JP2009202060A - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP2009202060A
JP2009202060A JP2008044875A JP2008044875A JP2009202060A JP 2009202060 A JP2009202060 A JP 2009202060A JP 2008044875 A JP2008044875 A JP 2008044875A JP 2008044875 A JP2008044875 A JP 2008044875A JP 2009202060 A JP2009202060 A JP 2009202060A
Authority
JP
Japan
Prior art keywords
atomizing
substance
electrode
water
atomization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008044875A
Other languages
Japanese (ja)
Inventor
Yasunori Matsui
康訓 松井
Tetsuya Maekawa
哲也 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008044875A priority Critical patent/JP2009202060A/en
Publication of JP2009202060A publication Critical patent/JP2009202060A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily prepare a charged-particle-containing liquid that contains an intended substance for atomization but does not contain impurities. <P>SOLUTION: Disclosed is an electrostatic atomizer constituted of an atomization electrode 1, a water-supply means 2 that supplies the atomization electrode 1 with water obtained by condensing moisture in air by cooling the same, an atomization-substance supply means 3 that supplies a substance 20 for atomization to water being supplied to the atomization electrode 1, and a high-voltage application means 4 that applies a high voltage to a solution comprising water supplied to the atomization electrode 1 wherein the substance 20 for atomization is dissolved to prepare the charged-particle-containing liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、静電霧化現象を利用して帯電微粒子液を生成する静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates a charged fine particle liquid by utilizing an electrostatic atomization phenomenon.

従来から、水にアロマオイルを混入した液を液溜め部に溜め、これを毛細管現象を利用して霧化電極の先端に供給し、毛細管現象により霧化電極の先端に供給された水にアロマオイルを混入した液に高電圧を印加することで、ナノメータサイズの帯電微粒子液を生成する静電霧化装置が特許文献1などにより知られている。   Conventionally, a liquid in which aroma oil is mixed in water is stored in a liquid reservoir, and this is supplied to the tip of the atomizing electrode using the capillary phenomenon, and the aroma is added to the water supplied to the tip of the atomizing electrode by the capillary phenomenon. An electrostatic atomizer that generates a nanometer-sized charged fine particle liquid by applying a high voltage to a liquid mixed with oil is known from Patent Document 1 and the like.

上記従来例においては、大型の液溜め部を必要とするため、装置が大きくなり、また、水の補給が必要となるという問題がある。更に、使用する水として水道水を使用するので、不純物を含み、静電霧化により生成した帯電微粒子液中にこれら不純物も含まれているという問題がある。   In the above conventional example, since a large liquid reservoir is required, there is a problem that the apparatus becomes large and water needs to be replenished. Furthermore, since tap water is used as the water to be used, there is a problem that impurities are contained and these impurities are also contained in the charged fine particle liquid generated by electrostatic atomization.

そこで、熱交換器の冷却部側で冷却することで空気中の水分を結露させて結露水を霧化電極に供給するようにしたものが特許文献2等により提案されている。   In view of this, Japanese Patent Application Laid-Open No. H10-228561 proposes a method in which moisture in the air is condensed by cooling on the cooling unit side of the heat exchanger and the condensed water is supplied to the atomizing electrode.

この特許文献2に示されたものは空気中の水分を結露させて結露水を生成するので、上記特許文献1のように水溜め部が必要でなく、装置がコンパクトになると共に、水の補給が必要でないという特徴を有し、しかも、空気中の結露水には水道水のような不純物が含まれていないので、不純物が含まれていない帯電微粒子水を生成できる。   Since the thing shown by this patent document 2 dew condensation of the water | moisture content in air and produces | generates dew condensation water, a water reservoir part is not required like the said patent document 1, and an apparatus becomes compact and replenishment of water In addition, the condensed water in the air does not contain impurities such as tap water, so that charged fine particle water containing no impurities can be generated.

しかしながら、この特許文献に示された空気中の水分を結露させた結露水をそのまま静電霧化する従来例にあっては、水のみの帯電微粒子水しか生成できないという問題があった。
特開2005−103500号公報 特開2006−68711号公報
However, in the conventional example shown in this patent document in which the condensed water obtained by condensation of moisture in the air is directly atomized, there is a problem that only charged fine particle water can be generated.
JP 2005-103500 A JP 2006-68711 A

本発明は上記の従来の問題点に鑑みて発明したものであって、目的とする霧化用物質を含み且つ不純物を含まない帯電微粒子液を簡単に生成することができる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and an electrostatic atomizer capable of easily generating a charged fine particle liquid containing an intended atomizing substance and not containing impurities. The issue is to provide.

上記課題を解決するために本発明に係る静電霧化装置は、霧化電極1と、冷却することで空気中の水分を結露させて霧化電極に水を供給する水供給手段2と、霧化電極1に供給される水に霧化用物質20を供給する霧化用物質供給手段3と、霧化電極1に供給された水に霧化用物質20が溶解した溶液に高電圧を印加して帯電微粒子液を生成させる高電圧印加手段4とを備えて成ることを特徴とするものである。   In order to solve the above problems, the electrostatic atomizer according to the present invention includes an atomization electrode 1, a water supply unit 2 that condenses moisture in the air by cooling and supplies water to the atomization electrode, A high voltage is applied to the atomizing substance supply means 3 for supplying the atomizing substance 20 to the water supplied to the atomizing electrode 1 and the solution in which the atomizing substance 20 is dissolved in the water supplied to the atomizing electrode 1. And high voltage applying means 4 for generating a charged fine particle liquid upon application.

このような構成とすることで、霧化電極1に供給される空気中の水分を結露させて得た水に霧化用物質供給手段3から霧化用物質20を供給して溶解させた溶液を静電霧化することで、簡単に霧化用物質20が溶解した不純物を含まない帯電微粒子液を生成することができる。   By having such a configuration, a solution obtained by supplying the atomizing substance 20 from the atomizing substance supply means 3 to the water obtained by dew condensation of moisture in the air supplied to the atomizing electrode 1 and dissolving it. By electrostatic atomization, it is possible to easily generate a charged fine particle liquid that does not contain impurities in which the atomizing substance 20 is dissolved.

また、熱交換器5の冷却部6側で空気中の水分を結露させて霧化電極1に水を供給する水供給手段2を構成することが好ましい。   Moreover, it is preferable to constitute the water supply means 2 for supplying water to the atomizing electrode 1 by dehydrating moisture in the air on the cooling unit 6 side of the heat exchanger 5.

