that it is not necessary to replenish water as in the prior art, and the discharge electrode 1 is generated. Since the water does not contain impurities, the electrostatic atomizer is not required to remove the deposits. In addition, since water is directly generated in the discharge electrode 1, mist can be generated quickly after the cooling is started. Since the heat insulating member 5 is provided around the tip of the discharge electrode 1, the tip of the discharge electrode 1 is used when the discharge electrode 1 is cooled by the cooling means 2 and moisture in the air is condensed on the discharge electrode 1. Condensed water is generated in the discharge electrode 1, but it is difficult for the condensed water to be generated in the portion excluding the tip of the discharge electrode 1, thereby generating excess condensed water in a portion other than the tip of the discharge electrode 1. Can be suppressed. Moreover, since the front end surface of the heat insulating member 5 is a step surface 5a that protrudes outwardly with respect to the discharge electrode 1, the condensed water generated at the front end portion of the discharge electrode 1 by the step surface 5a. It is possible to prevent the water from flowing to the outer surface of the gas and growing as surplus water, and stable atomization is possible, and the dew condensation water generated at the tip of the discharge electrode 1 is on the surplus water side of the outer surface of the heat insulating member 5. So that the growth of surplus water at the end of the heat insulating member 5 on the side opposite to the discharge electrode 1 can be prevented so that a short circuit occurs due to surplus water and the cooling capacity of the cooling means does not decrease. it can.

本発明は、放電電極を冷却手段で冷却して放電電極に結露水を生成させるので水の補給の手間が必要でなく、また、水道水を毛細管現象で放電電極の先端に供給するもののようにCaCOやMgO等が析出付着してナノイオンミストの発生を妨げるという現象もなく、更に、放電電極の放電部を除く周りに設けた断熱部材の存在により必要以上の余剰結露水が生成しないようにでき、また、結露水が断熱部材側に流れて余浄水となって成長するのを防止でき、余浄水により短絡が生じたり、冷却手段の冷却能力の低下が生じたりしないようにできて安定して静電霧化ができる。 In the present invention, the discharge electrode is cooled by a cooling means to generate dew condensation water on the discharge electrode, so there is no need to supply water, and tap water is supplied to the tip of the discharge electrode by capillary action. There is no phenomenon in which CaCO 3 , MgO, etc. are deposited and hinder the generation of nano ion mist, and moreover, excessive condensation water is not generated due to the presence of a heat insulating member provided around the discharge part of the discharge electrode. In addition, it is possible to prevent the dew condensation water from flowing to the heat insulation member side and growing as surplus water, and it is possible to prevent a short circuit from occurring due to the surplus water and to prevent a decrease in the cooling capacity of the cooling means. And electrostatic atomization.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1乃至4には発明の静電霧化装置の一実施例を示している。本例の静電霧化装置は、放電電極1と、該放電電極1を冷却して空気中の水分を結露させて放電電極1に結露水を供給するための冷却手段2と、放電電極1に生成した上記結露水を静電霧化するために放電電極1に高電圧を印加するための高電圧印加部3とを備えて構成してある。   1 to 4 show an embodiment of the electrostatic atomizer of the invention. The electrostatic atomizer of this example includes a discharge electrode 1, a cooling means 2 for cooling the discharge electrode 1 to condense moisture in the air and supplying condensed water to the discharge electrode 1, and the discharge electrode 1. And a high voltage application unit 3 for applying a high voltage to the discharge electrode 1 to electrostatically atomize the condensed water generated in the above.

冷却手段2は熱交換器により構成してあって実施例ではペルチェユニット6を用いてある。ペルチェユニット6は、ペルチェモジュール8の冷却側に冷却用絶縁板9を設けると共に他方側に放熱板10を設けて構成してある。   The cooling means 2 is constituted by a heat exchanger, and in the embodiment, a Peltier unit 6 is used. The Peltier unit 6 is configured by providing a cooling insulating plate 9 on the cooling side of the Peltier module 8 and a heat radiating plate 10 on the other side.

