JP4668432B2 - Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof - Google Patents

Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof Download PDF

Info

Publication number
JP4668432B2
JP4668432B2 JP2001039736A JP2001039736A JP4668432B2 JP 4668432 B2 JP4668432 B2 JP 4668432B2 JP 2001039736 A JP2001039736 A JP 2001039736A JP 2001039736 A JP2001039736 A JP 2001039736A JP 4668432 B2 JP4668432 B2 JP 4668432B2
Authority
JP
Japan
Prior art keywords
metal
base plate
ceramic
copper
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001039736A
Other languages
Japanese (ja)
Other versions
JP2002246710A (en
Inventor
正浩 伊吹山
良三 野々垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001039736A priority Critical patent/JP4668432B2/en
Publication of JP2002246710A publication Critical patent/JP2002246710A/en
Application granted granted Critical
Publication of JP4668432B2 publication Critical patent/JP4668432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銅を主成分とする金属を含む、金属−金属、金属−カーボン、または金属−セラミックス複合体からなるベース材と高熱伝導性セラミックス基板とが一体に形成された電子機器搭載用基板あるいはベース板一体型セラミックス回路基板とその製造方法に関する。
【0002】
【従来の技術】
近年、産業機器の分野では、電動機用インバータ等に用いられるパワーモジュールの開発が進んでおり、パワーモジュールには、従来から、シリコンチップを搭載した高熱伝導性セラミックス回路基板を銅ベースに半田付けした構造を有するものが用いられてきた。しかし、使用条件によってはセラミック基板や半田層にクラックが入るため、これらの防止によって信頼性を向上するため種々の改良が図られた。
【0003】
例えば、Al(アルミニウム)−SiC(炭化珪素)複合体をベース材とし、Al回路付きAlN(窒化アルミニウム)基板(以下、Al−SiC複合体/Al回路付き窒化アルミニウム基板のように記す)を半田付けした構造は、サーマルサイクル3000回後でも、実用特性を維持しており、従来公知のCu(銅)ベース/銅回路付き窒化アルミニウム基板に比べ格段の信頼性を有しているものの、従来構造に比べると熱抵抗が大きいためチップサイズを大きくする必要があること、またAl−SiC複合体が高価であるためにモジュールコストが高くなること等の問題があり充分に普及するに至っていない。
【0004】
また、Al−SiC複合体を製造する際に、前記Al−SiC複合体とセラミックス基板或いはセラミックス回路基板との一体化を図ることも提案されている。この場合、複合体/基板間の半田層がないため、その部分の半田にクラックが入る心配が無く信頼性が向上し、また熱抵抗が低下する等の利点を有するが、Al−SiC複合体の熱伝導率は高々200W/mKしかなく、パワーモジュールの大容量化、小型化のために熱抵抗の更なる低減が求められている。
【0005】
【発明が解決しようとする課題】
本発明者は、上記の事情に鑑みていろいろ検討し、金属−金属、金属−カーボン、または金属−セラミックス複合体を製造する工程を経るだけで、ベース板とセラミックス回路基板が一体化でき、しかも耐サーマルサイクル性があり、かつ熱抵抗が小さい電子部品搭載用基板を提供し得ることを見出し、本発明に至ったものである。即ち、本発明の目的は、熱抵抗が小さく、耐サーマルサイクル性に優れ、従って長期の信頼性に優れるパワーモジュールを再現性高く供給できる電子搭載用基板、ベース板一体型セラミックス回路基板を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、一主面に凹部を有する又は有していないベース板と、前記ベース板の前記主面上に配置され、前記ベース板よりも小さいセラミックス基板と、前記ベース板と前記セラミックス基板との少なくとも一部を共に覆うように設けられた金属層とからなり、前記金属層のベース板及びセラミックス基板に接しない面が平面状であって、しかも、前記ベース板が金属−金属、金属−カーボン、もしくは金属−セラミックス複合体であり、前記複合体中の金属と前記金属層とが銅を主成分とし、かつ前記金属層の純度が前記複合体中の金属の純度より高いことを特徴とする電子機器搭載用基板である。
【0007】
また、本発明は、セラミックス基板が複数であることを特徴とする上記の電子機器搭載用基板である。また、本発明は、電子機器搭載用基板の金属層より回路形成してなることを特徴とするベース板一体型セラミックス回路基板である。
【0008】
また、本発明は、一主面上に回路を有するセラミックス回路基板と、該セラミックス回路基板の回路を設けていない主面に接して設けられているベース板とからなるベース板一体型セラミックス回路基板であって、ベース板が金属−金属複合体、金属−カーボン複合体、又は金属−セラミックス複合体からなり、前記回路表面と前記ベース板のセラミックス基板が搭載されセラミックス基板を設けていない面の高さが同一であり、しかも、前記回路およびベース板に含まれる金属が銅を主成分とし、かつ前記金属層の純度が前記複合体中の金属の純度より高いことを特徴とするベース板一体型セラミックス回路基板である。
【0009】
また、本発明は、ベース板が、カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とする多孔質成形体に銅を主成分とする金属を含浸してなる複合体であることを特徴とするベース板一体型セラミックス回路基板である。
【0010】
また、本発明は、カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とし、一主面に凹部を有する又は有していない多孔質成形体の前記主面上にセラミックス基板を配置し、更に前記多孔質成形体とセラミックス基板との少なくとも一部を共に覆うように銅を主成分とする金属板を配置して積層体となし、前記積層体を容器内に配置し、銅を主成分とする金属を鋳造して、前記多孔質成形体の空隙に前記銅を主成分とする金属を含浸すると共に、多孔質成形体、金属板並びにセラミックス基板を一体化させることを特徴とする電子機器搭載用基板の製造方法である。
【0011】
また、本発明は、カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とし、一主面に凹部を有する又は有していない多孔質成形体の前記主面上にセラミックス基板を配置し、更に前記多孔質成形体とセラミックス基板との少なくとも一部を共に覆うように金属板を配置して積層体となし、前記積層体を容器内に配置し、銅を主成分とする金属を鋳造して、前記多孔質成形体の空隙に前記銅を主成分とする金属を含浸すると共に、多孔質成形体、金属板並びにセラミックス基板を一体化させ、その後セラミック基板のベース板とは反対の面に形成されている金属層もしくは前記金属板より回路形成することを特徴とするベース板一体型セラミックス回路基板の製造方法である。
【0012】
【発明の実施の形態】
本発明の電子機器搭載用基板は、ベース板となる金属−金属、金属−カーボン、または金属−セラミックス複合体の製法に準じて、ベース板とセラミック基板を一体化することにより製造できる特徴がある。
【0013】
金属−金属、金属−カーボン、または金属−セラミックス複合体の製法を大別すると、含浸法と粉末冶金法の2種がある。このうち粉末冶金法は製造コストが安いが得られる複合体の特性面で充分ではなく、含浸法は製造コストが高いが得られる複合体の特性面で優位性がある。含浸法にも種々あり、常圧でおこなうものと、高圧下で行うもの(高圧鋳造法)がある。高圧下で行うものは、溶湯鍛造法とダイキャスト法とがある。溶湯鍛造法、ダイキャスト法は、共に、最終形状、或いは、ほぼ最終形状に近い形をした型、或いは、枠と板で構成された型(或いは部屋)内に、ある程度の強度を有する多孔質体(プリフォーム)を装填し、これに銅(Cu)或いは、Cu合金溶湯を高圧で含浸させて複合体を得る方法である。
【0014】
本発明では、どの方法を用いてもよいが、特性面(高熱伝導率と低熱膨張率の両立、および耐熱サイクル性)から高圧下で行うタイプが好ましい。含浸操作を行う際にセラミックス板と回路板の接合、或いは、回路用金属層の形成を行えば、より安価にセラミックス基板を接合した回路基板の前駆体を得ることが可能である。
【0015】
Cu溶湯をプリフォームに含浸すると同時に基板との一体化を行う場合、従来、(1)セラミックス回路基板をプリフォームと接触配置し、これにCu溶湯をプリフォームに含浸させながらセラミックスとの接合を行う、(2)セラミックス基板をプリフォームに接触配置し、Cu溶湯をプリフォームに含浸させながら、セラミックス基板との接合と回路用金属層の形成を同時に行う方法が知られている。
【0016】
(1)の方法は、予めセラミックス基板に回路金属を接合する、或いはセラミックス基板に金属層を設けた後に回路形成するという工程が必要になりコスト的に不利である。(2)の方法は、含浸金属として融点の低い銅合金を用いる場合が多いため、回路に用いている含浸金属層の熱伝導率、電気伝導率が低下し、特性上不利になる。また、合金は純銅より硬いため、接合されたAlN等のセラミック基板に発生する応力が応力が大きくなり、基板割れ等の問題を引き起こす可能性がある。含浸金属に純銅を用いると、セラミックスとの密着性が劣り、耐熱サイクル性が低下することがある。
【0017】
本発明者らは、鋭意検討を重ねた結果、次の様な構成とすることで、比較的容易に製造可能で、精度良く、その結果安価に、金属−金属、または金属−セラミックス複合体からなるベース板との一体型セラミックス回路基板が得られることを見出した。
【0018】
すなわち、プリフォームにセラミックス基板を接触配置し、さらに、これにCu板を接触配置した後、予備加熱し、Cu溶湯を高圧で含浸することにより電子部品搭載用基板を得て、更に、前記Cu板からエッチング等の従来公知の方法で回路を形成することで、一定厚みのCu板からなる回路が接合されているベース板一体型セラミックス回路基板を得ることができる。