このような構成とすることで、熱交換器5の冷却部6側で空気を冷却して簡単に結露水を生成し、このようにして生成した不純物を含まない水に霧化用物質供給手段3から霧化用物質20を供給して溶解することで、簡単に静電霧化により霧化用物質20が溶解し且つ不純物を含まない帯電微粒子液を生成することができる。   With such a configuration, the air is cooled on the cooling unit 6 side of the heat exchanger 5 to easily generate condensed water, and the atomizing substance supply means is added to the water that does not contain impurities thus generated. By supplying and dissolving the atomizing substance 20 from 3, the atomized substance 20 can be easily dissolved by electrostatic atomization and a charged fine particle liquid containing no impurities can be generated.

また、霧化電極1の一部又は全部が霧化用物質20で構成してあることが好ましい。   Moreover, it is preferable that a part or all of the atomizing electrode 1 is composed of the atomizing substance 20.

このような構成とすることで、静電霧化に必要な霧化電極1を利用して該霧化電極1に供給される結露水に霧化用物質20を簡単に供給することができる。   By setting it as such a structure, the substance 20 for atomization can be simply supplied to the dew condensation water supplied to this atomization electrode 1 using the atomization electrode 1 required for electrostatic atomization.

また、霧化用物質供給手段3で霧化電極1の表面を覆うことが好ましい。   Moreover, it is preferable to cover the surface of the atomizing electrode 1 with the atomizing substance supply means 3.

このような構成とすることで、霧化電極1に供給される結露水に霧化電極1の表面を覆う霧化用物質供給手段3から霧化用物質20を簡単に供給することができる。   By setting it as such a structure, the atomization substance 20 can be easily supplied from the atomization substance supply means 3 which covers the surface of the atomization electrode 1 to the dew condensation water supplied to the atomization electrode 1. FIG.

また、霧化用物質供給手段3を熱交換器5の放熱部7側に隣接して設けることが好ましい。   Further, it is preferable to provide the atomizing substance supply means 3 adjacent to the heat dissipating part 7 side of the heat exchanger 5.

このような構成とすることで、熱交換器5の放熱部7で霧化用物質供給手段3を加熱することで、霧化用物質20を液状化もしくは軟化させて霧化用物質20を、熱交換器5の冷却部6側で冷却することで生成した結露水に供給することができ、熱交換器5の冷却部6側、放熱部7側を有効に利用して目的とする霧化用物質20が溶解し且つ不純物を含まない帯電微粒子液を簡単に生成することができる。   By setting it as such a structure, by heating the atomization substance supply means 3 in the thermal radiation part 7 of the heat exchanger 5, the atomization substance 20 is liquefied or softened, and the atomization substance 20 is changed. It can be supplied to the dew condensation water generated by cooling on the cooling unit 6 side of the heat exchanger 5, and the intended atomization by effectively using the cooling unit 6 side and the heat radiation unit 7 side of the heat exchanger 5 It is possible to easily generate a charged fine particle liquid in which the use material 20 is dissolved and does not contain impurities.

また、霧化用物質供給手段3が着脱自在であることが好ましい。このような構成とすることで、霧化用物質供給手段3の霧化用物質20が消費されると、霧化用物質供給手段3を外して交換したり、あるいは、霧化用物質20の補充ができる。   Moreover, it is preferable that the atomizing substance supply means 3 is detachable. With this configuration, when the atomizing substance 20 of the atomizing substance supply means 3 is consumed, the atomizing substance supply means 3 is removed and replaced, or the atomizing substance 20 Can be replenished.

本発明は、上記のように、空気中の水分を結露させて生成した不純物を含まない水に霧化用物質を供給して溶解した溶液を静電霧化することで、目的とする霧化用物質が溶解され且つ不純物を含まない帯電微粒子液を簡単に生成することができる。   As described above, the present invention provides a target atomization by electrostatically atomizing a solution obtained by supplying an atomizing substance to water that does not contain impurities generated by condensation of moisture in the air. It is possible to easily produce a charged fine particle solution in which a substance for use is dissolved and does not contain impurities.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の静電霧化装置8の一実施形態が示してあり、本発明の静電霧化装置8は、霧化電極1と、冷却することで空気中の水分を結露させて霧化電極1に水を供給する水供給手段2と、霧化用物質20を霧化電極1に供給される水に供給する霧化用物質供給手段3と、霧化電極1に供給された水に霧化用物質20が溶解された溶液に高電圧を印加する高電圧印加手段4とを備えたものである。また、図1に示す実施形態では、霧化電極1に対向するように対向電極9を設けた例が示してある。   FIG. 1 shows an embodiment of an electrostatic atomizer 8 of the present invention. The electrostatic atomizer 8 of the present invention condenses moisture in the air by cooling the atomization electrode 1. The water supply means 2 for supplying water to the atomizing electrode 1, the atomizing substance supply means 3 for supplying the atomizing substance 20 to the water supplied to the atomizing electrode 1, and the atomizing electrode 1 And high voltage applying means 4 for applying a high voltage to a solution in which the atomizing substance 20 is dissolved in water. In the embodiment shown in FIG. 1, an example in which the counter electrode 9 is provided so as to face the atomizing electrode 1 is shown.

冷却することで空気中の水分を結露させて霧化電極1に水を供給する水供給手段2としては、例えば、熱交換器5の冷却部6で水供給手段2を構成する例を挙げることができる。熱交換器5としては、公知の様々な熱交換器5を用いることができるが、図1、図2では熱交換器5としてペルチェユニット10の例が示してある。なお、熱交換器5としては、冷蔵庫、エアコン等に備えられた熱交換器5を用いてもよい。   Examples of the water supply unit 2 that condenses moisture in the air by cooling and supplies water to the atomizing electrode 1 include an example in which the water supply unit 2 is configured by the cooling unit 6 of the heat exchanger 5. Can do. As the heat exchanger 5, various known heat exchangers 5 can be used. In FIGS. 1 and 2, an example of the Peltier unit 10 is shown as the heat exchanger 5. In addition, as the heat exchanger 5, you may use the heat exchanger 5 with which the refrigerator, the air conditioner, etc. were equipped.

