JP4449859B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP4449859B2
JP4449859B2 JP2005246775A JP2005246775A JP4449859B2 JP 4449859 B2 JP4449859 B2 JP 4449859B2 JP 2005246775 A JP2005246775 A JP 2005246775A JP 2005246775 A JP2005246775 A JP 2005246775A JP 4449859 B2 JP4449859 B2 JP 4449859B2
Authority
JP
Japan
Prior art keywords
discharge electrode
discharge
convex curved
curved surface
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005246775A
Other languages
Japanese (ja)
Other versions
JP2007054808A (en
Inventor
史生 三原
利久 平井
晃秀 須川
純章 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005246775A priority Critical patent/JP4449859B2/en
Publication of JP2007054808A publication Critical patent/JP2007054808A/en
Application granted granted Critical
Publication of JP4449859B2 publication Critical patent/JP4449859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、静電霧化現象によりナノメータサイズのマイナスイオンミストを発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates nanometer-sized negative ion mist by an electrostatic atomization phenomenon.

従来から放電極と、放電極に対向して位置する対向電極と、放電極に水を供給する供給手段とを備え、放電極と対向電極との間に高電圧を印加することで放電極に保持される水を霧化させ、ナノメータサイズで強い電荷を持つマイナスイオンミスト(ナノメータサイズの帯電微粒子水)を発生させる静電霧化装置が、特許文献1により知られている。   Conventionally, a discharge electrode, a counter electrode positioned opposite to the discharge electrode, and a supply means for supplying water to the discharge electrode are provided, and a high voltage is applied between the discharge electrode and the counter electrode to Patent Document 1 discloses an electrostatic atomizer that atomizes retained water and generates negative ion mist (nanometer-sized charged fine particle water) having a strong charge at the nanometer size.

このナノサイズメータのマイナスイオンミストは、粒径が3〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、このナノメータサイズのマイナスイオンミストは人体の角質層に浸透し、角質層表面の奥まで水分を十分に補給し、肌や毛髪に高い保湿効果を付与できるものであり、更に、活性種が水分子に包み込まれるようにして存在するナノメータサイズのマイナスイオンミストは脱臭効果、カビや菌の除菌や繁殖の抑制効果があり、更にまた、活性種が水分子に包み込まれるようにして存在するナノメータサイズのマイナスイオンミストは遊離基単独で存在する場合より寿命が長くなり、且つ、ナノメータサイズと非常に小さいので、空気中に長時間浮遊すると共に拡散性が高く、空気中に長時間満遍なく浮遊して、脱臭効果をより高めることができるという特徴を有している。   The nanometer-size negative ion mist has a particle size of about 3 to several tens of nanometers and is smaller than 70 nm, which is the size of the corneocytes of the human body. It penetrates into the stratum corneum of the human body, sufficiently supplies water to the back of the stratum corneum surface, can impart a high moisturizing effect to the skin and hair, and further exists such that active species are wrapped in water molecules Nanometer-sized negative ion mist has a deodorizing effect, fungus and fungus sterilization and propagation suppression effect, and nanometer-sized negative ion mist is present as active species are encapsulated in water molecules. It has a longer life than the case of existing in the air and is very small with nanometer size, so it floats in the air for a long time and has high diffusivity. During and uniformly suspended, has a feature that it is possible to enhance the deodorizing effect.

しかしながら、上記特許文献1に示された従来の静電霧化装置は、水の供給手段が、水が充填される水タンクと、水タンク内の水を毛細管現象により放電極まで搬送する水搬送部を備えた構造であるので、使用者は水タンク内に継続的に水を補給する必要があり、面倒な水補給の手間が強いられるという問題があって、使い勝手が悪いという問題があった。また、上記の静電霧化装置においては、供給する水が水道水のようなCa、Mg等の不純物を含む水であった場合、この不純物が空気中のCOと反応して水搬送部の先端部にCaCOやMgO等を析出付着させ、毛細管現象による水の供給を阻害し、ナノメータサイズのマイナスイオンミストの発生を妨げるという問題があった。 However, in the conventional electrostatic atomizer shown in Patent Document 1, the water supply means includes a water tank filled with water, and a water transport that transports water in the water tank to the discharge electrode by capillary action. Since the structure is equipped with a part, the user needs to replenish water continuously in the water tank, and there is a problem that the troublesome work of water replenishment is forced, and there is a problem that the usability is bad . In the above electrostatic atomizer, when the water to be supplied is water containing impurities such as Ca and Mg such as tap water, the impurities react with CO 2 in the air to form a water transport unit. CaCO 3 , MgO, or the like is deposited on the tip of the glass, obstructing the supply of water by capillary action, and preventing the generation of nanometer-sized negative ion mist.

そこで、上記問題を解決するために、上記水タンクの代りに、冷却により空気中の水分を基に水(結露水)を生成させるための冷却部を備え、ここで生成された水を水搬送部を介して放電極に搬送させることが考えられる。これによれば、水の補給の手間が不要となり、得られた水には不純物が含まれないことからCaCOやMgO等が析出付着しない。 In order to solve the above problem, instead of the water tank, a cooling unit for generating water (condensation water) based on moisture in the air by cooling is provided, and the generated water is transported by water. It is conceivable to transport the discharge electrode through the part. This eliminates the need for water replenishment, and the obtained water does not contain impurities, so that CaCO 3 , MgO, and the like do not deposit.

しかしながら、この場合、冷却部で冷却を開始してから生成された水を放電極まで搬送し、ナノメータサイズのマイナスイオンミストを発生させるまでの間に少なくとも数分程度の時間がかかってしまい、例えば、ヘアドライヤ等の短時間だけ使用する商品に備えることは不適であるという新たな問題が生じ、更に、静電霧化装置内に冷却部や水搬送部を備えるので、コンパクト化が困難であるという問題がある。   However, in this case, it takes at least a few minutes before the generated water is transported to the discharge electrode after starting cooling in the cooling section, and nanometer-sized negative ion mist is generated. The new problem that it is unsuitable to prepare for products that are used only for a short time such as a hair dryer arises, and furthermore, since the electrostatic atomizer has a cooling unit and a water transport unit, it is difficult to make it compact. There's a problem.

このため、本発明者は本発明に到る過程で、空気中の水分を結露させて放電極に水を供給する水供給手段を、冷却部と放熱部とを有するペルチェユニットの冷却部に放電極を設けて構成することを考えた。これによれば、放電極自体を素早く冷却して空気中の水分を放電極において結露させて放電極に水を供給させることができ、水の補給の手間が不要であるばかりでなく、水搬送部も不要で、また、熱交換ユニットの熱交換器にペルチェユニットを用いるとコンパクトでありながら素早く放電極を冷却してナノメータサイズのマイナスイオンミストを発生させることができることが判明した。しかしながら、上記手段ではナノメータサイズのマイナスイオンが発生するまでの時間が大幅に短縮されたとはいえ、なお数十秒を要する。この時間は機器を使用する温湿度環境によって変化するものである。   Therefore, in the course of reaching the present invention, the inventor releases water supply means for condensing moisture in the air and supplying water to the discharge electrode to the cooling part of the Peltier unit having the cooling part and the heat dissipation part. It was considered to provide an electrode. According to this, the discharge electrode itself can be quickly cooled, moisture in the air can be condensed at the discharge electrode, and water can be supplied to the discharge electrode. It has been found that, when a Peltier unit is used as a heat exchanger of the heat exchange unit, the discharge electrode can be quickly cooled and nanometer-sized negative ion mist can be generated. However, with the above means, it takes several tens of seconds even though the time until the generation of nanometer-sized negative ions is greatly reduced. This time varies depending on the temperature and humidity environment in which the device is used.

ところで、静電霧化装置によるナノメータサイズのマイナスイオンミストの発生のメカニズムは、放電極と対向電極との間にかけられた電圧により放電極の先端部に供給された水が帯電し、帯電した水にクーロン力が働き、水の液面が局所的に円錐形状(テーラーコーン)に盛り上がり、円錐形状となった水の先端に電荷が集中して電荷の密度が高密度となり、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受けて表面張力を超えて分裂・飛散(レイリー分裂)を繰り返して静電霧化を行い、ナノメータサイズのマイナスイオンミストが発生すると考えられる。   By the way, the mechanism of generation of nanometer-size negative ion mist by the electrostatic atomizer is such that the water supplied to the tip of the discharge electrode is charged by the voltage applied between the discharge electrode and the counter electrode, and the charged water is charged. Coulomb force acts on the surface of the water, the water level locally rises to a cone shape (tailor cone), the charge concentrates on the tip of the cone shaped water, the charge density becomes high, and the tip of the tailor cone Water receives large energy (repulsive force of high-density electric charge), exceeds the surface tension, and repeats splitting and scattering (Rayleigh splitting) to cause electrostatic atomization, resulting in nanometer-sized negative ion mist Conceivable.

また、マイナスイオンを発生させるためのマイナスイオン発生装置も良く知られている。これは対向電極と対向する針状電極であるマイナスイオン化針に高圧の負電荷を印加させてコロナ放電を行わせることでマイナスイオンを発生させるものである。コロナ放電によるマイナスイオンの発生はそれなりの効果があり、事実マイナスイオン発生機能を搭載した機器は数多く存在する。   Also, negative ion generators for generating negative ions are well known. In this method, negative ions are generated by applying a high-voltage negative charge to a negative ionization needle that is a needle-like electrode facing the counter electrode to cause corona discharge. The generation of negative ions by corona discharge has a certain effect, and in fact, there are many devices equipped with the function of generating negative ions.