ペルチェモジュール8は、熱伝導性の高いアルミナや窒化アルミニウムから成る絶縁板の片面側に回路を形成してある一対のぺルチェ回路板を、互いの回路側が向い合うように対向させ、多数列設してあるBiTe系の熱電素子を両ぺルチェ回路板間で挟持するとともに隣接する熱電素子同士を両側の回路で電気的に接続させて構成してあり、ぺルチェ入力リード線を介して為される熱電素子への通電により一方のぺルチェ回路板側から他方のぺルチェ回路板側に向けて熱が移動するように設けたものであり、上記ペルチェモジュール8の一方の側が冷却側、他方の側が放熱側となっている。   The Peltier module 8 has a pair of Peltier circuit boards having a circuit formed on one side of an insulating plate made of alumina or aluminum nitride having high thermal conductivity, facing each other so that the circuit sides face each other. BiTe-based thermoelectric elements are sandwiched between both Peltier circuit boards, and adjacent thermoelectric elements are electrically connected by circuits on both sides, and are made via a Peltier input lead wire. Is provided such that heat is transferred from one Peltier circuit board side to the other Peltier circuit board side by energizing the thermoelectric element, and one side of the Peltier module 8 is the cooling side and the other The side is the heat dissipation side.

ペルチェモジュール8の冷却側のぺルチェ回路板の外側にセラミック、アルミナや窒化アルミニウム等から成り高熱伝導性及び電気的絶縁性の高い冷却用絶縁板9を配設し、上記他方の側(以下、放熱側という)のぺルチェ回路板の外側にアルミニウム等の金属から成る高熱伝導性の放熱板10を配設してある。なお、上記ぺルチェ回路板としてはエポキシ樹脂やポリイミド樹脂から成る絶縁板に回路を形成したものであってもよいし、これら樹脂に熱伝導性の高いフィラーを含有させたものであってもよい。   A cooling insulating plate 9 made of ceramic, alumina, aluminum nitride or the like and having high thermal conductivity and high electrical insulation is disposed outside the Peltier circuit board on the cooling side of the Peltier module 8, and the other side (hereinafter referred to as “the other side”) On the outside of the Peltier circuit board (referred to as the heat radiating side), a highly heat-conductive heat radiating plate 10 made of a metal such as aluminum is disposed. In addition, as said Peltier circuit board, the circuit may be formed in the insulating board consisting of an epoxy resin or a polyimide resin, and the resin was made to contain the filler with high heat conductivity. .

放電電極1は棒状をしていて銅や銅合金等の熱伝導性のよい材料により形成してあり、先端が放電部4となったもので、後端をペルチェユニット6の冷却側、図1の実施形態では冷却用絶縁板9に接続してある。図1、図2に示す実施形態では放電電極1の先端部は外周が凹んだ細首部16を介して曲面状に凸曲した凸曲部となっており、該凸曲部が放電部4となっている。   The discharge electrode 1 has a rod-like shape and is formed of a material having good thermal conductivity such as copper or copper alloy. The tip of the discharge electrode 1 is a discharge part 4, and the rear end is the cooling side of the Peltier unit 6, FIG. In this embodiment, the cooling insulating plate 9 is connected. In the embodiment shown in FIGS. 1 and 2, the distal end portion of the discharge electrode 1 is a convex curved portion that is curved in a curved shape via a narrow neck portion 16 having a concave outer periphery, and the convex curved portion corresponds to the discharge portion 4. It has become.

棒状をした放電電極1の後端部には金属製の高電圧印加板15の一端部が嵌め込んであって、放電電極1と高電圧印加板15とを機械的、電気的に接続してある。   One end of a metal high-voltage applying plate 15 is fitted into the rear end of the rod-shaped discharge electrode 1, and the discharge electrode 1 and the high-voltage applying plate 15 are mechanically and electrically connected to each other. is there.

合成樹脂製のハウジング11は上部が上方2に開口する放電用空所25となり、下部が下方に開口する凹部12となっており、放電用空所25と凹部12との間が仕切り部26となっている。   The synthetic resin housing 11 has a discharge space 25 whose upper portion opens upward 2 and a recess 12 whose lower portion opens downward. A partition 26 is formed between the discharge space 25 and the recess 12. It has become.