図1や図2に示すペルチェユニット10は、熱伝導性の高いアルミナや窒化アルミニウムからなる絶縁板の片面側に回路を形成してある一対のペルチェ回路板を、互いの回路が向き合うように対向させ、多数列設してある熱電素子12を両ペルチェ回路板間で挟持すると共に隣接する熱電素子12同士を両側の回路で電気的に接続させ、ペルチェ入力リード線を介してなされる熱電素子12への通電により一方のペルチェ回路板側から他方のペルチェ回路板側に向けて熱が移動するように構成したものである。更に、上記一方の側のペルチェ回路板の外側には冷却部6を設けてあり、また、上記他方の側のペルチェ回路板の外側には放熱部7を設けてある。実施形態では放熱部7として放熱フィンの例が示してある。   The Peltier unit 10 shown in FIGS. 1 and 2 opposes a pair of Peltier circuit boards in which a circuit is formed on one side of an insulating plate made of alumina or aluminum nitride having high thermal conductivity so that the circuits face each other. In addition, the thermoelectric elements 12 arranged in multiple rows are sandwiched between the two Peltier circuit boards, and the adjacent thermoelectric elements 12 are electrically connected by the circuits on both sides, and the thermoelectric elements 12 formed via the Peltier input lead wires Is configured such that heat is transferred from one Peltier circuit board side to the other Peltier circuit board side by energization. Further, a cooling unit 6 is provided outside the Peltier circuit board on the one side, and a heat radiating unit 7 is provided outside the Peltier circuit board on the other side. In the embodiment, an example of a heat radiating fin is shown as the heat radiating portion 7.

また、図1に示す実施形態ではペルチェユニット10の冷却部6には水搬送部13を介して霧化電極1の後端部が接続してある例であり、図2は熱交換器5であるペルチェユニット10の冷却部6に霧化電極1の後端部を接続してある例である。   Moreover, in embodiment shown in FIG. 1, the rear-end part of the atomization electrode 1 is connected to the cooling part 6 of the Peltier unit 10 via the water conveyance part 13, and FIG. This is an example in which the rear end portion of the atomizing electrode 1 is connected to the cooling portion 6 of a certain Peltier unit 10.

霧化電極1は絶縁材料からなる筒状をした電極ハウジング14で囲まれており、該電極ハウジング14の先端開口部にリング状をした対向電極9が配設され、霧化電極1の軸心の延長線上にリング状の対向電極9のリングの中心が位置するように霧化電極1と対向電極9とが対向している。   The atomizing electrode 1 is surrounded by a cylindrical electrode housing 14 made of an insulating material, and a ring-shaped counter electrode 9 is disposed at the tip opening of the electrode housing 14. The atomizing electrode 1 and the counter electrode 9 are opposed to each other so that the center of the ring of the ring-shaped counter electrode 9 is positioned on the extended line.

図1の実施形態では、ペルチェユニット10に通電することで、冷却部6を冷却し、空気中の水分を結露水Wとして冷却部6に付着させ、このようにして生成した結露水Wを水搬送部13により霧化電極1の先端に供給するようしている。   In the embodiment of FIG. 1, by energizing the Peltier unit 10, the cooling unit 6 is cooled, moisture in the air is attached to the cooling unit 6 as condensed water W, and the condensed water W thus generated is water. It is made to supply to the front-end | tip of the atomization electrode 1 by the conveyance part 13. FIG.

水搬送部13は例えば、多孔質体やキャピラリーなどの毛細管構造のもので構成してあり、毛細管現象により冷却部6側から霧化電極1の先端に結露水Wを搬送するものであり、この水搬送部13は全長が多孔質体であったり、全長がキャピラリーであったり、あるいは、水搬送部13の一部が多孔質体、他の一部がキャピラリーであったりするが、特に限定はない。もちろん結露水を重力を利用して流下させたり、あるいはポンプ等の外部動力を利用して移動させたりしてもよく、また、これらを組み合わせてもよい。   The water conveyance part 13 is comprised by the thing of capillary structures, such as a porous body and a capillary, for example, Condensation water W is conveyed to the front-end | tip of the atomization electrode 1 from the cooling part 6 side by capillary action, The water transport unit 13 is a porous body in its entire length, a full length is a capillary, or a part of the water transport unit 13 is a porous body and the other part is a capillary. Absent. Of course, the condensed water may flow down using gravity, or may be moved using external power such as a pump, or these may be combined.

また、霧化電極1はセラミックなどの多孔質材料で形成し、霧化電極1自体が水搬送部13を兼ねたものでもよく、あるいは、金属などの導電性の高い材料で霧化電極1を形成し、該霧化電極1にキャピラリーなどの毛細管構造を設けてもよい。   Further, the atomizing electrode 1 may be formed of a porous material such as ceramic, and the atomizing electrode 1 itself may also serve as the water transport unit 13, or the atomizing electrode 1 may be formed of a highly conductive material such as metal. The atomizing electrode 1 may be provided with a capillary structure such as a capillary.

図1の実施形態では、水搬送部13の途中に霧化用物質供給手段3が設けてあり、該霧化用物質供給手段3に保持した霧化用物質20を水搬送部13で搬送されている結露水Wに供給し、水に霧化用物質20を溶解させた溶液として霧化電極1の先端に供給されるようになっている。   In the embodiment of FIG. 1, the atomizing substance supply means 3 is provided in the middle of the water conveyance part 13, and the atomization substance 20 held in the atomization substance supply means 3 is conveyed by the water conveyance part 13. The condensed water W is supplied to the tip of the atomizing electrode 1 as a solution obtained by dissolving the atomizing substance 20 in water.

霧化用物質供給手段3から水搬送部13に搬送されている結露水Wに霧化用物質20を供給するには、例えば、霧化用物質供給手段3に固体又はゲルの水溶性の霧化用物質20を保持し、該水溶性の固体またはゲルの水溶性の霧化用物質20を結露水Wに接触させることで、水溶性の霧化用物質20が結露水Wに溶解する。なお、霧化用物質供給手段3に保持される霧化用物質20は固体の状態で保持されているもののみに限定されず気体の状態で保持されていてもよい。   In order to supply the atomizing substance 20 from the atomizing substance supply means 3 to the condensed water W conveyed to the water conveyance unit 13, for example, a solid or gel water-soluble mist is supplied to the atomizing substance supply means 3. The water-soluble atomizing substance 20 is dissolved in the condensed water W by holding the water-soluble material 20 and bringing the water-soluble solid or gel water-soluble atomizing substance 20 into contact with the condensed water W. Note that the atomizing substance 20 held in the atomizing substance supply means 3 is not limited to being held in a solid state but may be held in a gas state.

このようにして霧化電極1の先端に供給された溶液は、結露水Wに霧化用物質20を溶解させたものであるから、不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液である。   Since the solution supplied to the tip of the atomizing electrode 1 in this manner is obtained by dissolving the atomizing substance 20 in the condensed water W, only the target atomizing substance 20 is contained in water that does not contain impurities. Is a dissolved solution.

上記のように不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液が霧化電極1の先端に供給された状態で、高電圧印加手段4により霧化電極1の先端に供給された上記溶液に高電圧を印加すると、該高電圧により霧化電極1の先端部に供給された上記溶液にクーロン力が働いて、水の液面が局所的に錐状に盛り上がり(テーラーコーン)が形成される。このようにテーラーコーンが形成されると、該テーラーコーンの先端に電荷が集中してこの部分における電界強度が大きくなって、これによりこの部分に生じるクーロン力が大きくなり、更にテーラーコーンを成長させる。このようにテーラーコーンが成長し該テーラーコーンの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の溶液が大きなエネルギー(高密度となった電荷の反発力)を受け、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してマイナスまたはプラスに帯電したナノメータサイズの霧化用物質20が溶解した帯電微粒子液を大量に生成させ、生成された帯電微粒子液は筒体23の先端開口部から外部に放出されるようになっている。   As described above, the tip of the atomizing electrode 1 is applied by the high voltage applying means 4 in a state where the solution in which only the target atomizing substance 20 is dissolved in water not containing impurities is supplied to the tip of the atomizing electrode 1. When a high voltage is applied to the solution supplied to, the Coulomb force acts on the solution supplied to the tip of the atomizing electrode 1 by the high voltage, and the water level rises locally in a cone shape ( Taylor cone) is formed. When the tailor cone is formed in this way, the electric charge concentrates on the tip of the tailor cone and the electric field strength in this portion increases, thereby increasing the Coulomb force generated in this portion and further growing the tailor cone. . When the tailor cone grows in this way and the charge concentrates on the tip of the tailor cone and the density of the charge becomes high, the solution at the tip of the tailor cone gives large energy (repulsive force of the charge that has become dense). The charged fine particle liquid is generated in large quantities by dissolving the nanometer-sized atomizing substance 20 charged negatively or positively by repeating splitting and scattering (Rayleigh splitting) exceeding the surface tension. The cylindrical body 23 is discharged from the front end opening.

また、図2に示す静電霧化装置8の他の実施形態においては、熱交換器5であるペルチェユニット10の冷却部6に霧化電極1の後端部を接続し、ペルチェユニット10に通電して冷却部6を冷却することで霧化電極1を冷却し、霧化電極1を冷却することで空気中の水分を結露水として生成して霧化電極1に供給するようになっている。   Moreover, in other embodiment of the electrostatic atomizer 8 shown in FIG. 2, the rear-end part of the atomization electrode 1 is connected to the cooling part 6 of the Peltier unit 10 which is the heat exchanger 5, and the Peltier unit 10 is connected. By energizing and cooling the cooling unit 6, the atomization electrode 1 is cooled, and by cooling the atomization electrode 1, moisture in the air is generated as condensed water and supplied to the atomization electrode 1. Yes.

この図2の実施形態においては、霧化電極1の一部又は全部を霧化用物質20で形成してあって、霧化電極1の霧化用物質20で形成した部分が霧化用物質供給手段3を構成している。   In the embodiment of FIG. 2, part or all of the atomizing electrode 1 is formed of the atomizing substance 20, and the portion formed of the atomizing substance 20 of the atomizing electrode 1 is the atomizing substance. The supply means 3 is comprised.

したがって、霧化電極1に生成した結露水Wに霧化用物質20が溶解して不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液となる。このように不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液が霧化電極1の先端に供給された状態で、高電圧印加手段4により霧化電極1の先端に供給された上記溶液に高電圧を印加して、静電霧化により前述と同様にしてナノメータサイズの霧化用物質20が溶解した帯電微粒子液を生成する。   Therefore, the atomizing substance 20 is dissolved in the dew condensation water W generated on the atomizing electrode 1, so that only the target atomizing substance 20 is dissolved in water containing no impurities. In this state, a solution in which only the target atomizing substance 20 is dissolved in water not containing impurities is supplied to the tip of the atomizing electrode 1, and the tip of the atomizing electrode 1 is applied by the high voltage applying means 4. A high voltage is applied to the supplied solution to generate a charged fine particle solution in which the nanometer-sized atomizing substance 20 is dissolved in the same manner as described above by electrostatic atomization.

図3乃至図8には霧化電極1の一部又は全部を霧化用物質で形成して霧化用物質供給手段3を形成した各例が示してある。   FIGS. 3 to 8 show examples in which the atomizing material supply means 3 is formed by forming part or all of the atomizing electrode 1 with an atomizing material.

図3は、図2のように熱交換器5であるペルチェユニット10の冷却部6に後端部を接続した霧化電極1の中心に一端が霧化電極1の先端部に開口するように軸方向に形成した小孔15内に霧化用物質20を設けて霧化用物質供給手段3を形成した例である。この実施形態においては、霧化電極1の外面に生成した結露水Wに霧化電極1の先端部で上記霧化用物質20を溶解させ、霧化用物質20が溶解して不純物を含まない水に目的とする霧化用物質のみが溶解された溶液とし、これを前述のように静電霧化するようになっている。   FIG. 3 shows the center of the atomizing electrode 1 whose rear end is connected to the cooling part 6 of the Peltier unit 10 that is the heat exchanger 5 as shown in FIG. 2 so that one end opens at the tip of the atomizing electrode 1. This is an example in which the atomizing substance supply means 3 is formed by providing the atomizing substance 20 in the small holes 15 formed in the axial direction. In this embodiment, the atomizing substance 20 is dissolved in the condensed water W generated on the outer surface of the atomizing electrode 1 at the tip of the atomizing electrode 1, and the atomizing substance 20 is dissolved and does not contain impurities. A solution in which only the target atomizing substance is dissolved in water is used, and this is electrostatically atomized as described above.