そこで、更に、本発明者は本発明に到る過程で、上記のように放電極の先端部に供給された水をテーラーコーンとして形成するに当たって、図7のように放電極1の先端部に設ける放電部1aを先が尖った錐形状とすることを考えた。このように放電極1の先端部に設ける放電部1aを先が尖った錐形状にすると、放電部1aが平坦面の場合に比べて、結露水WによりテーラーコーンTが形成される場所が図7のように放電部1aの最先端(つまり錐状の頂部)に特定されて一定の決まった位置で安定して結露水WがテーラーコーンTとして形成され、更に、錐形状の放電部1aの先端の水Wを通る電束密度が大きくなって放電部1aの先端に生成した結露水Wを安定してテーラーコーンTとして形成でき、更に、放電部1aが平坦面の場合に比べて、水の形状が同量の水の場合、凸曲形状をしているので、この点でもテーラーコーンTが安定して形成される。   Therefore, in the course of reaching the present invention, the present inventor formed the tailwater cone as shown in FIG. 7 in forming the water supplied to the tip of the discharge electrode as a tailor cone. The discharge part 1a to be provided was considered to have a conical shape with a sharp point. Thus, when the discharge part 1a provided in the front-end | tip part of the discharge electrode 1 is made into the pointed cone shape, the place where the tailor cone T is formed with the dew condensation water W compared with the case where the discharge part 1a is a flat surface is a figure. As shown in FIG. 7, the dew condensation water W is formed as a tailor cone T stably at a fixed position specified at the forefront of the discharge part 1a (that is, the top of the cone). The density of the electric flux passing through the water W at the tip is increased, so that the dew condensation water W generated at the tip of the discharge part 1a can be stably formed as a tailor cone T, and moreover, compared with the case where the discharge part 1a is a flat surface, In the case of the same amount of water, since the shape is convex, the tailor cone T is stably formed in this respect as well.

また、放電極を冷却してナノメータサイズのマイナスイオンが発生するまでの時間には、放電部1aの最先端の尖った金属部分がマイナスイオン化針の役目を持つため、コロナ放電によるマイナスイオンが発生し、マイナスイオンミストが発生するまではマイナスイオンの効果を有することができる。   In addition, during the time from when the discharge electrode is cooled until nanometer-sized negative ions are generated, the tip of the metal part of the discharge part 1a functions as a negative ionization needle, so negative ions are generated by corona discharge. However, the negative ion effect can be obtained until the negative ion mist is generated.

しかしながら、このように、放電部1aを先が尖った錐形状にすると、形成されたテーラーコーンTの先端に大きな電界が集中してナノメータサイズのマイナスイオンミストが生成されて空気中に飛び出した直後、錐形状をした放電部1aの最先端の尖った金属部分が露出して金属放電が生じる可能性があり、ナノメータサイズのマイナスイオンミストが安定して生成できないおそれがあるという新たな問題が生じることが判明した。   However, as described above, when the discharge part 1a is formed in a pointed cone shape, a large electric field is concentrated on the tip of the formed tailor cone T, and a nanometer-sized negative ion mist is generated and jumps out into the air. There is a possibility that a metal discharge may occur due to the exposed sharp metal portion of the cone-shaped discharge part 1a, and there is a new problem that nanometer-sized negative ion mist may not be stably generated. It has been found.

上記に示した金属放電は放電極を冷却してナノメータサイズのマイナスイオンが発生するまでと同様、放電部1aの最先端の尖った金属部分がマイナスイオン化針の役目を持つことでコロナ放電であり、マイナスイオンが発生している状態である。しかしながら、上記の状態はナノメータサイズのマイナスイオンミストの発生とコロナ放電によるマイナスイオンの発生を制御しているものではなく、本来の静電霧化装置の機能を発揮しているとは言えない。
特許第3260150号公報
The metal discharge shown above is a corona discharge because the tip of the metal part of the discharge part 1a functions as a negative ionization needle in the same manner as when the negative electrode is generated by cooling the discharge electrode. In this state, negative ions are generated. However, the above state does not control the generation of nanometer-sized negative ion mist and the generation of negative ions due to corona discharge, and it cannot be said that the function of the original electrostatic atomizer is exhibited.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、水の補給の手間が必要でないと共に素早くナノメータサイズのマイナスイオンミストを発生させることが可能で、また、装置のコンパクト化が図れ、また、放電極の先端部に生成した結露水を基にしてテーラーコーンを安定して形成できると共にマイナスイオンミストが発生している時の金属放電を抑制し、ナノメータサイズのマイナスイオンミストが安定して生成でき、また、放電極を冷却し始めてからナノメータサイズのマイナスイオンが発生するまでの時間にはコロナ放電によるマイナスイオンが発生すると共に、マイナスイオンミストが安定して発生している場合においても、任意にマイナスイオンの発生へと切換えることができる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and does not require the trouble of replenishing water, can quickly generate nanometer-sized negative ion mist, and can reduce the size of the apparatus. In addition, the tailor cone can be stably formed based on the dew condensation water generated at the tip of the discharge electrode, and metal discharge when negative ion mist is generated is suppressed. When negative ions are generated by corona discharge and negative ion mist is stably generated in the time from the start of cooling of the discharge electrode to the generation of nanometer-size negative ions. However, the problem is to provide an electrostatic atomizer capable of arbitrarily switching to the generation of negative ions. Is shall.

上記課題を解決するために本発明に係る静電霧化装置は、放電極1と、放電極1に空気中の水分を結露又は氷結させて水Wを供給する水供給手段3とを備え、放電極1に高電圧を印加することで上記水供給手段3により放電極1に供給された水Wを静電霧化させる静電霧化装置4であって、上記水供給手段3を、冷却部5と放熱部6とを有するペルチェユニット7の冷却部5に放電極1を設けて構成し、放電極1の先端部を曲面状に凸曲した凸曲面部8とし、該凸曲面部8上に微小突起8aを設けて成ることを特徴とするものである。   In order to solve the above problems, the electrostatic atomizer according to the present invention includes a discharge electrode 1 and water supply means 3 that supplies water W by dew condensation or icing moisture in the air to the discharge electrode 1. An electrostatic atomizer 4 that electrostatically atomizes water W supplied to the discharge electrode 1 by the water supply means 3 by applying a high voltage to the discharge electrode 1, wherein the water supply means 3 is cooled The discharge part 1 is provided in the cooling part 5 of the Peltier unit 7 having the part 5 and the heat radiating part 6, and the tip part of the discharge electrode 1 is formed into a convex curved part 8 that is curved to form a convex curved part 8. It is characterized in that a minute protrusion 8a is provided thereon.

このように放電極1の先端部において空気中の水分を結露又は氷結(以下結露の例で説明する)させて水Wを供給するので水Wを補給する必要がなく、しかも生成される水Wに不純物が含まれないので付着物除去の手間も必要でなく、加えて、放電極1に水Wが生成される構造であるから冷却を開始してから素早い時間でナノメータサイズのマイナスイオンミストMを生成することが可能となり、例えばヘアドライヤー等の短時間だけ使用する商品に備えるのにも適したものとなり、更に、静電霧化装置4に備える冷却手段としてペルチェユニット7を用いているので、コンパクトでありながら素早く且つ強力に放電極1を冷却して結露水Wを生成して水Wを自動供給できるものであり、更に、放電極1の先端部を曲面状に凸曲した凸曲面部8としてあるので、放電極1の先端部が平坦面の場合に比べて、テーラーコーンTを形成する場所が凸曲面部8の頂部に特定されて一定の決まった位置で安定してテーラーコーンTを形成することができ、また、凸曲面部8の頂部の水Wを通る電束密度が大きくなって放電極1の先端の凸曲面部8に生成した結露水Wを安定してテーラーコーンTとして形成でき、更に、放電極1の先端部が平坦面の場合に比べて、水の形状が同量の水の場合、凸曲形状をしているので、この点でもテーラーコーンTが安定して形成されることになり、更に、このように放電極1の先端部の形状をテーラーコーンTが安定して形成できるように形成したにもかかわらず、放電極1の先端部が曲面状に凸曲した凸曲面部8と凸曲面部8上に形成した微小突起8aであるため、テーラーコーンTが存在する場合には、テーラーコーンTに対して十分に小さい微小突起8aがテーラーコーンT内に包含され、テーラーコーンTの外にはエッジ部が無いため、形成されたテーラーコーンTの先端に大きな電界が集中してナノメータサイズのマイナスイオンミストMが生成されて空気中に飛び出した直後であっても先が尖った円錐状のもののように放電極1の錐形状の最先端の尖った金属部分が露出して金属放電が生じ易いという問題がなくて金属放電を抑制でき、これらの理由により本発明においては、ナノメータサイズのマイナスイオンミストMが安定して生成できるものである。   In this way, water in the air is condensed or frozen (hereinafter described in the example of condensation) at the tip of the discharge electrode 1 to supply the water W. Therefore, it is not necessary to replenish the water W, and the generated water W Since no impurities are contained in the electrode, there is no need to remove the deposits. In addition, since the structure is such that water W is generated at the discharge electrode 1, a nanometer-sized negative ion mist M can be obtained quickly after cooling is started. For example, it is suitable for a product that is used only for a short time such as a hair dryer, and further, since the Peltier unit 7 is used as a cooling means provided in the electrostatic atomizer 4. A compact curved surface in which the discharge electrode 1 can be cooled quickly and powerfully to generate condensed water W to automatically supply the water W, and the tip of the discharge electrode 1 is curved in a curved shape. Part Therefore, as compared with the case where the tip end portion of the discharge electrode 1 is a flat surface, the place where the tailor cone T is formed is specified at the top of the convex curved surface portion 8, and the tailor cone T is stably formed at a fixed position. In addition, the density of the electric flux passing through the water W at the top of the convex curved surface portion 8 is increased, and the condensed water W generated on the convex curved surface portion 8 at the tip of the discharge electrode 1 is stably used as the tailor cone T. Further, since the tip of the discharge electrode 1 has a convex shape when the amount of water is the same as that of the flat surface, the tailor cone T is also stable in this respect. In addition, even though the tip of the discharge electrode 1 is formed in such a manner that the tailor cone T can be formed stably, the tip of the discharge electrode 1 has a curved surface. Curved convex curved surface portion 8 and minute projection 8a formed on convex curved surface portion 8 Therefore, when the tailor cone T is present, a small protrusion 8a that is sufficiently small with respect to the tailor cone T is included in the tailor cone T, and there is no edge portion outside the tailor cone T. Even after a large electric field concentrates on the tip of the tailor cone T and a nanometer-sized negative ion mist M is generated and jumps out into the air, the cone shape of the discharge electrode 1 is similar to that of a pointed cone. A metal discharge can be suppressed without the problem that the metal portion is easily exposed due to the exposure of the cutting-edge metal part. For these reasons, in the present invention, a nanometer-sized negative ion mist M can be stably generated. It is.