後端部に高電圧印加板15を嵌め込んだ放電電極1を突出させた冷却用絶縁板9の下面側にペルチェモジュール8の冷却側を重複した状態で樹脂製のハウジング11の下部の凹部12内に収納するとともに放電電極1をハウジング11の仕切り部26に設けた孔13から突出させ、更に、ペルチェモジュール8の放熱側を放熱板10に熱伝導性のよいシート21を介して重ね、この状態で、ハウジング11の下部を放熱板10に固着具27により固着することで、ハウジング11と放熱板10とで冷却用絶縁板9、ペルチェモジュール8を上下から重複状態で挟着してある。ハウジング11の内部の仕切り部26には孔13が設けてあり、この孔13から凹部12内に収納した冷却用絶縁板9に後端部を接続した放電電極1が突出してハウジング11の内部の放電用空所25内に位置している。図中17はペルチェモジュール8の外周を隙間を介して囲むようにして凹部12内に配置されてハウジング11と放熱板10とで挟着された封止材漏れ防止部材である。   A recess 12 at the bottom of a resin housing 11 with the cooling side of the Peltier module 8 overlapped with the lower surface of the cooling insulating plate 9 from which the discharge electrode 1 with the high voltage application plate 15 fitted at the rear end is projected. The discharge electrode 1 is protruded from the hole 13 provided in the partition portion 26 of the housing 11 while being housed in the housing 11, and the heat dissipation side of the Peltier module 8 is overlapped on the heat dissipation plate 10 via a sheet 21 having good thermal conductivity. In this state, the lower part of the housing 11 is fixed to the heat radiating plate 10 with the fixing tool 27, so that the cooling insulating plate 9 and the Peltier module 8 are sandwiched between the housing 11 and the heat radiating plate 10 from above and below. A hole 13 is provided in the partition portion 26 inside the housing 11, and the discharge electrode 1 having a rear end connected to the cooling insulating plate 9 housed in the recess 12 protrudes from the hole 13 to protrude inside the housing 11. It is located in the discharge space 25. In the figure, reference numeral 17 denotes a sealing material leakage preventing member which is disposed in the recess 12 so as to surround the outer periphery of the Peltier module 8 with a gap and is sandwiched between the housing 11 and the heat sink 10.

一端部を放電電極1の後端部に嵌め込んだ状態で該一端部が凹部12内に入れられた高電圧印加板15はハウジング11下面に設けた上記凹部12に連通する嵌め込み溝部19に沿って嵌め込まれて他端部がハウジング11の外方に突出している。嵌め込み溝部19には溝蓋部20が嵌め込まれ、ハウジング11を上記のように放熱板10に固着してあることで溝蓋部20が外れないようになっている。   The high voltage application plate 15 having one end portion fitted in the rear end portion of the discharge electrode 1 is inserted into the concave portion 12 along the fitting groove portion 19 communicating with the concave portion 12 provided on the lower surface of the housing 11. And the other end protrudes outward from the housing 11. A groove lid portion 20 is fitted into the fitting groove portion 19, and the groove lid portion 20 is prevented from being removed by fixing the housing 11 to the heat radiating plate 10 as described above.

また、ペルチェモジュール8に一端部を接続したリード線22の他端部にはコネクター23が接続してあり、リード線22はハウジング11の下面部に設けたリード線収納凹溝28に嵌め込んであり、コネクター23はハウジング11に設けたコネクター内装用凹所24に内装してある。   A connector 23 is connected to the other end of the lead wire 22 having one end connected to the Peltier module 8, and the lead wire 22 is fitted into a lead wire receiving groove 28 provided on the lower surface of the housing 11. Yes, the connector 23 is housed in a connector interior recess 24 provided in the housing 11.

ハウジング11の凹部12内にはエポキシ樹脂のような封止材7を充填してペルチェモジュール8を封止してあってペルチェモジュール8側に水が浸入しないようにしてあり、この封止材7を上記のようにペルチェモジュール8の外周を隙間を介して囲むように配設された封止材漏れ防止部材17により外部に漏れないようにしている。   The recess 11 of the housing 11 is filled with a sealing material 7 such as an epoxy resin to seal the Peltier module 8 so that water does not enter the Peltier module 8 side. As described above, the sealing material leakage preventing member 17 disposed so as to surround the outer periphery of the Peltier module 8 with a gap is prevented from leaking outside.

ハウジング11の内部の仕切り部26の孔13からハウジング11の放電用空所25内に突出した放電電極1は先端部を除く部分の周りに断熱部材5を設けて、放電電極1の先端部以外の部分に結露が発生しないようにしてある。この断熱部材5の先端面は図2に示すように放電電極1に対して外向に段状に突出した(つまり、放電電極1の軸方向に対して略直角に外向きに突出した)段面5aとなっている。   The discharge electrode 1 protruding into the discharge space 25 of the housing 11 from the hole 13 of the partition portion 26 inside the housing 11 is provided with a heat insulating member 5 around the portion excluding the tip portion, and other than the tip portion of the discharge electrode 1. Condensation does not occur in this part. As shown in FIG. 2, the front end surface of the heat insulating member 5 protrudes outward in a stepped manner with respect to the discharge electrode 1 (that is, protrudes outward substantially at right angles to the axial direction of the discharge electrode 1). 5a.

添付図面に示す実施形態では発泡合成樹脂成形品よりなる断熱部材5を放電電極1に嵌め込んであり、断熱部材5はハウジング11の放電用空所25の底の仕切り部26と略同じ形状をした底面部5bの表面中央部から略円錐形状又は円筒状をした主体部5cを突設することで構成してあり、円錐形状又は円筒状をした主体部5cの先端面が放電電極1に対して外向に段状に突出した段面5aとしてある。上記断熱部材5には先端面である段面5aの中心から底面部5bの中心にかけて嵌め込み孔が穿孔してあり、該嵌め込み孔を放電電極1に嵌め込むことで放電電極1は先端部を除く部分の周りに断熱部材5を設けると共に、放電用空所25の底である仕切り部26を断熱部材5の底面部5bで覆っている。   In the embodiment shown in the accompanying drawings, a heat insulating member 5 made of a foamed synthetic resin molded product is fitted into the discharge electrode 1, and the heat insulating member 5 has substantially the same shape as the partition portion 26 at the bottom of the discharge space 25 of the housing 11. The main body portion 5c having a substantially conical shape or a cylindrical shape protrudes from the center of the surface of the bottom surface portion 5b, and the tip surface of the main body portion 5c having a conical shape or a cylindrical shape is formed with respect to the discharge electrode 1. Thus, the step surface 5a protrudes outward in a step shape. The heat insulating member 5 has a fitting hole drilled from the center of the step surface 5a which is the front end surface to the center of the bottom surface portion 5b, and the discharge electrode 1 removes the front end portion by fitting the fitting hole into the discharge electrode 1. The heat insulating member 5 is provided around the portion, and the partition portion 26 that is the bottom of the discharge space 25 is covered with the bottom surface portion 5 b of the heat insulating member 5.

なお、図2に示す実施形態では放電電極1の先端の凸曲部となった放電部4の径M1は0.5mm、細首部16の径M2は0.3mm、細首部16の後端から凸曲部となった放電部4の最先端までの長さLが1.0mm、断熱部材5の先端面である段面5aから凸曲部となった放電部4の最先端までの長さL2が2.3mm、放電電極1の外面から段面5aの外端までの長さ(段面5aの外方への突出長さ)Nが0.5mmとなっているが、必ずしもこの数値にのみ限定されるものではない。   In the embodiment shown in FIG. 2, the diameter M1 of the discharge part 4 that is a convex curve at the tip of the discharge electrode 1 is 0.5 mm, the diameter M2 of the narrow neck part 16 is 0.3 mm, and from the rear end of the narrow neck part 16 The length L up to the forefront of the discharge part 4 that has become a curved part is 1.0 mm, and the length from the step surface 5a that is the tip surface of the heat insulating member 5 to the foremost part of the discharge part 4 that has become a convex part. L2 is 2.3 mm, and the length N from the outer surface of the discharge electrode 1 to the outer end of the step surface 5a (projecting length outward of the step surface 5a) N is 0.5 mm. It is not limited only.

また、上記実施形態では発泡合成樹脂成形品により形成した断熱部材5を放電電極1に嵌め込みにより装着した例を示したが、断熱塗料を放電電極1の先端部を除く部分の周りに吹き付けたり、刷毛塗り等により塗布することで断熱部材5を形成すると共に、断熱部材5の先端面をカットして放電電極1に対して外向に段状に突出した段面5aを形成するようにしてもよい。   In the above embodiment, the heat insulating member 5 formed of the foamed synthetic resin molded article is shown fitted to the discharge electrode 1 by fitting, but the heat insulating paint is sprayed around the portion excluding the tip of the discharge electrode 1, The heat insulating member 5 may be formed by applying by brushing or the like, and the front end surface of the heat insulating member 5 may be cut to form a stepped surface 5 a that protrudes outwardly with respect to the discharge electrode 1. .

ハウジング11の上部には上記放電電極1の先端の放電部4から一定の距離をおいて対向電極14が設けてあり、この対向電極14はSUSなどの腐蝕に強い材料により形成してある。   A counter electrode 14 is provided at an upper portion of the housing 11 at a certain distance from the discharge portion 4 at the tip of the discharge electrode 1, and the counter electrode 14 is formed of a material resistant to corrosion such as SUS.

前述のように放電電極1に一端部を電気的、機械的に接続した高電圧印加板15の他端部と、上記対向電極14とは高電圧印加部3にそれぞれ高圧リード線を介して接続してあり、高電圧印加部3から放電電極1と対向電極14との間に高電圧が印加されるようになっている。   As described above, the other end of the high-voltage applying plate 15 whose one end is electrically and mechanically connected to the discharge electrode 1 and the counter electrode 14 are connected to the high-voltage applying unit 3 via high-voltage leads. In addition, a high voltage is applied between the discharge electrode 1 and the counter electrode 14 from the high voltage application unit 3.