また、図4は、上記の変形例で、小孔15の外周に連通し且つ霧化電極1の外面部に連通する連通部16を形成し、この小孔15及び連通部16内に霧化用物質20を設けて、霧化用物質供給手段3を形成した例である。この実施形態においては、霧化電極1の外面に生成した結露水Wに霧化電極1の外周部の一部(連通部16が開口した部分)及び先端部で上記霧化用物質20を溶解させ、霧化用物質20が溶解して不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液とし、これを前述のように静電霧化するようになっている。この実施形態は結露水Wへの霧化用物質20の接触面積が広くなり、溶解量を多くすることができる。   FIG. 4 is a modification of the above example, in which a communication portion 16 communicating with the outer periphery of the small hole 15 and communicating with the outer surface portion of the atomizing electrode 1 is formed, and the atomization is performed in the small hole 15 and the communication portion 16. This is an example in which an atomizing material supply means 3 is formed by providing the material 20. In this embodiment, the atomizing substance 20 is dissolved in the condensed water W generated on the outer surface of the atomizing electrode 1 at a part of the outer peripheral part of the atomizing electrode 1 (the part where the communication part 16 is opened) and the tip part. Then, the atomizing substance 20 is dissolved to form a solution in which only the target atomizing substance 20 is dissolved in water containing no impurities, and this is electrostatically atomized as described above. In this embodiment, the contact area of the atomizing substance 20 to the condensed water W is widened, and the amount of dissolution can be increased.

また、図5は、更に他の実施形態を示し、図2のように熱交換器5であるペルチェユニット10の冷却部6に後端部を接続した霧化電極1の先端部の外周部に霧化用物質20を設けて霧化用物質供給手段3を形成した例である。この実施形態においては、霧化電極1の外面に生成した結露水Wが霧化電極1の先端部で霧化用物質20を溶解させ、霧化用物質20が溶解して不純物を含まない水に目的とする霧化用物質20のみが溶解された溶液とし、これを前述のように静電霧化するようになっている。   FIG. 5 shows still another embodiment, and the outer peripheral portion of the front end portion of the atomizing electrode 1 is connected to the cooling portion 6 of the Peltier unit 10 that is the heat exchanger 5 as shown in FIG. This is an example in which the atomizing substance supply means 3 is formed by providing the atomizing substance 20. In this embodiment, the condensed water W generated on the outer surface of the atomizing electrode 1 dissolves the atomizing substance 20 at the tip of the atomizing electrode 1, and the atomizing substance 20 dissolves and does not contain impurities. In addition, a solution in which only the target atomizing substance 20 is dissolved is electrostatically atomized as described above.

また、図6は、更に他の実施形態を示し、図2のように熱交換器5であるペルチェユニット10の冷却部6に後端部を接続した霧化電極1の根元部分の外周部に霧化用物質20を設けて霧化用物質供給手段3を形成した例である。   FIG. 6 shows still another embodiment. In the outer peripheral portion of the root portion of the atomizing electrode 1 whose rear end portion is connected to the cooling portion 6 of the Peltier unit 10 that is the heat exchanger 5 as shown in FIG. This is an example in which the atomizing substance supply means 3 is formed by providing the atomizing substance 20.

また、図7は、更に他の実施形態を示し、図2のように熱交換器5であるペルチェユニット10の冷却部6に後端部を接続した霧化電極1の外周部の全面に霧化用物質20よりなる外層を設けて霧化用物質供給手段3を形成した例である。この例では、霧化電極1の外面に結露水が生成すると同時に結露水に霧化用物質20を溶解が生じ、また、結露水Wが先端側に移動する際にも霧化用物質20を溶解が生じるもので、結露水Wへの霧化用物質20の接触面積が広くなり、溶解量を多くすることができる。この例の場合、霧化電極1の外面で結露水が効果的に生成できるように霧化用物質20としては、熱伝導性に優れたものとする。   Further, FIG. 7 shows still another embodiment. As shown in FIG. 2, the fog is formed on the entire outer peripheral portion of the atomizing electrode 1 whose rear end portion is connected to the cooling portion 6 of the Peltier unit 10 that is the heat exchanger 5. This is an example in which the outer layer made of the atomizing substance 20 is provided to form the atomizing substance supply means 3. In this example, dew condensation water is generated on the outer surface of the atomization electrode 1 and at the same time, the atomization substance 20 is dissolved in the dew condensation water. Since the dissolution occurs, the contact area of the atomizing substance 20 with the condensed water W is widened, and the amount of dissolution can be increased. In this example, the atomizing substance 20 is excellent in thermal conductivity so that condensed water can be effectively generated on the outer surface of the atomizing electrode 1.

上記霧化電極1の一部に霧化用物質20を設けて霧化用物質供給手段3を形成するに当っては、メッキ処理、塗布、あるいは、嵌め込み等の方法で霧化用物質を霧化電極1の一部に設ける。   In forming the atomizing substance supply means 3 by providing the atomizing substance 20 on a part of the atomizing electrode 1, the atomizing substance is atomized by a method such as plating, coating, or fitting. It is provided on a part of the chemical electrode 1.

また、図8のように霧化電極1の全体を霧化用物質20で形成して霧化用物質供給手段3を兼用させてもよい。この場合も霧化電極1の外面で結露水が効果的に生成できるように霧化用物質20としては、熱伝導性に優れたものとする。   Further, as shown in FIG. 8, the entire atomizing electrode 1 may be formed of the atomizing substance 20 and the atomizing substance supply means 3 may also be used. Also in this case, the atomizing substance 20 is excellent in thermal conductivity so that condensed water can be effectively generated on the outer surface of the atomizing electrode 1.

図9には本発明の他の実施形態が示してある。本実施形態においては、前述の図1のような水搬送部13の途中に霧化用物質供給手段3を設け、該霧化用物質供給手段3から水搬送部13で搬送されている結露水Wに目的とする霧化用物質20を供給し、水に霧化用物質を溶解させた溶液として霧化電極1の先端に供給するようにしたものにおいて、霧化用物質供給手段3を熱交換器5の放熱部7側に隣接して設けてある。つまり、放熱部7の熱により霧化用物質供給手段3に保持された固体よりなる霧化用物質20を液状化もしくは軟化させることで、水搬送部13により供給する結露水Wへの溶解を容易にするようになっている。この際、熱により霧化用物質20が膨張により水搬送部13により供給する結露水Wとの混合がしやすくなるため、霧化用物質供給手段3を水搬送部13から離れた位置に設けることができる。   FIG. 9 shows another embodiment of the present invention. In the present embodiment, the atomizing substance supply means 3 is provided in the middle of the water conveyance section 13 as shown in FIG. 1 and the condensed water is conveyed from the atomization substance supply means 3 by the water conveyance section 13. The target atomizing substance 20 is supplied to W and supplied to the tip of the atomizing electrode 1 as a solution in which the atomizing substance is dissolved in water. It is provided adjacent to the heat dissipating part 7 side of the exchanger 5. In other words, the atomizing substance 20 made of solid held in the atomizing substance supply means 3 is liquefied or softened by the heat of the heat radiating part 7, thereby dissolving the condensed water W supplied by the water transport part 13. It comes to make it easier. At this time, since the atomizing substance 20 is easily mixed with the condensed water W supplied by the water conveyance unit 13 due to expansion by heat, the atomizing substance supply means 3 is provided at a position away from the water conveyance unit 13. be able to.