また、放電極1を冷却し始めてからナノメータサイズのイオンミストが発生するまでの時間には、放電極1の先端の凸曲面部8上に微小突起8aが露出しているため、この微小突起8aによって金属放電が生じてコロナ放電によるマイナスイオンが発生する。   In addition, since the minute protrusion 8a is exposed on the convex curved surface portion 8 at the tip of the discharge electrode 1 during the time from when the discharge electrode 1 starts to cool until the nanometer-sized ion mist is generated, the minute protrusion 8a is exposed. Causes a metal discharge and generates negative ions due to corona discharge.

更に、マイナスイオンミストが安定して生成している場合においても、静電霧化装置4に備える冷却手段としてもペルチェユニット7への電源供給を断つことで、放電極1への水の供給が停止し、且つ放電極1は周囲の空気によって温められ、テーラーコーンTを形成していた結露水を消滅させてマイナスイオンの発生へと切換えたり、あるいは、ペルチェユニット7への電源の正負を逆転することで、放電極1が設けられたペルチェユニット7の冷却部5がペルチェの発熱側に転換するため、放電極1はペルチェの熱によって温められ、テーラーコーンTを形成していた結露水を消滅させてマイナスイオンの発生へと切換えることが可能であり、これらの理由により本発明においては、任意にマイナスイオンの発生へと切換えることができるものである。   Further, even when negative ion mist is stably generated, the supply of water to the discharge electrode 1 can be performed by cutting off the power supply to the Peltier unit 7 as a cooling means provided in the electrostatic atomizer 4. The discharge electrode 1 is heated by the surrounding air, and the condensed water forming the tailor cone T is extinguished to switch to the generation of negative ions, or the polarity of the power supply to the Peltier unit 7 is reversed. As a result, the cooling part 5 of the Peltier unit 7 provided with the discharge electrode 1 is converted to the heat generating side of the Peltier, so that the discharge electrode 1 is heated by the heat of the Peltier and the condensed water that has formed the tailor cone T is removed. It is possible to switch to generation of negative ions by annihilation, and for these reasons, in the present invention, it is possible to arbitrarily switch to generation of negative ions. It is intended.

また、放電極1を、主体部9と、主体部9の先端に設けられる凸曲面部8と凸曲面部8上の微小突起8aよりなる放電部1aとで構成し、主体部9と放電部1aとの境界部分の外面に凹部又は凸部又は凹凸部を設けることが好ましい。   Further, the discharge electrode 1 is composed of a main body portion 9, and a discharge portion 1 a including a convex curved surface portion 8 provided at the tip of the main body portion 9 and a minute protrusion 8 a on the convex curved surface portion 8, and the main body portion 9 and the discharge portion. It is preferable to provide a recessed part, a convex part, or an uneven | corrugated | grooved part in the outer surface of the boundary part with 1a.

このような構成とすることで、主体部9と放電部1aである凸曲面部8との境界部分の外面に形成した凹部10又は凸部又は凹凸部が障害となって、放電極1の主体部9で生成された結露水Wが凸曲面部8部分で生成された結露水Wに吸収され難く、凸曲面部8においてテーラーコーンTを形成するための結露水Wが過剰となることがなく、凸曲面部8で生成された結露水WだけでテーラーコーンTが形成されることになって、一定の大きさ、形状のテーラーコーンTが安定して形成されることになり、粒径がより小さいナノメータサイズのマイナスイオンミストMが安定して生成できるものである。   By adopting such a configuration, the concave portion 10 or the convex portion or the concave portion formed on the outer surface of the boundary portion between the main body portion 9 and the convex curved surface portion 8 that is the discharge portion 1a becomes an obstacle, and the main body of the discharge electrode 1 The condensed water W generated in the portion 9 is not easily absorbed by the condensed water W generated in the convex curved surface portion 8, and the condensed water W for forming the tailor cone T in the convex curved surface portion 8 is not excessive. The tailor cone T is formed only by the dew condensation water W generated by the convex curved surface portion 8, and the tailor cone T having a certain size and shape is stably formed. Smaller nanometer-sized negative ion mist M can be stably generated.

また、放電極1を、柱状をした主体部9と、主体部9の先端部に設けられる凸曲面部8と凸曲面部8上の微小突起8aよりなる放電部1aとで構成し、主体部9の側面部と凸曲面部8との境界が弧状に面取りした面取り部11となっていることが好ましい。   Further, the discharge electrode 1 includes a columnar main body 9, and a discharge portion 1 a including a convex curved surface portion 8 provided at a tip portion of the main body portion 9 and a minute protrusion 8 a on the convex curved surface portion 8. It is preferable that the boundary between the side surface portion 9 and the convex curved surface portion 8 is a chamfered portion 11 that is chamfered in an arc shape.

このような構成とすることで、柱状の材料の先端部を曲面状に凸曲するように加工するだけで、放電極1を形成できて、放電極1の形成が簡単にでき、しかも、主体部9の側面部と凸曲面部8との境界が弧状に面取りした面取り部11となっているので、上面の微小突起8aを除いて凸曲面部8自体にエッジが存在しないだけでなく、主体部9の側面部と凸曲面部8との境界にもエッジが存在せず、よりいっそう金属放電を抑制して、ナノメータサイズのマイナスイオンミストMを安定して生成できるものである。   With such a configuration, the discharge electrode 1 can be formed simply by processing the tip of the columnar material so as to bend into a curved surface, and the discharge electrode 1 can be formed easily. Since the boundary between the side surface portion of the portion 9 and the convex curved surface portion 8 is a chamfered portion 11 that is chamfered in an arc shape, the convex curved surface portion 8 itself does not have an edge except for the fine projection 8a on the upper surface, There is no edge at the boundary between the side surface portion of the portion 9 and the convex curved surface portion 8, and the metal discharge is further suppressed, and the nanometer-sized negative ion mist M can be stably generated.

また、放電極1の先端部に設ける微小突起8aは放電極1の凸曲面部8上に放電極1を形成する際に同一材料で形成してもよいが、微小突起8aを放電極1と別の材料で形成してもよい。   Further, the minute protrusion 8 a provided at the tip of the discharge electrode 1 may be formed of the same material when the discharge electrode 1 is formed on the convex curved surface portion 8 of the discharge electrode 1. You may form with another material.

このように、微小突起8aを放電極1と別部材で形成した場合には、例えば、微小突起8aを放電極1の材料よりも耐食性の良い材料で形成するとコロナ放電によるマイナスイオン発生での微小突起8aの消耗度を軽減することができ、意図的にマイナスイオンを発生する割合を多くする場合や、使用環境がきわめて乾燥していて放電極1が結露し始めるまでに時間がかかるといった場合には特に有効である。   Thus, when the microprotrusions 8a are formed of a member separate from the discharge electrode 1, for example, if the microprotrusions 8a are formed of a material having better corrosion resistance than the material of the discharge electrodes 1, the microprotrusions caused by the generation of negative ions due to corona discharge are reduced. When the degree of consumption of the projection 8a can be reduced and the rate of negative ions is intentionally increased, or when the use environment is extremely dry and it takes time until the discharge electrode 1 starts to condense. Is particularly effective.

また、凸曲面部8上に設ける微小突起8aの形状は先端の尖った円錐状がコロナ放電させるには最も好ましいが、微小形状なので、先端エッジ部を形成せず、円錐台形状や円柱形状でもよく、あるいは、微小突起8aの先端を曲面状に凸曲した微小凸曲面としてもよい。   The shape of the minute projection 8a provided on the convex curved surface 8 is most preferably a conical shape with a sharp tip, but since it is a minute shape, the tip edge portion is not formed, and a truncated cone shape or a cylindrical shape is also possible. Alternatively, a minute convex curved surface in which the tip of the minute projection 8a is curved in a curved shape may be used.

本発明は、使用者に水補給の手間や付着物除去の手間を強いることなく使用でき、また、素早くナノメータサイズのマイナスイオンミストを発生させることが可能で且つコンパクト化が図れ、しかも、結露水を所定の位置で安定してテーラーコーンに形成できると共に、金属放電を抑制してナノメータサイズのマイナスイオンミストが安定して生成でき、また、放電極を冷却し始めてからナノメータサイズのマイナスイオンミストが発生するまでの時間にはコロナ放電によるマイナスイオンが発生すると共に、マイナスイオンミストが安定して生成している場合においても、任意にマイナスイオンの発生へと切換えることができる静電霧化装置を提供できるという利点がある。   The present invention can be used without requiring the user to replenish water and remove deposits, can quickly generate nanometer-sized negative ion mist, and can be made compact. Can be stably formed into a tailor cone at a predetermined position, and a metal ion can be suppressed to stably generate a nanometer-size negative ion mist. Also, after the discharge electrode starts to cool, the nanometer-size negative ion mist is generated. An electrostatic atomizer that can be arbitrarily switched to generation of negative ions even when negative ions are generated by corona discharge in the time until generation and negative ion mist is stably generated. There is an advantage that it can be provided.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

本発明の静電霧化装置4は、冷却部5と放熱部6とを有するペルチェユニット7を用いたもので、ペルチェユニット7の冷却部5側に放電極1を接続して放電極1自体を冷却自在としている。図1に示す実施形態では、ペルチェユニット7に連結させてある支持枠12の先端に対向電極2を支持させることで、放電極1と対向電極2とを所定の間隔を隔てて互いに対向する位置に固定させている。   The electrostatic atomizer 4 of the present invention uses a Peltier unit 7 having a cooling part 5 and a heat radiating part 6, and connects the discharge electrode 1 to the cooling part 5 side of the Peltier unit 7 to discharge the discharge electrode 1 itself. Is free to cool. In the embodiment shown in FIG. 1, the discharge electrode 1 and the counter electrode 2 are opposed to each other at a predetermined interval by supporting the counter electrode 2 on the tip of the support frame 12 connected to the Peltier unit 7. It is fixed to.