上記の構成の静電霧化装置は、熱電素子に対して通電を行うと、各熱電素子内において同一方向への熱の移動が生じ、ペルチェユニット6の片面側が冷却される。このペルチェユニット6の片面の冷却側に設けた冷却用絶縁板9を介して放電電極1が冷却され、放電電極1の周囲の空気が冷却されることで、空気中の水分が結露等により液化されて放電電極1表面に水が生成される。そして、放電電極1の放電部4に水が生成され且つ保持された状態で、高電圧印加部3により放電電極1の放電部4側がマイナス電極となって電荷が集中するように該放電電極1と対向電極14との間に5kV程度の高電圧を印加すると、放電電極1の先端部の放電部4に保持される水が帯電し、帯電した水にクーロン力が働き、水の液面が局所的に円錐形状(テイラーコーン)に盛り上がり、円錐形状となった水の先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして水が分裂・飛散(レーリー分裂)を繰り返して静電霧化を行い、ナノイオンミストを大量に発生させる。ナノイオンミストは放電電極1と対向して位置する対向電極14に向けて移動し、ハウジング11の開口内に固定される対向電極14の中央穴を通過して静電霧化装置の外部へと放出される。   When the electrostatic atomizer having the above-described configuration is energized with respect to the thermoelectric elements, movement of heat in the same direction occurs in each thermoelectric element, and one side of the Peltier unit 6 is cooled. The discharge electrode 1 is cooled via a cooling insulating plate 9 provided on the cooling side of one side of the Peltier unit 6, and the air around the discharge electrode 1 is cooled, so that moisture in the air is liquefied due to condensation or the like. As a result, water is generated on the surface of the discharge electrode 1. Then, in a state where water is generated and held in the discharge part 4 of the discharge electrode 1, the discharge electrode 1 is arranged such that the high voltage application part 3 causes the discharge part 4 side of the discharge electrode 1 to be a negative electrode and the charge is concentrated. When a high voltage of about 5 kV is applied between the counter electrode 14 and the counter electrode 14, the water held in the discharge part 4 at the tip of the discharge electrode 1 is charged, the Coulomb force acts on the charged water, and the liquid level of the water Locally swells into a cone shape (Taylor cone), the charge concentrates at the tip of the cone-shaped water, the charge density becomes high, and the water breaks up and repels by the repulsive force of the high-density charge. Electron atomization is repeated by repeating scattering (Rayleigh splitting) to generate a large amount of nano ion mist. The nano ion mist moves toward the counter electrode 14 positioned opposite to the discharge electrode 1, passes through the center hole of the counter electrode 14 fixed in the opening of the housing 11, and is released to the outside of the electrostatic atomizer. Is done.

このように放電電極1を冷却手段2であるペルチェユニット6により冷却して放電電極1の先端の放電部4に空気中の水分を結露させて水を生成させ、この生成した水を静電霧化することで、従来のように水を補給する手間が必要でなく、また、空気中の水分を結露させて水を放電電極1の先端部の放電部4に生成させるので水道水のように不純物を含まないので付着物除去の手間が不要となり、更に、放電電極1に直接水が生成される構造なので冷却を開始してから素早い時間でミストを発生させることが可能である。   In this way, the discharge electrode 1 is cooled by the Peltier unit 6 that is the cooling means 2, the moisture in the air is condensed on the discharge part 4 at the tip of the discharge electrode 1, and water is generated. As a result, it is not necessary to replenish water as in the prior art, and water in the air is condensed to generate water in the discharge part 4 at the tip of the discharge electrode 1, so that it is like tap water. Since it does not contain impurities, there is no need to remove the deposits. Furthermore, since water is generated directly at the discharge electrode 1, it is possible to generate mist in a short time after cooling is started.

しかも、上記のように、放電電極1を冷却して結露水を生成させるものであるにもかかわらず、放電電極1の先端部を除く周りに断熱部材5を設けたので、放電電極1を冷却手段2で冷却して空気中の水分を放電電極1に結露させるに当たって放電電極1の先端部に結露水が生成され、他の部分には結露水が生成しない、または抑制されることなる。   In addition, as described above, although the discharge electrode 1 is cooled to generate condensed water, the heat insulating member 5 is provided around the tip of the discharge electrode 1, so that the discharge electrode 1 is cooled. When the moisture in the air is condensed on the discharge electrode 1 by cooling by the means 2, the condensed water is generated at the tip of the discharge electrode 1, and the condensed water is not generated or suppressed at other portions.

