JP4666418B1 - Precious metal recovery device and recovery method - Google Patents

Precious metal recovery device and recovery method Download PDF

Info

Publication number
JP4666418B1
JP4666418B1 JP2010154404A JP2010154404A JP4666418B1 JP 4666418 B1 JP4666418 B1 JP 4666418B1 JP 2010154404 A JP2010154404 A JP 2010154404A JP 2010154404 A JP2010154404 A JP 2010154404A JP 4666418 B1 JP4666418 B1 JP 4666418B1
Authority
JP
Japan
Prior art keywords
anode
expander
cathode
noble metal
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010154404A
Other languages
Japanese (ja)
Other versions
JP2012017491A (en
Inventor
慶 鯖江
真司 阿部
孝行 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2010154404A priority Critical patent/JP4666418B1/en
Application granted granted Critical
Publication of JP4666418B1 publication Critical patent/JP4666418B1/en
Priority to TW100121080A priority patent/TWI400360B/en
Priority to CN201180030077.8A priority patent/CN102959134B/en
Priority to EP11803636.7A priority patent/EP2592177B1/en
Priority to PCT/JP2011/065495 priority patent/WO2012005302A1/en
Priority to KR1020127033089A priority patent/KR101307713B1/en
Publication of JP2012017491A publication Critical patent/JP2012017491A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Abstract

【課題】貴金属を含む廃液から電解法により貴金属を回収するための回収装置であって、電流異常による析出量や析出粒子のばらつきや、電流集中に由来する貴金属の異常析出による短絡不良を抑制し、均一な貴金属を安定的に析出させることに優れる回収装置および回収方法を提供する。
【解決手段】電解槽を構成する円筒状の金属製容器の内周に沿って配置される筒状のエキスパンダ陰極と、前記パイプ状陽極の外周に沿って配置される筒状のエキスパンダ陽極と、を備える貴金属回収装置であって、前記エキスパンダ陰極の上部は前記金属製容器の上肩部と断面逆L字形に接続固定されており、エキスパンダ陰極の下部は前記金属製容器の底部と接続固定されており、前記エキスパンダ陽極の両端は前記パイプ状陽極と断面コの字形に接続固定されていることを特徴とする。
【選択図】図1
A recovery device for recovering noble metal from a waste liquid containing noble metal by an electrolytic method, which suppresses variations in precipitation amount and precipitation particles due to current abnormality and short-circuit failure due to abnormal precipitation of noble metal due to current concentration. The present invention provides a recovery device and a recovery method that are excellent in stably depositing a uniform noble metal.
A cylindrical expander cathode disposed along an inner periphery of a cylindrical metal container constituting an electrolytic cell, and a cylindrical expander anode disposed along an outer periphery of the pipe-shaped anode. And an upper part of the expander cathode is connected and fixed to the upper shoulder of the metal container in an inverted L-shaped cross section, and a lower part of the expander cathode is a bottom part of the metal container The both ends of the expander anode are connected and fixed to the pipe-shaped anode in a U-shaped cross section.
[Selection] Figure 1

Description

本発明は、貴金属を含む廃液から貴金属を電解法により回収するための回収装置及び回収方法に関する。   The present invention relates to a recovery device and a recovery method for recovering a noble metal from a waste liquid containing the noble metal by an electrolytic method.

例えば、貴金属めっき液といった各種廃液中に残留する貴金属を回収する手段として、電解(還元)法が一般的に用いられている。この電解法による貴金属回収装置では、電解槽中に廃液を導入し、これに不溶性陽極及び陰極を浸漬させて通電することで液中の金属イオンを還元析出させるものである。   For example, an electrolytic (reduction) method is generally used as a means for recovering noble metal remaining in various waste liquids such as a noble metal plating solution. In this noble metal recovery apparatus using an electrolysis method, a waste liquid is introduced into an electrolytic tank, and an insoluble anode and a cathode are immersed in the electrolytic tank to energize the metal ions in the liquid to be reduced and deposited.

貴金属回収装置の態様の一つとして、図3に記載する円筒状容器17(電解槽)を用いるものがある(特許文献1参照)。この回収装置2では、円筒状容器17と、その中心部に設けられる陽極11と、容器内周に沿って配置される円筒状陰極16とからなる。そして、貴金属回収において、廃液を容器下部の注入口から導入し、これを陽極11と円筒状陰極16とにより電解しつつ、陽極の開口より排出口を通って出るようになっている。そして、かかる工程により、陰極16の表面には回収目的の貴金属が電解還元されて析出し、回収可能な状態となる。   One of the aspects of the noble metal recovery apparatus is one that uses a cylindrical container 17 (electrolyzer) shown in FIG. 3 (see Patent Document 1). The recovery apparatus 2 includes a cylindrical container 17, an anode 11 provided at the center thereof, and a cylindrical cathode 16 disposed along the inner periphery of the container. In the precious metal recovery, the waste liquid is introduced from the inlet at the lower part of the container, and is electrolyzed by the anode 11 and the cylindrical cathode 16 and is discharged from the opening of the anode through the outlet. By this process, the noble metal to be recovered is electrolytically reduced and deposited on the surface of the cathode 16 to be in a recoverable state.

この円筒状の回収装置は、絶えず廃液を流通させて使用することが可能であり作業効率に優れる他、例えば、板状の陽極と陰極とを連続的に積層させる従来形式の回収装置(特開平7−300692号など)と比べると比較的コンパクトであるといった利点がある。  This cylindrical recovery device can be used by continuously circulating the waste liquid and is excellent in work efficiency. For example, a conventional recovery device in which a plate-like anode and a cathode are continuously laminated (Japanese Patent Laid-Open 7-300692 and the like).

しかし、先の円筒容器を適用する特許文献1に記載の回収装置にも問題がある。即ち、析出した貴金属が陰極より剥離する場合があり、これにより陽極と陰極とが短絡し、陽極の消耗が促進されたり、電解の継続が不可能となったりする場合がある。この短絡は、特に析出貴金属が板状、箔状となる場合に生じ易い。   However, there is also a problem with the recovery device described in Patent Document 1 to which the previous cylindrical container is applied. That is, the deposited noble metal may be peeled off from the cathode, which may cause a short circuit between the anode and the cathode, which may promote consumption of the anode or make it impossible to continue electrolysis. This short circuit is likely to occur particularly when the deposited noble metal has a plate shape or a foil shape.

この問題を解消するため、後述する特許文献2には、他の態様として、図4に記載する電解槽を構成する円筒状容器10と、前記容器の中心に配置され、廃液を容器上部から容器底部へと流通させるように底部に開口を有するパイプ状の陽極11と、前記容器の内周に沿って配置される筒状の陰極12と、を備える貴金属回収装置であって、前記陰極の内周に、陰極と電気的に接続される網状の第1の筒体が配置された貴金属回収装置がある(特許文献2参照)。この回収装置3は、まず、陰極の内周に沿って、チタン製のパンチングメタルを巻いて筒状としたものを2重に重ねたものを用いる。この第1の筒体は、陰極として作用し、析出貴金属は筒体にも付着するが、析出貴金属の形状は粉状、粒状のものとして筒体の表面及び孔の内壁に付着する。この析出貴金属の密着性の良好な状態で保持されており、剥離による陽極との短絡は生じ難くなっている。また、平滑な筒状の陰極に析出した貴金属については、剥離しても筒体と陰極との間隙で保持されるので、これによる陽極との短絡は生じない。また廃液の供給を陽極により行い、パイプ状の陽極底部を開口して、廃液が陽極上部から底部へ流通するようになっている。特許文献2に記載の技術においては、第1の筒体より粉状の析出貴金属が剥離し、容器底部に堆積した場合、容器底部と陽極とが短絡するおそれがある。そこで、廃液の供給を陽極底部から行い、絶えず通液することで、容器底部に堆積した析出貴金属粉を水流により容器底部の外周に押し流すことができこの短絡を防止できるようになる。   In order to solve this problem, Patent Document 2 described later discloses, as another aspect, a cylindrical container 10 constituting the electrolytic cell shown in FIG. 4 and a container disposed at the center of the container, and discharging waste liquid from the top of the container. A noble metal recovery apparatus comprising: a pipe-shaped anode 11 having an opening at the bottom so as to circulate to the bottom; and a cylindrical cathode 12 disposed along the inner periphery of the container. There is a noble metal recovery device in which a net-like first cylindrical body that is electrically connected to the cathode is disposed on the periphery (see Patent Document 2). This recovery device 3 uses a double stack of titanium punching metal wound around the inner circumference of the cathode. The first cylinder acts as a cathode, and the deposited noble metal adheres to the cylinder, but the deposited noble metal has a powdery and granular shape and adheres to the surface of the cylinder and the inner wall of the hole. The deposited noble metal is kept in a good adhesion state, and short-circuiting with the anode due to peeling is less likely to occur. Further, the noble metal deposited on the smooth cylindrical cathode is held in the gap between the cylindrical body and the cathode even if it is peeled off, so that a short circuit with the anode does not occur. Further, the waste liquid is supplied by the anode, and the pipe-shaped anode bottom is opened, so that the waste liquid flows from the top to the bottom of the anode. In the technique described in Patent Document 2, when the powdered precious metal is peeled off from the first cylindrical body and deposited on the bottom of the container, the container bottom and the anode may be short-circuited. Therefore, by supplying the waste liquid from the bottom of the anode and continuously passing the liquid, the deposited noble metal powder deposited on the bottom of the container can be pushed to the outer periphery of the bottom of the container by a water flow, and this short circuit can be prevented.

特開2000−45089号公報JP 2000-45089 A 特開2006−28555(特許第4151904)号公報JP 2006-28555 A (Patent No. 4151904)

しかしながら、この特許文献2に記載の技術においても、陰極として作用する第1の筒体のふらつきによる電流異常から析出量のばらつきや、筒体端部での電流集中に由来する貴金属の異常析出により金属粉として落下しそれによる短絡不良を完全に抑制することはできなかった。   However, even in the technique described in Patent Document 2, the precipitation amount varies due to the current abnormality due to the fluctuation of the first cylinder acting as the cathode, and the abnormal precipitation of the noble metal resulting from the current concentration at the end of the cylinder. It was not possible to completely suppress the short circuit failure caused by falling as metal powder.

そこで、本発明は、上記のような電流異常による析出量あるいは析出粒子のばらつきや、電流集中に由来する貴金属の異常析出による短絡不良を抑制することで、回収物の精製の際の溶解に都合の良い均一な貴金属を安定的に析出させることを可能にする貴金属回収装置および貴金属回収方法を提供することを目的とする。さらに本発明によれば、均一で安定に貴金属を析出させることを可能にし、貴金属を効率よく回収する装置及び方法を提供することを目的とする。   Therefore, the present invention is advantageous for dissolution during purification of recovered materials by suppressing the amount of precipitation or precipitation particles due to current abnormality as described above and short-circuit failure due to abnormal precipitation of noble metals due to current concentration. It is an object of the present invention to provide a noble metal recovery apparatus and a noble metal recovery method capable of stably depositing a uniform noble metal with good quality. Furthermore, it is an object of the present invention to provide an apparatus and a method that allow a noble metal to be deposited uniformly and stably and efficiently recover the noble metal.

本発明者等は、鋭意検討を行い、円筒状容器を適用する回収装置および回収方法において複数の改良を行い、上記課題を解決することのできる回収装置および回収方法を見出した。   The inventors of the present invention have made extensive studies and made a plurality of improvements in the collection apparatus and the collection method to which the cylindrical container is applied, and have found a collection apparatus and a collection method that can solve the above problems.

本発明をより詳細に説明すれば、以下のとおりとなる。
貴金属回収装置は、電解槽を構成する円筒状の金属製容器と、前記金属製容器を密閉し取外し可能な、廃液流出口を有する絶縁性蓋体と、前記絶縁性蓋体の中心を貫通し、廃液を上部から底部へと流通させるパイプ状陽極と、前記金属製容器の内周に沿って配置される筒状のエキスパンダ陰極と、前記パイプ状陽極の外周に沿って配置される筒状のエキスパンダ陽極と、を備える貴金属回収装置であって、前記エキスパンダ陰極の上部は前記金属製容器の上肩部と断面逆L字形に接続固定されており、エキスパンダ陰極の下部は前記金属製容器の底部と接続固定されており、前記エキスパンダ陽極の両端は前記パイプ状陽極と断面コの字形に接続固定されていることを特徴とする。
ここで、エキスパンダ陽極の長さは、エキスパンダ陰極の長さの0.5〜0.95を乗じた長さであることが好ましい。
金属性容器及びエキスパンダ陰極は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなることが好ましい。
また、エキスパンダ陰極は、中央部が陽極側に膨出した形状であることが好ましい。
また、パイプ状陽極およびエキスパンダ陽極は、少なくとも表面が白金族の金属、合金または酸化物よりなることが好ましい。
他方、本発明の貴金属回収方法は、貴金属を含む廃液を収容する回収廃液槽から廃液を送液する工程と、送液された廃液が次の(A)のパイプ状陽極内を上部から底部へと流通する工程と、その流通された廃液が次の(B)の陰極と上記パイプ状陽極との間を底部から上部へ逆流しながら電解する工程と、その電解された廃液が前記廃液流出口から前記廃液を排出し、フィルターを通して前期回収廃液槽へ戻し循環させる工程とを含む貴金属回収方法において、次の(B)のエキスパンダ陰極の上部は次の(B)の金属製容器の上肩部と断面逆L字形に接続固定されており、前記エキスパンダ陰極の下部は前記金属製容器の底部と接続固定されており、次の(C)のエキスパンダ陽極は前記パイプ状陽極と断面コの字形に接続固定されていることを特徴とする。
(A)パイプ状陽極は、電解を構成する、円筒状の金属製容器上に設けられた密閉し取外し可能な絶縁性蓋体の中心を貫通し、
(B)陰極は金属製容器およびその内周に沿って配置されるエキスパンダ陰極、
(C)パイプ状陽極外周に沿って配置される筒状のエキスパンダ陽極。
ここで、エキスパンダ陽極の長さは、エキスパンダ陰極の長さの0.5〜0.95を乗じた長さであることが好ましい。
金属性容器及びエキスパンダ陰極は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなることが好ましい。
また、エキスパンダ陰極は、中央部が陽極側に膨出した形状であることが好ましい。
また、パイプ状陽極及びエキスパンダ陽極は、少なくとも表面が白金族の金属、合金または酸化物よりなることが好ましい。

The present invention will be described in detail as follows.
The noble metal recovery device includes a cylindrical metal container constituting an electrolytic cell, an insulating lid having a waste liquid outlet that can be hermetically sealed and removed, and a center of the insulating lid. A pipe-shaped anode for circulating the waste liquid from the top to the bottom; a cylindrical expander cathode disposed along the inner periphery of the metal container; and a tubular shape disposed along the outer periphery of the pipe-shaped anode An expander anode, wherein the upper part of the expander cathode is connected and fixed to the upper shoulder of the metal container in an inverted L-shaped cross section, and the lower part of the expander cathode is the metal The expander anode is connected and fixed to the bottom of the container, and the expander anode is connected and fixed to the pipe-shaped anode in a U-shaped cross section.
Here, the length of the expander anode is preferably a length obtained by multiplying the length of the expander cathode by 0.5 to 0.95.
The metallic container and the expander cathode are preferably made of one or more metals or alloys of titanium, tantalum, niobium, zirconium and hafnium.
Further, the expander cathode preferably has a shape in which the central portion bulges to the anode side .
Moreover, it is preferable that at least the surface of the pipe-shaped anode and the expander anode is made of a platinum group metal, alloy or oxide.
On the other hand, in the noble metal recovery method of the present invention, the step of sending waste liquid from a recovery waste tank containing waste liquid containing noble metal, and the sent waste liquid from the top to the bottom in the pipe-shaped anode of (A) below. And the step of electrolyzing the circulated waste liquid while flowing back from the bottom to the top between the cathode of the next (B) and the pipe-shaped anode, and the electrolyzed waste liquid is the waste liquid outlet the waste liquid is discharged from the precious metal recovery method comprising the step of circulating back to the year recovering waste tank through the filter, over the shoulder of a metal container expander cathode of the next (B) top of the next (B) parts and are fixedly connected to the cross-sectional inverted L-shape, the bottom of the expander cathode is connected fixed to the bottom of the metal container expander anode the pipe-shaped anode and a cross-sectional U-follows (C) Connected to the shape of And wherein the door.
(A) The pipe-shaped anode penetrates through the center of the insulating and removable insulating cover provided on the cylindrical metal container constituting the electrolytic cell ,
(B) The cathode is a metal container and an expander cathode disposed along the inner periphery thereof,
(C) A cylindrical expander anode disposed along the outer periphery of the pipe-shaped anode.
Here, the length of the expander anode is preferably a length obtained by multiplying the length of the expander cathode by 0.5 to 0.95.
The metallic container and the expander cathode are preferably made of one or more metals or alloys of titanium, tantalum, niobium, zirconium and hafnium.
Further, the expander cathode preferably has a shape in which the central portion bulges to the anode side .
Moreover, it is preferable that at least the surface of the pipe-shaped anode and the expander anode is made of a platinum group metal, alloy or oxide.

本発明の貴金属回収装置および貴金属回収方法は、電流異常による析出量や析出粒子のばらつきや、電流集中に由来する貴金属の異常析出による短絡不良を抑制することで、回収物の精製の際の溶解に都合の良い均一な貴金属を安定的に析出させることができる。さらに本発明の貴金属回収装置および貴金属回収方法によれば、均一で安定に貴金属を析出させることを可能にし、貴金属を効率よく回収することができる。   The noble metal recovery apparatus and the noble metal recovery method of the present invention suppress the short-circuit failure due to the abnormal precipitation of noble metals resulting from current concentration due to variations in precipitation amount and precipitated particles due to current abnormalities, and dissolution during the purification of recovered materials. It is possible to stably deposit a uniform noble metal that is convenient for the above. Furthermore, according to the noble metal recovery apparatus and the noble metal recovery method of the present invention, it is possible to deposit the noble metal uniformly and stably, and the noble metal can be efficiently recovered.

図1は、本発明の貴金属回収装置の一実施形態を示す断面概略図。FIG. 1 is a schematic cross-sectional view showing an embodiment of the noble metal recovery apparatus of the present invention. 図2は、本発明の貴金属回収方法にかかる一実施形態を示す概略図。FIG. 2 is a schematic view showing an embodiment according to the noble metal recovery method of the present invention. 図3は、従来の貴金属回収装置(特許文献1)の断面構造を示す図。FIG. 3 is a diagram showing a cross-sectional structure of a conventional noble metal recovery device (Patent Document 1). 図4は、従来の貴金属回収装置(特許文献2)の断面構造を示す図。FIG. 4 is a diagram showing a cross-sectional structure of a conventional noble metal recovery device (Patent Document 2).

以下、本発明の好ましい実施の形態を、貴金属を含む廃液から電気分解により貴金属の回収処理を行う貴金属回収装置の断面の図面(図1)と共に説明する。本発明における貴金属回収装置1は、エキスパンダ陰極12の上部を金属製容器10の上肩部と断面逆L字形に接続固定し、その下部を金属製容器10の底部と接続固定することで、陰極のふらつきによる陽極との短絡、あるいは電流異常による異常析出や析出物の落下による短絡を抑制できる。またエキスパンダ陰極12の両端部はそのままでは電流が集中してしまうが、両端が金属製容器10に電気的に接続されるため、陰極両端部への電流集中を抑制でき、それに由来する貴金属の異常析出による短絡を抑制できる。その接続固定は、エキスパンダ陰極12の上部及び下部と金属製容器10との間の全周あるいは一部でも良い。接続固定はエキスパンダ陰極12を直接溶接してもスペーサーを介して溶接してもどちらでも良い。スペーサーを介して全周の接続固定を行う場合は廃液の流通を考慮し、スペーサーに孔を有する形状が好ましい。一部の接続固定の場合はふらつき抑制を考慮し上部及び下部それぞれ2箇所以上固定することが好ましい。接続様式としては通常のスポット溶接や圧接などで行うことができるが、電気的に接続が可能であれば前記様式に限られない。本発明におけるエキスパンダ陰極12は、単層であっても多層であっても良い。回収効率を考慮すると多層であることが好ましい。更に、装置の製造コストや運転コストを考慮する2〜5層がより好ましい。   Hereinafter, a preferred embodiment of the present invention will be described together with a cross-sectional view (FIG. 1) of a noble metal recovery apparatus for recovering a noble metal from a waste liquid containing noble metal by electrolysis. The noble metal recovery apparatus 1 according to the present invention connects and fixes the upper part of the expander cathode 12 to the upper shoulder of the metal container 10 in an inverted L-shaped cross section, and connects and fixes the lower part to the bottom of the metal container 10, Short-circuiting with the anode due to wobbling of the cathode, abnormal precipitation due to current abnormality, and short-circuiting due to dropping of the precipitate can be suppressed. Further, although current is concentrated at both ends of the expander cathode 12 as it is, since both ends are electrically connected to the metal container 10, current concentration at both ends of the cathode can be suppressed, and noble metal derived therefrom can be suppressed. Short circuit due to abnormal precipitation can be suppressed. The connection and fixation may be all or part of the circumference between the upper and lower portions of the expander cathode 12 and the metal container 10. The fixing of the connection may be either by welding the expander cathode 12 directly or by welding via a spacer. When connecting and fixing the entire circumference through a spacer, a shape having holes in the spacer is preferable in consideration of the flow of waste liquid. In the case of partial connection fixation, it is preferable to fix at two or more locations in the upper and lower portions in consideration of suppression of wobbling. The connection mode can be performed by ordinary spot welding or pressure welding, but is not limited to the above mode as long as electrical connection is possible. The expander cathode 12 in the present invention may be a single layer or multiple layers. In consideration of recovery efficiency, a multilayer structure is preferable. Furthermore, 2-5 layers which consider the manufacturing cost and operating cost of an apparatus are more preferable.

本発明におけるエキスパンダ陽極13は、その両端をパイプ状陽極11と断面コの字形に接続固定することで、陽極のふらつきによる電流異常を回避できる。接続固定は、エキスパンダ陽極13の両端とパイプ状陽極11との間の全周あるいは一部でも良い。接続固定はエキスパンダ陽極13を直接溶接してもスペーサーを介して溶接してもどちらでも良い。全周の接続固定の場合は廃液の流通を考慮し、上部および下部のパイプ状陽極11との接続間に孔を有する形状が好ましい。一部の接続固定の場合はふらつき抑制を考慮し両端それぞれ2箇所以上固定することが好ましい。エキスパンダ陽極13下部とパイプ状陽極11下部は電解層底部から等距離であることが好ましい。   The expander anode 13 in the present invention can avoid current anomalies due to anode wobbling by connecting and fixing both ends of the expander anode 13 to the pipe-shaped anode 11 in a U-shaped cross section. The connection fixing may be all or part of the circumference between the both ends of the expander anode 13 and the pipe-shaped anode 11. The fixing of the connection may be either by welding the expander anode 13 directly or by welding via a spacer. In the case of connection fixation on the entire circumference, a shape having a hole between the upper and lower pipe-like anodes 11 is preferable in consideration of the flow of the waste liquid. In the case of partial connection fixation, it is preferable to fix two or more at both ends in consideration of suppression of wobbling. The lower part of the expander anode 13 and the lower part of the pipe-like anode 11 are preferably equidistant from the bottom of the electrolytic layer.

本発明におけるエキスパンダ陽極13の長さは、エキスパンダ陰極12の長さの0.5〜0.95を乗じた長さであることが好ましい。エキスパンダ陽極13の長さがエキスパンダ陰極12の長さの0.95を乗じた長さを超える場合は、析出した粉末状の貴金属が金属製容器10底部に堆積し短絡が起こりやすくなるばかりか、エキスパンダ陰極12底部での異常析出が発生してしまう。0.5を乗じた長さ未満の場合は陰極上の電流分布に大きな偏りができ、析出量や析出金属形状が不均一となり精製のための溶解時間が長時間になってしまうなどの回収効率の低下の原因となる。更に、回収効率の低下の抑制を考慮した場合、0.7〜0.95を乗じた長さであることがより好ましい。   The length of the expander anode 13 in the present invention is preferably a length obtained by multiplying the length of the expander cathode 12 by 0.5 to 0.95. When the length of the expander anode 13 exceeds the length obtained by multiplying the length of the expander cathode 12 by 0.95, the deposited powdery noble metal accumulates on the bottom of the metal container 10 and is likely to cause a short circuit. Or, abnormal deposition occurs at the bottom of the expander cathode 12. If the length is less than 0.5, the current distribution on the cathode may be greatly biased, the amount of precipitation and the shape of the deposited metal will be non-uniform, and the recovery time will be long for purification. Cause a drop in Furthermore, when considering the suppression of the reduction in recovery efficiency, the length is more preferably multiplied by 0.7 to 0.95.

本発明における金属性容器10およびエキスパンダ陰極12は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなるものが好ましい。前記金属以外の金属または合金である場合、金属性容器10およびエキスパンダ陰極12に電解析出した貴金属(金や白金など)を回収後の精製のために電極から溶解回収する際に多用される王水を用いると、金属性容器10およびエキスパンダ陰極12が溶解する場合がある。あるいは、ステンレスなどの不溶性金属を用いた場合でも、回収分からの分離が困難な微量の鉛成分が溶出してしまい後の精製に問題となる。更に、安価であって高い加工性と王水への不溶性を考慮するとチタン金属またはその合金であることがより好ましい。 The metallic container 10 and the expander cathode 12 in the present invention are preferably made of one or more metals or alloys of titanium, tantalum, niobium, zirconium and hafnium. In the case of a metal or alloy other than the metal, it is frequently used when a noble metal (gold, platinum, etc.) electrolytically deposited on the metallic container 10 and the expander cathode 12 is dissolved and recovered from the electrode for purification after recovery. When aqua regia is used, the metallic container 10 and the expander cathode 12 may be dissolved. Alternatively, even when an insoluble metal such as stainless steel is used, a trace amount of lead component that is difficult to separate from the recovered component is eluted, which causes a problem in subsequent purification. Furthermore, it is more preferable to use titanium metal or an alloy thereof in consideration of low cost, high workability and insolubility in aqua regia.

本発明におけるエキスパンダ陰極12は、中央部が膨出した形状とすることで、より均一な析出を可能にし、電流異常を抑制し高い回収効率で貴金属を析出させることができる。膨出した形状とは、エキスパンダ陰極12中央部がもっとも陽極に近くなるように切断面が円弧を描く形状であり、これは、陰極端部の電流の偏りを更に抑制し、より均一な電気分解が可能となることに起因する。
The expander cathode 12 in the present invention has a shape in which the central portion swells, thereby enabling more uniform deposition, suppressing current abnormality and depositing noble metal with high recovery efficiency. The swollen shape is a shape in which the cut surface forms a circular arc so that the central portion of the expander cathode 12 is closest to the anode, and this further suppresses the current bias at the cathode end portion, and more uniform electric current. This is because disassembly is possible.

本発明におけるパイプ状陽極11及びエキスパンダ陽極13は、不溶性の材料が好ましくその材質としては、少なくとも表面が白金族の金属、合金または酸化物よりなるものが好ましい。更に、チタン等のバルブ金属に白金または白金合金をめっきしたものあるいは酸化イリジウムまたは酸化ルテニウムを被覆したものがコスト的にも耐久性においてもより好ましい。   The pipe-like anode 11 and the expander anode 13 in the present invention are preferably insoluble materials, and at least the surface is preferably made of a platinum group metal, alloy or oxide. Further, a valve metal such as titanium plated with platinum or a platinum alloy or coated with iridium oxide or ruthenium oxide is more preferable in terms of cost and durability.

エキスパンダ陰極12およびエキスパンダ陽極13の菱形孔の対角線の長軸と短軸の長さがそれぞれ4×2〜16×8mmのものが好ましい。4×2mm未満とすると電着による孔の目詰まりが早期に生じ、16×8mmを超えると表面積が小さくなるため回収効率が低下するからである。   It is preferable that the major axis and the minor axis of the rhombic holes of the expander cathode 12 and the expander anode 13 have lengths of 4 × 2 to 16 × 8 mm, respectively. This is because if the thickness is less than 4 × 2 mm, clogging of the holes due to electrodeposition occurs early, and if it exceeds 16 × 8 mm, the surface area becomes small and the recovery efficiency decreases.

次に、前記のように構成された貴金属回収装置1を用いた貴金属回収方法について図1および図2と共に説明する。本発明の貴金属回収方法において、貴金属を含む廃液を収容する回収廃液槽20から廃液をポンプ21などで送液し、送液された廃液が前述(A)のパイプ状陽極11内を上部から底部へと流通し、その流通された廃液が前述(B)の陰極と上記パイプ状陽極11との間を底部から上部へ逆流しながら電解され、廃液流出口15から廃液が排出され、フィルター22を通して回収廃液槽20へ戻され、その戻された廃液が循環される。この時、エキスパンダ陰極12の上部は金属製容器の上肩部と断面逆L字形に接続固定され、またエキスパンダ陰極12の下部は金属製容器の底部と接続固定されることで、陰極のふらつきによる陽極との短絡、あるいは電流異常による異常析出や析出物の落下による短絡を抑制できる。またエキスパンダ陰極の両端部はそのままでは電流が集中してしまうが、金属製容器10に接続固定することで、陰極両端部への電流集中を抑制でき、それに由来する貴金属の異常析出による短絡を抑制できる。前述(C)のエキスパンダ陽極13の両端はパイプ状陽極11と断面コの字形に接続固定されていることで陰極との短絡を抑制できる。廃液流出口15から廃液と共に流出した金属粉は、次の工程に設けられたフィルター22によりトラップされ、更に電極間の短絡を抑制できる。   Next, a noble metal recovery method using the noble metal recovery apparatus 1 configured as described above will be described with reference to FIGS. In the noble metal recovery method of the present invention, the waste liquid is sent from the recovery waste liquid tank 20 containing the waste liquid containing the noble metal by the pump 21 or the like, and the sent waste liquid passes through the pipe-shaped anode 11 of (A) from the top to the bottom. The waste liquid thus circulated is electrolyzed while flowing back from the bottom to the top between the cathode of the aforementioned (B) and the pipe-shaped anode 11, and the waste liquid is discharged from the waste liquid outlet 15 through the filter 22. It is returned to the recovered waste liquid tank 20 and the returned waste liquid is circulated. At this time, the upper part of the expander cathode 12 is connected and fixed to the upper shoulder of the metal container in an inverted L-shaped cross section, and the lower part of the expander cathode 12 is connected and fixed to the bottom part of the metal container. Short-circuiting with the anode due to wobbling, abnormal precipitation due to current abnormality, and short-circuiting due to falling precipitates can be suppressed. In addition, current is concentrated at both ends of the expander cathode as it is, but by connecting and fixing to the metal container 10, current concentration at both ends of the cathode can be suppressed, and a short circuit due to abnormal deposition of noble metal derived therefrom can be prevented. Can be suppressed. Since both ends of the expander anode 13 of (C) described above are connected and fixed to the pipe-shaped anode 11 in a U-shaped cross section, a short circuit with the cathode can be suppressed. The metal powder that has flowed out together with the waste liquid from the waste liquid outlet 15 is trapped by the filter 22 provided in the next step, and further, a short circuit between the electrodes can be suppressed.

本発明の貴金属回収方法において、エキスパンダ陽極13の長さは、エキスパンダ陰極12の長さの0.5〜0.95を乗じた長さであることが好ましい。エキスパンダ陽極13の長さがエキスパンダ陰極12の長さの0.95を乗じた長さを超える場合は、析出した粉末状の貴金属が金属製容器10底部に堆積し短絡が起こりやすくなるばかりか、エキスパンダ陰極12底部での異常析出が発生してしまう。0.5を乗じた長さ未満の場合は陰極上の電流分布に大きな偏りができ、析出量や析出金属形状が不均一となり精製のための溶解時間が長時間になってしまうなどの回収効率の低下の原因となる。更に、回収効率の低下の抑制を考慮した場合、0.7〜0.95を乗じた長さであることがより好ましい。   In the noble metal recovery method of the present invention, the length of the expander anode 13 is preferably a length obtained by multiplying the length of the expander cathode 12 by 0.5 to 0.95. When the length of the expander anode 13 exceeds the length obtained by multiplying the length of the expander cathode 12 by 0.95, the deposited powdery noble metal accumulates on the bottom of the metal container 10 and is likely to cause a short circuit. Or, abnormal deposition occurs at the bottom of the expander cathode 12. If the length is less than 0.5, the current distribution on the cathode may be greatly biased, the amount of precipitation and the shape of the deposited metal will be non-uniform, and the recovery time will be long for purification. Cause a drop in Furthermore, when considering the suppression of the reduction in recovery efficiency, the length is more preferably multiplied by 0.7 to 0.95.

金属性容器10及びエキスパンダ陰極12は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなることが好ましい。前記金属以外の金属または合金である場合、金属性容器10およびエキスパンダ陰極12に電解析出した貴金属(金や白金など)を回収後の精製のために電極から溶解回収する際に多用される王水を用いると、金属性容器10およびエキスパンダ陰極12が溶解する場合がある。あるいは、ステンレスなどの難溶性金属を用いた場合でも、回収分からの分離が困難な微量の鉛成分が溶出してしまい後の精製に問題となる。更に、安価であって高い加工性と王水への不溶性を考慮するとチタン金属またはその合金であることがより好ましい。   The metallic container 10 and the expander cathode 12 are preferably made of one or more metals or alloys of titanium, tantalum, niobium, zirconium and hafnium. In the case of a metal or alloy other than the metal, it is frequently used when a noble metal (gold, platinum, etc.) electrolytically deposited on the metallic container 10 and the expander cathode 12 is dissolved and recovered from the electrode for purification after recovery. When aqua regia is used, the metallic container 10 and the expander cathode 12 may be dissolved. Alternatively, even when a poorly soluble metal such as stainless steel is used, a trace amount of lead component that is difficult to separate from the recovered component is eluted, which causes a problem in subsequent purification. Furthermore, it is more preferable to use titanium metal or an alloy thereof in consideration of low cost, high workability and insolubility in aqua regia.

エキスパンダ陰極12は、中央部が膨出した形状であることが好ましい。それにより均一な析出を可能にし、電流異常を抑制し高い回収効率で貴金属を析出させることができる。膨出した形状とは、エキスパンダ陰極12中央部がもっとも陽極に近くなるように切断面が円弧を描く形状であり、これは、陰極端部の電流の偏りを更に抑制し、より均一な電気分解が可能となることに起因する。 The expander cathode 12 preferably has a shape with a bulged center. As a result, uniform precipitation is possible, current anomalies are suppressed, and noble metals can be deposited with high recovery efficiency. The swollen shape is a shape in which the cut surface forms a circular arc so that the central portion of the expander cathode 12 is closest to the anode, and this further suppresses the current bias at the cathode end portion, and more uniform electric current. This is because disassembly is possible.

パイプ状陽極11及びエキスパンダ陽極13は、少なくとも表面が白金族の金属、合金または酸化物よりなることが好ましい。更に、チタン等のバルブ金属に白金又は白金合金をめっきしたものあるいは酸化イリジウムまたは酸化ルテニウムを被覆したものがコスト的にも耐久性においてもより好ましい。   The pipe-like anode 11 and the expander anode 13 are preferably made of a platinum group metal, alloy or oxide at least on the surface. Further, a valve metal such as titanium plated with platinum or a platinum alloy, or coated with iridium oxide or ruthenium oxide is more preferable in terms of cost and durability.

本発明の貴金属回収装置において、回収廃液の貴金属回収装置内の送液速度は対象となる廃液中の金属イオン種、電解条件等により異なるが、5〜30L/minであることが好ましい。5L/min未満の場合は電解室内の貴金属濃度に偏りができ不均一な析出が起こりやすくなり、30L/minを超える場合は電解回収効率が低下し回収に長時間を要してしまうため不適当である。金属性容器およびエキスパンダ陰極の電流密度は0.05〜0.30A/dmで行うことが好ましい。0.05A/dm未満の場合は回収に長時間要し、0.30A/dmを超える場合は回収効率が向上しないばかりかコストが嵩んでしまう。 In the noble metal recovery apparatus of the present invention, the liquid feed rate of the recovered waste liquid in the noble metal recovery apparatus varies depending on the metal ion species in the target waste liquid, electrolysis conditions, etc., but is preferably 5 to 30 L / min. If it is less than 5 L / min, the concentration of precious metals in the electrolysis chamber is biased and non-uniform precipitation is likely to occur, and if it exceeds 30 L / min, the electrolytic recovery efficiency is reduced and it takes a long time for recovery, which is inappropriate. It is. The current density of the metallic container and expander cathode is preferably carried out in 0.05~0.30A / dm 2. When it is less than 0.05 A / dm 2 , it takes a long time to recover, and when it exceeds 0.30 A / dm 2 , the recovery efficiency is not improved and the cost is increased.

本発明の貴金属回収方法において、金属性容器10またはエキスパンダ陰極12に付着した貴金属、金属製容器10底部に堆積した貴金属およびフィルター22にトラップされた貴金属は、異常析出などが抑制されているため容易に剥離溶液である王水又はKCN溶液により剥離溶解し、貴金属の純度を1桁程度に高めるための精製を行うことができる。剥離溶液としては、各種貴金属を同時に溶解できる王水を用いることが好ましい。   In the noble metal recovery method of the present invention, the noble metal adhering to the metallic container 10 or the expander cathode 12, the noble metal deposited on the bottom of the metal container 10 and the noble metal trapped on the filter 22 are suppressed from abnormal precipitation. It can be easily separated and dissolved with aqua regia or KCN solution, which is a stripping solution, and purification can be performed to increase the purity of the noble metal to about one digit. As the stripping solution, it is preferable to use aqua regia that can simultaneously dissolve various precious metals.

以下、本発明の貴金属回収装置の実施形態の一態様を図面1および図2と共に説明する。電解槽となる円筒状の金属製容器10(寸法:内径150mm、高さ700mm)と、金属製容器10の内周に沿って一層目の筒状のエキスパンダ陰極12(寸法:直径140mm、板厚1mm、長さ685mm、菱形孔の対角線の長さ6(長軸)×3(短軸)mm)、更にその内周に沿って二層目の筒状のエキスパンダ陰極12(寸法:直径130mm、板圧1mm、長さ685mm、菱形孔の対角線の長さ6(長軸)×3(短軸)mm)が配置されている。一方、金属製容器10の中心部にはパイプ状陽極11(寸法:外径22mm、長さ690mm、板厚2mm)が挿入されており、その外周に沿って筒状のエキスパンダ陽極13(寸法:外径38mm、板厚1mm、長さ590mm、菱形孔の対角線の長さ8(長軸)×4(短軸)mm)が配置されている。パイプ状陽極11の底部は開口されており、金属製容器10の底面より一定の距離(95mm)をおいている。この場合のエキスパンダ陽極13の長さは、エキスパンダ陰極12の長さの0.86を乗じた長さである。   Hereinafter, an aspect of an embodiment of the noble metal recovery apparatus of the present invention will be described with reference to FIGS. 1 and 2. A cylindrical metal container 10 (dimensions: inner diameter 150 mm, height 700 mm) serving as an electrolytic cell, and a first cylindrical expander cathode 12 (dimension: diameter 140 mm, plate) along the inner periphery of the metal container 10 Thickness 1 mm, length 685 mm, diagonal length 6 (major axis) × 3 (minor axis) mm of the rhomboid hole, and a cylindrical expander cathode 12 in the second layer along the inner circumference (dimension: diameter) 130 mm, plate pressure 1 mm, length 685 mm, diagonal length 6 (major axis) × 3 (minor axis) mm of the rhombic holes are arranged. On the other hand, a pipe-shaped anode 11 (dimensions: outer diameter 22 mm, length 690 mm, plate thickness 2 mm) is inserted in the center of the metal container 10, and a cylindrical expander anode 13 (dimensions) along its outer periphery. : The outer diameter is 38 mm, the plate thickness is 1 mm, the length is 590 mm, and the diagonal length of the rhomboid hole is 8 (long axis) × 4 (short axis) mm). The bottom of the pipe-shaped anode 11 is opened, and is spaced a certain distance (95 mm) from the bottom surface of the metal container 10. The length of the expander anode 13 in this case is a length obtained by multiplying the length of the expander cathode 12 by 0.86.

エキスパンダ陰極12の上部は金属製容器10の上肩部と4枚の連接金属板(寸法:8mm×12mm、板厚1mm)により溶接で一体的に接続固定され、全体として断面逆L字形に形成される。エキスパンダ陰極12の下部は、上部と同様に金属製容器10の底部と4か所接続固定されており、エキスパンダ陽極13の両端はパイプ状陽極11とリング状の連接金属板(寸法:外径38mm、内口径18mm、板圧1mm)により溶接で一体的に接続固定され、全体として断面コの字形に形成される。   The upper part of the expander cathode 12 is integrally connected and fixed by welding with the upper shoulder of the metal container 10 and four connected metal plates (dimensions: 8 mm × 12 mm, plate thickness 1 mm), and has an inverted L-shaped cross section as a whole. It is formed. The lower part of the expander cathode 12 is connected and fixed to the bottom part of the metal container 10 in the same manner as the upper part, and both ends of the expander anode 13 are connected to the pipe-shaped anode 11 and the ring-shaped connected metal plate (dimension: outside). Are integrally connected and fixed by welding with a diameter of 38 mm, an inner diameter of 18 mm, and a plate pressure of 1 mm.

金属性容器10、エキスパンダ陰極12及び陰極の連接金属板はチタン製であり、パイプ状陽極11、エキスパンダ陽極13及び陽極の連接金属板はチタンを基材としてイリジウムめっきしたものを用いている。   The metallic container 10, the expander cathode 12 and the connecting metal plate of the cathode are made of titanium, and the pipe-shaped anode 11, the expander anode 13 and the connecting metal plate of the anode are made of iridium-plated titanium as a base material. .

本実施形態にかかる貴金属回収方法の一態様としては、金を含む廃液を収容する回収廃液槽20からポンプ21により廃液を送液し、送液された廃液はパイプ状陽極11上部から底部へと流通され、金属製容器10底部まで通液するようになっている。その通液された廃液は、陰極と陽極との間を底部から上部へ逆流しながら電解される。その電解された廃液は金属製容器10上部の絶縁性蓋体14に空けられた廃液流出口15から排出され、糸巻きフィルター22を通して回収廃液槽へ戻し循環される。この循環の送液速度は、対象となる廃液中の金属イオン種、電解条件により異なるが、金を含むめっき液500L(金濃度1.5g/L)からの金の電解回収においては、送液速度10〜20L/minで実施された。また回収作業時の電解条件は、電流密度0.1〜0.2A/dmで行った。1回の回収作業に要する時間は、上記送液速度、電解条件では、12〜18時間となる。 As one aspect of the noble metal recovery method according to the present embodiment, the waste liquid is sent from the recovery waste liquid tank 20 containing the gold-containing waste liquid by the pump 21, and the sent waste liquid is transferred from the top of the pipe-shaped anode 11 to the bottom. The liquid is circulated and passed through the bottom of the metal container 10. The discharged waste liquid is electrolyzed while flowing back from the bottom to the top between the cathode and the anode. The electrolyzed waste liquid is discharged from a waste liquid outlet 15 formed in the insulating lid 14 on the upper side of the metal container 10, and returned to the recovered waste liquid tank through the bobbin filter 22. The circulation liquid feeding speed varies depending on the metal ion species and electrolysis conditions in the target waste liquid, but in the electrolytic recovery of gold from the plating solution 500 L (gold concentration 1.5 g / L) containing gold, the liquid feeding It was carried out at a speed of 10 to 20 L / min. Moreover, the electrolysis conditions at the time of collection | recovery were performed with the current density of 0.1-0.2 A / dm < 2 >. The time required for one collection operation is 12 to 18 hours under the above-described liquid feeding speed and electrolysis conditions.

金を含むめっき廃液からの金の回収において、電解後の貴金属回収装置は、金が析出したエキスパンダ陰極12を含む金属製容器10、及び場合により金粉末が付着したフィルターとともに取り外される。析出した金は、精製のための溶解液として王水等が用いられる。チタンは王水等に溶解することがない。溶解液は金属製容器10内に注入し、回収装置内で攪拌により金を溶解させることができる。また、金が析出したエキスパンダ陰極12を含む金属製容器10を溶解液の槽の中に投入し金を溶解させることもできる。析出した金は、王水等で容易に溶解する。   In the recovery of gold from the plating waste liquid containing gold, the precious metal recovery apparatus after electrolysis is removed together with the metal container 10 including the expander cathode 12 on which gold is deposited, and possibly the filter to which the gold powder is adhered. The precipitated gold is used as aqua regia as a solution for purification. Titanium does not dissolve in aqua regia. The solution can be poured into the metal container 10 and gold can be dissolved by stirring in the recovery device. Alternatively, the metal container 10 including the expander cathode 12 on which gold is deposited can be put into a solution bath to dissolve the gold. The deposited gold is easily dissolved in aqua regia etc.

本発明の貴金属回収装置を用いた金を含むめっき廃液からの前記金回収において、満足な結果が得られた。具体的には、陰極両端部への電流集中に由来する金の異常析出による短絡は全く生じなかった。また、析出金属の厚さは0.5〜3.0mmで均一に析出し、容易に回収物の精製の際の王水溶解を行うことができた。回収廃液からの回収金の収率は99.9%であった。   Satisfactory results were obtained in the gold recovery from the plating waste liquid containing gold using the noble metal recovery apparatus of the present invention. Specifically, no short circuit occurred due to abnormal gold deposition resulting from current concentration at both ends of the cathode. Moreover, the thickness of the deposited metal was uniformly deposited at 0.5 to 3.0 mm, and it was possible to easily perform aqua regia dissolution when purifying the recovered material. The yield of recovered gold from the recovered waste liquid was 99.9%.

1、2、3 貴金属回収装置
10、17 円筒状容器
11 陽極
12 エキスパンダ陰極
13 エキスパンダ陽極
14 絶縁性蓋体
15 廃液流出口
16 円筒状陰極
20 回収廃液層
21 ポンプ
22 フィルタ

1, 2, 3 Precious metal recovery apparatus 10, 17 Cylindrical container 11 Anode 12 Expander cathode 13 Expander anode 14 Insulating lid 15 Waste liquid outlet 16 Cylindrical cathode 20 Collected waste liquid layer 21 Pump 22 Filter

Claims (10)

電解槽を構成する円筒状の金属製容器と、前記金属製容器を密閉し取外し可能な、廃液流出口を有する絶縁性蓋体と、前記絶縁性蓋体の中心を貫通し、廃液を上部から底部へと流通させるパイプ状陽極と、前記金属製容器の内周に沿って配置される筒状のエキスパンダ陰極と、前記パイプ状陽極の外周に沿って配置される筒状のエキスパンダ陽極と、を備える貴金属回収装置であって、
前記エキスパンダ陰極の上部は前記金属製容器の上肩部と断面逆L字形に接続固定されており、エキスパンダ陰極の下部は前記金属製容器の底部と接続固定されており、前記エキスパンダ陽極の両端は前記パイプ状陽極と断面コの字形に接続固定されていることを特徴とする貴金属回収装置。
Cylindrical metal container constituting the electrolytic cell, an insulating lid body having a waste liquid outlet capable of sealing and removing the metal container, penetrating through the center of the insulating lid body, the waste liquid from above A pipe-shaped anode that circulates to the bottom, a cylindrical expander cathode that is disposed along the inner periphery of the metal container, and a tubular expander anode that is disposed along the outer periphery of the pipe-shaped anode. A noble metal recovery device comprising:
The upper part of the expander cathode is connected and fixed to the upper shoulder of the metal container in an inverted L-shaped cross section, and the lower part of the expander cathode is connected and fixed to the bottom of the metal container, and the expander anode The noble metal recovery device is characterized in that both ends thereof are connected and fixed to the pipe-like anode in a U-shaped cross section.
エキスパンダ陽極の長さは、エキスパンダ陰極の長さの0.5〜0.95を乗じた長さである請求項1に記載の貴金属回収装置。 The length of the expander anode is the length obtained by multiplying the length of the expander cathode by 0.5 to 0.95. 金属性容器及びエキスパンダ陰極は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなる請求項1に記載の貴金属回収装置。 The noble metal recovery apparatus according to claim 1, wherein the metallic container and the expander cathode are made of one or more metals or alloys of titanium, tantalum, niobium, zirconium and hafnium. エキスパンダ陰極は、中央部が陽極側に膨出した形状である請求項1に記載の貴金属回収装置。 The noble metal recovery apparatus according to claim 1, wherein the expander cathode has a shape in which a central portion bulges toward the anode side . パイプ状陽極およびエキスパンダ陽極は、少なくとも表面が白金族の金属、合金または酸化物よりなる請求項1に記載の貴金属回収装置。 The noble metal recovery apparatus according to claim 1, wherein at least surfaces of the pipe-like anode and the expander anode are made of a platinum group metal, alloy or oxide. 貴金属を含む廃液を収容する回収廃液槽から廃液を送液する工程と、送液された廃液が次の(A)のパイプ状陽極内を上部から底部へと流通する工程と、その流通された廃液が次の(B)の陰極と上記パイプ状陽極との間を底部から上部へ逆流しながら電解する工程と、前記廃液流出口から前記廃液を排出し、フィルターを通して前記回収廃液槽へ戻し、その電解された廃液を循環させる工程とを含む貴金属回収方法において、
次の(B)のエキスパンダ陰極の上部は次の(B)の金属製容器の上肩部と断面逆L字形に接続固定されており、前記エキスパンダ陰極の下部は前記金属製容器の底部と接続固定されており、次の(C)のエキスパンダ陽極の両端は前記パイプ状陽極と断面コの字形に接続固定されていることを特徴とする貴金属回収方法。
(A)パイプ状陽極は、電解を構成する、円筒状の金属製容器上に設けられた密閉し取外し可能な絶縁性蓋体の中心を貫通するパイプ状陽極、
(B)陰極は、金属製容器およびその内周に沿って配置されるエキスパンダ陰極、
(C)エキスパンダ陽極は、パイプ状陽極外周に沿って配置される筒状のエキスパンダ陽極。
The step of feeding the waste liquid from the recovery waste tank containing the waste liquid containing the precious metal, the step of circulating the sent waste liquid from the top to the bottom in the pipe-shaped anode of (A), and the flow The step of electrolyzing the waste liquid while flowing back from the bottom to the top between the cathode of the next (B) and the pipe-shaped anode, discharging the waste liquid from the waste liquid outlet, returning to the recovery waste liquid tank through a filter, A method of recovering the precious metal including a step of circulating the electrolyzed waste liquid,
The upper part of the expander cathode of the next (B) is connected fixed on the shoulder portion of the metal container and the cross-sectional inverted L-shape in the following (B), the bottom of the expander cathode bottom of the metal container A noble metal recovery method, wherein both ends of the expander anode of (C) are connected and fixed to the pipe-like anode in a U-shaped cross section.
(A) The pipe-shaped anode is a pipe-shaped anode penetrating through the center of a sealed and removable insulating cover provided on a cylindrical metal container constituting the electrolytic cell ,
(B) The cathode is a metal container and an expander cathode disposed along the inner periphery thereof,
(C) The expander anode is a cylindrical expander anode disposed along the outer periphery of the pipe-shaped anode.
エキスパンダ陽極の長さは、エキスパンダ陰極の長さの0.5〜0.95を乗じた長さである請求項6に記載の貴金属回収方法。 The length of the expander anode is a length obtained by multiplying the length of the expander cathode by 0.5 to 0.95. 金属性容器及びエキスパンダ陰極は、チタン、タンタル、ニオブ、ジルコニウムおよびハフニウムのうちの1種または2種以上の金属または合金よりなる請求項6に記載の貴金属回収方法。 The noble metal recovery method according to claim 6, wherein the metallic container and the expander cathode are made of one or more metals or alloys of titanium, tantalum, niobium, zirconium, and hafnium. エキスパンダ陰極は、中央部が陽極側に膨出した形状である請求項6に記載の貴金属回収方法。 The noble metal recovery method according to claim 6, wherein the expander cathode has a shape in which a central portion bulges toward the anode side . パイプ状陽極及びエキスパンダ陽極は、少なくとも表面が白金族の金属、合金または酸化物よりなる請求項6に記載の貴金属回収方法。
7. The noble metal recovery method according to claim 6, wherein at least surfaces of the pipe-shaped anode and the expander anode are made of a platinum group metal, alloy or oxide.
JP2010154404A 2010-07-07 2010-07-07 Precious metal recovery device and recovery method Active JP4666418B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010154404A JP4666418B1 (en) 2010-07-07 2010-07-07 Precious metal recovery device and recovery method
TW100121080A TWI400360B (en) 2010-07-07 2011-06-16 Apparatus and method for collecting precious metal
CN201180030077.8A CN102959134B (en) 2010-07-07 2011-07-06 Precious metal recovery device and recovery method
EP11803636.7A EP2592177B1 (en) 2010-07-07 2011-07-06 Precious metal recovery device and recovery method
PCT/JP2011/065495 WO2012005302A1 (en) 2010-07-07 2011-07-06 Precious metal recovery device and recovery method
KR1020127033089A KR101307713B1 (en) 2010-07-07 2011-07-06 Precious metal recovery device and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154404A JP4666418B1 (en) 2010-07-07 2010-07-07 Precious metal recovery device and recovery method

Publications (2)

Publication Number Publication Date
JP4666418B1 true JP4666418B1 (en) 2011-04-06
JP2012017491A JP2012017491A (en) 2012-01-26

Family

ID=44021692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154404A Active JP4666418B1 (en) 2010-07-07 2010-07-07 Precious metal recovery device and recovery method

Country Status (6)

Country Link
EP (1) EP2592177B1 (en)
JP (1) JP4666418B1 (en)
KR (1) KR101307713B1 (en)
CN (1) CN102959134B (en)
TW (1) TWI400360B (en)
WO (1) WO2012005302A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489006B (en) * 2013-02-19 2015-06-21 Elite Industech Co Ltd Recycling device of noble metal electrolysis
CN103361673B (en) * 2013-07-24 2016-02-17 励福(江门)环保科技股份有限公司 Titanium cylinder electrolysis machine
KR101416428B1 (en) * 2013-12-23 2014-07-10 한국지질자원연구원 Reactor for Recovering Metal, System for Recovering Metal and Method for Recovering Metal
CN105849318A (en) * 2013-12-23 2016-08-10 韩国地质资源研究院 Metal recovery reactor and metal recovery system
KR101416429B1 (en) * 2014-01-08 2014-07-10 한국지질자원연구원 Reactor for Recovering Metal and System for Recovering Metal
KR102523134B1 (en) * 2015-12-15 2023-04-18 재단법인 포항산업과학연구원 Anode for electrolysis with improved feeding system of raw material and electrolytic cell comprising the same
CN106011945A (en) * 2016-06-16 2016-10-12 东莞市盛德电解设备科技有限公司 Electrolytic gold extraction machine
CN106122119B (en) * 2016-06-21 2018-05-18 攀钢集团钛业有限责任公司 A kind of assembly line electrolytic cell high-temperature molten salt Pneumatic conveyer
CN106048658B (en) * 2016-08-09 2018-06-05 成都虹华环保科技股份有限公司 A kind of closed precious metal recovery device from body circulation
WO2018182083A1 (en) * 2017-03-30 2018-10-04 (주)다남이엔이 Metal recovery method including cyanide removal and metal recovery system therefor
CN107034485B (en) * 2017-06-14 2019-04-05 张镇 A kind of environmental protection quick separating recycling precious metal ion device product
CN108914165B (en) * 2018-08-27 2023-11-21 浙江科菲科技股份有限公司 Novel powder electrolysis device
KR102129493B1 (en) 2018-10-17 2020-07-09 고려대학교 산학협력단 Membrane Capacitive Deionization-Forward Osmosis Hybrid System for Precious Metal Recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513860A (en) * 1998-05-06 2002-05-14 エルテック・システムズ・コーポレーション Improved lead electrode
JP2006028555A (en) * 2004-07-13 2006-02-02 Tanaka Kikinzoku Kogyo Kk Metal-recovering apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039422A (en) * 1975-10-14 1977-08-02 Packer Elliot L Metal recovery unit
JPH0310093A (en) * 1989-06-07 1991-01-17 Fujitsu Ltd Electrolytic recovery device
JPH07300692A (en) 1994-04-27 1995-11-14 Konica Corp Electrolytic metal recovering device
GB9815169D0 (en) 1998-07-13 1998-09-09 Eastman Kodak Co Electrolytic cell
CN200940161Y (en) * 2006-08-18 2007-08-29 长春黄金研究院 Vertical, high-temperature and high-pressure noble metals electrolysis deposition bath equipment
TW200823320A (en) * 2006-11-27 2008-06-01 Jiin Yeeh Ding Entpr Corp System and method for recycling substance having expensive metal
KR20080108886A (en) * 2007-06-11 2008-12-16 아사히 프리텍 가부시키가이샤 Metal recovery equipment
KR101022946B1 (en) * 2008-08-07 2011-03-17 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
KR200448283Y1 (en) * 2009-10-27 2010-03-30 고병산 The precious metals recovery apparatus of rotating disc type to be equipped double electrodes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513860A (en) * 1998-05-06 2002-05-14 エルテック・システムズ・コーポレーション Improved lead electrode
JP2006028555A (en) * 2004-07-13 2006-02-02 Tanaka Kikinzoku Kogyo Kk Metal-recovering apparatus

Also Published As

Publication number Publication date
KR20130016378A (en) 2013-02-14
CN102959134A (en) 2013-03-06
EP2592177A1 (en) 2013-05-15
KR101307713B1 (en) 2013-09-11
EP2592177B1 (en) 2017-08-30
TW201211318A (en) 2012-03-16
TWI400360B (en) 2013-07-01
EP2592177A4 (en) 2016-08-31
WO2012005302A1 (en) 2012-01-12
JP2012017491A (en) 2012-01-26
CN102959134B (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4666418B1 (en) Precious metal recovery device and recovery method
US8262873B2 (en) Anode assembly for electroplating
JP2010163699A (en) Apparatus for producing metal powder by electrowinning
KR100947254B1 (en) Cylindrical electrolysis cell reactor
JP4151904B2 (en) Metal recovery device
JP5898346B2 (en) Operation method of anode and electrolytic cell
JP2802276B2 (en) Electrolytic treatment method and electrolytic reaction tank
KR101912205B1 (en) electrolysis-electrodeposition bath for water treatment
JP5848571B2 (en) Electrolytic recovery device
KR101630379B1 (en) Low wastewater type valuable metal electrolysis device
JPH059799A (en) Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating
JP2020055728A (en) Method of producing sulfuric acid solution
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
JP5524100B2 (en) Electrolytic recovery apparatus and method of using the same
JP5507502B2 (en) Gold electrolysis recovery method
JP7334095B2 (en) Tin electrowinning method
JP3161827U (en) Insoluble anode structure
JPH1136099A (en) Plating device and plating method thereby
KR101941558B1 (en) Method for electrolytically refining of coarse copper recovered from scrap of a printed circuit board
JPH0413432B2 (en)
JP2002327289A (en) Method for manufacturing copper fine powder
JP3055821B2 (en) Method and apparatus for high current density electrolysis
JPS641961Y2 (en)
JPH01162790A (en) Electrolytic reduction method
JPS602688A (en) Continuous electrolyzing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250