上記ペルチェユニット7は、熱伝導性の高いアルミナや窒化アルミニウムからなる絶縁板13の片面側に回路14を形成してある一対のペルチェ回路板15を、互いの回路14が向き合うように対向させ、多数列設してあるBiTe系の熱電素子16を両ペルチェ回路板15間で挟持すると共に隣接する熱電素子16同士を両側の回路14で電気的に接続させ、ペルチェ入力リード線17を介してなされる熱電素子16への通電により一方のペルチェ回路板15側から他方のペルチェ回路板15側に向けて熱が移動するように設けたものである。更に、上記一方の側(以下、冷却側という)のペルチェ回路板15の外側にはアルミナや窒化アルミニウム等からなる高熱伝導性及び高耐電性の高い冷却用絶縁板18を接続してあり、また、上記他方の側(以下、放熱側という)のペルチェ回路板15の外側にはアルミナや窒化アルミニウム等からなる高熱伝導性の放熱板19を接続してある。なお、上記ペルチェ回路板15としてはエポキシ樹脂やポリイミド樹脂からなる絶縁板に回路14を形成したものであってもよいし、これらの樹脂に熱伝導性の高いフィラーを含有させたものであってもよい。   The Peltier unit 7 has a pair of Peltier circuit boards 15 having a circuit 14 formed on one side of an insulating plate 13 made of alumina or aluminum nitride having high thermal conductivity, facing each other so that the circuits 14 face each other, BiTe-based thermoelectric elements 16 arranged in a large number of rows are sandwiched between the two Peltier circuit boards 15 and adjacent thermoelectric elements 16 are electrically connected by the circuits 14 on both sides, and are made via a Peltier input lead wire 17. The heat is transferred from one Peltier circuit board 15 side to the other Peltier circuit board 15 side by energizing the thermoelectric element 16. Further, a cooling insulating plate 18 made of alumina, aluminum nitride or the like having high thermal conductivity and high electric resistance is connected to the outside of the Peltier circuit board 15 on one side (hereinafter referred to as cooling side), and A high heat conductive heat dissipating plate 19 made of alumina, aluminum nitride or the like is connected to the outside of the Peltier circuit board 15 on the other side (hereinafter referred to as the heat dissipating side). The Peltier circuit board 15 may be one in which the circuit 14 is formed on an insulating plate made of an epoxy resin or a polyimide resin, or these resins contain a filler having high thermal conductivity. Also good.

本例においては、冷却側のペルチェ回路板15の絶縁板13と冷却用絶縁板18とで冷却部5を形成し、放熱側のペルチェ回路板15の絶縁板13と放熱板19とで放熱部6を形成するものであり、熱電素子16を介して冷却部5側から放熱部6側へと熱が移動するようになっている。なお、放熱板19の代りに放熱フィンを備えて放熱部6を形成してもかまわない。   In this example, the cooling portion 5 is formed by the insulating plate 13 and the cooling insulating plate 18 of the cooling side Peltier circuit board 15, and the heat dissipation portion is formed by the insulating plate 13 and the heat dissipation plate 19 of the heat dissipation side Peltier circuit board 15. 6, and heat is transferred from the cooling unit 5 side to the heat radiating unit 6 side through the thermoelectric element 16. Instead of the heat radiating plate 19, a heat radiating fin may be provided to form the heat radiating portion 6.

上記支持枠12は、PBT樹脂やポリカーボネート樹脂やPPS樹脂等の絶縁材料を用いて両端の貫通した筒状に形成したものであり、一端側の開口部の外周縁にはその全周に亘って連結用のフランジ部22を突設するとともに、他端側の開口部(以下、これをミスト吐出口23という)にはインサート成形等により一体成形したリング状の対向電極2を位置させている。上記フランジ部22には周方向に等間隔を隔てて複数のねじ孔24を貫設しており、該ねじ孔24を介してフランジ部22を放熱板19の周縁部にねじ20でねじ止めすることで支持枠12をペルチェユニット7に連結させている。連結手段としては上記ねじ止めに限定されず、例えば、支持枠12をペルチェユニット7に加圧しながら両者を接着してもよい。支持枠12の内周面からはその内部空間を放電空間S1と封止空間S2とに二分割するための隔壁25を延設しており、この隔壁25の中央には両空間S1、S2を連通させる連通孔26が設けてある。   The support frame 12 is formed in a cylindrical shape penetrating both ends using an insulating material such as PBT resin, polycarbonate resin, or PPS resin, and the outer peripheral edge of the opening on one end extends over the entire circumference. A flange portion 22 for connection is provided in a protruding manner, and a ring-shaped counter electrode 2 integrally formed by insert molding or the like is positioned in an opening at the other end (hereinafter referred to as a mist discharge port 23). The flange portion 22 is provided with a plurality of screw holes 24 at equal intervals in the circumferential direction, and the flange portion 22 is screwed to the peripheral edge portion of the heat radiating plate 19 with screws 20 through the screw holes 24. Thus, the support frame 12 is connected to the Peltier unit 7. The connecting means is not limited to the above-described screwing, and for example, both may be bonded while pressing the support frame 12 against the Peltier unit 7. A partition wall 25 for dividing the inner space into a discharge space S1 and a sealing space S2 extends from the inner peripheral surface of the support frame 12, and both spaces S1 and S2 are formed at the center of the partition wall 25. A communication hole 26 for communication is provided.

なお、上記のように支持枠12に対向電極2を固定するのではなく、支持枠12の放電極1と対向する箇所に導電性膜を被覆することで対向電極2を形成するようにしてもよい。   Instead of fixing the counter electrode 2 to the support frame 12 as described above, the counter electrode 2 may be formed by covering the portion of the support frame 12 facing the discharge electrode 1 with a conductive film. Good.

上記放電極1は、アルミニウムや銅、タングステン、チタン、ステンレス等の熱伝導性及び導電性の高い材料を用いて形成してあり、この放電極1は主体部9と主体部9の先端部に形成された放電部1aとで構成してあり、本発明においては、主体部9の先端に設けた放電部1aを、主体部9の軸心の延長方向に曲面状に凸曲した凸曲面部8を形成すると共に該凸曲面部8の上端(上記主体部9の軸心の延長方向)に微小突起8aを形成することで構成したことに特徴がある。この主体部9の先端部に形成される放電部1aとなる凸曲面部8は微小突起8aを除いてエッジが無く且つ中央部(つまり微小突起8aを突出した部分)が外周部に比べて突出するように曲面状に凸曲したもので、例えば、図2(a)、図2(b)、図2(e)のような半球形状、あるいは、図2(c)、図2(d)のような球形状、あるいは、図2(f)乃至図2(i)のように微小突起8aを除いて丸みをもった山型形状(ここで、図2(f)、図2(h)のものは主体部9の軸心が主体部9と放電部1aとの境界と交わる点をOとした場合、該点Oから放電部1aである凸曲面部8の頂部までの寸法をm1、点Oから主体部9の軸心が主体部9と放電部1aとの境界の外面までの寸法をm2とした場合、m1>m2となっている例であり、また、図2(g)、図2(i)のものはm1<m2の例である)等が例示できるが、もちろん、上記例にのみ限定されず、凸曲面部8としては、中央部が外周部に比べて突出するように曲面状に凸曲した頂部となったものであれば他の形状をしていてもよいものである。   The discharge electrode 1 is formed using a material having high thermal conductivity and conductivity such as aluminum, copper, tungsten, titanium, and stainless steel. The discharge electrode 1 is formed on the main body 9 and the tip of the main body 9. In the present invention, the discharge portion 1a provided at the tip of the main body portion 9 is curved in a curved shape in the extending direction of the axis of the main body portion 9 in the present invention. 8 and the projection 8a is formed on the upper end of the convex curved surface 8 (in the extending direction of the axis of the main body 9). The convex curved surface portion 8 serving as the discharge portion 1a formed at the front end portion of the main body portion 9 has no edge except for the minute protrusion 8a, and the central portion (that is, the portion protruding the minute protrusion 8a) protrudes compared to the outer peripheral portion. For example, a hemispherical shape as shown in FIGS. 2A, 2B, and 2E, or FIGS. 2C and 2D. Or a mountain shape having a round shape except for the minute protrusions 8a as shown in FIGS. 2 (f) to 2 (i) (here, FIG. 2 (f), FIG. 2 (h)). When the point where the axis of the main body 9 intersects the boundary between the main body 9 and the discharge part 1a is defined as O, the dimension from the point O to the top of the convex curved surface part 8 which is the discharge part 1a is m1, In this example, m1> m2 when the dimension from the point O to the outer surface of the boundary between the main body 9 and the discharge part 1a is the axis of the main body 9 is m2. 2 (g) and FIG. 2 (i) are examples of m1 <m2.) Of course, the invention is not limited to the above example. As long as the top is curved in a curved shape so as to protrude from the outer peripheral portion, it may have another shape.

なお、上記のいずれの形状の放電部1aにおいても、放電極1が冷却されて凸曲面部8の表面に生成した水(結露水)Wが微小突起8aを覆い隠すまでは、この微小突起8aからコロナ放電が生じてマイナスイオンが発生する。   In any of the above-described discharge portions 1a, the microprojections 8a until the discharge electrode 1 is cooled and the water (condensation water) W generated on the surface of the convex curved portions 8 covers the microprojections 8a. Corona discharge occurs and negative ions are generated.