【0019】
プリフォームにCuを含浸する際に、Cu溶湯がプリフォーム中に含浸し易いように予備加熱を行うのが一般的であるが、本発明は、この予備加熱の際に、Cu板が存在していても前記Cu板は溶融しないということ、更に、Cu板にCu合金が接触しても前記Cu板は投入した形態を保っているということを発見したことに基づいている。
【0020】
更に驚くべきことに、こうして得られたベース板一体型セラミックス回路基板は、実用上極めて有用な特性を有することが判明した。例えば、Cu−SiC複合体の板の熱膨張係数は、複合体中のSiC体積百分率によって決まり、6〜9ppm/K程度が一般的である。従って、これにAlN(窒化アルミニウム)やSi34(窒化珪素)の如き低熱膨張率のセラミックス基板を半田付けやロウ付けすると、セラッミクス側を凸とする大きな反りを生じる。この反りは、これを放熱フィン等にネジ締めして固定する際に、ベース板と放熱フィン間に隙間を生じ、伝熱の妨げとなる。このため、何らかの方法で予めベース板に放熱フィン等との接合面が凹となる反りを付与しておく必要があった。しかしながら、本発明のベース板一体型セラミックス回路基板においては、表面の回路を構成するCuの熱膨張率が大きいので、AlNの場合は略平坦に、AlNより熱膨張率の小さいSi34の場合は、若干、回路を凸とする反りを生じることになるが、前記の反りの程度は、モジュール組立工程で回路側を凹とする反りに変化しうる程度のものであり、実用上極めて好ましい特性を発現する。
【0021】
以下、本発明について、高圧下での含浸法でCu−SiC複合体を製造する場合の例を詳述する。
先ず、Cu−SiC複合体の製造方法を説明する。
SiC粉を成形、仮焼してプリフォームを得て、表面が離型処理された仕切板上に置き、次に、内寸が最終形状になるようくり抜かれた枠状の型内にセットする。これを幾段も重ねて固定したブロックを予備加熱した後、耐圧性の容器内に配置し、ブロックの温度低下を防ぐため出来るだけ速やかにCu溶湯を前記容器内に注ぎ、Cu溶湯を加圧し、Cuを枠状の型内に置いたプリフォーム中に含浸する。
【0022】
本発明においては、前記工程のなかで、プリフォームを枠状の型にセットする際に、更に、セラミックス基板とCu板とを配置するのみで、Al−SiC複合体を得る操作と同様の操作で、ベース板とセラミックス回路基板とが一体に接合された電子部品搭載用基板、ないしベース一体型セラミックスが得られる。
【0023】
前記操作において、プリフォームの一主面にセラミックス基板と同一面積の凹みを設けて、そこにセラミックス基板を配置すれば、正確な位置決めができて好都合である。さらに、回路用の金属板は、外寸を枠の内寸と同じにしておけば、後の取り扱いでズレを生じることがなく、後工程での位置あわせ等が不要となり好ましい。
【0024】
上記説明から明らかな通り、使用する多孔質炭化珪素プリフォームについては、特殊な制限を設ける必要はなく、どのようなものでも使用することができるが、次に記載するように、特定の特性を有するものを選択することが好ましい。即ち、Cu−SiC複合体の特性の中で特に重要な特性は、熱伝導率と熱膨張率である。複合体中の炭化珪素(SiC)含有率が高い方が熱膨張率は小さくなるが、熱伝導率が低下するので、実用的には、多孔質炭化珪素の相対密度が30〜70体積%の範囲にあるのが好ましい。またプリフォームの強度は、曲げ強度で3MPa以上あれば、取り扱い時や含浸中の割れの心配もなく、好ましい。
【0025】
前記の多孔質炭化珪素の原料である炭化珪素(SiC)粉については、粒度配合を行うことが好ましい。粗粉のみでは、強度発現に乏しく、微粉のみでは、熱伝導率が低下するからである。本発明者の検討によれば、例えば、#350以上の粒径の炭化珪素粗粉40〜80質量%と、#1000以下の粒径の炭化珪素微粉を60〜20質量%とを混合して用いるとよい。
【0026】
カーボン、セラミックスまたは金属の粉やファイバーは、成形され、脱脂、焼成の工程を経てプリフォームとなり、前記含浸操作に供される。前記したようにプリフォームはセラミックス基板の位置決め用の凹みを有していた方が工程上有利なので、成型法は、射出成形や、乾式成形、湿式成形等の型を用いて成形する方法が好ましい。尚、押し出し成形の場合には、主面に凹みを設けるのは容易でないが、枠詰めの際の工夫、例えば凹みを溝状とすること等、により位置決めの問題も軽減出来るので、同様に使用可能である。
【0027】
プリフォームの強度を3MPa以上に発現させるために、非酸化性雰囲気下或いは酸化性雰囲気下で焼成し、その焼成温度を850℃以上とするのが好ましい。炭化珪素(SiC)プリフォームの場合、SiCが酸化して熱伝導率が低下しないよう、空気中で焼成する場合は1100℃を超えない温度で焼成することが望ましい。
【0028】
プリフォームを収納する枠材は、Cu溶湯を型枠内(室内)に導入するための湯口を有するもので、鉄が有効である。レーザー加工や打ち抜きプレスによって得られ、離型処理を施した後供される。離型処理は、微粉の黒鉛粉末が有効である。又、仕切板は、鉄又はステンレス板が好ましい。酸化防止等の処理を施した後、微粉黒鉛及び/又はBN(窒化硼素)を塗布するのが離型に対して極めて有効である。仕切板の厚みは、目的とする製品の厚みと精度によって選択する。製品の厚みバラツキを20μm以下に抑えたければ、3mm以上の板、50μm程度が許されるならば、0.3mm程度まで薄くしてもよい。
【0029】
本発明に用いるセラミックス基板としては、AlN、Si34、Al23(アルミナ)等の汎用のセラミックスが用いられるが、本発明の目的からして、高熱伝導性のセラミックスであることが好ましく、AlNやSi34の窒化物セラミックスが好ましい。
【0030】
本発明における回路用金属板としては、ベース板を構成する含浸金属よりも高融点のものであればあればどの様なものであっても構わないが、回路を形成することができ、しかも熱伝導率、電気伝導率が高いものが好ましく、98.5質量%以上の純度のCu板であれば使用できる。しかし、より高い信頼性と優れた物性を両立させるためには、Cu板の純度は99.5%以上、更に好ましくは99.9%以上の高純度のCu板、特に無酸素銅板を使用するのがよい。なお、回路材の厚みは、0.2〜0.5mm程度が一般的であるが、セラミックス基板がAlNの場合は0.2〜0.4mm、Si34の場合は0.3〜0.5mmが好ましい。
【0031】
前記回路用金属板は、回路材として用いる他、位置決め材としても使用できる。例えば、押し出し成形等でプリフォームを成形した場合、セラミックス基板配置用のキャビティの加工が困難なので、セラミック基板収納用のくり抜き穴を有する回路用金属板をプリフォームに接して配置し、それを位置決め治具としてセラミックス基板を配置し、その上に回路用の金属板を配置するというやり方である。この場合、Cu溶湯の侵入を容易にするため、位置決め用の金属板には、基板位置以外にも貫通穴を設けておくことが好ましい。さらに、回路用金属板は、不要部分を切り取って使用しても構わない。
【0032】
プリフォーム、セラミックス基板、回路用金属板を、枠と仕切板で隔離された部屋内に収納したものを積層し固定して含浸用のブロックとし、前記ブロックを予備加熱炉に入れ予熱する。予備加熱温度は、含浸する金属によって適当な温度とする必要があり、また上限温度は回路用金属板の融点以下である必要がある。本発明者の実験的な検討によれば、プリフォームが多孔質炭化珪素焼結体であり、含浸する金属がSiを3質量%、Mgを0.7質量%含有するCu合金であり、回路用金属板として無酸素銅を用いる場合、1000〜1070℃が好ましい範囲である。1000℃以下では含浸が不良の場合が生じるし、1070℃以上の場合は無酸素銅板が溶融する恐れがある。また、予備加熱中に銅板が酸化するのを防止するため、必要に応じて不活性雰囲気や還元性雰囲気で加熱する必要がある。
【0033】
予備加熱された、含浸用ブロックを、耐圧性容器内に設置し、前記Cu合金の溶湯を耐圧性容器内に押し込み、加圧して、合金溶湯をプリフォームに含浸すると同時にセラミックス基板と回路用金属板との接合を完了させる。回路用金属板に純度99.5%以上の高純度Cu板を用い、しかも含浸するCu合金が前記組成の組み合わせの場合、供給するCu合金の湯温は1100〜1200℃であれば問題ない。前記範囲よりも温度が低いと、含浸不良を生じることがあるし、高いときには、高純度Cu板の融解が生じることがある。また、Cu合金溶湯の酸化を防止するために、溶湯は不活性雰囲気または還元性雰囲気に保持することが好ましい。
【0034】
含浸させる金属については、回路用金属板よりも低融点であれば良く、回路用金属板が無酸素銅板であるときCu合金が選択される。Cu合金が好ましく選択される理由は、無酸素銅板の融点以下で融解すること、プリフォームやセラミックス基板と強固な結合を示すこと、そして無酸素銅板と表面で融合し、脆い合金を生成しないことから、本発明の目的を充分に達成できるからである。
【0035】
前記Cu合金としては、少量添加で融点が下がる成分を含むCu合金が好ましい。ただし、P(リン)は少量で融点が下がるが、熱伝導率も大きく低下するので好ましくない。各種Cu合金の中でも、Cu−Si系合金が好ましい。Siは他の添加元素に比べて少ない量で融点を下げ、また熱伝導率の低下が少ないからである。その量は、0.5〜10質量%、好ましくは1.0〜5.0質量%が好ましい。更に、前記Cu−Si系合金にMg、Caなどの2a族元素、Yなどの3a族元素、TiやZrなどの4a族元素を微量添加したものは、より強固なセラミックスとの結合が得られ、一層好ましいものである。前述の添加元素の量は、1質量%以下で充分な効果が得られる。
【0036】
含浸操作終了後は、冷却固化後、外周のCu合金を切除し、内容物を分解し、表面についた離型材をバフ研磨、サンドブラスト等で除去することで、Cu−SiC複合体の一主面上にセラミックス基板が搭載されており、しかも両者の表面の少なくとも一部に回路用金属板が接合されている基板が得られる。前記基板は、前記回路用金属板よりエッチング等により回路を形成させるのみで、また、必要に応じて加工やメッキ処理を施して、半導体素子を始めとする各種の電子機器を搭載可能なベース板一体型セラミックス回路基板を容易に提供することができる。
【0037】
また、前記基板を得る操作において、予めプリフォームの一主面上に複数のセラミックス基板を配置しておくのみで、一つのベース板に複数のセラミックス回路基板が搭載された基板を得ることができ、この基板は、更に一つのベース板上に複数のセラミックス回路基板を搭載した構造を有するモジュールを容易に提供でき、電子部品の高密度化に寄与するという利点がある。尚、前記いずれの場合においても、本発明のベース板一体型セラミックス回路基板は、その回路の表面とベース板表面上の金属層の表面とは同一平面上に形成されることとなる。
【0038】
ベース板表面上の金属層はエッチング等の過程において一部或いは全て除去することも可能であるが、本発明者の検討によれば、通常の場合には回路端部より3mm以上、低電圧用途の場合は1mm以上の領域をエッチングすれば充分であり、それ以上離れた領域の除去は、エッチング量を増大するのみで、回路特性の向上には寄与しない。
【0039】
以上、Cu−SiC複合材料をベース板に用いた場合について詳述したが、炭化珪素粉の代わりに、カーボン、アルミナ、窒化アルミニウム、窒化珪素、タングステン、モリブデン、銅酸化物等の粉或いは繊維を用いても、前記SiC粉を用いた場合とほぼ同様にして本発明の基板を得ることができる。金属粉を用いた場合、焼成工程を経なくても、冷間等方プレス(CIP)成形によりプリフォームを得ることが出来、また、含浸工程では、非酸化雰囲気または還元雰囲気に保つことが重要で、含浸金属は4a族元素を微量添加されたものが好ましい。また、繊維を用いる場合、短繊維であれば鋳込み成形等を用いてプリフォームを作ることが出来るし、長繊維ならばそれを布状に織ってプリフォームとすることが出来る。
【0040】
また、詳述したプリフォームを用いた高圧下で含浸する方法以外に、ベース板である複合体を構成する金属粉と金属粉、金属粉とカーボン粉、または金属粉とセラミックス粉を混合し、それをマトリックス金属の融点以上に加熱して、それを、回路金属板とセラミックス板を内部に配置した成形金型に注入して、基板とベース板が一体化された基板を製造することもできる。マトリックス金属以外の部分は、粉体以外に繊維状物質を用いることもできる。
【0041】
【実施例】
以下、実施例並びに比較例をあげて、本発明を一層詳細に説明するが、本発明はこれに限定されるものではない。
【0042】
〔実施例1〕
炭化珪素粉末A(大平洋ランダム社製:NG−220、平均粒径:60μm)70g、炭化珪素粉末B(屋久島電工社製:GC−1000F、平均粒径:10μm)30g、及びシリカゾル(日産化学社製:スノーテックス)10gを秤取し、攪拌混合機で30分間混合した後、中央部の片面に50mm×50mm×0.6mmのキャビティを有する110mm×90mm×4.6mmの寸法の平板状に成形した。このとき成形時の圧力は10MPaとした。
【0043】
得られた成形体を、大気中、温度950℃で2時間焼成して、相対密度が65体積%の多孔質炭化珪素焼結体を得た。
【0044】
次に、得られた多孔質炭化珪素焼結体を、離型剤を塗布した0.7mm厚の仕切板上に置かれた、これも離型剤を塗布した図1の型枠(材質:炭素鋼)内に配置し、前記多孔質炭化珪素焼結体キャビティ内に50×50×0.6mmの170W/mKの特性を有する窒化アルミニウム基板を挿入した後、前記多孔質炭化珪素焼結体の外寸に等しい0.3mm厚の無酸素銅板をこの上に置いた。この状態で内容物の高さと枠高さが略等しくなる。これに離型剤を塗布した仕切板(前述の仕切板と同様のものでサイズは型枠外寸と同じ)を重ね、両端に6mm厚の鉄板を配し、一つのブロックを形成した。
【0045】
次に、前記ブロックを電気炉で温度1050℃に予備加熱し、予め加熱しておいた金型内に入れた後、温度1100℃に加熱してある、Siを2質量%、Tiを0.5質量%含むCu合金の溶湯を流し込み、100MPaの圧力で10分間加圧して、前記多孔質炭化珪素焼結体にCu合金を含浸させた。得られた複合体を含む金属塊は、室温まで冷却したのち、バンドソーにて切断し型枠内からベース板一体型セラミック基板を離型した。この状態の断面図を図2に示す。
【0046】
前記ベース板一体型セラミック基板の表面についた離型剤を除去するため、#220のバフロールを備えたバフ研磨機に通した。離型剤除去後、銅板表面に所望のパターンのエッチングレジストを印刷し、裏面及び側面はベタ塗りとし、塩化第2鉄溶液で不要部分を溶解した。さらに、放熱フィン取り付け用の穴加工を施した後、メッキ処理を行い、ベース板一体型セラミック回路基板を得た。尚、前記メッキは、無電解Ni−P;5μm、無電解Ni−B;2μmの2層とした。この状態の断面図を図3に示す。また、この時点での反り量は、ほぼ0μmであった。
【0047】
次に、前記のベース板一体型セラミック回路基板の回路パターンに、12mm角、厚さ0.4mmのシリコンチップを半田付けし、冷熱サイクル試験を実施した。尚、冷熱サイクル試験の条件は、−40℃;30分、空気中;10分、125℃;30分、空気中10分を1サイクルとした。1000サイクル実施後、シリコンチップ下のはんだ部でのクラックの発生の有無、基板自体の割れ、回路の剥離等を詳細に観察したが、全く異常は認められなかった。
【0048】
〔実施例2〕
炭化珪素粉末A(大平洋ランダム社製:NG−220、平均粒径:60μm)70g、炭化珪素粉末B(屋久島電工社製:GC−1000F、平均粒径:10μm)30g、及びシリカゾル(日産化学社製:スノーテックス)10gを秤取し、攪拌混合機で30分間混合した後、110mm×90mm×4mmの形状に10MPaの圧力で成形した。
【0049】
得られた成形体を、大気中、温度950℃で2時間加熱して、相対密度65体積%の多孔質炭化珪素焼結体を得た。次に、前記の多孔質炭化珪素焼結体を、離型剤を塗布した0.7mm厚の仕切板上に置かれた、これも離型剤を塗布した図1の型枠(材質:炭素鋼)内に配置し、中央部に50×50の窓を有し、外寸が前記の多孔質炭化珪素焼結体の外寸に略等しい0.3mm厚の無酸素銅板をかさねた。次に前記無酸素銅板の窓部に50×50×0.4mmの100W/mKの特性をもつ窒化ケイ素基板を挿入した後、前記多孔質炭化珪素焼結体外寸に略等しい外寸を有する0.4mm厚の無酸素銅板をこの上に置いた。この状態で内容物の高さと枠高さが略等しくなる。この状態での断面図を図4に示す。更に、離型剤を塗布した仕切板(前述の仕切板と同様のものでサイズは型枠外寸と同じ)を重ね、両面に6mm厚の鉄板を配した後、一つのブロックを形成した。
【0050】
以降の操作は、実施例1と同じ操作を行い、ベース板一体型セラミック回路基板を得た。この状態での断面図を図5に示す。表面は、Ni−Pメッキ5μm、Ni−Bメッキ2μmが施されている。この時の反り量は、回路面が凹で約100μmであった。
【0051】
前記ベース板一体型回路基板の回路パターンに、12mm角、厚さ0.4mmのシリコンチップを半田付けし、実施例1に示した冷熱サイクル試験を実施したところ、1000サイクル実施後、シリコンチップ下のはんだ部分のクラックの発生の有無、基板割れ、回路の剥離等を詳細に観察したが、全く異常は認められなかった。
【0052】
〔比較例〕
炭化珪素粉末A(大平洋ランダム社製:NG−220、平均粒径:60μm)70g、炭化珪素粉末B(屋久島電工社製:GC−1000F、平均粒径:10μm)30g、及びシリカゾル(日産化学社製:スノーテックス)10gを秤取し、攪拌混合機で30分間混合した後、110mm×90mm×4.6mmで中央部の片面に50mm×50mm×0.6mmのキャビティを有する平板状に10MPaの圧力で成形した。
【0053】
得られた成形体を、大気中、温度950℃で2時間加熱して、多孔質炭化珪素焼結体とした。得られた多孔質炭化珪素焼結体の相対密度は65体積%であった。
【0054】
次に、得られた多孔質炭化珪素焼結体を、離型剤を塗布した0.7mm厚の仕切板上に置かれた、これも離型剤を塗布した図1の型枠(材質:炭素鋼)内に配置し、多孔体のキャビティ部に50×50×0.6mmの170W/mKの窒化アルミニウム基板を挿入した。この状態で枠高さが内容物の高さよりも約0.4mm高い状態であった。これに離型剤を塗布した仕切板(前述の仕切板と同様のものでサイズは型枠外寸と同じ)を重ね、両面に6mm厚の鉄板を配した後、一つのブロックを形成した。このとき、キャビティ内に置いた窒化アルミニウム基板がキャビティから脱離することが無いよう、基板側が常に上部に位置するよう注意しながら行った。
【0055】
次に、窒化アルミニウム基板がキャビティから脱離しないように注意しながら、前記ブロックを電気炉で、温度1050℃に予備加熱し、予め加熱しておいた金型内に置いた後、温度1100℃に加熱してあるSiを2質量%、Tiを0.5質量%含むCu合金の溶湯を押し込み、100MPaの圧力で10分間加圧して、多孔質炭化珪素焼結体にCu合金を含浸させた。得られた複合体を含む金属塊は、室温まで冷却したのち、バンドソーにて切断して型枠内からベース板一体型セラミック基板を離型した。
【0056】
以降、実施例1と同じ操作を行い、ベース板一体型セラミック回路基板を得た。この状態での断面図を図6に示す。反り量は回路側が凸で約50μmであった。
【0057】
前記ベース板一体型セラミック回路基板の回路パターンに、12mm角、厚さ0.4mmのシリコンチップを半田付けし、実施例1に示す冷熱サイクル試験を実施したところ、500サイクル実施後、セラミックス基板に貫通クラックが生じていた。
【0058】
【発明の効果】
本発明のベース板一体型セラミックス回路基板は、高い歩留まりで容易に製造することが出来、また量産性に優れたものである。そして、熱放散性が優れ、実用上許容される反り量の有しているので、これを用いて製造したパワーモジュールは、小型化が可能となり、高信頼性を有し、放熱フィン等への接続においても熱抵抗を増大することがないなどの、産業上有用な優れた効果を発揮する。更に、本発明の電子機器搭載用基板は、その表面の金属層の一部をエッチングすることで、電子機器搭載可能な前記ベース板一体型セラミックス回路基板等を容易に提供でき、産業上有用である。
【図面の簡単な説明】
【図1】本発明の実施例、比較例において、含浸操作に用いた枠材の平面図。
【図2】本発明の実施例1におけるベース板一体型セラミック基板(電子機器搭載用基板)の構造を説明するための断面図。
【図3】本発明の実施例1に係るベース板一体型セラミックス回路基板の構造を説明するための断面図。
【図4】本発明の実施例2における含浸直前での各部材の配置を説明する図。
【図5】本発明の実施例2に係るベース板一体型セラミックス回路基板の構造を説明するための断面図。
【図6】比較例に係るベース板一体型セラミックス回路基板の構造を説明するための断面図。
【符号の説明】
1 :枠材
2 :溶湯導入部(湯口)
3 :プリフォーム収納部
4 :金属層(銅板)
5 :セラミックス基板
6 :金属−セラミックス複合体(Cu−SiC複合体)
7 :回路(銅板)
8 :銅板
9 :銅板
10 :多孔質無機焼結体(プリフォーム:多孔質炭化珪素焼結体)
11 :含浸用金属(Cu合金)
12 :回路(Cu合金)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic device mounting substrate in which a base material made of a metal-metal, metal-carbon, or metal-ceramic composite, and a high thermal conductive ceramic substrate, including a metal mainly composed of copper, are integrally formed. Alternatively, the present invention relates to a base plate integrated ceramic circuit board and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, in the field of industrial equipment, the development of power modules used for inverters for electric motors has been progressing. Conventionally, high thermal conductive ceramic circuit boards equipped with silicon chips have been soldered to copper bases. Those having a structure have been used. However, since cracks occur in the ceramic substrate and the solder layer depending on the use conditions, various improvements have been made to improve the reliability by preventing these cracks.
[0003]
For example, an Al (aluminum) -SiC (silicon carbide) composite is used as a base material, and an AlN (aluminum nitride) substrate with an Al circuit (hereinafter referred to as an Al-SiC composite / aluminum nitride substrate with an Al circuit) is soldered. Although the attached structure maintains practical characteristics even after 3000 thermal cycles, it has much higher reliability than the conventionally known Cu (copper) base / aluminum nitride substrate with a copper circuit. Compared to the above, since the thermal resistance is large, it is necessary to increase the chip size, and since the Al-SiC composite is expensive, the module cost is increased, and thus it has not been widely spread.
[0004]
It has also been proposed to integrate the Al-SiC composite with a ceramic substrate or a ceramic circuit board when manufacturing the Al-SiC composite. In this case, since there is no solder layer between the composite and the substrate, there is no concern that cracks will occur in the solder in that part, and there are advantages such as improved reliability and reduced thermal resistance. Has a thermal conductivity of no more than 200 W / mK, and further reduction in thermal resistance is required to increase the capacity and size of the power module.
[0005]
[Problems to be solved by the invention]
The present inventor has studied variously in view of the above circumstances, and the base plate and the ceramic circuit board can be integrated only through a process of manufacturing a metal-metal, metal-carbon, or metal-ceramic composite. The present inventors have found that an electronic component mounting substrate having thermal cycle resistance and low thermal resistance can be provided, and the present invention has been achieved. That is, an object of the present invention is to provide an electronic mounting substrate and a base plate integrated ceramic circuit substrate capable of supplying a power module having low thermal resistance, excellent thermal cycle resistance, and thus excellent long-term reliability with high reproducibility. There is.
[0006]
[Means for Solving the Problems]
The present invention includes a base plate that has or does not have a recess on one main surface, a ceramic substrate that is disposed on the main surface of the base plate and is smaller than the base plate, the base plate, and the ceramic substrate. A surface of the metal layer that does not contact the base plate and the ceramic substrate is planar, and the base plate is metal-metal, metal- It is carbon or a metal-ceramic composite, wherein the metal in the composite and the metal layer are mainly composed of copper, and the purity of the metal layer is higher than the purity of the metal in the composite. This is an electronic device mounting board.
[0007]
Moreover, this invention is said board | substrate for electronic device mounting characterized by having a plurality of ceramic substrates. According to another aspect of the present invention, there is provided a base plate-integrated ceramic circuit board formed by forming a circuit from a metal layer of an electronic device mounting board.
[0008]
The present invention also provides a base plate-integrated ceramic circuit board comprising a ceramic circuit board having a circuit on one main surface and a base plate provided in contact with the main surface on which the circuit of the ceramic circuit board is not provided. The base plate is made of a metal-metal composite, a metal-carbon composite, or a metal-ceramic composite, and the surface of the circuit and the ceramic substrate of the base plate are mounted on the surface on which the ceramic substrate is not provided. And a base plate integrated type wherein the metal contained in the circuit and the base plate is mainly composed of copper and the purity of the metal layer is higher than the purity of the metal in the composite It is a ceramic circuit board.
[0009]
In the present invention, the base plate is composed of a porous molded body mainly composed of one or more selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten, and molybdenum. A base plate-integrated ceramic circuit board characterized by being a composite body impregnated with a metal to be used.
[0010]
Further, the present invention is a porous material mainly comprising at least one selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten and molybdenum, and having or not having a recess on one main surface. A ceramic substrate is disposed on the main surface of the molded body, and a metal plate mainly composed of copper is disposed so as to cover at least a part of the porous molded body and the ceramic substrate, thereby forming a laminate. The laminate is placed in a container, a metal mainly composed of copper is cast, and the voids of the porous molded body are impregnated with the metal mainly composed of copper, and the porous molded body and the metal plate In addition, the present invention is a method for manufacturing a substrate for mounting an electronic device, wherein a ceramic substrate is integrated.
[0011]
Further, the present invention is a porous material mainly comprising at least one selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten and molybdenum, and having or not having a recess on one main surface. A ceramic substrate is disposed on the main surface of the molded body, and a metal plate is further disposed so as to cover at least a part of the porous molded body and the ceramic substrate, thereby forming a laminated body. The metal is composed mainly of copper, and the porous molded body is impregnated with the metal mainly composed of copper, and the porous molded body, the metal plate and the ceramic substrate are integrated. And then forming a circuit from the metal layer formed on the surface opposite to the base plate of the ceramic substrate or the metal plate. It is a manufacturing method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The electronic device mounting substrate of the present invention is characterized in that it can be manufactured by integrating the base plate and the ceramic substrate in accordance with the manufacturing method of the metal-metal, metal-carbon, or metal-ceramic composite used as the base plate. .
[0013]
The methods for producing metal-metal, metal-carbon, or metal-ceramic composites are roughly classified into two types: an impregnation method and a powder metallurgy method. Among these, the powder metallurgy method is low in manufacturing cost but is not sufficient in terms of the characteristics of the obtained composite, and the impregnation method is advantageous in terms of the characteristics of the resulting composite although the manufacturing cost is high. There are various impregnation methods, and there are a method performed at normal pressure and a method performed under high pressure (high pressure casting method). What is performed under high pressure includes a molten metal forging method and a die casting method. Both the molten metal forging method and the die casting method are porous with a certain degree of strength in a final shape, or a mold that is almost similar to the final shape, or a mold (or room) composed of a frame and a plate. This is a method in which a body (preform) is loaded and this is impregnated with copper (Cu) or a molten Cu alloy at a high pressure to obtain a composite.
[0014]
In the present invention, any method may be used, but a type performed under high pressure is preferable in view of characteristics (coexistence of high thermal conductivity and low thermal expansion coefficient and heat cycle resistance). If the ceramic plate and the circuit board are joined or the metal layer for the circuit is formed during the impregnation operation, it is possible to obtain a circuit board precursor obtained by joining the ceramic substrate at a lower cost.
[0015]
When the preform is impregnated with the molten Cu at the same time as the integration with the substrate, conventionally, (1) the ceramic circuit board is placed in contact with the preform, and the preform is joined with the ceramic while the preform is impregnated with the molten Cu. Performing (2) A method is known in which a ceramic substrate is placed in contact with a preform and the preform is impregnated with a molten Cu and bonding to the ceramic substrate and formation of a metal layer for a circuit are performed simultaneously.
[0016]
The method (1) is disadvantageous in terms of cost because it requires a step of joining a circuit metal to a ceramic substrate in advance or forming a circuit after providing a metal layer on the ceramic substrate. In the method (2), since a copper alloy having a low melting point is often used as the impregnated metal, the thermal conductivity and electric conductivity of the impregnated metal layer used in the circuit are lowered, which is disadvantageous in characteristics. Further, since the alloy is harder than pure copper, the stress generated in the bonded ceramic substrate such as AlN is increased, which may cause problems such as substrate cracking. When pure copper is used for the impregnated metal, the adhesion with ceramics is inferior, and the heat cycle resistance may be lowered.
[0017]
As a result of intensive studies, the inventors of the present invention have the following configuration, which can be manufactured relatively easily, with high accuracy, and as a result, at low cost, from a metal-metal or metal-ceramic composite. It was found that an integrated ceramic circuit board with a base plate can be obtained.
[0018]
That is, a ceramic substrate is placed in contact with the preform, and a Cu plate is placed in contact with the preform, followed by preheating and impregnation with molten Cu at a high pressure to obtain a substrate for mounting an electronic component. By forming a circuit from a plate by a conventionally known method such as etching, a base plate-integrated ceramic circuit board to which a circuit made of a Cu plate having a certain thickness is bonded can be obtained.
[0019]
When the preform is impregnated with Cu, preheating is generally performed so that the molten Cu is easily impregnated into the preform. However, in the present invention, a Cu plate is present during the preheating. Even if the Cu plate does not melt, it is based on the discovery that the Cu plate keeps the charged form even when the Cu alloy contacts the Cu plate.
[0020]
Surprisingly, it has been found that the base plate-integrated ceramic circuit board obtained in this way has extremely useful characteristics in practice. For example, the thermal expansion coefficient of a Cu-SiC composite plate is determined by the SiC volume percentage in the composite, and is generally about 6 to 9 ppm / K. Therefore, AlN (aluminum nitride) or Si Three N Four When a ceramic substrate having a low coefficient of thermal expansion such as (silicon nitride) is soldered or brazed, a large warp with the ceramic side convex is generated. This warp creates a gap between the base plate and the heat dissipating fin when screwing and fixing it to the heat dissipating fin or the like, thereby hindering heat transfer. For this reason, it has been necessary to give a warp in which the joint surface with the heat dissipating fins or the like is concave in advance to the base plate by some method. However, in the base plate integrated ceramic circuit board of the present invention, since the thermal expansion coefficient of Cu constituting the surface circuit is large, in the case of AlN, Si is substantially flat and has a smaller thermal expansion coefficient than that of AlN. Three N Four In this case, the circuit warps slightly, but the degree of the warp is such that it can be changed to a warp with the circuit side concave in the module assembling process. It exhibits favorable characteristics.
[0021]
Hereinafter, the example in the case of manufacturing a Cu-SiC composite body by the impregnation method under a high pressure is explained in full detail about this invention.
First, a method for producing a Cu—SiC composite will be described.
SiC powder is molded, calcined to obtain a preform, placed on a partition plate whose surface has been subjected to a mold release treatment, and then set in a frame-shaped mold that has been hollowed out so that the inner dimensions are the final shape. . After preheating the block, which has been fixed in layers, placed in a pressure-resistant container, in order to prevent the temperature of the block from dropping, pour molten Cu into the container as quickly as possible and pressurize the molten Cu. , Cu is impregnated into a preform placed in a frame-shaped mold.
[0022]
In the present invention, when the preform is set in the frame-shaped mold in the above steps, the same operation as that for obtaining the Al-SiC composite is further performed by merely arranging the ceramic substrate and the Cu plate. Thus, an electronic component mounting substrate in which the base plate and the ceramic circuit substrate are integrally bonded, or a base integrated ceramic is obtained.
[0023]
In the above-described operation, it is convenient that accurate positioning can be achieved if a recess having the same area as the ceramic substrate is provided on one main surface of the preform and the ceramic substrate is disposed there. In addition, it is preferable that the metal plate for a circuit is provided with the same outer dimension as the inner dimension of the frame, so that there will be no misalignment in subsequent handling, and positioning in the subsequent process becomes unnecessary.
[0024]
As is apparent from the above description, the porous silicon carbide preform to be used need not have any special restrictions, and any can be used. It is preferable to select what has. That is, among the characteristics of the Cu—SiC composite, particularly important characteristics are thermal conductivity and thermal expansion coefficient. The higher the silicon carbide (SiC) content in the composite, the smaller the thermal expansion coefficient, but the lower the thermal conductivity, practically, the relative density of porous silicon carbide is 30 to 70 vol%. Preferably it is in the range. Further, if the preform has a bending strength of 3 MPa or more, it is preferable that there is no fear of cracking during handling or impregnation.
[0025]
About the silicon carbide (SiC) powder which is the raw material of the said porous silicon carbide, it is preferable to perform particle size mixing. This is because the strength development is poor with only the coarse powder, and the thermal conductivity is lowered with only the fine powder. According to the study of the present inventor, for example, 40 to 80% by mass of silicon carbide coarse powder having a particle size of # 350 or more and 60 to 20% by mass of silicon carbide fine powder having a particle size of # 1000 or less are mixed. Use it.
[0026]
Carbon, ceramics, or metal powder or fiber is molded, subjected to degreasing and firing steps to become a preform, which is subjected to the impregnation operation. As described above, since it is advantageous in the process that the preform has a recess for positioning the ceramic substrate, the molding method is preferably a molding method using a mold such as injection molding, dry molding, or wet molding. . In addition, in the case of extrusion molding, it is not easy to provide a recess on the main surface, but it can be used in the same way because the problem of positioning can be reduced by means of stuffing the frame, such as making the recess into a groove shape, etc. Is possible.
[0027]
In order to develop the strength of the preform to 3 MPa or higher, it is preferable to perform baking in a non-oxidizing atmosphere or an oxidizing atmosphere and set the baking temperature to 850 ° C. or higher. In the case of a silicon carbide (SiC) preform, it is desirable to fire at a temperature not exceeding 1100 ° C. when firing in air so that SiC is not oxidized and its thermal conductivity is not lowered.
[0028]
The frame material for storing the preform has a gate for introducing the molten Cu into the mold (inside the room), and iron is effective. It is obtained by laser processing or punching press, and is provided after release treatment. For the mold release treatment, fine graphite powder is effective. The partition plate is preferably an iron or stainless steel plate. Applying fine graphite and / or BN (boron nitride) after treatment such as oxidation prevention is extremely effective for mold release. The thickness of the partition plate is selected according to the thickness and accuracy of the target product. If the thickness variation of the product is to be suppressed to 20 μm or less, the thickness may be reduced to about 0.3 mm if a plate of 3 mm or more and about 50 μm are allowed.
[0029]
As the ceramic substrate used in the present invention, AlN, Si Three N Four , Al 2 O Three General-purpose ceramics such as (alumina) are used, but for the purposes of the present invention, ceramics with high thermal conductivity are preferred, such as AlN and Si. Three N Four Nitride ceramics are preferred.
[0030]
The metal plate for circuit in the present invention may be any metal plate as long as it has a melting point higher than that of the impregnated metal constituting the base plate, but can form a circuit and heat. Those having high conductivity and high electrical conductivity are preferable, and any Cu plate having a purity of 98.5% by mass or more can be used. However, in order to achieve both higher reliability and excellent physical properties, the purity of the Cu plate is 99.5% or more, more preferably 99.9% or more of a high-purity Cu plate, particularly an oxygen-free copper plate. It is good. The thickness of the circuit material is generally about 0.2 to 0.5 mm, but 0.2 to 0.4 mm when the ceramic substrate is AlN, Si Three N Four In this case, 0.3 to 0.5 mm is preferable.
[0031]
The circuit metal plate can be used not only as a circuit material but also as a positioning material. For example, when a preform is molded by extrusion molding or the like, it is difficult to process the cavity for placing the ceramic substrate, so a circuit metal plate with a hollow hole for housing the ceramic substrate is placed in contact with the preform and positioned. A ceramic substrate is arranged as a jig, and a metal plate for a circuit is arranged thereon. In this case, in order to facilitate the penetration of the molten Cu, it is preferable to provide a through-hole in the positioning metal plate in addition to the substrate position. Furthermore, you may cut and use an unnecessary part for the metal plate for circuits.
[0032]
A preform, a ceramic substrate, and a circuit metal plate, which are housed in a room separated by a frame and a partition plate, are stacked and fixed to form a block for impregnation, and the block is put in a preheating furnace and preheated. The preheating temperature needs to be an appropriate temperature depending on the metal to be impregnated, and the upper limit temperature needs to be lower than the melting point of the circuit metal plate. According to an experimental study by the present inventor, the preform is a porous silicon carbide sintered body, the impregnated metal is a Cu alloy containing 3% by mass of Si and 0.7% by mass of Mg. When oxygen-free copper is used as the metal plate, 1000 to 1070 ° C. is a preferable range. If it is 1000 ° C. or lower, impregnation may be poor, and if it is 1070 ° C. or higher, the oxygen-free copper plate may be melted. Moreover, in order to prevent a copper plate from oxidizing during preheating, it is necessary to heat by inert atmosphere and reducing atmosphere as needed.
[0033]
The preheated impregnation block is placed in a pressure resistant container, and the molten Cu alloy is pushed into the pressure resistant container and pressurized to impregnate the preform with the molten alloy, and at the same time the ceramic substrate and circuit metal Complete the bonding with the board. When a high-purity Cu plate having a purity of 99.5% or more is used for the metal plate for a circuit and the Cu alloy to be impregnated is a combination of the above compositions, there is no problem if the hot water temperature of the supplied Cu alloy is 1100 to 1200 ° C. When the temperature is lower than the above range, impregnation failure may occur. When the temperature is higher, melting of the high purity Cu plate may occur. In order to prevent oxidation of the molten Cu alloy, the molten metal is preferably maintained in an inert atmosphere or a reducing atmosphere.
[0034]
The metal to be impregnated may have a lower melting point than the circuit metal plate, and a Cu alloy is selected when the circuit metal plate is an oxygen-free copper plate. The reason why the Cu alloy is preferably selected is that it melts below the melting point of the oxygen-free copper plate, shows a strong bond with the preform or ceramic substrate, and fuses with the oxygen-free copper plate on the surface and does not produce a brittle alloy. This is because the object of the present invention can be sufficiently achieved.
[0035]
As the Cu alloy, a Cu alloy containing a component whose melting point decreases when added in a small amount is preferable. However, although a small amount of P (phosphorus) lowers the melting point, it is not preferable because the thermal conductivity is greatly lowered. Among various Cu alloys, Cu—Si based alloys are preferable. This is because Si lowers the melting point in a smaller amount than other additive elements and reduces the decrease in thermal conductivity. The amount is 0.5 to 10% by mass, preferably 1.0 to 5.0% by mass. Furthermore, the Cu—Si-based alloy to which a trace amount of a group 2a element such as Mg or Ca, a group 3a element such as Y, or a group 4a element such as Ti or Zr can be bonded to a stronger ceramic. Is more preferable. A sufficient effect is obtained when the amount of the additive element is 1% by mass or less.
[0036]
After completion of the impregnation operation, after cooling and solidifying, the outer Cu alloy is cut off, the contents are disassembled, and the release material attached to the surface is removed by buffing, sandblasting, etc., so that one main surface of the Cu-SiC composite A substrate on which a ceramic substrate is mounted, and a circuit metal plate is bonded to at least a part of both surfaces thereof is obtained. The substrate is a base plate on which various electronic devices such as semiconductor elements can be mounted only by forming a circuit from the circuit metal plate by etching or the like, and by performing processing or plating as necessary. An integrated ceramic circuit board can be easily provided.
[0037]
Further, in the operation of obtaining the substrate, it is possible to obtain a substrate in which a plurality of ceramic circuit substrates are mounted on one base plate only by arranging a plurality of ceramic substrates on one main surface of the preform in advance. This substrate has an advantage that it can easily provide a module having a structure in which a plurality of ceramic circuit boards are mounted on one base plate, and contributes to higher density of electronic components. In any of the above cases, in the base plate integrated ceramic circuit board of the present invention, the surface of the circuit and the surface of the metal layer on the surface of the base plate are formed on the same plane.
[0038]
Although part or all of the metal layer on the surface of the base plate can be removed in the course of etching or the like, according to the study of the present inventor, it is usually used at a low voltage of 3 mm or more from the end of the circuit. In this case, it is sufficient to etch a region of 1 mm or more, and removal of a region further away only increases the etching amount and does not contribute to improvement of circuit characteristics.
[0039]
As described above, the case where the Cu-SiC composite material is used for the base plate has been described in detail. Instead of silicon carbide powder, powder or fiber of carbon, alumina, aluminum nitride, silicon nitride, tungsten, molybdenum, copper oxide, or the like is used. Even if it uses, the board | substrate of this invention can be obtained like the case where the said SiC powder is used. When metal powder is used, a preform can be obtained by cold isotropic press (CIP) molding without going through a firing step, and it is important to maintain a non-oxidizing atmosphere or reducing atmosphere in the impregnation step. The impregnated metal is preferably a metal to which a small amount of Group 4a element is added. When fibers are used, preforms can be made by casting or the like if they are short fibers, and if they are long fibers, they can be woven into a cloth shape to form a preform.
[0040]
In addition to the method of impregnating under high pressure using the preform described in detail, the metal powder and metal powder, metal powder and carbon powder, or metal powder and ceramic powder constituting the composite body as the base plate are mixed, It is also possible to manufacture a substrate in which the substrate and the base plate are integrated by heating it above the melting point of the matrix metal and injecting it into a molding die in which a circuit metal plate and a ceramic plate are arranged. . In the portion other than the matrix metal, a fibrous substance can be used in addition to the powder.
[0041]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to this.
[0042]
[Example 1]
70 g of silicon carbide powder A (manufactured by Taiyo Random Company: NG-220, average particle size: 60 μm), 30 g of silicon carbide powder B (manufactured by Yakushima Electric Works: GC-1000F, average particle size: 10 μm), and silica sol (Nissan Chemical) 10 g (Snowtex Co., Ltd.) was weighed and mixed for 30 minutes with a stirring mixer, and then a flat plate with dimensions of 110 mm × 90 mm × 4.6 mm having a cavity of 50 mm × 50 mm × 0.6 mm on one side of the central part. Molded into. At this time, the pressure during molding was set to 10 MPa.
[0043]
The obtained molded body was fired in the atmosphere at a temperature of 950 ° C. for 2 hours to obtain a porous silicon carbide sintered body having a relative density of 65 volume%.
[0044]
Next, the obtained porous silicon carbide sintered body was placed on a 0.7 mm-thick partition plate coated with a release agent, which was also coated with the release agent (material: Carbon steel), and an aluminum nitride substrate having a characteristic of 170 W / mK of 50 × 50 × 0.6 mm is inserted into the cavity of the porous silicon carbide sintered body, and then the porous silicon carbide sintered body An oxygen-free copper plate having a thickness of 0.3 mm, which is equal to the outer dimensions of the plate, was placed thereon. In this state, the height of the contents and the frame height are substantially equal. This was overlaid with a partition plate coated with a release agent (same as the above-mentioned partition plate and the same size as the outer dimensions of the mold), and a 6 mm thick iron plate was placed on both ends to form one block.
[0045]
Next, the block was preheated to a temperature of 1050 ° C. in an electric furnace, placed in a preheated mold, and then heated to a temperature of 1100 ° C., 2% by mass of Si and 0.1% of Ti. A molten Cu alloy containing 5% by mass was poured and pressurized at a pressure of 100 MPa for 10 minutes to impregnate the porous silicon carbide sintered body with the Cu alloy. The obtained metal mass containing the composite was cooled to room temperature, and then cut with a band saw to release the base plate integrated ceramic substrate from the mold. A cross-sectional view of this state is shown in FIG.
[0046]
In order to remove the mold release agent on the surface of the base plate integrated ceramic substrate, it was passed through a buffing machine equipped with a # 220 baffle. After removing the release agent, an etching resist having a desired pattern was printed on the surface of the copper plate, the back and side surfaces were solid, and unnecessary portions were dissolved with a ferric chloride solution. Furthermore, after processing holes for attaching the radiation fins, plating was performed to obtain a base plate integrated ceramic circuit board. The plating was made of two layers of electroless Ni—P; 5 μm and electroless Ni—B; 2 μm. A cross-sectional view of this state is shown in FIG. Further, the warping amount at this time was approximately 0 μm.
[0047]
Next, a 12 mm square and 0.4 mm thick silicon chip was soldered to the circuit pattern of the base plate integrated ceramic circuit board, and a thermal cycle test was performed. The conditions of the cold cycle test were -40 ° C; 30 minutes, in air; 10 minutes, 125 ° C; 30 minutes, and 10 minutes in air as one cycle. After 1000 cycles, the presence or absence of cracks in the solder part under the silicon chip, cracks in the substrate itself, circuit peeling, etc. were observed in detail, but no abnormality was found.
[0048]
[Example 2]
70 g of silicon carbide powder A (manufactured by Taiyo Random Company: NG-220, average particle size: 60 μm), 30 g of silicon carbide powder B (manufactured by Yakushima Electric Works: GC-1000F, average particle size: 10 μm), and silica sol (Nissan Chemical) After weighing 10 g with a stirrer and mixer for 30 minutes, it was molded into a shape of 110 mm × 90 mm × 4 mm at a pressure of 10 MPa.
[0049]
The obtained molded body was heated in the atmosphere at a temperature of 950 ° C. for 2 hours to obtain a porous silicon carbide sintered body having a relative density of 65 volume%. Next, the porous silicon carbide sintered body was placed on a 0.7 mm thick partition plate coated with a release agent, which was also coated with the release agent (material: carbon). Steel), an oxygen-free copper plate having a thickness of 0.3 mm and having a 50 × 50 window at the center and having an outer dimension substantially equal to the outer dimension of the porous silicon carbide sintered body. Next, after inserting a silicon nitride substrate having a characteristic of 100 W / mK of 50 × 50 × 0.4 mm into the window portion of the oxygen-free copper plate, the outer dimension of the porous silicon carbide sintered body is approximately equal to the outer dimension. A 4 mm thick oxygen-free copper plate was placed on top of this. In this state, the height of the contents and the frame height are substantially equal. A cross-sectional view in this state is shown in FIG. Further, a partition plate coated with a release agent (same as the above-described partition plate and the size is the same as the outer size of the mold) was overlapped, and an iron plate having a thickness of 6 mm was disposed on both sides, and then one block was formed.
[0050]
Subsequent operations were the same as those in Example 1 to obtain a base plate integrated ceramic circuit board. A cross-sectional view in this state is shown in FIG. The surface is Ni-P plated 5 [mu] m and Ni-B plated 2 [mu] m. The amount of warping at this time was about 100 μm with the concave circuit surface.
[0051]
A silicon chip having a 12 mm square and a thickness of 0.4 mm was soldered to the circuit pattern of the base plate integrated circuit board, and the cooling cycle test shown in Example 1 was performed. After 1000 cycles, The presence or absence of cracks in the solder portion, substrate cracking, circuit peeling, etc. were observed in detail, but no abnormality was observed.
[0052]
[Comparative example]
70 g of silicon carbide powder A (manufactured by Taiyo Random Company: NG-220, average particle size: 60 μm), 30 g of silicon carbide powder B (manufactured by Yakushima Electric Works: GC-1000F, average particle size: 10 μm), and silica sol (Nissan Chemical) 10 g in a flat plate with a cavity of 110 mm x 90 mm x 4.6 mm and a cavity of 50 mm x 50 mm x 0.6 mm on one side of the center after weighing 10 g with a stirring mixer. Molded at a pressure of
[0053]
The obtained molded body was heated in the atmosphere at a temperature of 950 ° C. for 2 hours to obtain a porous silicon carbide sintered body. The relative density of the obtained porous silicon carbide sintered body was 65% by volume.
[0054]
Next, the obtained porous silicon carbide sintered body was placed on a 0.7 mm-thick partition plate coated with a release agent, which was also coated with the release agent (material: The carbon nitride steel plate was inserted into the cavity portion of the porous body, and a 170 W / mK aluminum nitride substrate of 50 × 50 × 0.6 mm was inserted. In this state, the frame height was about 0.4 mm higher than the content height. A partition plate coated with a release agent (same as the above-mentioned partition plate and the same size as the outer dimensions of the formwork) was overlapped thereon, and an iron plate having a thickness of 6 mm was disposed on both sides, and then one block was formed. At this time, care was taken so that the aluminum nitride substrate placed in the cavity would not be detached from the cavity so that the substrate side was always located at the top.
[0055]
Next, the block is preheated to a temperature of 1050 ° C. in an electric furnace and placed in a preheated mold, taking care not to detach the aluminum nitride substrate from the cavity, and then the temperature of 1100 ° C. A molten Cu alloy containing 2% by mass of Si and 0.5% by mass of Ti, which was heated, was pushed in and pressurized at a pressure of 100 MPa for 10 minutes to impregnate the porous silicon carbide sintered body with the Cu alloy. . The obtained metal lump containing the composite was cooled to room temperature and then cut with a band saw to release the base plate-integrated ceramic substrate from the mold.
[0056]
Thereafter, the same operation as in Example 1 was performed to obtain a base plate integrated ceramic circuit board. A cross-sectional view in this state is shown in FIG. The amount of warpage was approximately 50 μm with the circuit side being convex.
[0057]
A 12 mm square and 0.4 mm thick silicon chip was soldered to the circuit pattern of the base plate integrated ceramic circuit board, and the thermal cycle test shown in Example 1 was performed. There were through cracks.
[0058]
【The invention's effect】
The base plate integrated ceramic circuit board of the present invention can be easily manufactured with a high yield and is excellent in mass productivity. And since it has excellent heat dissipation and has a warp amount that is practically acceptable, a power module manufactured using this can be downsized, has high reliability, Even in connection, it exhibits excellent industrially useful effects such as no increase in thermal resistance. Furthermore, the substrate for mounting electronic equipment according to the present invention can be easily provided with the base plate-integrated ceramic circuit board that can be mounted on electronic equipment by etching a part of the metal layer on the surface, which is industrially useful. is there.
[Brief description of the drawings]
FIG. 1 is a plan view of a frame material used for an impregnation operation in Examples and Comparative Examples of the present invention.
FIG. 2 is a cross-sectional view for explaining the structure of a base plate integrated ceramic substrate (electronic device mounting substrate) in Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view for explaining the structure of a base plate integrated ceramic circuit board according to Embodiment 1 of the present invention.
FIG. 4 is a view for explaining the arrangement of members immediately before impregnation in Example 2 of the present invention.
FIG. 5 is a cross-sectional view for explaining the structure of a base plate integrated ceramic circuit board according to a second embodiment of the present invention.
FIG. 6 is a cross-sectional view for explaining the structure of a base plate integrated ceramic circuit board according to a comparative example.
[Explanation of symbols]
1: Frame material
2: Molten metal introduction part (pouring gate)
3: Preform storage section
4: Metal layer (copper plate)
5: Ceramic substrate
6: Metal-ceramic composite (Cu-SiC composite)
7: Circuit (copper plate)
8: Copper plate
9: Copper plate
10: Porous inorganic sintered body (Preform: Porous silicon carbide sintered body)
11: Metal for impregnation (Cu alloy)
12: Circuit (Cu alloy)

Claims (7)

一主面に凹部を有する又は有していないベース板と、前記ベース板の前記主面上に配置され、前記ベース板よりも小さいセラミックス基板と、前記ベース板と前記セラミックス基板との少なくとも一部を共に覆うように設けられた金属層とからなり、前記金属層のベース板及びセラミックス基板に接しない面が平面状であって、しかも、前記ベース板が金属−金属複合体、金属−カーボン複合体、もしくは金属−セラミックス複合体であり、前記複合体中の金属と前記金属層とが銅を主成分とし、かつ前記金属層の純度が前記複合体中の金属の純度より高いことを特徴とする電子機器搭載用基板。A base plate having or not having a recess on one main surface, a ceramic substrate disposed on the main surface of the base plate and smaller than the base plate, and at least a part of the base plate and the ceramic substrate A surface of the metal layer that does not contact the base plate and the ceramic substrate is planar, and the base plate is a metal-metal composite , a metal-carbon composite. body or metal, - a ceramic composite, and wherein the metal in the complex and said metal layer is composed mainly of copper, and the purity of the metal layer is higher than the purity of the metal in said complex Electronic equipment mounting board. セラミックス基板が複数であることを特徴とする請求項1記載の電子機器搭載用基板。The electronic device mounting substrate according to claim 1, wherein there are a plurality of ceramic substrates. 請求項1又は請求項2記載の電子機器搭載用基板の金属層より回路形成してなることを特徴とするベース板一体型セラミックス回路基板。A base plate-integrated ceramic circuit board, wherein a circuit is formed from a metal layer of the electronic device mounting board according to claim 1. 一主面上に回路を有するセラミックス回路基板と、該セラミックス回路基板の回路を設けていない主面に接して設けられているベース板と前記ベース板と前記セラミックス回路基板との少なくとも一部を共に覆うように設けられた金属層とからなるベース板一体型セラミックス回路基板であって、ベース板が金属−金属複合体、金属−カーボン複合体、又は金属−セラミックス複合体からなり、前記ベース板のセラミックス基板が搭載された主面において、前記回路表面と前記金属層のセラミックス基板を設けていない部分の表面の高さが同一であり、しかも、前記回路およびベース板に含まれる金属が銅を主成分とし、かつ前記金属層の純度が前記複合体中の金属の純度より高いことを特徴とするベース板一体型セラミックス回路基板。A ceramic circuit board having a circuit on one main surface, a base plate provided in contact with a main surface of the ceramic circuit board not provided with a circuit, and at least a part of the base plate and the ceramic circuit board together A base plate-integrated ceramic circuit board comprising a metal layer provided so as to cover the base plate, the base plate comprising a metal-metal composite, a metal-carbon composite, or a metal-ceramic composite, in the main surface of the ceramic substrate is mounted, said circuit surface and said it is the same height of the front surface of the ceramic substrate provided with no portion of the metal layer, yet, the metal contained in the circuit and the base plate is a copper A base plate-integrated ceramic circuit board characterized by comprising a main component and the purity of the metal layer being higher than the purity of the metal in the composite. ベース板が、カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とする多孔質成形体に銅を主成分とする金属を含浸してなる複合体であることを特徴とする請求項4記載のベース板一体型セラミックス回路基板。A base plate is formed by impregnating a porous molded body mainly composed of one or more kinds selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten and molybdenum with a metal mainly composed of copper. 5. The base plate-integrated ceramic circuit board according to claim 4, wherein the composite circuit board is a composite body. カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とし、一主面に凹部を有する又は有していない多孔質成形体の前記主面上にセラミックス基板を配置し、更に前記多孔質成形体とセラミックス基板との少なくとも一部を共に覆うように銅を主成分とする金属板を配置して積層体となし、前記積層体を容器内に配置し、前記金属板を構成する銅の純度以下の銅を主成分とする金属を鋳造して、前記多孔質成形体の空隙に前記銅を主成分とする金属を含浸すると共に、多孔質成形体、金属板並びにセラミックス基板を一体化させることを特徴とする電子機器搭載用基板の製造方法。The main surface of the porous molded body having one or more kinds selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten and molybdenum as a main component, and having or not having a concave portion on one main surface. A ceramic substrate is disposed on the substrate, and a metal plate mainly composed of copper is disposed so as to cover at least a part of the porous molded body and the ceramic substrate. The metal plate is made of a copper-based metal having a purity equal to or lower than that of the copper, and the voids of the porous molded body are impregnated with the metal containing the copper-based component, and porous. A method for producing a substrate for mounting electronic equipment, comprising: integrating a molded body, a metal plate, and a ceramic substrate. カーボン、炭化珪素、酸化銅、アルミナ、窒化アルミニウム、窒化珪素、タングステンおよびモリブデンから選ばれる1種類以上を主成分とし、一主面に凹部を有する又は有していない多孔質成形体の前記主面上にセラミックス基板を配置し、更に前記多孔質成形体とセラミックス基板との少なくとも一部を共に覆うように銅を主成分とする金属板または金属層を配置して積層体となし、前記積層体を容器内に配置し、前記金属板または金属層を構成する銅の純度より低い銅を主成分とする金属を鋳造して、前記多孔質成形体の空隙に前記銅を主成分とする金属を含浸すると共に、多孔質成形体、金属板並びにセラミックス基板を一体化させ、その後前記金属板または金属層より回路形成することを特徴とするベース板一体型セラミックス回路基板の製造方法。The main surface of the porous molded body having one or more kinds selected from carbon, silicon carbide, copper oxide, alumina, aluminum nitride, silicon nitride, tungsten and molybdenum as a main component, and having or not having a concave portion on one main surface. A ceramic substrate is disposed thereon, and further a metal plate or metal layer mainly composed of copper is disposed so as to cover at least a part of the porous molded body and the ceramic substrate, thereby forming a laminated body. Is placed in a container, a metal mainly composed of copper lower than the purity of the copper constituting the metal plate or metal layer is cast, and the metal mainly composed of copper is formed in the voids of the porous molded body. with impregnating a porous molded body, a metal plate and the ceramic substrate are integrated, the base plate integral ceramic times, characterized in that subsequently the metal plate or the metal layer from the circuit formation Method of manufacturing a substrate.
JP2001039736A 2001-02-16 2001-02-16 Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof Expired - Lifetime JP4668432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039736A JP4668432B2 (en) 2001-02-16 2001-02-16 Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039736A JP4668432B2 (en) 2001-02-16 2001-02-16 Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002246710A JP2002246710A (en) 2002-08-30
JP4668432B2 true JP4668432B2 (en) 2011-04-13

Family

ID=18902456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039736A Expired - Lifetime JP4668432B2 (en) 2001-02-16 2001-02-16 Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4668432B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128523A (en) * 1996-10-29 1998-05-19 Nippon Cement Co Ltd Metal-ceramic composite material and its production
JPH11163209A (en) * 1997-12-01 1999-06-18 Denki Kagaku Kogyo Kk Ceramic circuit board and manufacture thereof
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2001035982A (en) * 1998-09-22 2001-02-09 Mitsubishi Materials Corp Board for power module, and manufacture thereof, and semiconductor device using the board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128523A (en) * 1996-10-29 1998-05-19 Nippon Cement Co Ltd Metal-ceramic composite material and its production
JPH11163209A (en) * 1997-12-01 1999-06-18 Denki Kagaku Kogyo Kk Ceramic circuit board and manufacture thereof
JP2001035982A (en) * 1998-09-22 2001-02-09 Mitsubishi Materials Corp Board for power module, and manufacture thereof, and semiconductor device using the board
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture

Also Published As

Publication number Publication date
JP2002246710A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP4761157B2 (en) Aluminum-silicon carbide composite
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
US20090075056A1 (en) Aluminum-silicon carbide composite body and method for processing the same
JP2008240155A (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
WO1996029736A1 (en) Silicon nitride circuit substrate
WO2012127695A1 (en) Metal-ceramic bonded substrate and method for manufacturing same
JP5619437B2 (en) Method for producing metal / ceramic bonding substrate
WO2002045161A1 (en) Integral-type ceramic circuit board and method of producing same
JP6940997B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JP7062464B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JP4674999B2 (en) Integrated ceramic circuit board manufacturing method
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP4668432B2 (en) Electronic device mounting substrate, base plate integrated ceramic circuit substrate, and manufacturing method thereof
JP2016180185A (en) Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP2001217362A (en) Laminated heat dissipating member, power semiconductor device using it, and method of production
JP3871599B2 (en) Structure
JP4349739B2 (en) Base plate integrated ceramic circuit board and its manufacturing method
JP2000277953A (en) Ceramic circuit board
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JP3529085B2 (en) Circuit board with heat sink
JP2001217364A (en) Al-SiC COMPOSITE
WO2022201662A1 (en) Aluminum-ceramic bonded substrate and manufacturing method therefor
JP2001284509A (en) Al-SiC COMPOSITE BODY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term