また、放熱部7からの熱量を制御することによって霧化用物質20の溶液への溶解濃度を変化させることができる。   Further, the concentration of the atomizing substance 20 in the solution can be changed by controlling the amount of heat from the heat radiating section 7.

また、前述の図1や図2で示した静電霧化装置8において、霧化用物質供給手段3を着脱自在としてもよい。図10にはその一実施形態が示してある。図10においては、図2に示すような熱交換器5であるペルチェユニット10の冷却部6に後端部を接続した霧化電極1の一部に霧化用物質20を保持した又は霧化用物質20で形成した霧化用物質供給手段3、もしくは霧化電極1を兼ねるような霧化用物質20を保持したまたは霧化用物質20で形成した霧化用物質供給手段3を着脱自在に取付け、霧化用物質20の消耗時の交換や、異なる種類の霧化用物質と交換することができる(例えば、霧化用物質20が芳香剤物質である場合、いくつもの種類の霧化用物質20を交換することで用途に応じて使用することができる)。   In the electrostatic atomizer 8 shown in FIG. 1 and FIG. 2, the atomizing substance supply means 3 may be detachable. FIG. 10 shows an embodiment thereof. In FIG. 10, the atomizing substance 20 is held or atomized in a part of the atomizing electrode 1 whose rear end portion is connected to the cooling unit 6 of the Peltier unit 10 which is the heat exchanger 5 as shown in FIG. The atomizing substance supply means 3 formed with the atomizing substance 20 or the atomizing substance supply means 3 that holds the atomizing substance 20 that also serves as the atomizing electrode 1 or is formed with the atomizing substance 20 can be freely attached and detached. Can be exchanged when the atomizing substance 20 is consumed, or exchanged with a different kind of atomizing substance (for example, when the atomizing substance 20 is a fragrance substance, several types of atomization are possible. It can be used according to the application by exchanging the material 20 for use).

また、図示を省略しているが、図1の実施形態における静電霧化装置8においても霧化用物質供給手段3を着脱自在として霧化用物質20の消耗時の交換や、異なる種類の霧化用物質と交換することができる(例えば、霧化用物質20が芳香剤物質である場合、いくつもの種類の霧化用物質20を交換することで用途に応じて使用することができる)。   Although not shown, the electrostatic atomizer 8 in the embodiment of FIG. 1 can also be replaced with an atomizing substance supply means 3 so that the atomizing substance 20 can be exchanged when the atomizing substance 20 is consumed. It can be exchanged for an atomizing substance (for example, when the atomizing substance 20 is a fragrance substance, it can be used depending on the application by exchanging several kinds of atomizing substances 20). .

上記各実施形態のようにして空気中の水分を結露させて得た結露水に霧化用物質20を溶解させた溶液を静電霧化することで、簡単に目的とする霧化用物質20のみが溶解し且つ不純物を含まないナノメータサイズの帯電微粒子液を生成することができる。   The target atomizing substance 20 can be simply obtained by electrostatic atomizing a solution in which the atomizing substance 20 is dissolved in the condensed water obtained by condensing moisture in the air as in the above embodiments. It is possible to produce a nanometer-sized charged fine particle liquid that only dissolves and does not contain impurities.

このようにして生成されたナノメータサイズの帯電微粒子液は、ナノメータサイズと非常に小さいので遠くまで広範囲に浮遊するだけでなく、対象物(例えば、繊維、毛髪、皮膚等の対象物)の表面に付着するだけでなく内部まで浸透し、目的とする霧化用物質20の作用を発揮させることができる。   The nanometer-sized charged fine particle liquid generated in this way is very small as nanometer-size, so it not only floats over a wide area, but also on the surface of an object (for example, an object such as fiber, hair, skin). In addition to adhering, it can penetrate into the inside and exert the effect of the intended atomizing substance 20.

霧化用物質20としては、特に限定はないが、例えば、硝酸カリウム、硝酸マグネシウム、炭酸ナトリウム、硫酸マグネシウム等を使用すると、これらの霧化用物質20の場合、毛髪に対して金属成分の補充や硝酸イオン等の毛髪内部での架橋による強度向上(枝毛や切れ毛の防止)といった効果があり、また、硝酸銀、硫酸銀などを使用すると、空間や対象物の除菌作用等を得ることができる。また、気体物質であれば、二酸化炭素をバブリングすることで酸性の溶液を生成し、除菌等の効果がある。   The atomizing substance 20 is not particularly limited. For example, when potassium nitrate, magnesium nitrate, sodium carbonate, magnesium sulfate, or the like is used, in the case of these atomizing substances 20, replenishment of metal components to the hair or It has the effect of improving strength (preventing split ends and cut hairs) by cross-linking inside the hair such as nitrate ions, and using silver nitrate, silver sulfate, etc., can obtain sterilization action of space and objects. it can. Moreover, if it is a gaseous substance, an acidic solution will be produced | generated by bubbling a carbon dioxide, and there exists an effect, such as disinfection.

また、結露水に霧化用物質を溶解させるに当って、高電圧を印加することで結露水が酸性又はアルカリ性となるので、霧化用物質として酸又はアルカリにより溶解する物質としてもよい。   In addition, when the atomizing substance is dissolved in the condensed water, the condensed water becomes acidic or alkaline by applying a high voltage. Therefore, the atomizing substance may be a substance that dissolves with acid or alkali.

すなわち、前述のように高電圧を印加して静電霧化を行うと、霧化電極1表面とテーラーコーン先端の放電部との間で電位差が生じるため、テーラーコーンを形成する水中において電気分解が生じるものと考えられ、このとき、霧化電極1にマイナスの高電圧を印加した場合(対向電極9側がGRDとなる)、テーラーコーンの霧化電極1表面付近にHが増加して酸性となり、テーラーコーンの先端付近にOHが増加してアルカリ性となる。 In other words, when electrostatic atomization is performed by applying a high voltage as described above, a potential difference is generated between the surface of the atomizing electrode 1 and the discharge portion at the tip of the tailor cone, and therefore electrolysis is performed in the water forming the tailor cone. In this case, when a negative high voltage is applied to the atomizing electrode 1 (the counter electrode 9 side becomes GRD), H + increases near the surface of the atomizing electrode 1 of the tailor cone and becomes acidic. Thus, OH increases near the tip of the tailor cone and becomes alkaline.

また、高電圧を印加することでコロナ放電も発生するが、霧化電極1にマイナスの高電圧を印加した場合コロナ放電により硝酸イオン、亜硝酸イオン等が発生し、この硝酸イオン、亜硝酸イオン等がテーラーコーンに溶解することで酸性となり、この条件の際にはテーラーコーンの霧化電極1の表面側は電気分解によっても酸性となっているので、印加する電圧を大きくすることで、テーラーコーンの霧化電極1の表面側を相乗的に酸性にすることができる。   Further, corona discharge is also generated by applying a high voltage, but when a negative high voltage is applied to the atomizing electrode 1, nitrate ions, nitrite ions, etc. are generated by the corona discharge, and these nitrate ions, nitrite ions are generated. And the like are dissolved in the tailor cone, and when this condition is met, the surface side of the atomizing electrode 1 of the tailor cone is also acidified by electrolysis. The surface side of the mist atomizing electrode 1 can be made synergistically acidic.

このように、霧化電極1にマイナスの高電圧を印加させることでテーラーコーンの霧化電極1の表面側を酸性にできるので、この場合は霧化電極1の表面(先端部)に設ける霧化用物質20として酸により溶解する物質を用いると、霧化用物質20がテーラーコーンの霧化電極1側の酸に溶解する。   Thus, since the surface side of the atomizing electrode 1 of the tailor cone can be made acidic by applying a negative high voltage to the atomizing electrode 1, the mist provided on the surface (tip portion) of the atomizing electrode 1 in this case When a substance that dissolves with an acid is used as the atomizing substance 20, the atomizing substance 20 is dissolved in the acid on the atomizing electrode 1 side of the tailor cone.

また、逆に、霧化電極1にプラスの高電圧を印加した場合、電気分解によりテーラーコーンの霧化電極表面付近にOHが増加してアルカリ性となり、テーラーコーンの先端付近にHが増加して酸性となる。この場合、コロナ放電による硝酸イオン等の発生自体も抑制されるので、電気分解によるテーラーコーンの霧化電極1表面側のアルカリ性への変化が優先的となり、電気分解によるテーラーコーンの霧化電極1表面側がアルカリ性となる。 Conversely, when applying a positive high voltage to the atomizing electrode 1, by electrolysis OH near atomizing electrode surface of the Taylor cone - increase becomes alkaline is increased, in the vicinity of the tip of the Taylor cone H + It becomes acidic. In this case, since the generation of nitrate ions or the like due to corona discharge is also suppressed, the change to alkalinity on the surface side of the atomizing electrode 1 of the tailor cone due to electrolysis is preferential, and the atomizing electrode 1 of the tailor cone due to electrolysis is preferential. The surface side becomes alkaline.

このように、霧化電極1にプラスの高電圧を印加させることでテーラーコーンの霧化電極1の表面側をアルカリ性にできるので、この場合は霧化電極1の表面(先端部)に設ける霧化用物質20としてアルカリにより溶解する物質を用いると、霧化用物質20がテーラーコーンの霧化電極1側のアルカリに溶解する。   Thus, since the surface side of the atomizing electrode 1 of the tailor cone can be made alkaline by applying a positive high voltage to the atomizing electrode 1, the mist provided on the surface (tip portion) of the atomizing electrode 1 in this case When a substance that dissolves with alkali is used as the atomizing substance 20, the atomizing substance 20 is dissolved in the alkali on the atomizing electrode 1 side of the tailor cone.

上記酸により溶解する霧化用物質20の一例を挙げると、アルミニウム、亜鉛を挙げることができる。   An example of the atomizing substance 20 that is dissolved by the acid includes aluminum and zinc.

霧化電極1(の一部)をアルミニウムで作成した場合、霧化電極1にマイナスの高電圧を印加し、テーラーコーンの霧化電極1側を酸性とすることで、テーラーコーンがアルミニウムが溶解した溶液となり、これを静電霧化してアルミニウムが溶解した帯電微粒子を生成すると、アルミニウムの溶液は植物の成長を阻害するため、除草剤などとして使用することができる。   When the atomizing electrode 1 (part) is made of aluminum, a negative high voltage is applied to the atomizing electrode 1 and the atomizing electrode 1 side of the tailor cone is made acidic, so that the tailor cone dissolves the aluminum. When this is electrostatically atomized to produce charged fine particles in which aluminum is dissolved, the aluminum solution inhibits plant growth and can be used as a herbicide or the like.

また、亜鉛は酸でもアルカリでも溶解されるため、上記と同じように霧化電極1にマイナスの高電圧を印加することで、亜鉛が溶解した帯電微粒子を生成することができるのは勿論、霧化電極1にプラスの高電圧を印加しても亜鉛が溶解した帯電微粒子を生成することができる。この亜鉛の水溶液は肌への作用をし、シワの低減や肌のハリの改善等の効果が期待できる。   In addition, since zinc is dissolved in both acid and alkali, charged fine particles in which zinc is dissolved can be generated by applying a negative high voltage to the atomizing electrode 1 as described above. Even if a positive high voltage is applied to the chemical electrode 1, charged fine particles in which zinc is dissolved can be generated. This aqueous zinc solution acts on the skin, and can be expected to reduce wrinkles and improve skin firmness.

本発明の静電霧化装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the electrostatic atomizer of this invention. 同上の静電霧化装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the electrostatic atomizer same as the above. 同上の霧化用供給部の一実施形態を示し、(a)は側面断面図であり、(b)は正面図である。An embodiment of the supply part for atomization same as the above is shown, (a) is side sectional drawing, (b) is a front view. 同上の霧化用供給部の他の実施形態を示し、(a)は側面断面図であり、(b)は正面図である。Other embodiment of the supply part for atomization same as the above is shown, (a) is side surface sectional drawing, (b) is a front view. 同上の霧化用供給部の更に他の実施形態を示し、(a)は側面断面図であり、(b)は正面図である。The further another embodiment of the supply part for atomization same as the above is shown, (a) is side surface sectional drawing, (b) is a front view. 同上の霧化用供給部の更に他の実施形態を示し、(a)は側面断面図であり、(b)は正面図である。The further another embodiment of the supply part for atomization same as the above is shown, (a) is side surface sectional drawing, (b) is a front view. 同上の霧化用供給部の更に他の実施形態を示し、(a)は側面断面図であり、(b)は正面図である。The further another embodiment of the supply part for atomization same as the above is shown, (a) is side surface sectional drawing, (b) is a front view. 同上の霧化用供給部の更に他の実施形態を示し、(a)は側面断面図であり、(b)は正面図である。The further another embodiment of the supply part for atomization same as the above is shown, (a) is side surface sectional drawing, (b) is a front view. 本発明の更に他の実施形態の概略構成図である。It is a schematic block diagram of further another embodiment of this invention. 本発明の更に他の実施形態の概略構成図である。It is a schematic block diagram of further another embodiment of this invention.

符号の説明Explanation of symbols

1 霧化電極
2 水供給手段
3 霧化用物質供給手段
4 高電圧印加手段
5 熱交換器
6 冷却部
7 放熱部
DESCRIPTION OF SYMBOLS 1 Atomization electrode 2 Water supply means 3 Atomization substance supply means 4 High voltage application means 5 Heat exchanger 6 Cooling part 7 Heat radiation part

Claims (6)

霧化電極と、冷却することで空気中の水分を結露させて霧化電極に水を供給する水供給手段と、霧化電極に供給される水に霧化用物質を供給する霧化用物質供給手段と、霧化電極に供給された水に霧化用物質が溶解した溶液に高電圧を印加して帯電微粒子液を生成させる高電圧印加手段とを備えて成ることを特徴とする静電霧化装置。   An atomizing electrode, water supply means for condensing moisture in the air by cooling and supplying water to the atomizing electrode, and an atomizing substance for supplying the atomizing substance to the water supplied to the atomizing electrode An electrostatic system comprising: a supply unit; and a high voltage application unit configured to apply a high voltage to a solution in which an atomizing substance is dissolved in water supplied to an atomization electrode to generate a charged fine particle liquid. Atomization device. 熱交換器の冷却部側で空気中の水分を結露させて霧化電極に水を供給する水供給手段を構成することを特徴とする静電霧化装置。   An electrostatic atomizer characterized by comprising water supply means for condensing moisture in the air on the cooling section side of the heat exchanger and supplying water to the atomization electrode. 霧化電極の一部又は全部が霧化用物質により構成してあることを特徴とする請求項1又は請求項2記載の静電霧化装置。   The electrostatic atomizer according to claim 1 or 2, wherein a part or all of the atomizing electrode is made of an atomizing substance. 霧化用物質供給手段で霧化電極の表面を覆って成ることを特徴とする請求項1又は請求項2記載の静電霧化装置。   The electrostatic atomizer according to claim 1 or 2, wherein the atomizing electrode is covered with an atomizing substance supply means. 霧化用物質供給手段を熱交換器の放熱部側に隣接して設けることを特徴とする請求項2記載の静電霧化装置。   The electrostatic atomizer according to claim 2, wherein the atomizing substance supply means is provided adjacent to the heat radiating part side of the heat exchanger. 霧化用物質供給手段が着脱自在であることを特徴とする請求項1乃至請求項5のいずれか一項記載の静電霧化装置。   6. The electrostatic atomizer according to claim 1, wherein the atomizing substance supply means is detachable.
JP2008044875A 2008-02-26 2008-02-26 Electrostatic atomizer Pending JP2009202060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044875A JP2009202060A (en) 2008-02-26 2008-02-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044875A JP2009202060A (en) 2008-02-26 2008-02-26 Electrostatic atomizer

Publications (1)

Publication Number Publication Date
JP2009202060A true JP2009202060A (en) 2009-09-10

Family

ID=41144863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044875A Pending JP2009202060A (en) 2008-02-26 2008-02-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP2009202060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131214A (en) * 2011-03-11 2011-07-07 Mitsubishi Electric Corp Electrostatic atomizer and air conditioner
JP2012021763A (en) * 2011-08-22 2012-02-02 Mitsubishi Electric Corp Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296962A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Deodorizing device
JP2006305321A (en) * 2005-03-28 2006-11-09 Matsushita Electric Ind Co Ltd Air purifier, and air cleaner and humidifier using the same
JP2007289871A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008006422A (en) * 2006-06-30 2008-01-17 Matsushita Electric Works Ltd Electrostatic atomization apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305321A (en) * 2005-03-28 2006-11-09 Matsushita Electric Ind Co Ltd Air purifier, and air cleaner and humidifier using the same
JP2006296962A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Deodorizing device
JP2007289871A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008006422A (en) * 2006-06-30 2008-01-17 Matsushita Electric Works Ltd Electrostatic atomization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131214A (en) * 2011-03-11 2011-07-07 Mitsubishi Electric Corp Electrostatic atomizer and air conditioner
JP2012021763A (en) * 2011-08-22 2012-02-02 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
JP4625267B2 (en) Electrostatic atomizer
JP4449859B2 (en) Electrostatic atomizer
JP3952052B2 (en) Electrostatic atomizer
JP4534853B2 (en) Electrostatic atomizer
JP2009090192A (en) Electrostatically atomizing device
WO2009107513A1 (en) Electrostatic atomizer
JP2005131549A (en) Electrostatic atomization apparatus
JP4442444B2 (en) Electrostatic atomizer
JP2007289871A (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
JP2009090282A (en) Electrostatically atomizing device
JP2009202060A (en) Electrostatic atomizer
JP2007275797A (en) Electrostatic atomizing device
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
JP2007181836A (en) Electrostatic atomizer
JP5342464B2 (en) Electric appliance
JP5314606B2 (en) Electrostatic atomization method
JP2007167758A (en) Electrostatic atomization apparatus
JP2009268944A (en) Electrostatic atomizing device
JP2007209982A (en) Electrostatic atomizing device
JP4581990B2 (en) Electrostatic atomizer
JP4952294B2 (en) Electrostatic atomizer
JP2008238061A (en) Electrostatic atomizer
JP4258497B2 (en) Electrostatic atomizer
JP2009090280A (en) Electrostatically atomizing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409