この微小突起8aの形状は図3(a)のような理想的には先が尖った錐形状が望ましい。また、上記いずれの形状の放電部1においても、微小突起8aは凸曲面部8にくらべて小さい突起でなければならないと共に、形成されるテーラーコーンTに対しても十分に小さくなければならない。形成されるテーラーコーンTの大きさは凸曲面部8の大きさに概ね比例傾向にあるため、微小突起8aの突起高さは凸曲面部8の半径(図2(f)に示したm2)の5分の1程度が適当である。また、先端の尖り角は従来のマイナスイオン発生器に用いているマイナスイオン化針と同様鋭利な方が望ましいが、元々微小突起8a自体が小さいものであるため、特に制約する必要はなく、加工性を優先して60°±30°程度でよい。更に、先端のエッジのとんがり度合いも図3(a)のような加工は現実的ではなく、図3(b)のように先端部が平らな円錐台形状や、図3(c)のような円柱形状、更に、図3(d)のように先端が曲面状に凸曲した(つまり先端R状をした)微小凸曲面とするのが現実的であり、いずれの形状であってもよい。   The shape of the minute protrusion 8a is ideally a cone shape with a sharp point as shown in FIG. Moreover, in any shape of the discharge part 1, the minute protrusion 8 a must be a small protrusion compared to the convex curved surface part 8, and must be sufficiently small with respect to the tailor cone T to be formed. Since the size of the tailor cone T to be formed tends to be approximately proportional to the size of the convex curved surface portion 8, the projection height of the minute projection 8a is the radius of the convex curved surface portion 8 (m2 shown in FIG. 2 (f)). About one fifth of the above is appropriate. Further, the sharpness of the tip is preferably sharp like the negative ionization needle used in the conventional negative ion generator. However, since the microprotrusions 8a are originally small, there is no need to restrict them and the workability is improved. Is preferred to be about 60 ° ± 30 °. Further, the degree of sharpness of the edge of the tip is not realistic as shown in FIG. 3 (a), and the tip is flat as shown in FIG. 3 (b), or as shown in FIG. 3 (c). It is practical to use a cylindrical shape, and a minute convex curved surface having a curved tip (that is, a tip R shape) as shown in FIG. 3D, and any shape may be used.

また、主体部9は柱状(例えば、円柱)をしており、主体部9の下端部には主体部9よりも大径の被挟持部9aが設けてある。   The main body 9 has a columnar shape (for example, a cylinder), and a clamped portion 9 a having a diameter larger than that of the main body 9 is provided at the lower end of the main body 9.

また、図2(a)乃至(d)、(f)、(g)に示す実施形態においては、柱状をした主体部9と放電部1aとの境界部分の外面に凹部10が設けた例である。   In the embodiment shown in FIGS. 2A to 2D, FIG. 2F, and FIG. 2G, the recess 10 is provided on the outer surface of the boundary portion between the columnar main body 9 and the discharge portion 1a. is there.

上記のような構成の放電極1はペルチェユニット7の冷却部5に設けられるのであるが、添付図面に示す実施形態においては、支持枠12をペルチェユニット7に連結する際に、上記放電極1の主体部9を支持枠12に設けた隔壁25の連通孔26に嵌め込んで放電部1a側を空間S1内に位置させ、被挟持部9a側を封止空間S2内に位置させることで、支持枠12の隔壁25が放電極1の被挟持部9aとペルチェユニット7の冷却用絶縁板18とを挟み込むものであり、この挟み込みによって放電極1がペルチェユニット7の冷却部5側に押圧されて接続状態となる。また、図中27は封止部材であって、ペルチェユニット7内部を封止している。   The discharge electrode 1 having the above-described configuration is provided in the cooling unit 5 of the Peltier unit 7. However, in the embodiment shown in the accompanying drawings, the discharge electrode 1 is used when the support frame 12 is connected to the Peltier unit 7. The main body portion 9 is fitted into the communication hole 26 of the partition wall 25 provided in the support frame 12, the discharge portion 1a side is positioned in the space S1, and the sandwiched portion 9a side is positioned in the sealing space S2. The partition wall 25 of the support frame 12 sandwiches the sandwiched portion 9a of the discharge electrode 1 and the cooling insulating plate 18 of the Peltier unit 7, and the discharge electrode 1 is pressed toward the cooling unit 5 side of the Peltier unit 7 by this sandwiching. Connected. In the figure, reference numeral 27 denotes a sealing member that seals the inside of the Peltier unit 7.

支持枠12の放電空間S1側の側周壁には図1に示すように複数の通風口28が形成してあって、放電空間S1は対向電極2の固定されているミスト吐出口23と通風口28とを介して外部空間と連通する状態となっている。   As shown in FIG. 1, a plurality of ventilation holes 28 are formed on the side peripheral wall of the support frame 12 on the discharge space S <b> 1 side, and the discharge space S <b> 1 has a mist outlet 23 and a ventilation hole to which the counter electrode 2 is fixed. 28 is in communication with the external space.

図中29は、支持枠12の放電空間S1内において一端側が放電極1に接続されるとともに他端側が支持枠12外に引き出されて高電圧印加部30に接続されるように金属又は導電性プラスチックを用いて形成した高圧リード線であり、この高圧リード線29を介して放電極1と電気的に接続された高電圧印加部30を更に対向電極2と電気的に接続させることで放電極1と対向電極2との間に高電圧を印加するようになっている。   In the figure, reference numeral 29 denotes a metal or conductive material such that one end side is connected to the discharge electrode 1 in the discharge space S1 of the support frame 12 and the other end is drawn out of the support frame 12 and connected to the high voltage application unit 30. A high-voltage lead wire formed using plastic, and the high-voltage applying unit 30 electrically connected to the discharge electrode 1 through the high-voltage lead wire 29 is further electrically connected to the counter electrode 2 to thereby release the discharge electrode. A high voltage is applied between 1 and the counter electrode 2.

しかして、上記構成の静電霧化装置4において、熱電素子16に対してペルチェ入力リード線17を介して通電を行うと、各熱電素子16内において同一方向への熱の移動が生じ、この熱移動の冷却側に接続される冷却部5を介して放電極1が冷却され、放電極1の周囲の空気が冷却されることで、空気中の水分が結露して液化されて放電極1の表面に水(結露水)Wが生成されるものである。そして、放電極1の先端部の放電部1aに水Wが生成され且つ保持された状態で、高電圧印加部30により放電極1の放電部1a側がマイナス電極となって電荷が集中するように該放電極1と対向電極2との間に高電圧を印加すると、放電極1と対向電極2との間にかけられた高電圧により放電極1の先端部の放電部1aに供給された水Wと対向電極2との間にクーロン力が働いて、水Wの液面が局所的に錐状に盛り上がり(テーラーコーンT)が形成される。このようにテーラーコーンTが形成されると、該テーラーコーンTの先端に電荷が集中してこの部分における電界強度が大きくなって、これによりこの部分に生じるクーロン力が大きくなり、更にテーラーコーンTを成長させる。このようにテーラーコーンTが成長し該テーラーコーンTの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受け、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してナノメータサイズのマイナスイオンミストMを大量に生成させる。   Therefore, in the electrostatic atomizer 4 having the above-described configuration, when the thermoelectric elements 16 are energized via the Peltier input lead wires 17, heat is transferred in the same direction in each thermoelectric element 16. The discharge electrode 1 is cooled via the cooling unit 5 connected to the cooling side of the heat transfer, and the air around the discharge electrode 1 is cooled, so that moisture in the air is condensed and liquefied, and the discharge electrode 1. Water (condensation water) W is generated on the surface of the surface. Then, in a state where water W is generated and held in the discharge part 1a at the tip part of the discharge electrode 1, the high voltage application part 30 causes the discharge part 1a side of the discharge electrode 1 to be a negative electrode so that charges are concentrated. When a high voltage is applied between the discharge electrode 1 and the counter electrode 2, the water W supplied to the discharge part 1 a at the tip of the discharge electrode 1 by the high voltage applied between the discharge electrode 1 and the counter electrode 2. And the counter electrode 2 cause a Coulomb force to locally swell the liquid surface of the water W (tailor cone T). When the tailor cone T is formed in this way, electric charges concentrate on the tip of the tailor cone T and the electric field strength in this portion increases, thereby increasing the Coulomb force generated in this portion. Grow. When the tailor cone T grows in this way and the charge concentrates on the tip of the tailor cone T and the charge density becomes high, the water at the tip of the tailor cone has a large energy (the repulsive force of the charge that has become dense). ), And repeats splitting and scattering (Rayleigh splitting) exceeding the surface tension to generate a large amount of nanometer-sized negative ion mist M.

ナノメータサイズのマイナスイオンミストMは放電極1と対向する対向電極2に向けて移動し、ミスト吐出口23内に固定される対向電極2の中央孔を通過して静電霧化装置4の外部へと放出される。   The nanometer-sized negative ion mist M moves toward the counter electrode 2 facing the discharge electrode 1, passes through the central hole of the counter electrode 2 fixed in the mist discharge port 23, and is external to the electrostatic atomizer 4. Is released.

ここで、支持枠12の放電空間S1内の放電極1の周囲には通風口28を介して常に新たな外気が導入され、したがって放電極1部分には安定的に水Wが生成される。   Here, fresh outside air is always introduced to the periphery of the discharge electrode 1 in the discharge space S1 of the support frame 12 through the vent hole 28, and thus water W is stably generated in the discharge electrode 1 portion.

上記のように、放電極1の先端部の放電部1aに結露して生成された水Wがクーロン力によりテーラーコーンT形状として成長して、テーラーコーンTの先端に電荷が集中して高密度化され、高密度された電荷の反発力による水の分裂・飛散(レイリー分裂)を繰り返して静電霧化を行い、ナノメータサイズのマイナスイオンミストMを生成させるのであるが、本発明においては、前述のように、放電極1の先端部の放電部1aが曲面状に凸曲した凸曲面部8により構成してあるので、凸曲面部8に生成した水Wが上記クーロン力により図4や図5の実線で示すように凸曲面部8の頂部の延長方向に盛り上がるように(つまり形成されるテーラーコーンTの先端が凸曲面部8の頂部の延長方向となるように)テーラーコーンTが形成されることになり、放電極1の先端部が平坦面の場合に比べて、テーラーコーンTを形成する場所が凸曲面部8の頂部に特定されて一定の決まった位置で安定してテーラーコーンTを形成することができることになる。   As described above, the water W generated by condensation on the discharge part 1a at the tip of the discharge electrode 1 grows as a tailor cone T shape due to the Coulomb force, and the charge concentrates on the tip of the tailor cone T to increase the density. In the present invention, a negative ion mist M having a nanometer size is generated by repeatedly atomizing and scattering water (Reilly splitting) due to the repulsive force of high-density electric charges and performing electrostatic atomization. As described above, since the discharge part 1a at the tip of the discharge electrode 1 is configured by the convex curved surface part 8 that is curved in a curved surface shape, the water W generated on the convex curved surface part 8 is caused by FIG. As shown by the solid line in FIG. 5, the tailor cone T is formed so as to rise in the extending direction of the top of the convex curved surface portion 8 (that is, the tip of the tailor cone T formed is in the extending direction of the top of the convex curved surface portion 8). Formed Compared to the case where the tip of the discharge electrode 1 is a flat surface, the place where the tailor cone T is formed is specified at the top of the convex curved surface portion 8 and the tailor cone T is stably formed at a fixed position. Will be able to.

また、中央部が周囲に対して突出するように凸曲した凸曲面部8により構成された放電部1aは、放電極1と対向電極2との間に高電圧を印加すると凸曲面部8の頂部の水Wを通る電束密度が他の部分に比べて最も大きく、このため、放電極1の先端の凸曲面部8に生成した結露水Wが凸曲面部8の頂部において頂部の延長線上に盛り上がるような安定したテーラーコーンTとして形成できるものであり、また、水WがテーラーコーンTとして形成される場所である放電極1の先端部自体が凸曲形状であるため、テーラーコーンTを平坦面において形成する場合に比べ、凸曲面部8にテーラーコーンTを形成するものであるから、テーラーコーンTを形成する水の形状が同量の水の場合、凸曲形状をしているので、この点でも放電極1の先端の凸曲面部8に生成した結露水Wが凸曲面部8の頂部において頂部の延長線上に盛り上がるような安定したテーラーコーンTとして形成できるものである。   Moreover, the discharge part 1a comprised by the convex-curved surface part 8 curved so that the center part may protrude with respect to the circumference | surroundings, when a high voltage is applied between the discharge electrode 1 and the opposing electrode 2, The density of the electric flux passing through the water W at the top is the highest compared to the other parts. Therefore, the condensed water W generated on the convex curved surface 8 at the tip of the discharge electrode 1 is on the extended line of the top at the top of the convex curved surface 8. Since the tip of the discharge electrode 1 where the water W is formed as the tailor cone T has a convex shape, the tailor cone T can be formed as a stable tailor cone T. Since the tailor cone T is formed on the convex curved surface portion 8 as compared with the case where it is formed on a flat surface, when the shape of the water forming the tailor cone T is the same amount of water, the shape is convex. Also at this point, the tip of the discharge electrode 1 Those capable of forming a stable Taylor cone T as swollen on the extension of the top in the condensed water W generated on the convex surface portion 8 is the top of the convex curved surface portion 8.

しかも、上記のように放電極1の先端部の放電部1aの一定の位置にテーラーコーンTが安定して形成できるように放電部1aの形状を中央部が周囲に比べて突出するように凸となるように形成したと言えども、既に述べたように、放電部1aを曲面状に凸曲した凸曲面部8により構成してあるので、凸曲面部8の頂部には微小突起8aを除いてエッジ部分が無く、このため凸曲面部8の表面に水(結露水)Wが生成されて微小突起8aを覆うと、形成されたテーラーコーンの先端に電荷が集中してナノメータサイズのマイナスイオンミストMが生成されて空気中に飛び出した直後であっても、放電極1の放電部1aが図7のように先が尖った錐形状の場合のように錐形状の最先端の尖った金属部分が露出して金属放電を起こすというようなことがなく、このように金属放電を抑制できるので、安定してナノメータサイズのマイナスイオンミストMを生成することができる。   In addition, as described above, the shape of the discharge part 1a is projected so that the center part protrudes from the periphery so that the tailor cone T can be stably formed at a fixed position of the discharge part 1a at the tip part of the discharge electrode 1. Although the discharge portion 1a is formed by the convex curved surface portion 8 that is curved in a curved shape as described above, the minute projection 8a is excluded from the top of the convex curved surface portion 8. Therefore, when water (condensation water) W is generated on the surface of the convex curved surface portion 8 and covers the minute projections 8a, electric charges are concentrated on the tip of the formed tailor cone, resulting in nanometer-sized negative ions. Even immediately after mist M is generated and jumps out into the air, the discharge part 1a of the discharge electrode 1 has a conical shape with a sharp tip as shown in FIG. The part is exposed and causes metal discharge. DOO no, it is possible to suppress such a metal discharge can be stably generated negative ions mist M of nanometer size.

ところで、放電極1が冷却されると、凸曲面部8の表面に水(結露水)Wが生成されるだけでなく、図5の一点鎖線に示すように、主体部9の側面においても水(結露水)W1が生成される。そして、凸曲面部8の表面において生成された結露水Wが上記のようにクーロン力によりテーラーコーンTとして形成される際、主体部9と凸曲面部8との境界部分で、主体部9の側面に生成された結露水W1が凸曲面部8の表面に生成された結露水Wに接触して図5の矢印のように凸曲面部8側に生成された結露水Wに吸収されて上記クーロン力により図5の一点鎖線で示すような大きなテーラーコーンT1を形成することがある。   By the way, when the discharge electrode 1 is cooled, not only water (condensation water) W is generated on the surface of the convex curved surface portion 8, but also water on the side surface of the main body portion 9 as shown by a one-dot chain line in FIG. (Condensed water) W1 is generated. And when the dew condensation water W produced | generated on the surface of the convex-curved surface part 8 is formed as the tailor cone T by the Coulomb force as mentioned above, in the boundary part of the main-body part 9 and the convex-curved surface part 8, The condensed water W1 generated on the side surface contacts the condensed water W generated on the surface of the convex curved surface portion 8, and is absorbed by the condensed water W generated on the convex curved surface portion 8 side as indicated by an arrow in FIG. A large tailor cone T1 as shown by a one-dot chain line in FIG. 5 may be formed by the Coulomb force.

ここで、凸曲面部8の表面に生成された結露水Wだけで図4や図5の実線のようにテーラーコーンTが形成されてレイリー分裂により無数のナノメータサイズのマイナスイオンミストMを生成する場合と、図5の一点鎖線に示すように主体部9の側面に生成された結露水W1が凸曲面部8の表面に生成された結露水Wに接触して凸曲面部8側に生成された結露水Wに吸収され大きなテーラーコーンT1を形成する場合とがある。その結果、対向電極2と実質的な放電部となるテーラーコーンT1の先端との距離が短くなるため、放電状態が変化する。上述のような現象が頻繁に発生すると放電状態が不安定となる。   Here, a tailor cone T is formed only by the dew condensation water W generated on the surface of the convex curved surface portion 8 as shown by the solid lines in FIGS. 4 and 5, and innumerable nanometer-sized negative ion mist M is generated by Rayleigh splitting. As shown in FIG. 5, the dew condensation water W <b> 1 generated on the side surface of the main body portion 9 comes into contact with the dew condensation water W generated on the surface of the convex curved surface portion 8 and is generated on the convex curved surface portion 8 side. In some cases, the condensed water W is absorbed to form a large tailor cone T1. As a result, since the distance between the counter electrode 2 and the tip of the tailor cone T1 that is a substantial discharge portion is shortened, the discharge state changes. When the above phenomenon occurs frequently, the discharge state becomes unstable.

この点に着目し、図2(a)乃至(d)、(f)、(g)に示す実施形態のものは放電部1aである凸曲面部8に生成された結露水WのみでテーラーコーンTを形成して、主体部9の側面に生成された結露水Wが凸曲面部8に生成された結露水W側に吸収されて結露水W過剰による大きなテーラーコーンTを形成することがないように、放電極1の主体部9と、凸曲面部8よりなる放電部1aとの境界部分の外面に凹部10を設けてある。このように境界部分に凹部10を設けると、この境界部分の外面に形成した凹部10が障害となって、放電極1の主体部9の側面に生成された結露水Wが、放電部1aである凸曲面部8の表面に生成された結露水Wに吸収され難くなり、この結果、上記のように放電極1の主体部9と、放電部1aを構成する凸曲面部8との境界部分の外面に凹部10を設けた実施形態のものは、放電部1aである凸曲面部8に生成された結露水Wのみで図4に示すように安定した形状のテーラーコーンTを形成することができ、放電状態を安定に保つことができる。   Focusing on this point, the embodiment shown in FIGS. 2A to 2D, FIG. 2F, and FIG. 2G is a tailor cone with only the condensed water W generated on the convex curved surface portion 8 which is the discharge portion 1a. T is formed, and the condensed water W generated on the side surface of the main body portion 9 is not absorbed by the condensed water W generated on the convex curved surface portion 8 to form a large tailor cone T due to excessive condensed water W. As described above, the concave portion 10 is provided on the outer surface of the boundary portion between the main body portion 9 of the discharge electrode 1 and the discharge portion 1 a including the convex curved surface portion 8. Thus, when the recessed part 10 is provided in a boundary part, the recessed part 10 formed in the outer surface of this boundary part becomes an obstacle, and the dew condensation water W produced | generated on the side surface of the main part 9 of the discharge electrode 1 is the discharge part 1a. As a result, the boundary portion between the main body portion 9 of the discharge electrode 1 and the convex curved surface portion 8 constituting the discharge portion 1a becomes difficult to be absorbed by the condensed water W generated on the surface of the certain convex curved surface portion 8. In the embodiment in which the concave portion 10 is provided on the outer surface, the tailor cone T having a stable shape as shown in FIG. 4 can be formed only by the dew condensation water W generated on the convex curved surface portion 8 which is the discharge portion 1a. And the discharge state can be kept stable.

上記実施形態においては、放電極1の主体部9と、凸曲面部8よりなる放電部1aとの境界部分の外面に凹部10を設けた例を示したが、凹部10に代えて、放電極1の主体部9と、凸曲面部8よりなる放電部1aとの境界部分の外面に凸部又は凹凸部を設けてもよく、このように境界部分の外面に凸部又は凹凸部を設けた場合も、境界部分の外面に形成した凸部や凹凸部が障害となって、放電極1の主体部9の側面に生成された結露水Wが、放電部1aである凸曲面部8の表面に生成された結露水Wに吸収され難くすることが可能となり、この場合も放電部1aである凸曲面部8に生成された結露水WのみでテーラーコーンTを形成することができ、放電状態を安定に保つことができる。   In the said embodiment, although the example which provided the recessed part 10 in the outer surface of the boundary part of the main-body part 9 of the discharge electrode 1 and the discharge part 1a which consists of the convex curve part 8 was shown, it replaced with the recessed part 10 and discharge electrode 1 may be provided on the outer surface of the boundary portion between the main body portion 9 and the discharge portion 1a composed of the convex curved surface portion 8, and thus the convex portion or the uneven portion is provided on the outer surface of the boundary portion. Also in this case, the surface of the convex curved surface portion 8 that is the discharge portion 1a is the dew condensation water W generated on the side surface of the main portion 9 of the discharge electrode 1 because the convex portion or the concave and convex portion formed on the outer surface of the boundary portion becomes an obstacle. In this case, the tailor cone T can be formed only with the dew condensation water W generated on the convex curved surface portion 8 which is the discharge portion 1a. Can be kept stable.

また、図2(d)(e)(h)(i)に示す実施形態においては、柱状をした主体部9の側面部と凸曲面部8との境界が弧状に面取りした面取り部11となっている。なお、図2(d)に示すものは主体部9の先端と球状の電極部1aとの境界が全く角のないくびれを有する例である。   In the embodiment shown in FIGS. 2D, 2E, 2H, and 2I, the boundary between the side surface portion of the columnar main body 9 and the convex curved surface portion 8 is a chamfered portion 11 that is chamfered in an arc shape. ing. FIG. 2D shows an example in which the boundary between the tip of the main body portion 9 and the spherical electrode portion 1a has a constriction with no corners.

このように、主体部9の側面部と凸曲面部8との境界が弧状に面取りした曲面状の面取り部11となっていることで、境界部分がエッジのない曲面となって金属放電を抑制することができ、ナノメータサイズのマイナスイオンミストMを長時間安定して生成することが可能となる。   In this way, the boundary between the side surface portion of the main body portion 9 and the convex curved surface portion 8 is a curved chamfered portion 11 that is chamfered in an arc shape, so that the boundary portion becomes a curved surface without an edge and suppresses metal discharge. Therefore, it is possible to stably generate the nanometer-sized negative ion mist M for a long time.

また、図2(c)の実施形態では凸曲面部8が球状をしているので、凸曲面部8の頂部だけでなく側部もエッジがない曲面となっていて、このものも凸曲面部8の側面部における金属放電を抑制することが可能となる。   Further, in the embodiment of FIG. 2 (c), the convex curved surface portion 8 is spherical, so that not only the top of the convex curved surface portion 8 but also the side portion has a curved surface, which is also a convex curved surface portion. It becomes possible to suppress the metal discharge in the side surface portion of 8.

図6(a)(b)(c)にはそれぞれ本発明の放電極1及び対向電極2の具体例を示しており、各部の寸法を具体的な数字を入れて表示している。   6A, 6B, and 6C show specific examples of the discharge electrode 1 and the counter electrode 2 of the present invention, respectively, and the dimensions of each part are displayed with specific numbers.

なお、主体部9の径を放電部1aよりも大きくしたのは、主体部9の先端部に設けられる放電部1aを素早く効率的に冷却するためである。   The reason why the diameter of the main body portion 9 is made larger than that of the discharge portion 1a is to quickly and efficiently cool the discharge portion 1a provided at the front end portion of the main body portion 9.

なお、放電極1の先端部の凸曲面部8上に形成する微小突起8aを放電極1と別部材で構成してもよい。例えば、微小突起8aを放電極1の材料よりも耐食性の良いチタンや白金等の材料で形成することで、コロナ放電によるマイナスイオン発生での放電部1aの先端の微小突起8aの消耗度を軽減することができる。これは、意図的にマイナスイオンを発生する割合を多くする場合や、使用環境が極めて乾燥していて、放電極1の冷却を開始して空気中の水分が放電極1に結露し始めるまでに時間がかかるといった場合に特に有効である。   Note that the minute projections 8 a formed on the convex curved surface portion 8 at the distal end portion of the discharge electrode 1 may be formed of a member separate from the discharge electrode 1. For example, by forming the microprotrusions 8a from a material such as titanium or platinum that has better corrosion resistance than the material of the discharge electrode 1, the degree of wear of the microprotrusions 8a at the tip of the discharge part 1a when negative ions are generated by corona discharge is reduced. can do. This is because when the proportion of negative ions is intentionally increased, or when the use environment is extremely dry and the cooling of the discharge electrode 1 is started and moisture in the air begins to condense on the discharge electrode 1. This is especially effective when time is required.

また、放電極1を冷却し始めてからナノメータサイズのマイナスイオンミストが発生するまでの時間には、放電極1先端部の凸曲面部8の上端にある微小突起8aが露出しているため、この微小突起8aによって金属放電が生じてコロナ放電がによるマイナスイオンを発生させることができる。   In addition, since the minute projection 8a at the upper end of the convex curved surface portion 8 at the tip of the discharge electrode 1 is exposed during the time from when the discharge electrode 1 starts to be cooled until the negative ion mist of nanometer size is generated, this Metal discharge is generated by the minute protrusions 8a, and negative ions due to corona discharge can be generated.

更に、マイナスイオンミストが安定して生成している場合においても、静電霧化装置4に備える冷却手段としてもペルチェユニット7への電源供給を断つことで、放電極1への水の供給が停止し、且つ放電極1は周囲の空気によって温められ、テーラーコーンTを形成していた結露水Wを消滅させることで、マイナスイオンの発生へと切換える。或いは、ペルチェユニット7への電源の正負を逆転することによって放電極1が設けられたペルチェユニット7の冷却部5はペルチェの発熱側に転換するため、放電極1はペルチェの発熱によって温められ、テーラーコーンTを形成していた結露水Wを消滅させることでマイナスイオンの発生へと切換えることも可能である。これらのペルチェユニット7への電源の切換えは、ペルチェ入力用リード17を介したペルチェユニット7への通電を機器使用者が任意に切換えするための電源スイッチを機器に設けることによって、使用者の任意で切換えることができる。   Further, even when negative ion mist is stably generated, the supply of water to the discharge electrode 1 can be performed by cutting off the power supply to the Peltier unit 7 as a cooling means provided in the electrostatic atomizer 4. The discharge electrode 1 is heated by the surrounding air, and the condensed water W that has formed the tailor cone T is extinguished to switch to generation of negative ions. Alternatively, since the cooling part 5 of the Peltier unit 7 provided with the discharge electrode 1 is switched to the heat generation side of the Peltier by reversing the positive / negative of the power supply to the Peltier unit 7, the discharge electrode 1 is heated by the heat generation of the Peltier, It is also possible to switch to generation of negative ions by eliminating the condensed water W that has formed the tailor cone T. The power supply to these Peltier units 7 can be changed by providing a power switch for the device user to arbitrarily switch the energization of the Peltier unit 7 via the Peltier input lead 17 by the user. Can be switched.

本発明においては、上記のように、静電霧化装置4に、静電霧化するための水Wを放電極1に供給するための水供給手段として、冷却部5と放熱部6とを有するペルチェユニット7を備えて該ペルチェユニット7の冷却部5側に放電極1を設けることで、空気中の水分を基にして放電極1の放電部1a部分に水(結露水)Wが直接生成されるように構成しているので、使用者自身が水Wを補給する手間が不要であると共に、生成された水Wには不純物が含まれないことから、放電極1におけるCaCOやMgO等の析出付着が防止されるものであり、また、水が放電極1に直接生成されることから、静電霧化装置の運転を開始(すなわち、熱電素子16への通電を開始)してからナノメータサイズのマイナスイオンミストMを発生させるまでの時間が短くて済み、ドアドライヤ等の短時間だけ使用する商品にも問題無く備えることができ、加えて、水Wを入れておくためのタンクや、タンク内の水Wを放電極1まで搬送して供給するための搬送部を備える必要がないので、装置全体がコンパクト化されるものであると共に、放電極1を冷却し始めてからナノメータサイズのマイナスイオンミストが発生するまでの僅かな時間においても、コロナ放電によるマイナスイオンが発生するのみならず、マイナスイオンミストが安定して生成している場合においても、任意にマイナスイオンの発生へと切換えることができる。 In the present invention, as described above, as the water supply means for supplying the electrostatic atomizer 4 with water W for electrostatic atomization to the discharge electrode 1, the cooling unit 5 and the heat radiating unit 6 are provided. By providing the Peltier unit 7 having the discharge electrode 1 on the cooling unit 5 side of the Peltier unit 7, water (condensation water) W is directly applied to the discharge unit 1a portion of the discharge electrode 1 based on moisture in the air. Since it is configured to be generated, it is unnecessary for the user himself to replenish the water W, and since the generated water W does not contain impurities, CaCO 3 and MgO in the discharge electrode 1 are not included. In addition, since water is generated directly on the discharge electrode 1, operation of the electrostatic atomizer is started (that is, energization of the thermoelectric element 16 is started). To generate nanometer-sized negative ion mist M The product can be prepared for products that are used only for a short time, such as door dryers, without problems. In addition, a tank for storing water W and water W in the tank up to the discharge electrode 1 Since it is not necessary to provide a transport unit for transporting and supplying, the entire apparatus is made compact and a short time from the start of cooling the discharge electrode 1 to the generation of nanometer-sized negative ion mist. However, not only negative ions are generated by corona discharge, but also when negative ion mist is stably generated, it is possible to arbitrarily switch to generation of negative ions.

なお、上記例では空気中の水分を結露させて放電部1aに水を供給する例を示したが、空気中の水分を放電部1a部分において氷結させ、これを融かすことで放電部1aに水を供給するようにしてもよいものである。   In the above example, the moisture in the air is condensed to supply water to the discharge part 1a. However, the moisture in the air is frozen in the discharge part 1a and melted to the discharge part 1a. Water may be supplied.

なお、上記実施形態では対向電極2を設けて放電極1と対向電極2との間に高電圧を印加することで放電極1の放電部1aに生成した水を静電霧化する例につき説明したが、対向電極2を設けないものにおいても放電極1に高電圧を印加して上記のようにして放電部1aに生成した水を静電霧化するようにするものであってもよい。   In the above embodiment, an example in which the counter electrode 2 is provided and water generated in the discharge part 1a of the discharge electrode 1 is electrostatically atomized by applying a high voltage between the discharge electrode 1 and the counter electrode 2 will be described. However, even in the case where the counter electrode 2 is not provided, a high voltage may be applied to the discharge electrode 1 so that the water generated in the discharge part 1a as described above is electrostatically atomized.

本発明の静電霧化装置の一実施形態の断面図である。It is sectional drawing of one Embodiment of the electrostatic atomizer of this invention. (a)(b)(c)(d)(e)(f)(g)(h)(i)は同上の放電極の各実施形態を示す一部省略正面図である。(A) (b) (c) (d) (e) (f) (g) (h) (i) is a partially omitted front view showing each embodiment of the discharge electrode same as above. (a)(b)(c)(d)は同上の凸曲面部上に設けられる微小突起の各例を示す一部省略正面図である。(A) (b) (c) (d) is a partially omitted front view showing each example of minute protrusions provided on the convex curved surface portion of the same. 同上の図2(a)におけるテーラーコーンの形成を示す説明図である。It is explanatory drawing which shows formation of the tailor cone in Fig.2 (a) same as the above. 同上の図2(e)におけるテーラーコーンの形成を示す説明図である。It is explanatory drawing which shows formation of the tailor cone in FIG.2 (e) same as the above. (a)(b)は同上の放電極、対向電極の具体例を示す説明図であり、(c)は同上の微小突起の具体例を示す説明図である。(A) (b) is explanatory drawing which shows the specific example of a discharge electrode same as the above, and a counter electrode, (c) is explanatory drawing which shows the specific example of a microprotrusion same as the above. 従来例を示す概略説明図である。It is a schematic explanatory drawing which shows a prior art example.

符号の説明Explanation of symbols

1 放電極
1a 放電部
3 水供給手段
4 静電霧化装置
5 冷却部
6 放熱部
7 ペルチェユニット
8 凸曲面部
8a 微小突起
9 主体部
10 凹部
11 面取り部
M マイナスイオンミスト
T テーラーコーン
W 水

DESCRIPTION OF SYMBOLS 1 Discharge electrode 1a Discharge part 3 Water supply means 4 Electrostatic atomizer 5 Cooling part 6 Heat radiation part 7 Peltier unit 8 Convex-curved surface part 8a Microprotrusion 9 Main part 10 Concave part 11 Chamfer part M Negative ion mist T Taylor cone C Water

Claims (8)

放電極と、放電極に空気中の水分を結露又は氷結させて水を供給する水供給手段とを備え、放電極に高電圧を印加することで上記水供給手段により放電極に供給された水を静電霧化させる静電霧化装置であって、上記水供給手段を、冷却部と放熱部とを有するペルチェユニットの冷却部に放電極を設けて構成し、放電極の先端部を曲面状に凸曲した凸曲面部とし、該凸曲面部上に微小突起を設けて成ることを特徴とする静電霧化装置。   The discharge electrode and water supply means for supplying water by dehydrating or icing moisture in the air to the discharge electrode, water supplied to the discharge electrode by the water supply means by applying a high voltage to the discharge electrode An electrostatic atomizer for electrostatically atomizing the water supply means, wherein the water supply means is configured by providing a discharge electrode in a cooling part of a Peltier unit having a cooling part and a heat dissipation part, and a tip part of the discharge electrode is curved An electrostatic atomizing device comprising a convex curved surface portion that is curved in a shape, and a minute projection provided on the convex curved surface portion. 放電極を、主体部と、主体部の先端に設けられる凸曲面部と凸曲面部上の微小突起よりなる放電部とで構成し、主体部と放電部との境界部分の外面に凹部又は凸部又は凹凸部を設けて成ることを特徴とする請求項1記載の静電霧化装置。   The discharge electrode is composed of a main body part, a convex curved surface part provided at the tip of the main body part, and a discharge part made up of minute protrusions on the convex curved surface part, and a concave or convex surface is formed on the outer surface of the boundary part between the main body part and the discharge part. The electrostatic atomizer according to claim 1, further comprising an uneven portion or an uneven portion. 放電極を、柱状をした主体部と、主体部の先端部に設けられる凸曲面部と凸曲面部上の微小突起よりなる放電部とで構成し、主体部の側面部と凸曲面部との境界が弧状に面取りした面取り部となっていることを特徴とする請求項1記載の静電霧化装置。   The discharge electrode is composed of a columnar main part, a convex curved part provided at the tip of the main part, and a discharge part made up of minute protrusions on the convex curved part, and the side part of the main part and the convex curved part The electrostatic atomizer according to claim 1, wherein the boundary is a chamfered portion chamfered in an arc shape. 放電極先端部の凸曲面部上に形成する微小突起を放電極と別部材で構成して成ることを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein the minute protrusions formed on the convex curved surface portion of the discharge electrode tip are formed by a member separate from the discharge electrode. 放電極先端部の凸曲面部上に形成する微小突起を円錐形状に形成して成ることを特徴とする請求項1乃至請求項4のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 4, wherein a minute projection formed on the convex curved surface portion of the discharge electrode tip is formed in a conical shape. 放電極先端部の凸曲面部上に形成する微小突起を円錐台形状に形成して成ることを特徴とする請求項1乃至請求項4のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 4, wherein the minute projections formed on the convex curved surface portion of the discharge electrode tip are formed in a truncated cone shape. 放電極先端部の凸曲面部上に形成する微小突起を円柱形状に形成して成ることを特徴とする請求項1乃至請求項4のいずれかに記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 4, wherein a minute protrusion formed on the convex curved surface portion of the discharge electrode tip is formed in a cylindrical shape. 放電極先端部の凸曲面部上に形成する微小突起を先端が曲面状に凸曲した微小凸曲面として成ることを特徴とする請求項1乃至請求項4のいずれかに記載の静電霧化装置。


The electrostatic atomization according to any one of claims 1 to 4, wherein the minute projections formed on the convex curved surface portion of the discharge electrode tip portion are formed as a minute convex curved surface whose tip is curved in a curved shape. apparatus.


JP2005246775A 2005-08-26 2005-08-26 Electrostatic atomizer Active JP4449859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246775A JP4449859B2 (en) 2005-08-26 2005-08-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246775A JP4449859B2 (en) 2005-08-26 2005-08-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007054808A JP2007054808A (en) 2007-03-08
JP4449859B2 true JP4449859B2 (en) 2010-04-14

Family

ID=37918740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246775A Active JP4449859B2 (en) 2005-08-26 2005-08-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4449859B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706662B2 (en) * 2007-04-16 2011-06-22 パナソニック電工株式会社 Electrostatic atomizer
JP4151743B1 (en) * 2007-04-26 2008-09-17 松下電器産業株式会社 refrigerator
DE112008002168B4 (en) * 2007-04-26 2014-02-13 Panasonic Corporation Refrigerator and electrical device
JP4151739B1 (en) * 2007-04-26 2008-09-17 松下電器産業株式会社 refrigerator
JP5332179B2 (en) * 2007-04-26 2013-11-06 パナソニック株式会社 refrigerator
JP5320794B2 (en) * 2007-04-26 2013-10-23 パナソニック株式会社 refrigerator
JP4196128B2 (en) * 2007-04-26 2008-12-17 パナソニック株式会社 refrigerator
US20100147003A1 (en) * 2007-04-26 2010-06-17 Yoshihiro Ueda Refrigerator
JP5368726B2 (en) 2008-04-18 2013-12-18 パナソニック株式会社 Electrostatic atomizer
ES2720739T3 (en) 2009-03-27 2019-07-24 Mitsubishi Electric Corp Air conditioner comprising an electrostatic atomizing apparatus
JP5398390B2 (en) * 2009-07-02 2014-01-29 株式会社東芝 refrigerator
JP5439101B2 (en) * 2009-09-24 2014-03-12 パナソニック株式会社 Discharge device and electrostatic atomizer provided with the same
US8661837B2 (en) 2009-08-26 2014-03-04 Panasonic Corporation Refrigerator
JP2022089698A (en) * 2020-12-04 2022-06-16 パナソニックIpマネジメント株式会社 Discharge device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016934B2 (en) * 2003-10-30 2007-12-05 松下電工株式会社 Electrostatic atomizer
JP4269932B2 (en) * 2003-12-22 2009-05-27 パナソニック電工株式会社 Air cleaner
JP2005177684A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Electrostatic atomizer and air cleaner equipped with electrostatic atomizer
JP4625267B2 (en) * 2004-04-08 2011-02-02 パナソニック電工株式会社 Electrostatic atomizer
JP4442444B2 (en) * 2005-01-26 2010-03-31 パナソニック電工株式会社 Electrostatic atomizer
WO2006009189A1 (en) * 2004-07-22 2006-01-26 Matsushita Electric Industrial Co., Ltd. Storage compartment and refrigerator having the same
JP4151729B2 (en) * 2004-07-22 2008-09-17 松下電器産業株式会社 Storage and refrigerator using it

Also Published As

Publication number Publication date
JP2007054808A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4449859B2 (en) Electrostatic atomizer
JP3952052B2 (en) Electrostatic atomizer
JP4625267B2 (en) Electrostatic atomizer
JP3952044B2 (en) Electrostatic atomizer
JP2008018404A (en) Electrostatic atomizer
JP2009090192A (en) Electrostatically atomizing device
JP4442444B2 (en) Electrostatic atomizer
JP2007289871A (en) Electrostatic atomizer
JP4120685B2 (en) Electrostatic atomizer
JP4371173B2 (en) Electrostatic atomizer
EP2623208A1 (en) Electrostatic atomization device
JP2009274069A (en) Electrostatic atomizing device
JP5508207B2 (en) Electrostatic atomizer
JP4379536B2 (en) Electrostatic atomizer
JP2007144425A (en) Electrostatic atomizer
JP4952294B2 (en) Electrostatic atomizer
JP4552905B2 (en) Electrostatic atomizer
JP4956368B2 (en) Electrostatic atomizer
JP4258497B2 (en) Electrostatic atomizer
JP5342464B2 (en) Electric appliance
JP2008238061A (en) Electrostatic atomizer
JP4321660B2 (en) Electrostatic atomizer
JP4779803B2 (en) Electrostatic atomizer
JP2009202060A (en) Electrostatic atomizer
JP4329725B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4