また、放電電極1の先端部に生成された結露水が断熱部材5の外面に流れて余浄水として成長したり、あるいは、上記のように放電電極1の先端部以外の部分には結露水が生成しないように抑制しているが、断熱部材5の外面に僅かではあるが結露水が生成した場合、この断熱部材5の外面に生成した結露水と放電電極1の先端部に生成した結露水とが繋がって、断熱部材5の外面に余浄水が成長したりするおそれがある。しかしながら、本発明においては、断熱部材5の先端面を放電電極1に対して外向に段状に突出した段面5aとしてあるので、段面5aにより、放電電極1の先端部に生成された結露水が断熱部材5の外面に流れて余浄水として成長するのが防止され、また、放電電極1の先端部に生成された結露水が断熱部材5の外面の余剰水側に引っ張られることもなく、静電霧化が安定して行えると共に、断熱部材5の放電電極1と反対側の端部での余浄水の成長を防止できて余剰水により短絡が生じたり、冷却手段の冷却能力の低下が生じないようにできるものである。   Moreover, the dew condensation water produced | generated at the front-end | tip part of the discharge electrode 1 flows on the outer surface of the heat insulation member 5, and grows as surplus water, or dew condensation water exists in parts other than the front-end | tip part of the discharge electrode 1 as mentioned above. Although it is suppressed so as not to be generated, when condensed water is generated slightly on the outer surface of the heat insulating member 5, the condensed water generated on the outer surface of the heat insulating member 5 and the condensed water generated on the tip of the discharge electrode 1 are formed. Are connected, and there is a possibility that surplus water will grow on the outer surface of the heat insulating member 5. However, in the present invention, the front end surface of the heat insulating member 5 is the step surface 5a protruding stepwise outward with respect to the discharge electrode 1, so that the dew condensation generated at the front end portion of the discharge electrode 1 by the step surface 5a. Water is prevented from flowing to the outer surface of the heat insulating member 5 and growing as surplus water, and the condensed water generated at the tip of the discharge electrode 1 is not pulled toward the surplus water side of the outer surface of the heat insulating member 5. Electrostatic atomization can be performed stably, and the growth of surplus water at the end of the heat insulating member 5 opposite to the discharge electrode 1 can be prevented, and a short circuit occurs due to surplus water, or the cooling capacity of the cooling means decreases. Can be prevented from occurring.

前述のようにして静電霧化装置により生成されて外部に放出されたナノイオンミストは活性種(ヒドロキシラジカル、スパーオキサイド等)を持ったナノメータサイズのイオンミストであるため、これを室内に放出することで、室内の空気の脱臭のみならず、室内壁面等に付着した臭いを除去することことができる。また、活性種を持ったナノメータサイズのイオンミストにより殺菌もできる。また、肌や髪に向けてイオンミストを放出すると、肌や髪の保湿効果がある。   As described above, the nano ion mist generated by the electrostatic atomizer and released to the outside is a nanometer-sized ion mist having active species (hydroxy radicals, superoxide, etc.), and is thus released indoors. Thus, not only the deodorization of the indoor air but also the odor adhering to the indoor wall surface or the like can be removed. It can also be sterilized by nanometer-sized ion mist with active species. Also, when ion mist is released toward the skin and hair, it has a moisturizing effect on the skin and hair.

ここで、高電圧の印加をデューティー制御するようにしてもよい。例えば、臭いセンサにより室内の臭いを検出し、臭いセンサにより検出した値が所定値以上の場合は、連続オン状態として連続して高電圧を印加するように制御し、静電霧化装置によりナノイオンミストを連続して生成して、臭い除去をし、臭いセンサにより検出した値が所定値以下になると、高電圧の印加のオン、オフを交互に繰り返すように制御する。例えば、臭いセンサにより検出した値が所定値以下になると、高電圧の印加のオン0.3秒、オフ3秒を交互に繰り返すように制御するものである。これにより、臭いセンサにより検出した値が所定値以下の場合における消費電力を少なくするようにしている。   Here, the application of the high voltage may be duty controlled. For example, when an indoor odor is detected by an odor sensor and the value detected by the odor sensor is equal to or greater than a predetermined value, control is performed so that a high voltage is continuously applied in a continuous on state, and the nano ion is controlled by an electrostatic atomizer. The mist is continuously generated and the odor is removed, and when the value detected by the odor sensor falls below a predetermined value, the application of high voltage is controlled to be alternately turned on and off. For example, when the value detected by the odor sensor becomes equal to or less than a predetermined value, control is performed so as to alternately repeat high voltage application on 0.3 seconds and off 3 seconds. Thereby, power consumption is reduced when the value detected by the odor sensor is equal to or less than a predetermined value.

ところで、このように高電圧の印加のオン、オフを繰り返すように制御するものにおいて、図6には、断熱部材5の先端面に本発明のように段面5aを設けることなく、断熱部材5の先端を先細り状としてその先端を放電電極1に連続させた比較例のものを横にして使用した場合を示し、図6(a)は高電圧の印加がオンの場合であって、前述のように高電圧の印加で帯電した水Wにクーロン力が作用してテイラーコーンTが形成されるが、この図6(a)の後に、高電圧の印加がオフになると、オンの際にテイラーコーンTとして盛り上がっていた放電電極1の先端部の水Wがクーロン力による引っ張り力が無くなるので、図6(b)のように断熱部材5の外面側に移動し、放電電極1の先端部の水の量が少なくなる。したがって、次にオンとなって高電圧が印加されてもテイラーコーンTが十分に形成されず、安定した静電霧化ができない事態が生じ、また、断熱部材5の外面側に余浄水が成長していく。   By the way, in the case of controlling to repeatedly turn on and off the application of the high voltage in this way, in FIG. 6, the heat insulating member 5 is not provided on the front end surface of the heat insulating member 5 as in the present invention. FIG. 6A shows a case where a comparative example in which the tip of the taper is tapered and the tip is continuous with the discharge electrode 1 is used sideways, and FIG. As described above, the Coulomb force acts on the water W charged by the application of the high voltage to form the Taylor cone T. After the application of the high voltage is turned off after FIG. 6A, the Taylor cone is turned on. Since the water W at the tip of the discharge electrode 1 swelled as the cone T does not have a tensile force due to the Coulomb force, it moves to the outer surface side of the heat insulating member 5 as shown in FIG. The amount of water is reduced. Accordingly, the Taylor cone T is not sufficiently formed even when a high voltage is applied next time it is turned on, and there is a situation where stable electrostatic atomization cannot be performed, and surplus water grows on the outer surface side of the heat insulating member 5. I will do it.

これに対し、本発明は図5は本発明を横にして使用した場合を示し、図5(a)は高電圧の印加がオンの場合であって、前述のように高電圧の印加で帯電した水Wにクーロン力が作用してテイラーコーンTが形成されるが、この図5(a)の後に、高電圧の印加がオフになってクーロン力による引っ張り力がなくなって該放電電極1の先端部の水Wが断熱部材5の外面側に移動しようとしても、上記のように断熱部材5の先端面を放電電極1に対して外向に段状に突出した段面5aとなっているので、図5(b)のように段面5aが障壁となって断熱部材5の外面側に移動するのが防止され、断熱部材5の外面側に余浄水として成長するのが防止でき、また、放電電極1の先端部の水が断熱部材5の外面側に移動しないので、次に、オンして高電圧を印加した場合、先端部に留まっている水がテイラーコーンとして安定して形成され、安定した静電霧化がなされることになる。   On the other hand, FIG. 5 shows the case where the present invention is used sideways, and FIG. 5A shows the case where the application of high voltage is on, and charging is performed by applying the high voltage as described above. The Taylor cone T is formed by the Coulomb force acting on the water W, but after this FIG. 5A, the application of the high voltage is turned off and the tensile force due to the Coulomb force disappears, and the discharge electrode 1 Even if the water W at the front end portion moves to the outer surface side of the heat insulating member 5, the front end surface of the heat insulating member 5 becomes the step surface 5 a that protrudes outwardly with respect to the discharge electrode 1 as described above. As shown in FIG. 5 (b), the stepped surface 5a becomes a barrier and can be prevented from moving to the outer surface side of the heat insulating member 5, and can be prevented from growing as extra purified water on the outer surface side of the heat insulating member 5, Since the water at the tip of the discharge electrode 1 does not move to the outer surface side of the heat insulating member 5, When a voltage is applied, the water remains in the tip portion is stably formed as a Taylor cone, so that the stable electrostatic atomization is performed.

なお、上記実施形態では対向電極14を設けて放電電極1と対向電極14との間に高電圧を印加することで放電電極1の放電部4に生成した水を静電霧化する例につき説明したが、対向電極14を設けないものにおいても放電電極1に高電圧を印加して上記のようにして放電部4に生成した水を静電霧化するようにするものであってもよい。   In the above embodiment, an example in which the counter electrode 14 is provided and water generated in the discharge part 4 of the discharge electrode 1 is electrostatically atomized by applying a high voltage between the discharge electrode 1 and the counter electrode 14 will be described. However, even in the case where the counter electrode 14 is not provided, a high voltage may be applied to the discharge electrode 1 so that the water generated in the discharge unit 4 as described above is electrostatically atomized.

本発明の静電霧化装置の断面図である。It is sectional drawing of the electrostatic atomizer of this invention. 同上の放電電極の先端部分の拡大断面図である。It is an expanded sectional view of the tip part of a discharge electrode same as the above. 同上の静電霧化装置の斜視図である。It is a perspective view of an electrostatic atomizer same as the above. 同上の分解斜視図である。It is an exploded perspective view same as the above. (a)は同上の横向きにした使用形態において高電圧の印加がオンの場合の作用説明図であり、(b)はオフとなった際の作用説明図である。(A) is an operation explanatory view when the application of a high voltage is on in the laterally used form of the above, and (b) is an operation explanatory view when it is turned off. 比較例を示し、(a)は比較例の横向きにした使用形態において高電圧の印加がオンの場合の作用説明図であり、(b)はオフとなった際の作用説明図である。A comparative example is shown, (a) is an operation explanatory diagram when the application of a high voltage is on in the lateral usage mode of the comparative example, and (b) is an operation explanatory diagram when it is turned off.

符号の説明Explanation of symbols

1 放電電極
2 冷却手段
3 高電圧印加部
5 断熱部材
5a 段面
DESCRIPTION OF SYMBOLS 1 Discharge electrode 2 Cooling means 3 High voltage application part 5 Thermal insulation member 5a Step surface

Claims (1)

放電電極と、該放電電極を冷却して空気中の水分を結露させて放電電極に結露水を生成させるための冷却手段と、放電電極に生成した上記結露水を静電霧化するために放電電極に高電圧を印加するための高電圧印加部とを備え、放電電極の先端部を除く周りに断熱部材を設け、該断熱部材の先端面を放電電極に対して外向に段状に突出した段面として成ることを特徴とする静電霧化装置。   A discharge electrode; cooling means for cooling the discharge electrode to condense moisture in the air to generate condensed water on the discharge electrode; and discharging to electrostatically atomize the condensed water generated on the discharge electrode. A high voltage application unit for applying a high voltage to the electrode, a heat insulating member is provided around the tip of the discharge electrode, and the tip surface of the heat insulating member protrudes outwardly with respect to the discharge electrode. An electrostatic atomizer characterized by comprising a stepped surface.
JP2005207577A 2005-07-15 2005-07-15 Electrostatic atomizer Expired - Fee Related JP4258497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207577A JP4258497B2 (en) 2005-07-15 2005-07-15 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207577A JP4258497B2 (en) 2005-07-15 2005-07-15 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007021369A JP2007021369A (en) 2007-02-01
JP4258497B2 true JP4258497B2 (en) 2009-04-30

Family

ID=37782820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207577A Expired - Fee Related JP4258497B2 (en) 2005-07-15 2005-07-15 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4258497B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017505A1 (en) * 2005-07-15 2007-01-25 Lipp Brian A Dispensing device and method
JP5555590B2 (en) * 2010-09-30 2014-07-23 パナソニックヘルスケア株式会社 Sterilizer
JP2019098244A (en) * 2017-12-01 2019-06-24 パナソニックIpマネジメント株式会社 Electrostatic atomizer

Also Published As

Publication number Publication date
JP2007021369A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP3952052B2 (en) Electrostatic atomizer
JP4449859B2 (en) Electrostatic atomizer
US8282028B2 (en) Electrostatically atomizing device
US8235312B2 (en) Electrostatic atomizer
JP2009090192A (en) Electrostatically atomizing device
WO2009107513A1 (en) Electrostatic atomizer
TWI324088B (en) Electrostatically atomizing device
JP2007289871A (en) Electrostatic atomizer
JP4258497B2 (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
JP2009090282A (en) Electrostatically atomizing device
JP4093282B1 (en) Electrostatic atomizer
JP4552905B2 (en) Electrostatic atomizer
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
JP2007167758A (en) Electrostatic atomization apparatus
JP4379536B2 (en) Electrostatic atomizer
JP4329725B2 (en) Electrostatic atomizer
JP2009268944A (en) Electrostatic atomizing device
JP4581990B2 (en) Electrostatic atomizer
JP5342464B2 (en) Electric appliance
JP2008207045A (en) Electrostatic atomizing device
JP2009202060A (en) Electrostatic atomizer
JP2009101279A (en) Electrostatic atomizing apparatus
JP2010155239A (en) Electrostatic atomizing method
JP2007105636A (en) Electrostatic atomizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees