JP4667752B2 - Thickness measurement method - Google Patents

Thickness measurement method Download PDF

Info

Publication number
JP4667752B2
JP4667752B2 JP2004035484A JP2004035484A JP4667752B2 JP 4667752 B2 JP4667752 B2 JP 4667752B2 JP 2004035484 A JP2004035484 A JP 2004035484A JP 2004035484 A JP2004035484 A JP 2004035484A JP 4667752 B2 JP4667752 B2 JP 4667752B2
Authority
JP
Japan
Prior art keywords
data
point data
point
measured
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004035484A
Other languages
Japanese (ja)
Other versions
JP2005227104A (en
Inventor
潤二 船倉
輝明 荻野
多加志 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004035484A priority Critical patent/JP4667752B2/en
Publication of JP2005227104A publication Critical patent/JP2005227104A/en
Application granted granted Critical
Publication of JP4667752B2 publication Critical patent/JP4667752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、自動車のバンパーなどの複雑な面形状を有するワークの板厚を測定する方法に関する。   The present invention relates to a method for measuring the thickness of a workpiece having a complicated surface shape such as an automobile bumper.

従来、自動車のバンパーやプレス成形部品などの複雑な面形状を有するワークが、設計通りに成形されているか否か評価する方法として、検査治具を用いてワークの面形状と検査治具とのずれ量を測る方法や、3次元測定機を用いてワークの面データと設計データであるモデルデータを比較してモデルデータとの差分値を算出する方法がある。これらの方法により、設計値に対するワークの形状誤差を把握することができる。   Conventionally, as a method for evaluating whether a workpiece having a complicated surface shape such as an automobile bumper or a press-molded part is molded as designed, an inspection jig is used to determine whether the workpiece surface shape and the inspection jig are There are a method of measuring a deviation amount, and a method of calculating a difference value from model data by comparing surface data of a workpiece with model data as design data using a three-dimensional measuring machine. By these methods, the shape error of the workpiece with respect to the design value can be grasped.

しかしながら、実際の測定ではワークの形状の他に、板厚の測定も要求されるが、上述の方法では、ワークの板厚を把握することはできない。ワークの板厚を測定する手段として、レーザ光を用いる方法があるが、この方法ではワークへのレーザ光の照射をワークの測定面に対して垂直にしなければならないなど、測定に際しての管理項目が多いという問題がある。   However, in actual measurement, in addition to the shape of the workpiece, measurement of the plate thickness is also required, but the above method cannot grasp the plate thickness of the workpiece. There is a method using laser light as a means to measure the plate thickness of the workpiece. In this method, however, there are management items for measurement such as that the laser beam irradiation on the workpiece must be perpendicular to the workpiece measurement surface. There is a problem that there are many.

そこで、光学式距離計と光学式幅計との組み合わせにより、板面と板厚測定軸とが垂直でない場合でも、被測定物の測定時の傾きを影の幅で把握し、傾きの大きさに応じて板厚の測定値を補正して、高精度で板厚の測定ができる板厚測定方法が知られている(例えば、特許文献1参照)。   Therefore, by combining an optical distance meter and an optical width meter, even when the plate surface and the plate thickness measurement axis are not perpendicular, the inclination at the time of measurement of the object to be measured is grasped by the shadow width, and the magnitude of the inclination Accordingly, there is known a plate thickness measuring method that corrects the measured value of the plate thickness in accordance with the above and can measure the plate thickness with high accuracy (for example, see Patent Document 1).

また、レーザ距離計の上流と下流にレーザ距離計を設置し、3台のレーザ距離計から2台を選択して被測定物(鋼板)の傾斜角度を演算し、この傾斜角度を用いて補正演算し、たとえ被測定物である鋼板が傾斜している場合でも、正確な板厚を測定することができる板厚測定方法が知られている(例えば、特許文献2参照)。   In addition, laser distance meters are installed upstream and downstream of the laser distance meter, and two of the three laser distance meters are selected to calculate the inclination angle of the object to be measured (steel plate), and correction is performed using this inclination angle. There is known a plate thickness measuring method that can calculate and measure an accurate plate thickness even when a steel plate as an object to be measured is inclined (see, for example, Patent Document 2).

特開平5−264231号公報JP-A-5-264231 特開平7−280526号公報Japanese Patent Laid-Open No. 7-280526

しかし、特許文献1に開示された板厚測定方法では、被測定物の傾きを把握するために、傾斜した被測定物に平面の部分がなければならないという要件が必要となる。また、特許文献2に開示された板厚測定方法でも、被測定物の傾斜角度を用いて補正演算すると、その補正演算範囲は平面として扱われる。このように、特許文献1及び2に開示された板厚測定方法では、演算範囲が平面でなければならないとう条件が課せられる。   However, in the plate thickness measurement method disclosed in Patent Document 1, in order to grasp the inclination of the object to be measured, there is a requirement that the inclined object to be measured must have a flat portion. In the plate thickness measurement method disclosed in Patent Document 2, when the correction calculation is performed using the inclination angle of the object to be measured, the correction calculation range is treated as a plane. As described above, the plate thickness measurement methods disclosed in Patent Documents 1 and 2 impose a condition that the calculation range must be a plane.

しかしながら、実際の被測定物は、特に自動車のバンパーに代表されるように、形状の殆どが曲面であるものが多く、その一部の形状にすら平面でない場合が多い。従って、曲面形状の被測定物を、特許文献1及び2に開示された板厚測定方法で測定すると、演算範囲に曲面が含まれることになり、これが新たな測定誤差の原因となってしまうという問題があった。   However, most of the actual objects to be measured are particularly curved surfaces, as typified by automobile bumpers, and even some of the shapes are often not flat. Therefore, if a curved object to be measured is measured by the plate thickness measuring method disclosed in Patent Documents 1 and 2, a curved surface is included in the calculation range, which causes a new measurement error. There was a problem.

本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、曲面形状を有する被測定物であっても、精度よく板厚を測定することができる板厚測定方法を提供しようとするものである。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to accurately measure the plate thickness even for an object to be measured having a curved shape. It is an object of the present invention to provide a method for measuring the thickness of the plate.

上記課題を解決すべく請求項1に係る発明は、曲面形状を有する被測定物の板厚を測定する方法であって、基準点からの被測定物の表面及び裏面の面データである点データ群を測定する工程と、測定した表面及び裏面の点データ群で、板厚の中心点の集合で構成される板厚のない設計上のデータであるモデルデータをデータ処理装置の表示部の画面上で挟んで重ね合わせて整合させる工程と、モデルデータにより形成される面に垂直で、モデルデータを構成する点データを通る法線を生成する工程と、この法線と測定した表面及び裏面の点データ群との交点を求め、この交点を板厚算出のための表面及び裏面の点データとするか、法線と交差する点データが存在しない場合には、実測して得た表面及び裏面の点データ群の中で、法線との距離が一番短い点データを板厚算出のための表面及び裏面の点データとする工程と、この表面の点データと裏面の点データとの距離から板厚を算出する工程と、からなるものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a method for measuring the plate thickness of a measured object having a curved shape, and is point data which is surface data of the front and back surfaces of the measured object from a reference point. The screen of the display unit of the data processing device is the model data which is the design data without the plate thickness composed of the set of the center points of the plate thickness in the process of measuring the group and the point data group of the measured front and back surfaces a step of aligning superimposed across above, perpendicular to the plane formed by the model data, and generating a normal line passing through the data points constituting the model data, the front and rear surfaces of the measurement and the normal line Find the point of intersection with the point data group, and use this point as the point data on the front and back sides for calculating the thickness, or if there is no point data that intersects the normal , the front and back sides obtained by measurement The distance from the normal in the point data group A step of the shortest point data to the surface and back of the point data for the thickness calculation, calculating a thickness from the distance between the point data and the back surface of the point data of the surface, is made of .

請求項2に係る発明は、請求項1記載の板厚測定方法において、前記法線と測定した表面及び裏面の面データとの交点の値が、この交点を含めた近傍の面データを構成する点データ群の平均値である。   According to a second aspect of the present invention, in the plate thickness measuring method according to the first aspect, the value of the intersection between the normal line and the measured surface data of the front and back surfaces constitutes the surface data of the neighborhood including the intersection. This is the average value of the point data group.

請求項3に係る発明は、請求項1又は2記載の板厚測定方法において、前記モデルデータが、被測定物のモデルを格子化した場合の各格子の中心又は重心の点データの集合である。   The invention according to claim 3 is the plate thickness measurement method according to claim 1 or 2, wherein the model data is a set of point data of the center or the center of gravity of each lattice when the model of the object to be measured is latticed. .

以上説明したように請求項1に係る発明によれば、モデルデータに生成した法線と交差する表面及び裏面の点データから被測定物の板厚を算出するため、曲面形状を有する被測定物でも、精度よく板厚を測定することできる。
また、モデルデータに法線を生成し、実測した表面及び裏面の面データである点データ群の中から、法線と交差する点データを求め、それらの点データを板厚算出のための表面及び裏面の点データとするので、板厚を算出する表面の点データと裏面の点データの対応関係を考慮する必要がなく、作業時間の短縮が図れる。
As described above, according to the first aspect of the invention, in order to calculate the plate thickness of the object to be measured from the point data on the front and back surfaces intersecting the normal generated in the model data, the object to be measured having a curved surface shape. However, the plate thickness can be accurately measured.
In addition, a normal line is generated in the model data, point data intersecting with the normal line is obtained from the point data group that is the measured surface data of the front and back surfaces, and the point data is obtained from the surface for calculating the plate thickness. Since it is the point data on the back surface, it is not necessary to consider the correspondence between the point data on the front surface for calculating the plate thickness and the point data on the back surface, and the working time can be shortened.

請求項2に係る発明によれば、板厚を算出するための表面及び裏面の点データとして、モデルデータに生成した法線と交差する表面及び裏面の1点のデータだけではなく、これと周囲の点データ群との平均値を用いて板厚を算出するので、板厚算出に用いる表面及び裏面の点データの測定誤差が小さくなるため、最終的な板厚の測定精度の向上に寄与する。   According to the invention according to claim 2, the point data of the front and back surfaces for calculating the plate thickness is not only the data of one point of the front and back surfaces intersecting the normal generated in the model data, but also the surroundings Since the plate thickness is calculated using the average value with the point data group, the measurement error of the point data on the front and back surfaces used for the plate thickness calculation is reduced, which contributes to the improvement of the final plate thickness measurement accuracy. .

請求項3に係る発明によれば、モデルデータを格子化することにより、データ容量を従来の形状データに比べて小さくすることができ、測定した表面及び裏面の点データ群との整合から板厚算出までの作業時間が短縮できるため、作業の効率向上が図れる。   According to the invention of claim 3, by modeling the model data, the data capacity can be reduced as compared with the conventional shape data, and the plate thickness can be determined by matching with the measured front and back point data groups. Since work time until calculation can be shortened, work efficiency can be improved.

以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る板厚測定方法を実施する装置の概要説明図、図2は自動車のバンパーの斜視図、図3はモデルデータの格子化の説明図、図4は測定作業の手順を示すフローチャート、図5はデータ処理の説明図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic explanatory view of an apparatus for carrying out a plate thickness measuring method according to the present invention, FIG. 2 is a perspective view of a bumper of an automobile, FIG. 3 is an explanatory view of model data gridding, and FIG. FIG. 5 is an explanatory diagram of data processing.

図1に示すように、本発明に係る板厚測定方法を実施する装置は、定盤1と、定盤1に設置されたバンパー受け治具2と、定盤1に固定された3次元測定機3と、データ処理装置4からなる。   As shown in FIG. 1, an apparatus for carrying out a plate thickness measuring method according to the present invention includes a surface plate 1, a bumper receiving jig 2 installed on the surface plate 1, and a three-dimensional measurement fixed to the surface plate 1. Machine 3 and data processor 4.

バンパー受け治具2は、図2に示すように、異なる曲面を繋ぎ合わせた複合曲面を形成する自動車のバンパーWを安定に支持するもので、測定の妨げにならないようにバンパーWの複数の部位を点支持する。   As shown in FIG. 2, the bumper receiving jig 2 stably supports a bumper W of an automobile that forms a composite curved surface by connecting different curved surfaces, and a plurality of parts of the bumper W so as not to hinder measurement. Point support.

3次元測定機3は、多関節で構成され、作業者が把持して操作する先端にはレーザ光を利用した非接触式測定子5が取り付けられてある。作業者は非接触式測定子5を把持してバンパーWの測定したい部位にレーザ光を所定の距離から照射しながら走査すれば、走査した箇所の3次元の点データが所定の間隔(例えば、時間やレーザ光のスポットの移動距離など)で連続的に記憶部に取り込まれる。   The three-dimensional measuring machine 3 is constituted by a multi-joint, and a non-contact type measuring element 5 using a laser beam is attached to a tip that is gripped and operated by an operator. If the operator grasps the non-contact type measuring element 5 and scans the part to be measured by the bumper W while irradiating laser light from a predetermined distance, the three-dimensional point data of the scanned part is set at a predetermined interval (for example, The data is continuously taken into the storage unit according to time and the moving distance of the spot of the laser beam.

データ処理装置4は、入出力部と記憶部と演算処理部と表示部などを備え、設計上のデータであるモデルデータを格納したり、3次元測定機3により測定したバンパーWの表面及び裏面の面データ(点データ群)を取り込んでモデルデータに重ね合わせて整合させたり、モデルデータにより形成される面に法線ベクトルを生成したり、法線ベクトルと測定した表面及び裏面の面データとの交点を求め、表面の交点と裏面の交点の距離から板厚を算出したりするなどの演算処理を行う。   The data processing device 4 includes an input / output unit, a storage unit, an arithmetic processing unit, a display unit, and the like, stores model data as design data, and the front and back surfaces of the bumper W measured by the three-dimensional measuring machine 3. The surface data (point data group) and superimpose it on the model data to match, generate a normal vector on the surface formed by the model data, and measure the normal vector and the measured surface and back surface data And calculating the thickness from the distance between the intersection of the front surface and the intersection of the back surface.

バンパーWのモデルデータは、バンパーWの板厚の中心点の点データの集合で構成され、点データが多いほどモデルデータとしては好ましいが、モデルデータは、図3に示すように、被測定物のモデルを格子化した場合の各格子の中心又は重心の点データel,el,…elの集合であってもよい。 The model data of the bumper W is composed of a set of point data of the center point of the thickness of the bumper W, and the larger the point data, the more preferable as the model data. However, as shown in FIG. May be a set of point data el 1 , el 2 ,... El n of the center or center of gravity of each lattice.

格子の大きさは、バンパーWの部位によって変えることができる。例えば、図2に示すツノ部1aでは面形状が複雑なので格子を細かくし(格子を密)、左右端部1bでは面形状の変化が殆どないので格子を粗く(格子を疎)することができる。なお、図3ではモデルデータとして、格子の重心の点データを採用している。点データel,el,…elには、位置を表わす3次元データx1…n,y1…n,z1…nと板厚t1…nが含まれている。 The size of the lattice can be changed depending on the position of the bumper W. For example, since the surface shape is complicated in the horn portion 1a shown in FIG. 2, the lattice can be made fine (the lattice is dense), and the right and left end portions 1b can be made coarse (the lattice is sparse) because there is almost no change in the surface shape. . In FIG. 3, point data of the center of gravity of the lattice is adopted as model data. Point data el 1, el 2, the ... el n, contains 3-dimensional data x 1 ... n, y 1 ... n, z 1 ... n and the thickness t 1 ... n representing the position.

このように、モデルデータを構成する点データel,el,…elの配列を所定の大きさで格子化することにより、データ容量の大きい従来の形状データからなるモデルデータに比べてデータ容量を小さくすることができる。データ容量を小さくすることにより、モデルデータと測定した表面及び裏面の点データ群との整合作業から板厚算出作業までの作業時間が短縮できる。 In this way, the array of the point data el 1 , el 2 ,... El n constituting the model data is latticed with a predetermined size, so that the data is compared with the model data composed of conventional shape data having a large data capacity. The capacity can be reduced. By reducing the data capacity, it is possible to shorten the work time from the matching work between the model data and the measured front and back point data groups to the plate thickness calculation work.

次に、本発明に係る板厚測定方法を、図4の測定作業の手順を示すローチャートに従って説明する。
先ず、ステップSP1において、レーザ光の乱反射防止用の塗料を塗布したバンパーWをバンパー受け治具2にセットするなどの測定準備作業を行う。なお、バンパーWの塗膜の厚さは、バンパーWの厚さに比べて、遥かに小さいため塗膜が測定誤差の原因になることはない。
Next, the plate thickness measuring method according to the present invention will be described with reference to the flowchart showing the procedure of the measuring operation in FIG.
First, in step SP1, measurement preparation work such as setting the bumper W coated with a coating for preventing irregular reflection of laser light on the bumper receiving jig 2 is performed. In addition, since the thickness of the coating film of the bumper W is much smaller than the thickness of the bumper W, the coating film does not cause a measurement error.

次いで、ステップSP2において、3次元測定機3の非接触式測定子5が放射するレーザ光を、所定の距離から照射しながら板厚を測定したいバンパーWの表面を走査する。すると、レーザ光で走査されたバンパーWの表面の3次元データが所定の間隔で連続的に記憶部に取り込まれる。同様の作業を、板厚を測定したいバンパーWの表面の全体について行うことにより、バンパーWの表面の点データ群が得られる。   Next, in step SP2, the surface of the bumper W whose thickness is to be measured is scanned while irradiating the laser beam emitted from the non-contact type probe 5 of the three-dimensional measuring machine 3 from a predetermined distance. Then, the three-dimensional data of the surface of the bumper W scanned with the laser light is continuously taken into the storage unit at a predetermined interval. By performing the same operation on the entire surface of the bumper W whose thickness is to be measured, a point data group on the surface of the bumper W is obtained.

ステップSP3において、バンパーWの表面と同様な作業を、板厚を測定したいバンパーWの裏面についても行う。すると、レーザ光で走査されたバンパーWの裏面の3次元データが所定の間隔で連続的に記憶部に取り込まれる。板厚を測定したいバンパーWの裏面の全体について行うことにより、バンパーWの裏面の点データ群が得られる。なお、表面と裏面の測定の順番は、どちらを先にしてもかまわない。   In step SP3, the same operation as the front surface of the bumper W is performed on the back surface of the bumper W whose thickness is to be measured. Then, the three-dimensional data of the back surface of the bumper W scanned with the laser light is continuously taken into the storage unit at a predetermined interval. By performing the process on the entire back surface of the bumper W whose thickness is to be measured, a point data group on the back surface of the bumper W is obtained. Note that the order of measurement of the front surface and the back surface may be either first.

なお、バンパーWの表面及び裏面の面データは、接触式の測定機でバンパーWの表面及び裏面の主要な複数の点データを測定し、これらの点データから特定の連続性の条件を満たすように連続した曲面分の集まりとして定義付けされるスプライン曲面としてもよい。   As for the surface data of the front and back surfaces of the bumper W, a plurality of main point data on the front and back surfaces of the bumper W are measured with a contact-type measuring machine, and the specific continuity condition is satisfied from these point data. It is good also as a spline curved surface defined as the collection of the part for a continuous curved surface.

次いで、ステップSP4において、実測して得たバンパーWの表面及び裏面の点データ群を、データ処理装置4の表示部の画面上に表されたモデルデータと重ね合わせて整合させる。モデルデータはバンパーWの板厚の中心点の集合で構成される板厚のない形状データであるから、実測して得たバンパーWの表面及び裏面の点データ群と、モデルデータとを整合させると、表面の点データ群と裏面の点データ群との間にモデルデータが挟まれることになる。   Next, in step SP4, the point data groups on the front and back surfaces of the bumper W obtained by actual measurement are superposed and matched with the model data represented on the screen of the display unit of the data processing device 4. Since the model data is shape data without a thickness composed of a set of central points of the thickness of the bumper W, the point data group of the front and back surfaces of the bumper W obtained by actual measurement is matched with the model data. Then, the model data is sandwiched between the point data group on the front surface and the point data group on the back surface.

次いで、ステップSP5において、図5に示すように、板厚を測定したいバンパーWの表面又は裏面の部位に対応するモデルデータにより形成される面に垂直で、モデルデータを構成する点データel,el,…elを通る法線ベクトルHを生成する。なお、図5ではモデルデータのうち点データelを通る法線ベクトルHを示す。 Next, in step SP5, as shown in FIG. 5, the point data el 1 , which constitutes the model data, is perpendicular to the surface formed by the model data corresponding to the front or back portion of the bumper W whose thickness is to be measured. A normal vector H passing through el 2 ,... el n is generated. FIG. 5 shows a normal vector H passing through the point data el n of the model data.

ステップSP6において、法線ベクトルHと交差する表面の点データA及び法線ベクトルHと交差する裏面の点データBを求める。なお、法線ベクトルHと交差する点データが存在しない場合には、実測して得たバンパーWの表面及び裏面の点データ群の中で、法線ベクトルHとの距離が一番短い点データが選択される。   In step SP6, surface point data A intersecting with the normal vector H and back surface point data B intersecting with the normal vector H are obtained. When there is no point data intersecting with the normal vector H, the point data with the shortest distance from the normal vector H in the point data group of the front and back surfaces of the bumper W obtained by actual measurement. Is selected.

次いで、ステップSP7において、法線ベクトルHと交差する表面の点データAと法線ベクトルと交差する裏面の点データBの距離を算出することにより、測定したい部位のバンパーWの板厚を求めることができる。   Next, in step SP7, by calculating the distance between the point data A on the front surface intersecting with the normal vector H and the point data B on the back surface intersecting with the normal vector, the thickness of the bumper W at the part to be measured is obtained. Can do.

ここで、図5に示すように、バンパーWの板厚を算出するのに用いる点データを点データA,Bだけでなく、この点データA,Bを含めた点データA,Bの周辺の点データ群を平均することで、点データA,Bの測定誤差による板厚精度への影響を低減することができる。   Here, as shown in FIG. 5, the point data used to calculate the thickness of the bumper W is not limited to the point data A and B, but around the point data A and B including the point data A and B. By averaging the point data group, it is possible to reduce the influence of the measurement error of the point data A and B on the plate thickness accuracy.

これにより、レーザ光の乱反射防止用塗料の塗布量にばらつきに伴う乱反射防止効果のばらつきによる測定値のばらつきや、非接触式測定子4のレーザ光の当て方による測定値のばらつきが原因となる板厚精度の低下を少なくすることができる。   This causes variations in measured values due to variations in the effect of preventing irregular reflection due to variations in the coating amount of the coating for preventing irregular reflection of laser light, and variations in measured values due to how the non-contact type probe 4 is applied with laser light. Reduction in plate thickness accuracy can be reduced.

また、平均化の対象となる点データ群は、図5に示すように、モデルデータに生成した法線ベクトルHを中心軸とした円筒Cを想定し、実測して得たバンパーWの表面及び裏面の点データ群のうち円筒C内に存在する点データ群とすることができる。   Further, as shown in FIG. 5, the point data group to be averaged is assumed to be a cylinder C with the normal vector H generated in the model data as the central axis, and the surface of the bumper W obtained by actual measurement and Among the point data group on the back surface, the point data group existing in the cylinder C can be used.

これにより、点データA,Bで局部的に測定誤差が大であっても、点データA,B周辺の点データ群で測定誤差が少なければ、平均化することによって全体的な測定精度が向上することになる。但し、平均化する点データ群の中で、明らかに周囲の点データと比べて差が大きいもの(○の中に×で示す)はノイズとして予め除去するのがよい。   As a result, even if the measurement error is locally large in the point data A and B, if the measurement error is small in the point data group around the point data A and B, the overall measurement accuracy is improved by averaging. Will do. However, among the point data groups to be averaged, those that are clearly larger in comparison with the surrounding point data (indicated by x in the circle) should be removed in advance as noise.

また、円筒Cの半径は、約2mm程度が望ましい。円筒Cの半径を大きくして平均化する範囲をあまり広くしすぎると、部位によってはバンパーWの曲面の高低差が顕著になる場合があるため、平均値自体が大きくずれる虞があるからである。   The radius of the cylinder C is preferably about 2 mm. This is because if the radius of the cylinder C is increased and the range to be averaged is too wide, the height difference of the curved surface of the bumper W may become noticeable depending on the part, so that the average value itself may be greatly deviated. .

更に、点データ群の平均値を算出するに際して、測定された各点データが平均値を中心にどのくらい散らばっているかを示す標準偏差σを用いるとよい。例えば、平均値±1σ内のデータ(●で示す)を平均化の対象データとすることができる。バンパーWの表面には、微細な凹凸があることもあり、平均値以外にも微細な凹凸による点データの散らばり具合を考慮するのが望ましいからである。標準偏差σを用いることで、単純平均では分からない点データの散らばり具合を知ることができるので、バンパーWの板厚を算出するのに用いる点データの精度が更に向上する。   Further, when calculating the average value of the point data group, it is preferable to use a standard deviation σ indicating how much each measured point data is scattered around the average value. For example, data within the average value ± 1σ (indicated by ●) can be used as data to be averaged. This is because the surface of the bumper W may have fine irregularities, and it is desirable to consider the degree of dispersion of point data due to fine irregularities in addition to the average value. By using the standard deviation σ, it is possible to know the degree of dispersion of point data that cannot be determined by simple averaging, and therefore the accuracy of the point data used to calculate the thickness of the bumper W is further improved.

このように、本発明に係る板厚測定方法では、3次元測定機3が測定したバンパーWの表面の点データとバンパーWの裏面の点データから直接板厚を算出するのではなく、板厚を測定したいバンパーWの表面又は裏面の部位に対応するモデルデータにより形成される面に法線ベクトルHを生成し、この法線ベクトルHと交差する表面及び裏面の実測した点データA,Bから板厚を算出するので、バンパーWが曲面や傾斜面を有していても、それらによる測定誤差を生じない。   Thus, in the plate thickness measuring method according to the present invention, the plate thickness is not calculated directly from the point data on the surface of the bumper W and the point data on the back surface of the bumper W measured by the three-dimensional measuring machine 3. A normal vector H is generated on the surface formed by the model data corresponding to the front or back surface portion of the bumper W to be measured, and from the measured point data A and B on the front and back surfaces intersecting the normal vector H Since the plate thickness is calculated, even if the bumper W has a curved surface or an inclined surface, a measurement error due to them does not occur.

本発明によれば、モデルデータに生成した法線と交差する表面及び裏面の点データから被測定物の板厚を算出するため、曲面形状を有する被測定物でも、精度よく板厚を測定することできる。また、モデルデータに法線を生成し、実測した表面及び裏面の面データである点データ群の中から、法線と交差する点データを求め、それらの点データを板厚算出のための表面及び裏面の点データとするので、板厚を算出する表面の点データと裏面の点データの対応関係を考慮する必要がなく、形状が複雑な被測定物の板厚測定の効率化に寄与する。   According to the present invention, the plate thickness of the object to be measured is calculated from the point data of the front and back surfaces intersecting the normal line generated in the model data, and therefore the plate thickness is accurately measured even for the object to be measured having a curved shape. I can. In addition, a normal line is generated in the model data, point data intersecting with the normal line is obtained from the point data group that is the measured surface data of the front and back surfaces, and the point data is obtained from the surface for calculating the plate thickness. Because it is the point data on the back surface, it is not necessary to consider the correspondence between the point data on the front surface and the point data on the back surface for calculating the plate thickness, which contributes to the efficiency of the plate thickness measurement of objects with complicated shapes. .

本発明に係る板厚測定方法を実施する装置の概要説明図Outline explanatory drawing of an apparatus for carrying out a plate thickness measuring method according to the present invention 自動車のバンパーの斜視図Car bumper perspective view モデルデータの格子化の説明図Diagram of model data gridding 測定作業の手順を示すフローチャートFlow chart showing measurement procedure データ処理の説明図Illustration of data processing

符号の説明Explanation of symbols

1…定盤、2…バンパー受け治具、3…3次元測定機、4…データ処理装置、5…非接触式測定子、H…法線ベクトル、W…バンパー。   DESCRIPTION OF SYMBOLS 1 ... Surface plate, 2 ... Bumper receiving jig, 3 ... Three-dimensional measuring machine, 4 ... Data processing apparatus, 5 ... Non-contact type probe, H ... Normal vector, W ... Bumper.

Claims (3)

曲面形状を有する被測定物の板厚を測定する方法であって、基準点からの被測定物の表面及び裏面の面データである点データ群を測定する工程と、測定した表面及び裏面の点データ群で、板厚の中心点の集合で構成される板厚のない設計上のデータであるモデルデータをデータ処理装置の表示部の画面上で挟んで重ね合わせて整合させる工程と、モデルデータにより形成される面に垂直で、モデルデータを構成する点データを通る法線を生成する工程と、この法線と測定した表面及び裏面の点データ群との交点を求め、この交点を板厚算出のための表面及び裏面の点データとするか、法線と交差する点データが存在しない場合には、実測して得た表面及び裏面の点データ群の中で、法線との距離が一番短い点データを板厚算出のための表面及び裏面の点データとする工程と、この表面の点データと裏面の点データとの距離から板厚を算出する工程と、からなることを特徴とする板厚測定方法。 A method of measuring the thickness of the object to be measured having a curved shape, a step of measuring the front and back surfaces of a point data group is a surface data of the object to be measured from the reference point, measured surface and the rear surface of the point In the data group, a model data that is a design data having no thickness composed of a set of center points of the thickness is sandwiched on the screen of the display unit of the data processing device and matched, and the model data The process of generating a normal line that passes through the point data constituting the model data and is perpendicular to the surface formed by the above process, and the intersection point between this normal line and the measured point and back surface point data groups is obtained, and this intersection point is determined as the plate thickness. If the point data on the front and back surfaces for calculation are not present, or if there is no point data that intersects the normal line, the distance from the normal line in the point data group on the front and back surfaces obtained by actual measurement is The shortest point data is used to calculate the surface Thickness measuring method of the steps of the back surface of the point data, a step of calculating the thickness from the distance between the point data and the back surface of the point data of the surface, characterized in that it consists of. 請求項1記載の板厚測定方法において、前記法線と測定した表面及び裏面の面データとの交点の値が、この交点を含めた近傍の面データを構成する点データ群の平均値であることを特徴とする板厚測定方法。 The thickness measurement method according to claim 1, wherein a value of an intersection between the normal line and the measured surface data of the front and back surfaces is an average value of a point data group constituting neighboring surface data including the intersection. A thickness measuring method characterized by the above. 請求項1又は2記載の板厚測定方法において、前記モデルデータが、被測定物のモデルを格子化した場合の各格子の中心又は重心の点データの集合であることを特徴とする板厚測定方法。 3. The plate thickness measurement method according to claim 1, wherein the model data is a set of point data of the center or the center of gravity of each grid when the model of the object to be measured is gridded. Method.
JP2004035484A 2004-02-12 2004-02-12 Thickness measurement method Expired - Fee Related JP4667752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035484A JP4667752B2 (en) 2004-02-12 2004-02-12 Thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035484A JP4667752B2 (en) 2004-02-12 2004-02-12 Thickness measurement method

Publications (2)

Publication Number Publication Date
JP2005227104A JP2005227104A (en) 2005-08-25
JP4667752B2 true JP4667752B2 (en) 2011-04-13

Family

ID=35001937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035484A Expired - Fee Related JP4667752B2 (en) 2004-02-12 2004-02-12 Thickness measurement method

Country Status (1)

Country Link
JP (1) JP4667752B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071060A (en) * 2018-10-29 2020-05-07 株式会社ミツトヨ Shape measuring device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196502A (en) * 1987-12-09 1989-08-08 Soc Natl Etud Constr Mot Aviat <Snecma> Non-contact inspection method and apparatus for geometric contour
JPH0381604A (en) * 1989-05-15 1991-04-08 General Electric Co <Ge> Determination of process parameter from surface of worked article
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH06273132A (en) * 1993-03-20 1994-09-30 Nippon Avionics Co Ltd Inspecting method for pattern
JPH07243833A (en) * 1994-03-04 1995-09-19 Toshiba Corp Dimension measuring device
JPH0882519A (en) * 1994-09-14 1996-03-26 Nikon Corp Measuring method and apparatus for center element and tolerance measuring method
JPH08178636A (en) * 1994-12-19 1996-07-12 Kawasaki Heavy Ind Ltd Method and device for evaluating form
JP2001506384A (en) * 1996-12-15 2001-05-15 コグニテンス リミテッド Apparatus and method for three-dimensional surface shape reconstruction
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP2002250622A (en) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd Shape-measuring method and device for optical element, and its type
JP2003344026A (en) * 2002-05-27 2003-12-03 Mitsubishi Heavy Ind Ltd Computer program and method for inspecting hollow vane
JP2005037353A (en) * 2003-06-27 2005-02-10 Mitsutoyo Corp Width measuring method and surface property measuring equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196502A (en) * 1987-12-09 1989-08-08 Soc Natl Etud Constr Mot Aviat <Snecma> Non-contact inspection method and apparatus for geometric contour
JPH0381604A (en) * 1989-05-15 1991-04-08 General Electric Co <Ge> Determination of process parameter from surface of worked article
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH06273132A (en) * 1993-03-20 1994-09-30 Nippon Avionics Co Ltd Inspecting method for pattern
JPH07243833A (en) * 1994-03-04 1995-09-19 Toshiba Corp Dimension measuring device
JPH0882519A (en) * 1994-09-14 1996-03-26 Nikon Corp Measuring method and apparatus for center element and tolerance measuring method
JPH08178636A (en) * 1994-12-19 1996-07-12 Kawasaki Heavy Ind Ltd Method and device for evaluating form
JP2001506384A (en) * 1996-12-15 2001-05-15 コグニテンス リミテッド Apparatus and method for three-dimensional surface shape reconstruction
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP2002250622A (en) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd Shape-measuring method and device for optical element, and its type
JP2003344026A (en) * 2002-05-27 2003-12-03 Mitsubishi Heavy Ind Ltd Computer program and method for inspecting hollow vane
JP2005037353A (en) * 2003-06-27 2005-02-10 Mitsutoyo Corp Width measuring method and surface property measuring equipment

Also Published As

Publication number Publication date
JP2005227104A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
Xi et al. Error compensation for three-dimensional line laser scanning data
JP5217221B2 (en) Method for detecting surface defect shape of welded portion and computer program
Chao et al. Calibration of laser beam direction for optical coordinate measuring system
US8724122B2 (en) Bead inspection method, and bead inspection apparatus
JP2008164482A (en) Method for evaluating welding quality
Kalami et al. Exploration of surface roughness measurement solutions for additive manufactured components built by multi-axis tool paths
Jin et al. Automatic multi-stereo-vision reconstruction method of complicated tubes for industrial assembly
Rak et al. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud
US11480550B2 (en) Method and device for mapping components for detecting elongation direction
JP2008544295A (en) Method for reconstructing the surface topology of an object
JP6220838B2 (en) Nondestructive inspection method, nondestructive inspection device, and information specifying method and information specifying device in elastic wave tomography
CN113798511B (en) Double-laser lap joint calibration method based on SLM additive manufacturing technology
CN112163342B (en) Method for simulating ultrasonic sound ray path in workpiece
JP4667752B2 (en) Thickness measurement method
Müller et al. Determination of the single point precision associated with tactile gear measurements in scanning mode
Li et al. Fixture configuration design for sheet metal assembly with laser welding: a case study
JP7410387B2 (en) Accessory installation position inspection method and installation position inspection device
Stoev et al. Quick X-ray reflectivity of spherical samples
Gollee et al. Development and Extrinsic Calibration of a 3D Optical Multisensor Platform Using Laser Line Scanner and a Three-Axis Linear Motion Unit
JP2023015886A (en) Shape inspection device, processing device, height image processing method, and height image processing program
Chian et al. Determination of tool nose radii of cutting inserts using machine vision
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
JP2016024060A (en) Measurement condition determination method and measurement device
CN110076501A (en) A kind of multi-Layer Welding of Thick Plates connects the acquisition methods and system of deformation angle
JP4670700B2 (en) 3D shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees