WO2018182083A1 - Metal recovery method including cyanide removal and metal recovery system therefor - Google Patents

Metal recovery method including cyanide removal and metal recovery system therefor Download PDF

Info

Publication number
WO2018182083A1
WO2018182083A1 PCT/KR2017/003726 KR2017003726W WO2018182083A1 WO 2018182083 A1 WO2018182083 A1 WO 2018182083A1 KR 2017003726 W KR2017003726 W KR 2017003726W WO 2018182083 A1 WO2018182083 A1 WO 2018182083A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
metal
metal recovery
auxiliary
main
Prior art date
Application number
PCT/KR2017/003726
Other languages
French (fr)
Korean (ko)
Inventor
오영민
김내형
Original Assignee
(주)다남이엔이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170040654A external-priority patent/KR20180110834A/en
Priority claimed from KR1020170040653A external-priority patent/KR20180110833A/en
Application filed by (주)다남이엔이 filed Critical (주)다남이엔이
Publication of WO2018182083A1 publication Critical patent/WO2018182083A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • C25C7/08Separating of deposited metals from the cathode

Definitions

  • the present invention relates to a metal recovery method comprising cyanide removal and to a metal recovery system therefor.
  • waste liquids In general, useful metals are contained in waste liquids, plating waste liquids or washing water generated in the electronic industry such as semiconductor manufacturing processes.
  • waste liquids or washing water generated in industrial processes in which precious metals are used contain a considerable amount of precious metals, and thus, it is necessary to recover and recycle them.
  • the recovery method of precious metals contained in waste liquid or washing water is often adopted by ion exchange resin method, activated carbon method and electrolytic extraction method, and the solution after recovery may be neutralized, discarded or semi-treated and recycled.
  • the electrolytic extraction method is a method of electrolytic reduction of an aqueous solution or a leachate containing a noble metal as an electrolyte solution to deposit a desired noble metal on the negative electrode surface.
  • the electrowinning method has the advantage that a high purity metal is obtained at a time without going through an intermediate step such as crude metal, and that the solvent can be regenerated and reused in the leaching process according to the electrolysis.
  • An object of the present invention is to provide a metal recovery method including cyanide removal and a metal recovery system for the same.
  • the object of the present invention is to provide a leachate comprising a metal ion and a cyanide in a metal recovery method comprising the cyanide removal; Providing an electrolyzer for receiving the leachate and reducing precipitation of metal ions of the leachate on the surface of the negative electrode when the leachate is supplied to a reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode; And supplying the decomposition solution capable of decomposing the cyanide and the leaching solution to the electrolyzer.
  • the decomposition solution may include a tea salt.
  • the cyanide includes KCN, and the weight ratio of the cyanide and the tea salt may be 1: 1 to 1: 2.
  • the metal may comprise gold.
  • the leaching solution may be obtained by leaching waste PCB.
  • the negative electrode includes a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode, and reducing and depositing a metal on an inner surface of the auxiliary negative electrode; Removing the auxiliary negative electrode from the electrolyzer;
  • the auxiliary negative electrode may further include melting the auxiliary negative electrode using an acid solution that melts the metal and does not dissolve the metal.
  • the method may further include cutting or crushing the auxiliary negative electrode, and after the cutting or crushing, the auxiliary negative electrode may be melted.
  • the main electrode may have a ring shape
  • the auxiliary negative electrode may have a plate shape and may be wound and positioned in the main electrode.
  • the auxiliary negative electrode may have a thin plate shape.
  • the auxiliary negative electrode may be in close contact with the main negative electrode, and the auxiliary negative electrode may substantially cover an entire inner surface of the main negative electrode.
  • the object of the present invention is a metal recovery system comprising cyanide removal, the metal recovery reactor; And a decomposition solution supply unit for supplying a decomposition solution capable of decomposing cyanide to the metal recovery reactor, wherein the metal recovery reactor receives a leachate containing metal ions and cyanide from the outside, and provides a positive electrode and the positive electrode.
  • the aqueous solution is supplied to the reaction space formed between the surrounding negative electrode is achieved by including an electrolyzer to reduce and precipitate the metal ions of the aqueous solution on the surface of the negative electrode.
  • the decomposition solution may include a tea salt.
  • the cyanide may comprise KCN.
  • the metal ion may include a gold ion.
  • the leachate may be obtained through leaching of the waste PCB.
  • the negative electrode may include a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode.
  • the main electrode may have a ring shape
  • the auxiliary negative electrode may have a plate shape and may be wound and positioned in the main electrode.
  • the auxiliary negative electrode may have a thin plate shape.
  • the auxiliary negative electrode may be in close contact with the main negative electrode, and the auxiliary negative electrode may substantially cover an entire inner surface of the main negative electrode.
  • a metal recovery method including cyanide removal and a metal recovery system therefor are provided.
  • FIG. 1 is a block diagram of a metal recovery system according to an embodiment of the present invention
  • FIG. 2 is a view showing a control structure of a metal recovery system according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of an electrolyzer according to an embodiment of the present invention.
  • FIG. 4 is a schematic exploded perspective view of an electrolyzer according to an embodiment of the present invention.
  • FIG. 6 shows a configuration of a negative electrode according to an embodiment of the present invention
  • Figure 7 shows the assembly of the negative electrode according to an embodiment of the present invention
  • FIG. 8 is a perspective view of a coupled state of an electrolyzer according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX 'of FIG. 8,
  • FIG. 10 shows the configuration of a vehicle flame supply apparatus according to an embodiment of the present invention
  • Figure 11 shows the control structure of the vehicle flame supply apparatus according to an embodiment of the present invention
  • FIG. 12 is a flowchart showing a method of operating a vehicle flame supply apparatus according to an embodiment of the present invention
  • Figure 13 shows the residual gold concentration according to the addition of the flame in the metal recovery system according to an embodiment of the present invention
  • FIG. 14 is a flowchart illustrating an operation method according to an auxiliary tank level in a metal recovery system according to an embodiment of the present invention.
  • 15 is a flowchart illustrating an operating method of performing a solid-liquid separator washing in a metal recovery system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a metal recovery system according to an embodiment of the present invention
  • Figure 2 is a view showing a control structure of the metal recovery system according to an embodiment of the present invention.
  • the metal recovery system 1 includes an electrolyzer 100 (metal recovery reactor), an auxiliary tank 200, a solid-liquid separator 300, and a receiving tank 400.
  • Pumps 501 and 502 and valves 601, 602, 603 and 604 are provided for transporting and blocking the aqueous solution containing the metal ions and / or metal particles to be recovered (hereinafter 'aqueous solution').
  • a timer (800) for measuring the operation time of the level measuring unit 210 and the solid-liquid separator 300, etc. for measuring the level of the auxiliary tank 200, input from the level measuring unit 210 and the timer (800)
  • the controller 700 controls the operation of the pumps 501, 502 and the valves 601, 602, 603, 604 based on the signal.
  • the metal recovery system 1 is provided with a vehicle flame supply device 900 for supplying vehicle flame to the electrolyzer 100.
  • the electrolyzer 100 receives an aqueous solution from the receiving tank 400 and collects (recovers) the metal from the aqueous solution by a cyclone electrolytic extraction method.
  • the electrolyzer 100 will be described in detail again.
  • the auxiliary tank 200 is supplied with an aqueous solution that is electrolytically collected from the electrolyzer 100.
  • the auxiliary tank serves as a buffer between the electrolyzer 100 and the receiving tank 400, and solves an operation stability problem that may occur due to a difference in the flow rate between the first pump 501 and the second pump 502.
  • the auxiliary tank 200 has a level sensor 210, the level sensor 210 senses whether the level of the auxiliary tank 200 is a proper range, more than the upper limit or less than the lower limit.
  • the level sensor 210 may be provided in various ways, such as using the total weight or pressure of the auxiliary tank 200.
  • the solid-liquid separator 300 separates the metal in the form of particles from an aqueous solution.
  • the metal in the form of particles may be generated by growing and separating the metals electrolytically collected from the electrolyzer 100.
  • the solid-liquid separator 300 is not limited thereto, but may include a filter capable of separating particles.
  • the aqueous solution from which the metal particles are separated in the solid-liquid separator 300 is received back into the receiving tank 400.
  • the receiving tank 400 combines the aqueous solution containing the recovery target metal supplied from the plating process and the aqueous solution from which the recovery target metal passed through the electrolyzer 100 and the solid-liquid separator 300 is recovered.
  • the aqueous solution supplied from the plating process and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 are not combined, and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 is a separate facility / process. Can be processed through
  • the metal recovery system also includes a wash section for cleaning the solid-liquid separator.
  • the washing unit includes a washing water supply unit, valves 603 and 604, a washing water discharge unit, and a washing water line.
  • An electrolyzer 100 according to a first embodiment of the present invention will be described in detail with reference to FIGS. 3 to 9.
  • FIG. 3 is a cross-sectional view of an electrolyzer according to the first embodiment of the present invention
  • FIG. 4 is a schematic exploded perspective view of the electrolyzer according to the first embodiment of the present invention
  • FIG. 5 is a first embodiment of the present invention.
  • the shape of the positive electrode of the electrolyzer Figure 6 shows the configuration of the negative electrode according to the first embodiment of the present invention
  • Figure 7 shows the assembly of the negative electrode according to the first embodiment of the present invention
  • Figure 8 is the present invention 9 is a perspective view of the coupled state of the electrolyzer according to the first embodiment
  • FIG. 9 is a cross-sectional view taken along the line IX-IX 'of FIG. 8.
  • the electrolyzer 100 includes an electrolytic cell 10, negative electrodes 20 and 22, and a positive electrode 30.
  • the electrolytic cell 10 is to provide a space for the electrolytic extraction process to be described later.
  • the electrolytic cell 10 has a cyclone shape, and includes a main body portion 11 and a cone portion 15.
  • the main body 11 is formed in a cylindrical shape and the diameter is constant from the top to the bottom. And one side of the main body portion 11 is formed with an inlet 12 penetrating between the inner circumferential surface and the outer circumferential surface so that the aqueous solution to be described later is introduced. And the inlet port 13 for guiding the aqueous solution to the inlet 12 is connected to the inlet (12). In addition, one side of the main body portion 11 is provided with a connection hole 14 to insert the wire for applying power to the negative electrode (20, 22) to be described later.
  • the cone portion 15 extends from the lower portion of the main body portion 11, the diameter gradually decreases from the top to the bottom to form a conical shape as a whole.
  • an outlet 16 through which the aqueous solution introduced into the main body 11 flows out is provided below the cone 15.
  • an outlet port 17 for discharging the aqueous solution to the outside is connected to the outlet port (16).
  • a sealing cap 18 for opening and closing the inner space of the main body portion 11 is provided. That is, a female thread is formed on the upper inner circumferential surface of the main body portion 11, and a male thread is formed on the outer circumferential surface of the sealing cap 18, so that the sealing cap 18 is screwed to the main body portion 11. Then, the O-ring 18a is interposed between the sealing cap 18 and the main body portion 11 to ensure the sealing property.
  • the sealing cap 18 is formed with an insertion hole 18b penetrating between the upper surface and the lower surface, and a rod-shaped positive electrode 30 to be described later is inserted into the insertion hole 18b.
  • the O-ring 18c is interposed around the insertion hole 18b to prevent the airtight release between the positive electrode 30 and the insertion hole 18b to be described later.
  • the pressing cap 19 is screwed on the upper portion of the sealing cap 18 to compress the O-ring 18c to the upper surface of the sealing cap 18 to enhance the airtightness.
  • the through hole 19c is formed in the center of the compression cap 19 so that the positive electrode 30 can be fitted.
  • a negative electrode structure according to an embodiment of the present invention will be described.
  • the negative electrodes 20 and 22 are generally cylindrical in shape and are fitted inside the main body 11 to be coupled. In the present embodiment, the negative electrodes 20 and 22 are formed in a cylindrical shape with a constant diameter throughout the entire upper and lower portions.
  • the negative electrodes 20 and 22 include a main negative electrode 20 and an auxiliary negative electrode 22.
  • the main electrode 20 is cylindrical.
  • the auxiliary negative electrode 22 has a plate shape, and is bent at the time of assembly to be mounted inside the main negative electrode 20. Therefore, in this embodiment, the main electrode 20 and the auxiliary negative electrode 22 are not physically coupled, and can be detached at any time if necessary.
  • the inlet 21 formed in the main electrode 20 is formed at a position corresponding to the inlet 12 of the main body 11, and communicates with the inlet 12 of the main body 11.
  • Auxiliary inlet 23 corresponding to the inlet 21 of the main electrode 20 is also formed in the auxiliary negative electrode 22.
  • the aqueous solution including the metal ion is introduced into the negative electrodes 20 and 22 through the inlet 12, the inlet 21, and the auxiliary inlet 23.
  • the aqueous solution should be introduced into the negative electrode (20, 22) to form a turbulent flow in the electrolytic cell 10, for this purpose, the inflow direction in which the aqueous solution is introduced into the negative electrode (20, 22) is approximately cylindrical It must be in the tangential direction of. That is, when a cylindrical negative electrode is assumed as a circle, it must flow in a tangential direction at the edge of the circle. The solution must be introduced in the tangential direction so that turbulence can be formed while the aqueous solution rotates along the inner circumferential surfaces of the negative electrodes 20 and 22.
  • the main electrode 20 is electrically connected to a power source through a connection hole 14 formed in the main body 11.
  • the main electrode 20 and the auxiliary negative electrode 22 are in close contact with each other and electrically connected, and the auxiliary negative electrode 22 is connected to a power source through the main negative electrode 20.
  • the auxiliary negative electrode 22 is in close contact with the main negative electrode 20 and substantially covers the entire inner surface of the main negative electrode 20. As a result, reduction and precipitation of metal ions occur intensively on the inner surface of the auxiliary negative electrode 22. Reduction and precipitation of metal ions on the inner surface of the main electrode 20 may be very insignificant or substantially not generated. In addition, the metal ion reduction and precipitation on the outer surface of the auxiliary negative electrode 22 is also very small.
  • the outer surface of the main electrode 20 in which the reduction and precipitation of metal ions is insignificant can be suppressed by Teflon coating to prevent unnecessary reduction and precipitation.
  • the inner and outer surfaces of the auxiliary negative electrode 22 facilitate the deposition of precious metals and are not coated to secure electrical conductivity from the negative electrode.
  • the metal to be recovered is deposited on the inner surface of the auxiliary negative electrode 22.
  • the auxiliary negative electrode 22 is easily separated from the main electrode 20, and the post-process of separating the recovery target metal such as gold from the auxiliary negative electrode 22 is performed.
  • the acid-soluble metal is used as the auxiliary negative electrode 22
  • the precious metal such as gold or platinum is not dissolved in the acid solution, and only the auxiliary negative electrode 22 is dissolved, so that the precious metal can be easily separated from the negative electrode.
  • Nitric acid may be used to recover the metal to be recovered.
  • the auxiliary negative electrode 22 may be cut or pulverized and treated with an acid solution.
  • the auxiliary negative electrode 22 may be made of, for example, iron, zinc, tin, nickel, or copper.
  • the auxiliary negative electrode 22 preferably has a thin thickness and is elastic and closely adheres to the main negative electrode 20. This is because the electrical conductivity can be maintained only when the auxiliary negative electrode 22 and the main negative electrode 20 are in close contact with each other.
  • the auxiliary negative electrode 22 may be made of beryllium copper, and the thickness may be 0.2 mm to 0.5 mm.
  • the precipitated precious metal may be peeled off by the flow rate.
  • the surface of the auxiliary negative electrode 22 may be mirrored.
  • the main electrode 20 may be formed of a material different from that of the auxiliary negative electrode 22, and may be made of, for example, stainless steel or titanium.
  • the auxiliary negative electrode 22 is not physically coupled with the main negative electrode 20, so that the auxiliary negative electrode 22 is easily inserted into the main negative electrode 20 and separated after the process. As a result, only the auxiliary negative electrode 22 may be separated after the step to recover the metal on the surface. If the main electrode 20 is kept intact and only the new auxiliary electrode 22 is inserted, a new process can be started. In addition, since the metal precipitation is insignificant in the main electrode 20, operations such as cleaning are easy.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • a metal having a dendritic growth property is easily separated from the negative electrode is separated from the solid-liquid separator 300.
  • the positive electrode 30 is formed to have a rod shape and is inserted into the electrolytic cell 10 through the through hole 19c of the compression cap 19 and the insertion hole 18b of the sealing cap 18.
  • the upper portion of the positive electrode 30 is electrically connected to a power source.
  • the positive electrode 30 is formed in a hollow shape with an empty inside so that the inside of the electrolytic cell 10 communicates with the outside through the hollow portion of the positive electrode 30. After the aqueous solution in the electrolytic cell 10 is lowered to the cone 15, a part is discharged to the outside through the outlet 16 under the cone, and the other part through the inside of the positive electrode 30.
  • a plurality of grooves 32 are formed on the outer surface of the positive electrode 30.
  • the grooves 32 are formed at regular intervals along the circumferential direction of the positive electrode 30 and have the same width d and the interval c.
  • the groove 32 serves to widen the surface area of the positive electrode 30.
  • the groove 32 has a lower manufacturing cost than forming the through hole.
  • forming the groove 32 is easier to widen the surface area of the positive electrode 30 as compared with forming the through hole. Increasing the surface area of the positive electrode 30 by forming the groove 32 affects the recovery efficiency, which will be described later.
  • the surface area of the positive electrode 30 may be adjusted by changing the width d, the gap c, and the depth y of the groove 32.
  • each groove 32 can be variously modified.
  • the width d of each groove 32 may be different and may be formed at irregular intervals.
  • the groove 32 may be formed along the longitudinal direction of the positive electrode 30 or may be formed in a lattice form or the like.
  • the groove 32 may be variously modified, such as a trapezoid or a semicircle, which is not rectangular as in the cross-sectional embodiment.
  • the positive electrode 30 may be made of titanium, and the iridium oxide is coated on the titanium to increase strength.
  • the positive electrode coated with iridium oxite on titanium remains stable without melting in strong acid solution or strong alkaline solution.
  • the positive electrode 30 may be used by coating it with stainless steel or platinum.
  • the electrolyzer 100 according to the present invention can effectively recover metals even at low metal ion concentrations is described in detail in Korean Patent Application Publication No. 2012-0138921 of the present applicant.
  • Figure 10 shows the configuration of the flame retardant supply apparatus according to an embodiment of the present invention
  • Figure 11 shows a control structure of the flame retardant supply apparatus according to an embodiment of the present invention
  • Figure 12 is an embodiment of the present invention Is a flow chart showing the operation method of the flame retardant supply apparatus according to.
  • the flame retardant supply device 900 includes a saltwater supply unit 910, an electrolytic module 920, a flame retardant tank 930, a connection pipe 951, 952, 953, 954, and a flame retardant controller 940.
  • pumps and / or valves are located on at least some of the connection pipes 951, 952, 953, and 954, and include various instruments.
  • Meters include timers, pH meters, chlorine concentration sensors, salinity sensors, temperature sensors, flow meters and level sensors.
  • the brine supply unit 910 supplies the electrolytic brine to the electrolytic module 920.
  • the brine supply unit 910 may supply brine at a constant concentration or may supply brine using a salt tank. If salt tanks are used, saturated brine can be supplied.
  • the electrolytic module 920 electrolyzes the supplied brine to generate brine.
  • the electrolytic module 920 may be supplied with brine from the brine supply unit 910 through a connection pipe 951 or stored in the brine tank 930 through the connection pipe 954. At this time, the salt concentration of the brine water may vary. In another embodiment, brine and brine may be supplied simultaneously.
  • the electrolysis target water supplied to the electrolytic module 920 may have various salt concentrations.
  • the electrolysis target water may have various salinities.
  • the electrolytic module 920 may use a rectifier with a constant current function to prevent the applied current from being changed by the salinity change.
  • the brine generated through electrolysis in the electrolytic module 920 or the brine with increased flame concentration through additional electrolysis is supplied to the brine tank 930 through the connection pipe (953).
  • the brine tank 930 is leveled and managed.
  • Level management can be done in several ways and can have a lower management level and an upper management level.
  • the lower management limit level is a value that does not discharge the electrolyzed water of the brine tank 930 to the outside if it is possible to reach this value or reach this value within a predetermined time.
  • the upper limit management level is a value which may reach this value or may reach this value within a predetermined time and does not supply electrolyzed water to the brine tank 930.
  • the brine of the brine tank 930 is supplied to the electrolyzer 100 through the connection pipe (953).
  • the controller 940 controls the valve or the pump based on the measured value of the measuring instrument, for example, the flame concentration and level of the brine, sterilizes the load, the level of the brine tank 930, and the operation of the electrolytic module 920. Time and / or flame concentration of the brine is controlled.
  • a control method of the controller 940 will be described in detail with reference to FIG. 12.
  • the brine is produced through the brine supply and electrolysis (S10).
  • the generated brine is injected into the brine tank 930 and is supplied to the electrolyzer 100 when a predetermined condition (S20).
  • the predetermined condition may mean that the level of the brine tank 930 is above a certain level.
  • a predetermined condition for supplying the brine water may vary depending on the operating situation of the electrolyzer 100.
  • the flame control unit 940 determines whether high concentration flame is produced based on the flame concentration of the salt water and the level measurement result of the salt water tank 930 (S30).
  • High concentration brine production is to supply the brine of the brine tank 930 to the electrolytic module 920 to produce a higher concentration of brine. This is possible because the salinity of the brine is high enough. That is, since the amount of salt used for preparing salt during electrolysis is small, the salinity of the primary brine is not significantly different from that of the initial brine. Therefore, electrolysis of the primary brine can produce higher concentrations of secondary brine, and electrolysis of the secondary brine can again produce higher concentrations of tertiary brine.
  • Electrode cell structure 240mm ⁇ 220mm size, two IrO coated electrodes on Ti
  • Circulation condition Sterilized water containing hypochlorous acid produced without supplying brine is used separately.
  • the flow rate is about 1,000ml, current 130A, voltage 11.5-12.5V
  • the brine of the brine tank 930 is supplied to the electrolytic module 920 through the connection pipe 954 (S40).
  • Criteria for determining high concentrations of brine production can vary.
  • the level of the brine tank 30 may be a certain level or more, and the salt concentration of the brine water may be a reference level or less.
  • an operating condition of the electrolyzer 100 may be used as a reference, for example, whether the operation stops.
  • the leaching solution (solution to be recovered) of the holding tank 400 is supplied to the electrolyzer 100 by the first pump 501. Specifically, it is supplied into the electrolyzer 100 through the inlet 12 of the electrolyzer 100. Power sources are connected to the negative electrodes 20 and 22 and the positive electrode 30 of the electrolyzer 100, respectively.
  • the inflow rate is in the range of 2 to 10 m / sec. If the flow rate is less than 2 m / sec, turbulence may not be generated in the negative electrode, and thus the desired performance cannot be obtained.
  • the leachate flows in the tangential direction of the negative electrodes 20 and 22 and descends while rotating along the inner circumferential surfaces of the negative electrodes 20 and 22, and part of the conical portion 15 is discharged through the outlet 16 and part of the positive electrode 30. Inflow and rise inside the hollow part of The leachate introduced in the tangential direction in the cyclone-type electrolyzer is discharged through the positive electrode while forming an upward flow in the lower part of the electrolyzer.
  • the positive electrode 30 and the negative electrodes 20 and 22 are energized with each other through the leachate inside the electrolytic cell, and metal ions such as gold, silver, and platinum are received and reduced by the electrons emitted from the negative electrode. Precipitates.
  • the recovery of the metal through the electrowinning can be carried out effectively, in the present invention, even if the metal ion concentration in the leachate is less than 0.3g / L Sampling is possible because the cyclone electrolyzer is used to move metal ions faster.
  • the leachate forms turbulence in the electrolyzer, which is also confirmed by the relationship between the dimensionless constant Reynolds number (Re) representing the flow rate and the dimensionless constant Sherwood number (Sh) representing the mass transfer. Can be.
  • Turbulence formation is due to the inherent geometric features of cyclones.
  • the mass transfer of metal ions is rapidly accelerated. That is, since the diffusion layer, which is the distance at which the metal ions diffuse, becomes thin, the distance from which the metal ions diffuse to the cathode surface becomes relatively short, thereby increasing the reaction rate.
  • metal ions which are inherent in turbulent flow, cause anomalous fluctuation, which causes metal ions to move to the surface of the cathode momentarily, thereby rapidly increasing material movement.
  • the leachate discharged through the outlet 16 of the electrolyzer 100 and the inside of the positive electrode 30 is supplied to the auxiliary tank 200.
  • the auxiliary tank 200 serves as a buffer between the electrolyzer 100 and the reservoir 400. That is, it may be caused by a mismatch between the flow rate of the pump 501 supplying the leach solution to the electrolyzer 100 and the flow rate between the pump 502 supplying the leach solution from the electrolyzer 100 to the receiving tank 400. It is to relieve fair instability.
  • Leachate of the auxiliary tank 200 is supplied to the solid-liquid separator 300 by the second pump (502).
  • the solid-liquid separator 300 separates the metal particles in the leachate so that only the liquid phase is supplied to the accommodation tank 400.
  • the electrode electrode 100 recovers the metal electrodeposited to the auxiliary negative electrode 22 and the metal separated from the solid-liquid separator 300 and operates again.
  • the continuous operation is stably performed by the auxiliary tank 200, and thus the economic efficiency is very high.
  • the solid-liquid separator 300 the metals easily separated from the negative electrodes 20 and 22 are effectively recovered, and the continuous operation is made stable.
  • the electrolyzer 100 and the solid-liquid separator 300 at the same time, it is possible to effectively treat the leachate having two or more components having different recovery characteristics.
  • the leaching solution may contain a cyan compound.
  • Cyanide compounds are used to leach metals from waste PCBs, especially precious metals such as gold.
  • the leachate contains the cyan compound
  • the precious metal electrolytically precipitated on the negative electrode 20 of the electrolyzer 100 is redissolved by the cyan compound, making it difficult to recover the precious metal.
  • the cyan compound should be removed.
  • a decomposition solution capable of decomposing the cyan compound is used. Specifically, the cyan compound is decomposed by supplying the second salt from the vehicle flame supply device 900. The cyan compound is oxidized to cyanic acid and then oxidized to carbon dioxide and nitrogen.
  • KCN was used as the cyan compound, and the residual gold concentration (ppm) of the leachate was observed at 0, 10, 30, 60, 120, 240 and 480 minutes.
  • the leaching liquid amount was 7.4 liters
  • the flow rate was 10 liters / minute
  • the flow rate was 5.03 meters / second
  • the applied current was 3.5A.
  • the tea salt concentration in the leachate was 5000 to 5100 ppm.
  • the flow rate of the auxiliary tank 200 is changed by the difference in the flow rate between the pumps 501 and 502.
  • the level of the auxiliary tank 200 is continuously reduced, and in the opposite case, the level of the auxiliary tank 200 is continuously increased.
  • the auxiliary tank 200 may not serve as a proper buffer.
  • the control unit 700 receives a level value from the level sensor 210 of the auxiliary tank 200 and determines whether the level is between the set high and low levels (S110).
  • the control unit 700 stops the operation of the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 (S120). As a result, the level of the auxiliary tank 200 increases. After a certain time, the control unit 700 determines the level again and operates the second pump 502 if it is between the high and low levels in normal operation (S140).
  • control unit 700 stops the operation of the second pump 502, and then the level of the auxiliary tank 200 is at a predetermined level (eg, 50%, 60%, 70%, etc.) between low and high. ), The pump 502 can be restarted. It is also possible to reduce the operating flow rate without stopping the operation of the pump 502.
  • a predetermined level eg, 50%, 60%, 70%, etc.
  • the control unit 700 stops the operation of the first pump 501 for supplying the electrolyzer 100 aqueous solution (S130). As a result, the level of the auxiliary tank 200 is reduced. After a certain time, the controller 700 determines the level again and operates the first pump 501 to operate normally if it is between a high and a low level (S140).
  • control unit 700 stops the operation of the first pump 501, and then the level of the auxiliary tank 200 is a predetermined level (eg, 30%, 40%, 50%, etc.) between low and high. ), The first pump 501 may be restarted. In addition, the operating flow rate may be reduced without stopping the operation of the first pump 501.
  • the controller 600 increases the flow rate of the first pump 501, decreases the flow rate of the second pump 502, and reduces the flow rate of the auxiliary tank 200. If the level is high, the flow rate of the pump 501 can be reduced and the flow rate of the pump 502 can be increased. In addition, such adjustment may be performed at any time such that the level of the auxiliary tank 200 is a predetermined level (for example, 40%, 50%, 60%, etc.).
  • the washing operation is started by the determination of the washing start of the controller 600 during the normal operation (S200).
  • the controller 600 may determine the washing start at every predetermined driving time based on the time information received from the timer 800.
  • control unit 600 may determine the start of washing based on the pressure of the solid-liquid separator 300, etc. Higher concentrations may lead to faster washing start).
  • the first pump 501 for supplying the aqueous solution to the electrolyzer 100 and the first valve 601 provided at the outlet of the auxiliary tank 200 are turned off (S210).
  • the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 and the second valve 602 provided at the outlet of the solid-liquid separator are turned off (S220). This eliminates the flow of the aqueous solution in the electrolyzer 100 and the solid-liquid separator 300.
  • the third valve 603 connected to the wash water supply unit, the second pump 502 connected to the solid-liquid separator 300, and the fourth valve 604 connected to the wash water discharge unit are turned on (S230). .
  • the washing water is supplied from the washing water supply unit to the solid-liquid separator 300 to wash the solid-liquid separator 300 and then discharged to the washing-water discharge unit (S240).
  • the third valve 603 is turned off to stop the supply of the washing water, the second pump 502 is turned off, and the fourth valve 604 is also turned off (S250).
  • the washing water supply unit and the washing water discharge unit are separated from the solid-liquid separator 300, and the operation of the washing unit is stopped.
  • the metal recovery system described above can be variously modified.
  • a plurality of electrolyzers 100 and / or solid-liquid separator 300 may be provided in parallel for operational stability and operational continuity.
  • the continuous process may be maintained by using another electrolyzer 100.
  • solid-liquid separator 300 When the solid-liquid separator 300 is provided in parallel, even when one of the solid-liquid separator 300 is washed or metal is recovered from the filter, another solid-liquid separator 300 may be used to maintain a continuous process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The present invention relates to a metal recovery method including cyanide removal and a metal recovery system therefor. A metal recovery method including cyanide removal according to the present invention comprises the steps of: preparing leachate containing a metal ion and cyanide; preparing an electrolyzer which receives the leachate and reduces and precipitates the metal ion of the leachate on a surface of a negative electrode when the leachate is supplied to a reaction space formed between a positive electrode and the negative electrode surrounding the positive electrode; and supplying the leachate and a decomposition solution capable of decomposing the cyanide to the electrolyzer.

Description

시안화물 제거를 포함하는 금속회수방법 및 이를 위한 금속회수 시스템Metal recovery method including cyanide removal and metal recovery system therefor
본 발명은 시안화물 제거를 포함하는 금속회수방법 및 이를 위한 금속회수 시스템에 관한 것이다.The present invention relates to a metal recovery method comprising cyanide removal and to a metal recovery system therefor.
반도체 제조공정 등과 같은 전자산업에서 발생하는 폐액, 도금 폐액 또는 세척수 중에는 유용 금속이 함유되어 있는 것이 일반적이다. 특히 귀금속이 사용되는 산업공정에서 발생하는 폐액이나 세척수 중에는 상당량의 귀금속이 함유되어 있으므로 이를 회수하여 재활용할 필요가 있다.In general, useful metals are contained in waste liquids, plating waste liquids or washing water generated in the electronic industry such as semiconductor manufacturing processes. In particular, waste liquids or washing water generated in industrial processes in which precious metals are used contain a considerable amount of precious metals, and thus, it is necessary to recover and recycle them.
일반적으로 폐액이나 세척수 중에 함유되는 귀금속의 회수방법은 이온교환수지법, 활성탄소법 및 전해채취 방법을 채택하는 경우가 많으며 회수 후의 용액은 중화처리하여 폐기하거나 정액처리 하여 재순환시켜 사용하기도 한다. In general, the recovery method of precious metals contained in waste liquid or washing water is often adopted by ion exchange resin method, activated carbon method and electrolytic extraction method, and the solution after recovery may be neutralized, discarded or semi-treated and recycled.
이들 중 전해채취방법은 귀금속이 함유되어 있는 수용액 또는 침출액을 전해액으로서 전해환원하여 목적하는 귀금속을 음전극면 위에 석출시키는 방법이다. 전해채취방법은 조금속 같은 중간 단계를 거치지 않고 한 번에 고순도의 금속이 얻어지는 이점과, 전해에 따라서 용매가 재생되어 침출공정에 재사용될 수 있다는 이점이 있다.Among them, the electrolytic extraction method is a method of electrolytic reduction of an aqueous solution or a leachate containing a noble metal as an electrolyte solution to deposit a desired noble metal on the negative electrode surface. The electrowinning method has the advantage that a high purity metal is obtained at a time without going through an intermediate step such as crude metal, and that the solvent can be regenerated and reused in the leaching process according to the electrolysis.
그러나 전해채취의 경우 이러한 이점에도 불구하고 수용액 내의 금속 이온의 농도가 높은 경우에 적용이 용이하며, 농도가 낮은 경우에는 금속이온이 음전극 표면으로 이동되는 속도가 느려 금속의 회수율이 저하된다는 단점이 있다.However, in the case of electrowinning, in spite of these advantages, it is easy to apply when the concentration of metal ions in the aqueous solution is high, and when the concentration is low, the recovery rate of the metal is reduced due to the slow speed of metal ions moving to the negative electrode surface. .
또한 폐 PCB 등의 유가금속을 용해하기 위해 시안화합물을 사용하는데, 시안화합물에 의해 전해채취의 효율이 낮아지는 문제가 있다.In addition, although cyanide compounds are used to dissolve valuable metals such as waste PCBs, there is a problem in that the efficiency of electrolysis is lowered by cyanide compounds.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 시안화물 제거를 포함하는 금속회수방법 및 이를 위한 금속회수 시스템을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a metal recovery method including cyanide removal and a metal recovery system for the same.
상기 본 발명의 목적은 시안화물 제거를 포함하는 금속회수방법에 있어서, 금속이온과 시안화물을 포함하는 침출액을 마련하는 단계와; 상기 침출액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 침출액이 공급되면 상기 침출액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 마련하는 단계와; 상기 시안화물을 분해할 수 있는 분해용액과 상기 침출액을 상기 전해기로 공급하는 단계를 포함하는 것에 의해 달성된다.The object of the present invention is to provide a leachate comprising a metal ion and a cyanide in a metal recovery method comprising the cyanide removal; Providing an electrolyzer for receiving the leachate and reducing precipitation of metal ions of the leachate on the surface of the negative electrode when the leachate is supplied to a reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode; And supplying the decomposition solution capable of decomposing the cyanide and the leaching solution to the electrolyzer.
상기 분해용액은 차염을 포함할 수 있다.The decomposition solution may include a tea salt.
상기 시안화물은 KCN을 포함하며, 상기 시안화물과 차염의 무게비는 1:1 내지 1:2일 수 있다.The cyanide includes KCN, and the weight ratio of the cyanide and the tea salt may be 1: 1 to 1: 2.
상기 금속은 금을 포함할 수 있다.The metal may comprise gold.
상기 침출액은 폐PCB의 침출을 통해 얻어진 것일 수 있다.The leaching solution may be obtained by leaching waste PCB.
상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하며, 상기 보조 음전극의 내부면에서 금속을 환원 석출하는 단계와; 상기 보조 음전극을 상기 전해기에서 제거하는 단계와; 상기 보조 음전극은 녹이며 상기 금속은 녹이지 않는 산용액을 이용하여 상기 보조 음전극을 녹여 상기 금속을 회수하는 단계를 더 포함할 수 있다.The negative electrode includes a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode, and reducing and depositing a metal on an inner surface of the auxiliary negative electrode; Removing the auxiliary negative electrode from the electrolyzer; The auxiliary negative electrode may further include melting the auxiliary negative electrode using an acid solution that melts the metal and does not dissolve the metal.
상기 보조 음전극을 절단 또는 파쇄하는 단계를 더 포함하며, 상기 절단 또는 파쇄 후에 상기 보조 음전극을 녹일 수 있다.The method may further include cutting or crushing the auxiliary negative electrode, and after the cutting or crushing, the auxiliary negative electrode may be melted.
상기 주음전극은 고리형상이며, 상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치할 수 있다.The main electrode may have a ring shape, and the auxiliary negative electrode may have a plate shape and may be wound and positioned in the main electrode.
상기 보조 음전극은 얇은 판상일 수 있다.The auxiliary negative electrode may have a thin plate shape.
상기 보조음전극은 상기 주음전극과 밀착되어 있으며, 상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있을 수 있다.The auxiliary negative electrode may be in close contact with the main negative electrode, and the auxiliary negative electrode may substantially cover an entire inner surface of the main negative electrode.
상기 본 발명의 목적은 시안화물 제거를 포함하는 금속회수 시스템에 있어서, 금속회수 반응기; 상기 금속회수 반응기에 시안화물을 분해할 수 있는 분해용액을 공급하는 분해용액 공급부를 포함하고, 상기 금속회수 반응기는, 외부로부터 금속이온과 시안화물이 포함된 침출액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하는 것에 의해 달성된다.The object of the present invention is a metal recovery system comprising cyanide removal, the metal recovery reactor; And a decomposition solution supply unit for supplying a decomposition solution capable of decomposing cyanide to the metal recovery reactor, wherein the metal recovery reactor receives a leachate containing metal ions and cyanide from the outside, and provides a positive electrode and the positive electrode. When the aqueous solution is supplied to the reaction space formed between the surrounding negative electrode is achieved by including an electrolyzer to reduce and precipitate the metal ions of the aqueous solution on the surface of the negative electrode.
상기 분해용액은 차염을 포함할 수 있다.The decomposition solution may include a tea salt.
상기 시안화물은 KCN을 포함할 수 있다.The cyanide may comprise KCN.
상기 금속이온은 금이온을 포함할 수 있다.The metal ion may include a gold ion.
상기 침출액은 폐PCB의 침출을 통해 얻어질 수 있다.The leachate may be obtained through leaching of the waste PCB.
상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함할 수 있다.The negative electrode may include a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode.
상기 주음전극은 고리형상이며, 상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치할 수 있다.The main electrode may have a ring shape, and the auxiliary negative electrode may have a plate shape and may be wound and positioned in the main electrode.
상기 보조 음전극은 얇은 판상일 수 있다.The auxiliary negative electrode may have a thin plate shape.
상기 보조음전극은 상기 주음전극과 밀착되어 있으며, 상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있을 수 있다.The auxiliary negative electrode may be in close contact with the main negative electrode, and the auxiliary negative electrode may substantially cover an entire inner surface of the main negative electrode.
본 발명에 따르면 시안화물 제거를 포함하는 금속회수방법 및 이를 위한 금속회수 시스템이 제공된다.According to the present invention, a metal recovery method including cyanide removal and a metal recovery system therefor are provided.
도 1은 본 발명의 일실시예에 따른 금속 회수 시스템의 구성도이고,1 is a block diagram of a metal recovery system according to an embodiment of the present invention,
도 2는 본 발명의 일실시예에 따른 금속 회수 시스템의 제어구조를 나타낸 도면이고,2 is a view showing a control structure of a metal recovery system according to an embodiment of the present invention,
도 3은 본 발명의 일실시예에 따른 전해기의 단면도이고,3 is a cross-sectional view of an electrolyzer according to an embodiment of the present invention;
도 4는 본 발명의 일실시예에 따른 전해기의 개략적 분리 사시도이고,4 is a schematic exploded perspective view of an electrolyzer according to an embodiment of the present invention;
도 5는 본 발명의 일실시예에 따른 전해기의 양전극 형상이고,5 is a positive electrode shape of the electrolyzer according to the embodiment of the present invention,
도 6은 본 발명의 일실시예에 따른 음전극의 구성을 나타낸 것이고,6 shows a configuration of a negative electrode according to an embodiment of the present invention,
도 7은 본 발명의 일실시예에 따른 음전극의 조립을 나타낸 것이고,Figure 7 shows the assembly of the negative electrode according to an embodiment of the present invention,
도 8은 본 발명에 일실시예에 따른 전해기의 결합상태의 사시도이고,8 is a perspective view of a coupled state of an electrolyzer according to an embodiment of the present invention;
도 9는 도 8의 IX-IX'선을 따른 단면도이고,9 is a cross-sectional view taken along the line IX-IX 'of FIG. 8,
도 10은 본 발명의 일실시예에 따른 차염 공급장치의 구성을 나타낸 것이고,10 shows the configuration of a vehicle flame supply apparatus according to an embodiment of the present invention,
도 11은 본 발명의 일실시예에 따른 차염 공급장치의 제어구조를 나타낸 것이고,Figure 11 shows the control structure of the vehicle flame supply apparatus according to an embodiment of the present invention,
도 12는 본 발명의 일실시예에 따른 차염 공급장치의 운전방법을 나타낸 순서도이고,12 is a flowchart showing a method of operating a vehicle flame supply apparatus according to an embodiment of the present invention,
도 13은 본 발명의 일실시예에 따른 금속 회수 시스템에서 차염 추가에 따른 잔류 금 농도를 나타낸 것이고,Figure 13 shows the residual gold concentration according to the addition of the flame in the metal recovery system according to an embodiment of the present invention,
도 14는 본 발명의 일실시예에 따른 금속 회수 시스템에서 보조탱크 레벨에 따른 운전방법을 나타낸 순서도이고,14 is a flowchart illustrating an operation method according to an auxiliary tank level in a metal recovery system according to an embodiment of the present invention.
도 15는 본 발명의 일실시예에 따른 금속 회수 시스템에서 고액분리기 세척을 수행하는 운전방법을 나타낸 순서도이다.15 is a flowchart illustrating an operating method of performing a solid-liquid separator washing in a metal recovery system according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 금속회수방법에 사용되는 금속회수반응기 및 금속회수시스템에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a metal recovery reactor and a metal recovery system used in the metal recovery method according to the present invention will be described in detail.
도 1은 본 발명의 일실시예에 따른 금속 회수 시스템의 구성도이고, 도 2는 본 발명의 일실시예에 따른 금속 회수 시스템의 제어구조를 나타낸 도면이다.1 is a block diagram of a metal recovery system according to an embodiment of the present invention, Figure 2 is a view showing a control structure of the metal recovery system according to an embodiment of the present invention.
금속회수 시스템(1)은 전해기(100, 금속회수반응기), 보조탱크(200), 고액분리기(300) 및 수용조(400)를 포함한다. 회수대상인 금속이온 및/또는 금속입자를 포함한 수용액(이하 '수용액')의 이송 및 차단을 위한 펌프(501, 502)와 밸브(601, 602, 603, 604)가 마련되어 있다. 또한 보조탱크(200)의 레벨을 측정하는 레벨측정기(210)와 고액분리기(300) 등의 운전시간을 측정하는 타이머(800)가 마련되어 있고, 레벨측정기(210)와 타이머(800)로부터 입력된 신호에 기초하여 펌프(501, 502)와 밸브(601, 602, 603, 604)의 운전을 제어하는 제어부(700)를 포함한다. 또한 금속회수시스템(1)에는 전해기(100)에 차염을 공급하는 차염 공급장치(900)가 마련되어 있다.The metal recovery system 1 includes an electrolyzer 100 (metal recovery reactor), an auxiliary tank 200, a solid-liquid separator 300, and a receiving tank 400. Pumps 501 and 502 and valves 601, 602, 603 and 604 are provided for transporting and blocking the aqueous solution containing the metal ions and / or metal particles to be recovered (hereinafter 'aqueous solution'). In addition, there is provided a timer (800) for measuring the operation time of the level measuring unit 210 and the solid-liquid separator 300, etc. for measuring the level of the auxiliary tank 200, input from the level measuring unit 210 and the timer (800) The controller 700 controls the operation of the pumps 501, 502 and the valves 601, 602, 603, 604 based on the signal. In addition, the metal recovery system 1 is provided with a vehicle flame supply device 900 for supplying vehicle flame to the electrolyzer 100.
전해기(100)는 수용조(400)로부터 수용액을 공급받으며, 사이클론 전해채취방법으로 수용액으로부터 금속을 채취(회수)한다. 전해기(100)에 대해서는 다시 자세히 설명한다.The electrolyzer 100 receives an aqueous solution from the receiving tank 400 and collects (recovers) the metal from the aqueous solution by a cyclone electrolytic extraction method. The electrolyzer 100 will be described in detail again.
보조탱크(200)는 전해기(100)에서 전해채취된 수용액을 공급받는다. 보조탱크는 전해기(100)와 수용조(400) 사이에서 버퍼 역할을 수행하며, 제1펌프(501)와 제2펌프(502)간의 통과유량 차이에서 발생할 수 있는 운전안정성 문제를 해결한다. 보조탱크(200)에는 레벨센서(210)가 있으며, 레벨센서(210)는 보조탱크(200)의 레벨이 적정범위인지, 상한값 이상인지 또는 하한값 이하인지 센싱한다. 레벨센서(210)는 보조탱크(200)의 전체 무게나 압력을 이용하는 등 다양한 방식으로 마련될 수 있다.The auxiliary tank 200 is supplied with an aqueous solution that is electrolytically collected from the electrolyzer 100. The auxiliary tank serves as a buffer between the electrolyzer 100 and the receiving tank 400, and solves an operation stability problem that may occur due to a difference in the flow rate between the first pump 501 and the second pump 502. The auxiliary tank 200 has a level sensor 210, the level sensor 210 senses whether the level of the auxiliary tank 200 is a proper range, more than the upper limit or less than the lower limit. The level sensor 210 may be provided in various ways, such as using the total weight or pressure of the auxiliary tank 200.
고액분리기(300)는 입자 형태의 금속을 수용액으로부터 분리한다. 입자 형태의 금속은 전해기(100)에서 전해채취된 금속이 성장하여 분리되어 발생할 수 있다. 고액분리기(300)는, 이에 한정되지는 않으나, 입자를 분리할 수 있는 필터를 포함할 수 있다.The solid-liquid separator 300 separates the metal in the form of particles from an aqueous solution. The metal in the form of particles may be generated by growing and separating the metals electrolytically collected from the electrolyzer 100. The solid-liquid separator 300 is not limited thereto, but may include a filter capable of separating particles.
고액분리기(300)에서 금속입자가 분리된 수용액은 수용조(400)로 다시 수용된다.The aqueous solution from which the metal particles are separated in the solid-liquid separator 300 is received back into the receiving tank 400.
수용조(400)에는 도금과정 등에서 공급된 회수대상 금속을 포함하는 수용액과 전해기(100)와 고액분리기(300)를 거친 회수대상 금속이 회수된 수용액이 합쳐진다. 다른 실시예서는 도금과정 등에서 공급된 수용액과 전해기(100)와 고액분리기(300)를 거친 수용액은 합쳐지지 않고, 전해기(100)와 고액분리기(300)를 거친 수용액은 별도의 설비/공정을 통해 처리될 수 있다.The receiving tank 400 combines the aqueous solution containing the recovery target metal supplied from the plating process and the aqueous solution from which the recovery target metal passed through the electrolyzer 100 and the solid-liquid separator 300 is recovered. In another embodiment, the aqueous solution supplied from the plating process and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 are not combined, and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 is a separate facility / process. Can be processed through
금속회수시스템에는 또한 고액분리기를 세척할 수 있는 세척부를 포함한다. 세척부는 세척수 공급부, 밸브(603, 604), 세척수 배출부 및 세척수 라인 등으로 구성되어 있다.The metal recovery system also includes a wash section for cleaning the solid-liquid separator. The washing unit includes a washing water supply unit, valves 603 and 604, a washing water discharge unit, and a washing water line.
도 3 내지 도 9를 참조하여 본 발명의 제1실시예에 따른 전해기(100)에 대해 자세히 설명한다.An electrolyzer 100 according to a first embodiment of the present invention will be described in detail with reference to FIGS. 3 to 9.
도 3은 본 발명의 제1실시예에 따른 전해기의 단면도이고, 도 4는 본 발명의 제1실시예에 따른 전해기의 개략적 분리 사시도이고, 도 5는 본 발명의 제1실시예에 따른 전해기의 양전극 형상이고, 도 6은 본 발명의 제1실시예에 따른 음전극의 구성을 나타낸 것이고, 도 7은 본 발명의 제1실시예에 따른 음전극의 조립을 나타낸 것이고, 도 8은 본 발명에 제1실시예에 따른 전해기의 결합상태의 사시도이고, 도 9는 도 8의 IX-IX'선을 따른 단면도이다.3 is a cross-sectional view of an electrolyzer according to the first embodiment of the present invention, FIG. 4 is a schematic exploded perspective view of the electrolyzer according to the first embodiment of the present invention, and FIG. 5 is a first embodiment of the present invention. The shape of the positive electrode of the electrolyzer, Figure 6 shows the configuration of the negative electrode according to the first embodiment of the present invention, Figure 7 shows the assembly of the negative electrode according to the first embodiment of the present invention, Figure 8 is the present invention 9 is a perspective view of the coupled state of the electrolyzer according to the first embodiment, and FIG. 9 is a cross-sectional view taken along the line IX-IX 'of FIG. 8.
도 3 내지 도 9를 참조하면, 본 발명에 따른 전해기(100)는 전해조(10), 음전극(20, 22) 및 양전극(30)을 구비한다.3 to 9, the electrolyzer 100 according to the present invention includes an electrolytic cell 10, negative electrodes 20 and 22, and a positive electrode 30.
전해조(10)는 후술할 전해채취공정이 진행되는 공간을 제공하기 위한 것이다. 본 실시예에서 전해조(10)는 싸이클론 형상으로 이루어져, 본체부(11)와 원추부(15)를 구비한다.The electrolytic cell 10 is to provide a space for the electrolytic extraction process to be described later. In the present embodiment, the electrolytic cell 10 has a cyclone shape, and includes a main body portion 11 and a cone portion 15.
본 실시예에서 본체부(11)는 원통형으로 형성되어 상부에서 하부까지 직경이 일정하다. 그리고 본체부(11)의 일측에는 후술할 수용액이 유입될 수 있도록 내주면과 외주면 사이를 관통하는 유입구(12)가 형성된다. 그리고 수용액을 유입구(12)로 안내하기 위한 유입포트(13)가 유입구(12)로 연결된다. 또한, 본체부(11)의 일측에는 후술할 음전극(20, 22)에 전원을 인가하기 위한 전선이 삽입될 수 있도록 연결공(14)이 마련된다.In the present embodiment, the main body 11 is formed in a cylindrical shape and the diameter is constant from the top to the bottom. And one side of the main body portion 11 is formed with an inlet 12 penetrating between the inner circumferential surface and the outer circumferential surface so that the aqueous solution to be described later is introduced. And the inlet port 13 for guiding the aqueous solution to the inlet 12 is connected to the inlet (12). In addition, one side of the main body portion 11 is provided with a connection hole 14 to insert the wire for applying power to the negative electrode (20, 22) to be described later.
본 실시예에서 원추부(15)는 본체부(11)의 하부로부터 연장형성되며, 상부에서 하부로 갈수록 직경이 점차 작아져서 전체적으로 원추 형상을 이룬다. 그리고 원추부(15)의 하부에는 본체부(11)로 유입된 수용액이 유출되는 유출구(16)가 마련된다. 그리고 수용액을 외부로 배출시키기 위한 유출포트(17)가 유출구(16)에 연결된다.In this embodiment, the cone portion 15 extends from the lower portion of the main body portion 11, the diameter gradually decreases from the top to the bottom to form a conical shape as a whole. In addition, an outlet 16 through which the aqueous solution introduced into the main body 11 flows out is provided below the cone 15. And an outlet port 17 for discharging the aqueous solution to the outside is connected to the outlet port (16).
또한, 본체부(11)의 내측 공간을 개방 및 폐쇄하기 위한 밀폐캡(18)이 마련된다. 즉, 본체부(11)의 상측 내주면에는 암나사산이 형성되며, 밀폐캡(18)의 외주면에도 수나사산이 형성되어 밀폐캡(18)은 본체부(11)에 나사결합된다. 그리고, 밀폐캡(18)과 본체부(11) 사이에는 오링(18a)이 개재되어 밀폐성을 확보한다.In addition, a sealing cap 18 for opening and closing the inner space of the main body portion 11 is provided. That is, a female thread is formed on the upper inner circumferential surface of the main body portion 11, and a male thread is formed on the outer circumferential surface of the sealing cap 18, so that the sealing cap 18 is screwed to the main body portion 11. Then, the O-ring 18a is interposed between the sealing cap 18 and the main body portion 11 to ensure the sealing property.
밀폐캡(18)에는 상면과 하면 사이를 관통하는 삽입공(18b)이 형성되며, 이 삽입공(18b)에는 후술할 봉 형상의 양전극(30)이 삽입된다. 그리고 이 삽입공(18b)을 둘러싸며 오링(18c)이 개재되어 후술할 양전극(30)과 삽입공(18b) 사이로 기밀이 해제되는 것을 방지한다. 그리고 오링(18c)을 밀폐캡(18)의 상면에 압착시켜 기밀성을 강화하도록 밀폐캡(18)의 상부에는 압착캡(19)이 나사결합된다. 압착캡(19)의 중앙에도 관통공(19c)이 형성되어 양전극(30)이 끼워질 수 있다.The sealing cap 18 is formed with an insertion hole 18b penetrating between the upper surface and the lower surface, and a rod-shaped positive electrode 30 to be described later is inserted into the insertion hole 18b. The O-ring 18c is interposed around the insertion hole 18b to prevent the airtight release between the positive electrode 30 and the insertion hole 18b to be described later. And the pressing cap 19 is screwed on the upper portion of the sealing cap 18 to compress the O-ring 18c to the upper surface of the sealing cap 18 to enhance the airtightness. The through hole 19c is formed in the center of the compression cap 19 so that the positive electrode 30 can be fitted.
본 발명의 실시예에 따른 음전극 구조를 설명한다.A negative electrode structure according to an embodiment of the present invention will be described.
음전극(20, 22)은 전체적으로는 원통형이며 본체부(11)의 내측에 끼워져 결합된다. 본 실시예에서 음전극(20, 22)은 전체적으로는 상하부 전체에 걸쳐 일정한 직경으로 원통형으로 형성된다. The negative electrodes 20 and 22 are generally cylindrical in shape and are fitted inside the main body 11 to be coupled. In the present embodiment, the negative electrodes 20 and 22 are formed in a cylindrical shape with a constant diameter throughout the entire upper and lower portions.
음전극(20, 22)은 주음전극(20)과 보조음전극(22)을 포함한다. 주음전극(20)은원통형상이다. 보조음전극(22)은 판상이며, 조립 시 휘게 만들어 주음전극(20) 내부에 장착하게 된다. 따라서 본 실시예에서 주음전극(20)과 보조음전극(22)은 물리적으로 결합되어 있지 않고, 필요시 언제든 탈착이 가능하다.The negative electrodes 20 and 22 include a main negative electrode 20 and an auxiliary negative electrode 22. The main electrode 20 is cylindrical. The auxiliary negative electrode 22 has a plate shape, and is bent at the time of assembly to be mounted inside the main negative electrode 20. Therefore, in this embodiment, the main electrode 20 and the auxiliary negative electrode 22 are not physically coupled, and can be detached at any time if necessary.
주음전극(20)에 형성된 입구부(21)는 본체부(11)의 유입구(12)와 대응되는 위치에 형성되어, 본체부(11)의 유입구(12)와 연통된다. 보조음전극(22)에도 주음전극(20)의 입구부(21)에 대응하는 보조 입구부(23)가 형성되어 있다. 금속이온을 포함하는 수용액은 유입구(12), 입구부(21) 및 보조 입구부(23)를 통해 음전극(20, 22)의 내측으로 유입된다.The inlet 21 formed in the main electrode 20 is formed at a position corresponding to the inlet 12 of the main body 11, and communicates with the inlet 12 of the main body 11. Auxiliary inlet 23 corresponding to the inlet 21 of the main electrode 20 is also formed in the auxiliary negative electrode 22. The aqueous solution including the metal ion is introduced into the negative electrodes 20 and 22 through the inlet 12, the inlet 21, and the auxiliary inlet 23.
본 발명에서는 수용액이 음전극(20, 22)의 내측으로 유입되어 전해조(10) 내에서 난류를 형성하도록 하여야 하는데, 이를 위해서는 수용액이 음전극(20, 22)의 내측으로 유입되는 유입방향이 대략 원통형 음전극의 접선방향이어야 한다. 즉, 원통형 음전극을 원으로 상정하였을 때, 원의 가장자리에서 접선방향으로 유입되어야 한다. 이렇게 접선방향으로 유입되어야만 수용액이 음전극(20, 22)의 내주면을 따라 회전하게 되면서 난류를 형성할 수 있다.In the present invention, the aqueous solution should be introduced into the negative electrode (20, 22) to form a turbulent flow in the electrolytic cell 10, for this purpose, the inflow direction in which the aqueous solution is introduced into the negative electrode (20, 22) is approximately cylindrical It must be in the tangential direction of. That is, when a cylindrical negative electrode is assumed as a circle, it must flow in a tangential direction at the edge of the circle. The solution must be introduced in the tangential direction so that turbulence can be formed while the aqueous solution rotates along the inner circumferential surfaces of the negative electrodes 20 and 22.
예컨대, 음전극의 중심을 향해 반경방향을 따라 유입되는 경우 전해조(10) 내에서 난류가 형성되지 않으므로, 원하는 효과를 얻을 수 없다.For example, when flowing in the radial direction toward the center of the negative electrode, turbulence is not formed in the electrolytic cell 10, so that a desired effect cannot be obtained.
주음전극(20)은 본체부(11)에 형성된 연결공(14)을 통해 전원과 전기적으로 연결된다. 주음전극(20)과 보조음전극(22)은 밀착되어 전기적으로 연결되어 있으며, 보조음전극(22)은 주음전극(20)을 통해 전원과 연결된다. The main electrode 20 is electrically connected to a power source through a connection hole 14 formed in the main body 11. The main electrode 20 and the auxiliary negative electrode 22 are in close contact with each other and electrically connected, and the auxiliary negative electrode 22 is connected to a power source through the main negative electrode 20.
보조음전극(22)은 주음전극(20)과 밀착되어 있으며, 주음전극(20)의 내면을 실질적으로 모두 덮고 있다. 이에 의해 금속이온의 환원 및 석출은 보조음전극(22)의 내부 표면에서 집중적으로 일어난다. 주음전극(20) 내부면에서의 금속이온의 환원 및 석출은 매우 미미하거나 실질적으로 발생하지 않을 수 있다. 또한 보조음전극(22)의 외부면에서의 금속이온 환원 및 석출도 매우 미미하다.The auxiliary negative electrode 22 is in close contact with the main negative electrode 20 and substantially covers the entire inner surface of the main negative electrode 20. As a result, reduction and precipitation of metal ions occur intensively on the inner surface of the auxiliary negative electrode 22. Reduction and precipitation of metal ions on the inner surface of the main electrode 20 may be very insignificant or substantially not generated. In addition, the metal ion reduction and precipitation on the outer surface of the auxiliary negative electrode 22 is also very small.
금속이온의 환원 및 석출이 미미한 주음전극(20)의 바깥면은 테프론 코팅하여 불필요한 환원 및 석출을 억제할 수 있다. 보조음전극(22)의 내부면 및 외부면은 귀금속의 석출을 원활하게 하고, 음전극으로부터의 전기전도도 확보를 위해 코팅하지 않는다.The outer surface of the main electrode 20 in which the reduction and precipitation of metal ions is insignificant can be suppressed by Teflon coating to prevent unnecessary reduction and precipitation. The inner and outer surfaces of the auxiliary negative electrode 22 facilitate the deposition of precious metals and are not coated to secure electrical conductivity from the negative electrode.
전해채취공정이 진행되면 보조 음전극(22)의 내측 표면에서 회수 대상 금속이 석출된다. 공정 후 보조음전극(22)은 용이하게 주음전극(20)으로부터 분리되고 보조 음전극(22)으로부터 금과 같은 회수 대상 금속을 분리하는 후공정이 진행된다. 산에 녹는 금속을 보조음전극(22)으로 사용하면 금이나 백금 같은 귀금속은 산용액에 녹지 않고 보조음전극(22)만 용해되므로 귀금속을 음전극으로부터 용이하게 분리할 수 있는 장점이 있다. 회수 대상 금속 회수에는 질산을 사용할 수 있으며, 공정의 편의를 위해 보조음전극(22)을 자르거나 분쇄 후 산용액 처리할 수 있다.When the electrochemical extraction process is performed, the metal to be recovered is deposited on the inner surface of the auxiliary negative electrode 22. After the process, the auxiliary negative electrode 22 is easily separated from the main electrode 20, and the post-process of separating the recovery target metal such as gold from the auxiliary negative electrode 22 is performed. When the acid-soluble metal is used as the auxiliary negative electrode 22, the precious metal such as gold or platinum is not dissolved in the acid solution, and only the auxiliary negative electrode 22 is dissolved, so that the precious metal can be easily separated from the negative electrode. Nitric acid may be used to recover the metal to be recovered. For convenience of the process, the auxiliary negative electrode 22 may be cut or pulverized and treated with an acid solution.
보조음전극(22)은, 예를 들어 철, 아연, 주석, 니켈 또는 구리로 이루어 질 수 있다. 보조음전극(22)은 특히 얇은 두께를 가지면서도 탄성을 가져 주음전극(20)에 밀착되는 것이 바람직하다. 보조음전극(22)과 주음전극(20)이 밀착되어야 전기전도도가 유지될 수 있기 때문이다. 이를 위해 보조음전극(22)은 베릴륨동으로 이루어질 수 있으며, 두께는 0.2mm 내지 0.5mm일 수 있다. 또한 석출이 이루어지는 보조음전극(22)의 내부면이 거칠면 석출된 귀금속이 유속에 의해 박리될 수 있다. 이러한 문제를 해결하기 위해 보조음전극(22)의 표면은 경면처리될 수 있다.The auxiliary negative electrode 22 may be made of, for example, iron, zinc, tin, nickel, or copper. In particular, the auxiliary negative electrode 22 preferably has a thin thickness and is elastic and closely adheres to the main negative electrode 20. This is because the electrical conductivity can be maintained only when the auxiliary negative electrode 22 and the main negative electrode 20 are in close contact with each other. To this end, the auxiliary negative electrode 22 may be made of beryllium copper, and the thickness may be 0.2 mm to 0.5 mm. In addition, when the inner surface of the auxiliary anode electrode 22 is precipitated is rough, the precipitated precious metal may be peeled off by the flow rate. In order to solve this problem, the surface of the auxiliary negative electrode 22 may be mirrored.
주음전극(20)은 보조음전극(22)과 다른 재질로 마련될 수 있으며, 예를 들어, 스테인레스 스틸 또는 티타늄으로 만들어 질 수 있다.The main electrode 20 may be formed of a material different from that of the auxiliary negative electrode 22, and may be made of, for example, stainless steel or titanium.
이상 설명한 바와 같이, 보조음전극(22)은 주음전극(20)과 물리적으로 결합되어 있지 않기 때문에, 주음전극(20) 내부로의 삽입 및 공정 후 분리가 용이하다. 이에 의해, 공정 후에 보조음전극(22)만을 분리하여 표면의 금속을 회수하면 된다. 주음전극(20)은 그대로 유지하고 새로운 보조음전극(22) 만을 삽입하면 새로운 공정이 시작될 수 있다. 또한 주음전극(20)에는 금속 석출이 미미하기 때문에 세정 등의 작업이 용이하다. As described above, the auxiliary negative electrode 22 is not physically coupled with the main negative electrode 20, so that the auxiliary negative electrode 22 is easily inserted into the main negative electrode 20 and separated after the process. As a result, only the auxiliary negative electrode 22 may be separated after the step to recover the metal on the surface. If the main electrode 20 is kept intact and only the new auxiliary electrode 22 is inserted, a new process can be started. In addition, since the metal precipitation is insignificant in the main electrode 20, operations such as cleaning are easy.
한편, 회수 대상 금속의 석출량이 증가하면 석출된 금속이 입자형태로 음전극에서 분리될 수 있으며, 분리된 금속입자는 고액분리기(300)에서 분리된다. 또한 수지상으로 성장하는 특성을 가진 금속의 경우에는 음전극에서 쉽게 분리되어 고액분리기(300)에서 분리된다.On the other hand, when the amount of precipitation of the metal to be recovered increases, the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300. In addition, in the case of a metal having a dendritic growth property is easily separated from the negative electrode is separated from the solid-liquid separator 300.
양전극(30)은 봉 형상으로 길게 형성되어 압착캡(19)의 관통공(19c)과 밀폐캡(18)의 삽입공(18b)을 통해 전해조(10)의 내측으로 삽입된다. 양전극(30)의 상부는 전원과 전기적으로 연결된다.The positive electrode 30 is formed to have a rod shape and is inserted into the electrolytic cell 10 through the through hole 19c of the compression cap 19 and the insertion hole 18b of the sealing cap 18. The upper portion of the positive electrode 30 is electrically connected to a power source.
또한 양전극(30)은 내부가 비어 있는 중공형으로 형성되어 양전극(30)의 중공부를 통해 전해조(10)의 내부가 외부와 연통된다. 전해조(10) 내부의 수용액은 원추부(15)로 하강한 후, 일부는 원추부 하측의 유출구(16)를 통해, 나머지 일부는 양전극(30)의 내측을 통해 외부로 배출된다.In addition, the positive electrode 30 is formed in a hollow shape with an empty inside so that the inside of the electrolytic cell 10 communicates with the outside through the hollow portion of the positive electrode 30. After the aqueous solution in the electrolytic cell 10 is lowered to the cone 15, a part is discharged to the outside through the outlet 16 under the cone, and the other part through the inside of the positive electrode 30.
양전극(30)의 외표면에는 다수의 그루브(32)가 형성되어 있다. 그루브(32)는 양전극(30)의 둘레방향을 따라 일정한 간격으로 형성되어 있으며 동일한 폭(d)과 간격(c)으로 형성되어 있다. 그루브(32)는 양전극(30)의 표면적을 넓혀주는 역할을 한다. 그루브(32) 형성은 관통홀을 형성하는 것에 비해 제조원가가 낮다. 또한 그루브(32)를 형성하는 것은 관통홀을 형성하는 것에 비하여 양전극(30)의 표면적을 넓히기 용이하다. 그루브(32)를 형성하여 양전극(30)의 표면적을 넓히는 것은 회수효율에 영향을 주며, 이에 대하여는 후술한다.A plurality of grooves 32 are formed on the outer surface of the positive electrode 30. The grooves 32 are formed at regular intervals along the circumferential direction of the positive electrode 30 and have the same width d and the interval c. The groove 32 serves to widen the surface area of the positive electrode 30. The groove 32 has a lower manufacturing cost than forming the through hole. In addition, forming the groove 32 is easier to widen the surface area of the positive electrode 30 as compared with forming the through hole. Increasing the surface area of the positive electrode 30 by forming the groove 32 affects the recovery efficiency, which will be described later.
양전극(30)의 표면적은 그루브(32)의 폭(d), 간격(c) 및 깊이(y)을 변화시켜 조절할 수 있다.The surface area of the positive electrode 30 may be adjusted by changing the width d, the gap c, and the depth y of the groove 32.
그루브(32)의 형태 및 배치는 다양하게 변형가능하다. 다른 실시예에서는 각 그루브(32)의 폭(d)이 다를 수 있으며, 불일정한 간격으로 형성될 수 있다. 또한 그루브(32)는 양전극(30)의 길이방향을 따라 형성되거나, 격자형태 등으로 형성할 수 있다. 그루브(32)의 단면도 실시예와 같은 직사각형이 아닌 사다리꼴이나 반원형 등 다양하게 변형될 수 있다.The shape and arrangement of the grooves 32 can be variously modified. In other embodiments, the width d of each groove 32 may be different and may be formed at irregular intervals. In addition, the groove 32 may be formed along the longitudinal direction of the positive electrode 30 or may be formed in a lattice form or the like. The groove 32 may be variously modified, such as a trapezoid or a semicircle, which is not rectangular as in the cross-sectional embodiment.
본 실시예에서 양전극(30)은 티타늄으로 제조될 수 있으며, 티타늄 위에 이리듐 옥사이드를 코팅시켜 강도를 증대시킨다. 티타늄에 이리듐 옥사이트를 코팅한 양전극은 강산성 용액이나 강알칼리성 용액에서도 녹지 않고 안정하게 유지된다. 또한 양전극(30)은 스테인레스 스틸이나 이를 백금으로 코팅하여 사용할 수 있다.In this embodiment, the positive electrode 30 may be made of titanium, and the iridium oxide is coated on the titanium to increase strength. The positive electrode coated with iridium oxite on titanium remains stable without melting in strong acid solution or strong alkaline solution. In addition, the positive electrode 30 may be used by coating it with stainless steel or platinum.
전해채취공정에서는 일반적으로 높은 분해전압이 요구되는데, 예컨대 흑연을 양전극으로 사용하면서 과전압이 걸리는 경우 흑연 양전극은 표면이 약화되어 고속으로 흐르는 유체에 의해 마모되는 경우가 많다. 그러나, 본 실시예에서와 같이, 티타늄에 이리듐 옥사이드를 코팅한 전극 또는 스테인레스 스틸에 백금을 코팅한 전극을 사용하면, 자체적인 기계적 강도로 인해 높은 과전압과 빠른 유속에서도 전극이 마모되지 않고 원형 그대로 유지되므로 안정성이 뛰어나다는 이점이 있다.In the electrowinning process, high decomposition voltages are generally required. For example, when an overvoltage is applied while using graphite as a positive electrode, the graphite positive electrode is often weakened by a fluid flowing at high speed. However, when using an electrode coated with iridium oxide on titanium or an electrode coated with platinum on stainless steel, as in this embodiment, the electrode does not wear out and remain intact under high overvoltage and fast flow rates due to its mechanical strength. Therefore, there is an advantage of excellent stability.
본 발명에 따른 전해기(100)가 낮은 금속이온 농도에서도 효과적으로 금속을 회수할 수 있는 것은 본 출원 발명자의 한국공개특허 제2012-0138921호에서 자세히 설명되어 있다.The electrolyzer 100 according to the present invention can effectively recover metals even at low metal ion concentrations is described in detail in Korean Patent Application Publication No. 2012-0138921 of the present applicant.
이하 도 10 내지 도 12를 참조하여 차염 공급장치(900)에 대해 설명한다. Hereinafter, the flame retardant supply apparatus 900 will be described with reference to FIGS. 10 to 12.
도 10은 본 발명의 일실시예에 따른 차염 공급장치의 구성을 나타낸 것이고, 도 11은 본 발명의 일실시예에 따른 차염 공급장치의 제어구조를 나타낸 것이고, 도 12는 본 발명의 일실시예에 따른 차염 공급장치의 운전방법을 나타낸 순서도이다.Figure 10 shows the configuration of the flame retardant supply apparatus according to an embodiment of the present invention, Figure 11 shows a control structure of the flame retardant supply apparatus according to an embodiment of the present invention, Figure 12 is an embodiment of the present invention Is a flow chart showing the operation method of the flame retardant supply apparatus according to.
차염 공급장치(900)는 염수공급부(910), 전해모듈(920), 차염수 탱크(930), 연결배관(951, 952, 953, 954) 및 차염 제어부(940)를 포함한다. 도시하지는 않았지만 적어도 일부의 연결배관(951, 952, 953, 954) 상에는 펌프 및/또는 밸브가 위치하고 있으며, 각종 계측기를 포함한다. 계측기는 타이머, pH미터, 염소농도센서, 염도센서, 온도센서, 유량계 및 레벨센서 등을 포함한다.The flame retardant supply device 900 includes a saltwater supply unit 910, an electrolytic module 920, a flame retardant tank 930, a connection pipe 951, 952, 953, 954, and a flame retardant controller 940. Although not shown, pumps and / or valves are located on at least some of the connection pipes 951, 952, 953, and 954, and include various instruments. Meters include timers, pH meters, chlorine concentration sensors, salinity sensors, temperature sensors, flow meters and level sensors.
염수공급부(910)는 전기분해대상인 염수를 전해모듈(920)로 공급한다. 염수공급부(910)는 일정한 농도의 염수를 공급하거나 소금 탱크를 이용해 염수를 공급할 수 있다. 소금 탱크를 이용할 경우 포화상태의 염수가 공급될 수 있다.The brine supply unit 910 supplies the electrolytic brine to the electrolytic module 920. The brine supply unit 910 may supply brine at a constant concentration or may supply brine using a salt tank. If salt tanks are used, saturated brine can be supplied.
전해모듈(920)은 공급된 염수를 전기분해하여 차염수를 생성한다. 전해모듈(920)에는 연결배관(951)을 통해 염수공급부(910)로부터 염수가 공급되거나 연결배관(954)을 통해 차염수 탱크(930)에 저장되어 있는 차염수가 공급될 수 있다. 이 때 차염수의 차염 농도는 다양할 수 있다. 다른 실시예에서는 염수와 차염수가 동시에 공급될 수도 있다.The electrolytic module 920 electrolyzes the supplied brine to generate brine. The electrolytic module 920 may be supplied with brine from the brine supply unit 910 through a connection pipe 951 or stored in the brine tank 930 through the connection pipe 954. At this time, the salt concentration of the brine water may vary. In another embodiment, brine and brine may be supplied simultaneously.
즉, 전해모듈(920)에 공급되는 전기분해대상수는 다양한 차염 농도를 가지고 있을 수 있다. 또한 전기분해대상수는 다양한 염도를 가지고 있을 수 있다. 전해모듈(920)은 염도 변화에 의해 인가전류가 변화하는 것을 막기 위해 정전류 기능의 정류기를 사용할 수 있다.That is, the electrolysis target water supplied to the electrolytic module 920 may have various salt concentrations. In addition, the electrolysis target water may have various salinities. The electrolytic module 920 may use a rectifier with a constant current function to prevent the applied current from being changed by the salinity change.
전해모듈(920)에서 전기분해를 통해 생성된 차염수 또는 추가 전기분해를 통해 차염농도가 높아진 차염수는 연결배관(953)을 통해 차염수 탱크(930)로 공급된다. 다른 실시예에서는 전해모듈(920)에서 생성된 차염수를 직접 부하에 공급하는 추가의 연결배관이 있을 수 있다.The brine generated through electrolysis in the electrolytic module 920 or the brine with increased flame concentration through additional electrolysis is supplied to the brine tank 930 through the connection pipe (953). In another embodiment, there may be additional connection piping for supplying the brine generated in the electrolytic module 920 directly to the load.
차염수 탱크(930)는 레벨이 측정되고 레벨이 관리된다. 레벨 관리는 여러 방법으로 할 수 있으며, 관리하한레벨과 관리상한레벨을 가질 수 있다. 관리하한레벨은 이 값에 도달하거나 일정시간 내에 이 값에 도달할 가능성이 있으면 차염수 탱크(930)의 전해수를 외부로 배출하지 않는 값이다. 관리상한레벨은 이 값에 도달하거나 일정시간 내에 이 값에 도달할 가능성이 있으며 차염수 탱크(930)에 전해수를 공급하지 않는 값이다.The brine tank 930 is leveled and managed. Level management can be done in several ways and can have a lower management level and an upper management level. The lower management limit level is a value that does not discharge the electrolyzed water of the brine tank 930 to the outside if it is possible to reach this value or reach this value within a predetermined time. The upper limit management level is a value which may reach this value or may reach this value within a predetermined time and does not supply electrolyzed water to the brine tank 930.
차염수 탱크(930)의 차염수는 연결배관(953)을 통해 전해기(100)로 공급된다.The brine of the brine tank 930 is supplied to the electrolyzer 100 through the connection pipe (953).
제어부(940)는 계측기의 측정값, 예를 들어 차염수의 차염 농도와 레벨을 기초로 밸브나 펌프 등을 제어하여 부하의 살균, 차염수 탱크(930)의 레벨, 전해모듈(920)의 운전시간 및/또는 차염수의 차염 농도 등을 제어한다.The controller 940 controls the valve or the pump based on the measured value of the measuring instrument, for example, the flame concentration and level of the brine, sterilizes the load, the level of the brine tank 930, and the operation of the electrolytic module 920. Time and / or flame concentration of the brine is controlled.
도 12를 참조하여 제어부(940)의 제어방법에 대해 자세히 설명한다. A control method of the controller 940 will be described in detail with reference to FIG. 12.
먼저, 염수공급 및 전기분해를 통해 차염수를 생성한다(S10).First, the brine is produced through the brine supply and electrolysis (S10).
생성된 차염수는 차염수 탱크(930)로 주입되고 일정 조건이 되면 전해기(100)로 공급한다(S20). 여기서 일정조건은 차염수 탱크(930)의 레벨이 일정수준 이상이 된 것을 의미할 수 있다. 그러나 차염수 공급을 위한 일정 조건은 전해기(100)의 운전상황 등에 따라 변화할 수 있다.The generated brine is injected into the brine tank 930 and is supplied to the electrolyzer 100 when a predetermined condition (S20). Here, the predetermined condition may mean that the level of the brine tank 930 is above a certain level. However, a predetermined condition for supplying the brine water may vary depending on the operating situation of the electrolyzer 100.
차염 제어부(940)는 차염수의 차염 농도와 차염수 탱크(930)의 레벨 측정결과에 기초하여 고농도 차염 생산 여부를 결정한다(S30).The flame control unit 940 determines whether high concentration flame is produced based on the flame concentration of the salt water and the level measurement result of the salt water tank 930 (S30).
고농도 차염수 생산은 전해모듈(920)에 차염수 탱크(930)의 차염수를 공급하여 더 높은 농도의 차염수를 생산하는 것이다. 이는 차염수의 염도가 충분히 높기 때문에 가능하다. 즉, 전기분해시 차염제조에 사용되는 소금은 소량이기 때문에, 1차 생성된 차염수의 염도는 최초 염수의 염도와 큰 차이가 없다. 따라서 1차 생성된 차염수를 전기분해하면 더 높은 농도의 2차 차염수를 생산할 수 있으며, 2차 차염수를 전기분해하면 또 다시 더 높은 농도의 3차 차염수를 생산할 수 있다.High concentration brine production is to supply the brine of the brine tank 930 to the electrolytic module 920 to produce a higher concentration of brine. This is possible because the salinity of the brine is high enough. That is, since the amount of salt used for preparing salt during electrolysis is small, the salinity of the primary brine is not significantly different from that of the initial brine. Therefore, electrolysis of the primary brine can produce higher concentrations of secondary brine, and electrolysis of the secondary brine can again produce higher concentrations of tertiary brine.
이상의 방법으로 실제 고농도의 차염수를 제조한 결과는 표 1과 같다.The results of the actual high concentration of brine by the above method are shown in Table 1.
5회까지 차염수를 생산한 경우 염도와 염소농도 변화를 실험하였다. 실험조건은 다음과 같다.When the brine was produced up to 5 times, the salinity and chlorine concentrations were tested. Experimental conditions are as follows.
전극셀 구조 ; 240㎜ㅧ220㎜의 크기, Ti 위에 IrO 코팅한 전극 3장을 복극으로 구성Electrode cell structure; 240mm × 220mm size, two IrO coated electrodes on Ti
초기 조건 ; 염도 3% 내외의 염수 1,100㎖, 전류 130A, 전압 11 내지 12VInitial condition; 1,100 ml of brine with a salinity of around 3%, current 130A, voltage 11-12V
순환 조건 ; 별도로 염수를 공급하지 않고 생성된 차아염소산을 포함한 살균수를 사용하며, 유량은 약 1,000㎖, 전류 130A, 전압 11.5 내지 12.5VCirculation condition; Sterilized water containing hypochlorous acid produced without supplying brine is used separately.The flow rate is about 1,000ml, current 130A, voltage 11.5-12.5V
결과는 아래 표 1과 같다.The results are shown in Table 1 below.
횟수Count 염도(%)Salinity (%) 염소농도(ppm)Chlorine concentration (ppm)
1회1 time 2.82.8 1,6001,600
2회Episode 2 2.62.6 3,4003,400
3회3rd time 2.62.6 4,2004,200
4회4 times 2.52.5 5,2005,200
5회5 times 2.52.5 5,4005,400
표 1을 보면 전해 횟수에 따라 염수농도는 크게 감소하지 않으면서 차염수의 차염농도는 지속적으로 증가하는 것을 확인할 수 있다.Looking at Table 1, it can be seen that the brine concentration of the brine increases continuously without significantly decreasing the brine concentration according to the number of electrolysis.
차염 제어부(930)가 고농도 차염수 생산 조건에 부합하다고 판단되면 연결배관(954)을 통해 차염수 탱크(930)의 차염수를 전해모듈(920)에 공급한다(S40).If it is determined that the flame control unit 930 meets the high concentration of brine production conditions, the brine of the brine tank 930 is supplied to the electrolytic module 920 through the connection pipe 954 (S40).
고농도 차염수 생산을 결정하는 기준은 다양하게 변화할 수 있다. 예를 들어, 차염수 탱크(30)의 레벨이 일정 수준 이상이며, 차염수의 차염 농도가 일정 수준 이하인 것이 기준이 될 수 있다. 또한, 전해기(100)의 운전조건, 예를 들어, 운전 정지 여부 등도 기준이 될 수 있다.Criteria for determining high concentrations of brine production can vary. For example, the level of the brine tank 30 may be a certain level or more, and the salt concentration of the brine water may be a reference level or less. In addition, an operating condition of the electrolyzer 100 may be used as a reference, for example, whether the operation stops.
이상 설명한 금속 회수 시스템을 이용한 금속회수 방법에 대하여 설명한다.The metal recovery method using the metal recovery system described above will be described.
수용조(400)의 침출액(회수대상용액)은 제1펌프(501)에 의해 전해기(100)로 공급된다. 구체적으로는 전해기(100)의 유입구(12)를 통해 전해기(100) 내부로 공급된다. 전해기(100)의 음전극(20, 22)과 양전극(30)에는 각각 전원이 연결되어 있다.The leaching solution (solution to be recovered) of the holding tank 400 is supplied to the electrolyzer 100 by the first pump 501. Specifically, it is supplied into the electrolyzer 100 through the inlet 12 of the electrolyzer 100. Power sources are connected to the negative electrodes 20 and 22 and the positive electrode 30 of the electrolyzer 100, respectively.
침출액을 전해기(100) 내부로 유입시킬 때 유입속도는 2 ~ 10 m/sec 의 범위이다. 2m/sec 미만으로 유입되면 음전극 내에서 난류를 발생시키지 못하므로 원하는 성과를 얻을 수 없으며, 10m/sec를 초과하는 경우 비경제적이기 때문이다.When the leachate is introduced into the electrolyzer 100, the inflow rate is in the range of 2 to 10 m / sec. If the flow rate is less than 2 m / sec, turbulence may not be generated in the negative electrode, and thus the desired performance cannot be obtained.
침출액은 음전극(20, 22)의 접선방향으로 유입되어 음전극(20, 22)의 내주면을 따라 회전하면서 하강하고, 원추부(15)에서 일부는 유출구(16)를 통해 배출되고 일부는 양전극(30)의 중공부 내측으로 유입 및 상승되어 배출된다. 이렇게 싸이클론 형태의 전해조에서 접선방향으로 유입된 침출액은 전해조의 하부에서 상승류를 형성하면서 양전극 내부를 통해 배출된다.The leachate flows in the tangential direction of the negative electrodes 20 and 22 and descends while rotating along the inner circumferential surfaces of the negative electrodes 20 and 22, and part of the conical portion 15 is discharged through the outlet 16 and part of the positive electrode 30. Inflow and rise inside the hollow part of The leachate introduced in the tangential direction in the cyclone-type electrolyzer is discharged through the positive electrode while forming an upward flow in the lower part of the electrolyzer.
전해조 내부의 침출액을 통해 양전극(30)과 음전극(20, 22)은 상호 통전되고, 금, 은, 백금과 같은 금속 이온은 음전극에서 방출되는 전자를 받아 환원되면서 보조음전극(22) 표면에서 고체 상태로 석출된다.The positive electrode 30 and the negative electrodes 20 and 22 are energized with each other through the leachate inside the electrolytic cell, and metal ions such as gold, silver, and platinum are received and reduced by the electrons emitted from the negative electrode. Precipitates.
기존의 전해채취에서는 일반적으로 침출액 내의 금속 이온이 3g/L 이상 존재하는 경우에 전해채취를 통한 금속의 회수가 효과적으로 수행될 수 있었지만, 본 발명에서는 침출액 내의 금속 이온 농도가 0.3g/L 이하에서도 전해채취가 가능한데, 이는 싸이클론 방식의 전해조가 사용되어 금속 이온의 이동속도가 빠르기 때문이다.In the conventional electrowinning, in general, when the metal ions in the leachate is present in more than 3g / L, the recovery of the metal through the electrowinning can be carried out effectively, in the present invention, even if the metal ion concentration in the leachate is less than 0.3g / L Sampling is possible because the cyclone electrolyzer is used to move metal ions faster.
침출액은 전해조 내부에서 난류를 형성하는데, 이러한 난류의 형성은 유속을 나타내는 무차원 상수 레이놀즈 수(Reynolds number, Re)와 물질이동을 나타내는 무차원 상수 셔우드 수(Sherwood number, Sh)와의 관계를 통해서도 확인할 수 있다. The leachate forms turbulence in the electrolyzer, which is also confirmed by the relationship between the dimensionless constant Reynolds number (Re) representing the flow rate and the dimensionless constant Sherwood number (Sh) representing the mass transfer. Can be.
난류 형성은 사이클론이 갖는 고유한 기하학적 특징에 기인하는 것이다. 이러한 난류에서는 금속 이온의 물질이동(mass transfer)이 급격히 빨라지게 된다. 즉, 금속 이온이 확산(diffusion)하는 거리인 확산층(diffusion layer)이 얇아지기 때문에 금속이온이 음극 표면으로 확산해 가는 거리가 상대적으로 짧아져 반응속도가 증가하게 되는 것이다. 또한 특히 난류가 가지는 고유한 특징인 금속 이온이 변칙적 요동(random fluctuation)을 하게 되어 이것이 금속 이온을 순간적으로 음극 표면으로 이동시켜 물질이동을 급격히 증가시키는 역할을 하게 된다.Turbulence formation is due to the inherent geometric features of cyclones. In such turbulence, the mass transfer of metal ions is rapidly accelerated. That is, since the diffusion layer, which is the distance at which the metal ions diffuse, becomes thin, the distance from which the metal ions diffuse to the cathode surface becomes relatively short, thereby increasing the reaction rate. In particular, metal ions, which are inherent in turbulent flow, cause anomalous fluctuation, which causes metal ions to move to the surface of the cathode momentarily, thereby rapidly increasing material movement.
전해과정을 거친 후 전해기(100)의 유출구(16)와 양전극(30)의 내측을 통해 배출된 침출액은 보조탱크(200)로 공급된다. 보조탱크(200)는 전해기(100)와 수용조(400) 사이에서 버퍼역할을 수행한다. 즉, 전해기(100)에 침출액을 공급하는 펌프(501)의 통과유량과 전해기(100)로부터 수용조(400)에 침출액을 공급하는 펌프(502) 간의 통과유량이 일치하지 않음으로써 발생할 수 있는 공정불안정을 해소하는 것이다.After the electrolytic process, the leachate discharged through the outlet 16 of the electrolyzer 100 and the inside of the positive electrode 30 is supplied to the auxiliary tank 200. The auxiliary tank 200 serves as a buffer between the electrolyzer 100 and the reservoir 400. That is, it may be caused by a mismatch between the flow rate of the pump 501 supplying the leach solution to the electrolyzer 100 and the flow rate between the pump 502 supplying the leach solution from the electrolyzer 100 to the receiving tank 400. It is to relieve fair instability.
보조탱크(200)의 침출액은 제2펌프(502)에 의해 고액분리기(300)로 공급된다. 고액분리기(300)에서는 침출액 중 금속입자를 분리하여 수용조(400)에 액상만이 공급되도록 한다. Leachate of the auxiliary tank 200 is supplied to the solid-liquid separator 300 by the second pump (502). The solid-liquid separator 300 separates the metal particles in the leachate so that only the liquid phase is supplied to the accommodation tank 400.
일정 시간 운전 후 공정을 정지시킨 후 전해기(100)에서 보조 음전극(22)에 전착된 금속과 고액분리기(300)에서 분리된 금속을 회수하고 다시 운전한다.After the operation is stopped for a predetermined time, the electrode electrode 100 recovers the metal electrodeposited to the auxiliary negative electrode 22 and the metal separated from the solid-liquid separator 300 and operates again.
이상 설명한 금속회수 공정에서는 보조탱크(200)에 의해 연속운전이 안정적으로 이루어져 경제성이 매우 높아진다. 또한 고액분리기(300)를 이용하여 음전극(20, 22)에서 분리되기 쉬운 금속을 효과적으로 회수하고, 연속운전이 안정적으로 이루어지게 한다. 또한 전해기(100)와 고액분리기(300)를 동시에 사용하여 회수 특성이 다른 2가지 이상의 성분을 가진 침출액을 효과적으로 처리할 수 있다.In the metal recovery process described above, the continuous operation is stably performed by the auxiliary tank 200, and thus the economic efficiency is very high. In addition, by using the solid-liquid separator 300, the metals easily separated from the negative electrodes 20 and 22 are effectively recovered, and the continuous operation is made stable. In addition, by using the electrolyzer 100 and the solid-liquid separator 300 at the same time, it is possible to effectively treat the leachate having two or more components having different recovery characteristics.
한편, 침출액에는 시안화합물이 포함되어 있을 수 있다. 시안화합물은 폐PCB에 포함되어 있는 금속, 특히 금과 같은 귀금속을 침출하기 위해 사용된다. 그런데, 침출액에 시안화합물이 포함되어 있는 경우 전해기(100)의 음극(20)에 전해석출된 귀금속이 시안화합물에 의해 재용해되어 귀금속 회수가 어려워진다.On the other hand, the leaching solution may contain a cyan compound. Cyanide compounds are used to leach metals from waste PCBs, especially precious metals such as gold. However, in the case where the leachate contains the cyan compound, the precious metal electrolytically precipitated on the negative electrode 20 of the electrolyzer 100 is redissolved by the cyan compound, making it difficult to recover the precious metal.
따라서 시안화합물을 제거해야 하는데, 본 발명에서는 시안화합물을 분해할 수 있는 분해용액을 사용하며, 구체적으로는 차염 공급장치(900)에서 차염을 공급하여 시안화합물을 분해한다. 차염에 의해 시안화합물은 시안산으로 산화된 후 이산화탄소와 질소로 산화된다.Therefore, the cyan compound should be removed. In the present invention, a decomposition solution capable of decomposing the cyan compound is used. Specifically, the cyan compound is decomposed by supplying the second salt from the vehicle flame supply device 900. The cyan compound is oxidized to cyanic acid and then oxidized to carbon dioxide and nitrogen.
차염 공급에 따른 귀금속 회수 거동은 도 13에 표시한 바와 같다.Precious metal recovery behavior according to the flame supply is shown in FIG.
실험에서는 시안화합물로 KCN을 사용하였으며, 0분, 10분, 30분, 60분, 120분, 240분 및 480분에서 침출액의 금 잔류농도(ppm)을 관찰하였다. 침출액량은 7.4리터, 유량은 10리터/분, 유속은 5.03미터/초, 인가전류는 3.5A였다. 침출액 중에 차염농도는 5000 내지 5100ppm이었다.In the experiment, KCN was used as the cyan compound, and the residual gold concentration (ppm) of the leachate was observed at 0, 10, 30, 60, 120, 240 and 480 minutes. The leaching liquid amount was 7.4 liters, the flow rate was 10 liters / minute, the flow rate was 5.03 meters / second, and the applied current was 3.5A. The tea salt concentration in the leachate was 5000 to 5100 ppm.
1kg의 KCN 당 1.0 내지 2.0kg의 차염을 투입하였을 때 가장 효과적인 회수 거동을 보여주었다. 즉 차염을 시안화합물 무게의 1배 내지 2배 넣었을 때 귀금속 회수 효율이 우수한 것이다.The most effective recovery behavior was shown when 1.0-2.0 kg of tea salt was added per kg of KCN. That is, when the tea salt is put 1 to 2 times the weight of the cyan compound, the noble metal recovery efficiency is excellent.
이하에서는 위에서 설명한 정상상태에서의 공정과 다른 보조탱크(200)의 레벨에 문제가 있는 경우와 고액분리기(300)를 세척할 경우의 운전에 대해 설명한다.Hereinafter, a description will be given of the operation in the case where there is a problem in the process and the level of the other auxiliary tank 200 and the solid-liquid separator 300 described above in the normal state.
먼저 도 14를 참조하여 보조탱크(200)의 레벨에 문제가 있는 경우에 대해 설명한다.First, a case in which there is a problem in the level of the auxiliary tank 200 will be described with reference to FIG. 14.
정상적인 운전(S100) 과정에서도 펌프(501, 502) 간의 통과유량의 차이에 의해 보조탱크(200)의 유량은 변화한다. 전해기(100)로 공급되는 유량보다 고액분리기(300)로 공급되는 유량이 많으면 보조탱크(200)의 레벨을 계속 감속하고, 반대의 경우 보조탱크(200)의 레벨이 계속 증가하게 된다. 감소된 레벨과 증가된 레벨이 일정 수준 이상이 되면 보조탱크(200)는 적절한 버퍼 역할을 할 수 없다.Even in the normal operation (S100), the flow rate of the auxiliary tank 200 is changed by the difference in the flow rate between the pumps 501 and 502. When the flow rate supplied to the solid-liquid separator 300 is greater than the flow rate supplied to the electrolyzer 100, the level of the auxiliary tank 200 is continuously reduced, and in the opposite case, the level of the auxiliary tank 200 is continuously increased. When the reduced level and the increased level are above a certain level, the auxiliary tank 200 may not serve as a proper buffer.
제어부(700)는 보조탱크(200)의 레벨센서(210)로부터 레벨값을 입력 받아 레벨이 설정되어 있는 하이와 로우 레벨 사이에 있는지 여부를 판단한다(S110)The control unit 700 receives a level value from the level sensor 210 of the auxiliary tank 200 and determines whether the level is between the set high and low levels (S110).
레벨값이 로우 이하로 매우 낮은 경우, 제어부(700)는 고액분리기(300)로 수용액을 공급하는 제2펌프(502)의 작동을 중지한다(S120). 이에 의해 보조탱크(200)의 레벨이 증가한다. 일정시간 경과 후, 제어부(700)는 다시 레벨을 판단하여 하이와 로우 레벨 사이에 있다면 제2펌프(502)를 작동시켜 정상운전(S140)한다. When the level value is very low or lower, the control unit 700 stops the operation of the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 (S120). As a result, the level of the auxiliary tank 200 increases. After a certain time, the control unit 700 determines the level again and operates the second pump 502 if it is between the high and low levels in normal operation (S140).
다른 실시예에서 제어부(700)는 제2펌프(502)의 작동을 중지한 후 보조탱크(200)의 레벨이 로우와 하이 사이의 일정수준(예를 들어, 50%, 60%, 70% 등)이 되면 펌프(502)를 재작동시킬 수 있다. 또한 펌프(502)의 작동을 중지하지 않고 작동유량을 감소시킬 수도 있다.In another embodiment, the control unit 700 stops the operation of the second pump 502, and then the level of the auxiliary tank 200 is at a predetermined level (eg, 50%, 60%, 70%, etc.) between low and high. ), The pump 502 can be restarted. It is also possible to reduce the operating flow rate without stopping the operation of the pump 502.
레벨값이 하이 이상으로 매우 높은 경우, 제어부(700)는 전해기(100) 수용액을 공급하는 제1펌프(501)의 작동을 중지한다(S130). 이에 의해 보조탱크(200)의 레벨이 감소한다. 일정시간 경과 후, 제어부(700)는 다시 레벨을 판단하여 하이와 로우 레벨 사이에 있다면 제1펌프(501)를 작동시켜 정상운전(S140)한다. When the level value is very high or higher, the control unit 700 stops the operation of the first pump 501 for supplying the electrolyzer 100 aqueous solution (S130). As a result, the level of the auxiliary tank 200 is reduced. After a certain time, the controller 700 determines the level again and operates the first pump 501 to operate normally if it is between a high and a low level (S140).
다른 실시예에서 제어부(700)는 제1펌프(501)의 작동을 중지한 후 보조탱크(200)의 레벨이 로우와 하이 사이의 일정수준(예를 들어, 30%, 40%, 50% 등)이 되면 제1펌프(501)를 재작동시킬 수 있다. 또한 제1펌프(501)의 작동을 중지하지 않고 작동유량을 감소시킬 수도 있다.In another embodiment, the control unit 700 stops the operation of the first pump 501, and then the level of the auxiliary tank 200 is a predetermined level (eg, 30%, 40%, 50%, etc.) between low and high. ), The first pump 501 may be restarted. In addition, the operating flow rate may be reduced without stopping the operation of the first pump 501.
또 다른 실시예에서 제어부(600)는 보조탱크(200)의 레벨이 낮을 경우, 제1펌프(501)의 유량을 증가시키고 제2펌프(502)의 유량을 감소시키고, 보조탱크(200)의 레벨이 높을 경우에는, 펌프(501)의 유량을 감소시키고 펌프(502)의 유량을 증가시킬 수 있다. 또한 이러한 조절은 보조탱크(200)의 레벨이 일정수준(예를 들어, 40%, 50%, 60% 등)이 되도록 항시 수행될 수도 있다.In another embodiment, when the level of the auxiliary tank 200 is low, the controller 600 increases the flow rate of the first pump 501, decreases the flow rate of the second pump 502, and reduces the flow rate of the auxiliary tank 200. If the level is high, the flow rate of the pump 501 can be reduced and the flow rate of the pump 502 can be increased. In addition, such adjustment may be performed at any time such that the level of the auxiliary tank 200 is a predetermined level (for example, 40%, 50%, 60%, etc.).
이상과 같은 보조탱크(200)의 레벨제어에 의해 보조탱크(200)의 버퍼역할을 안정적으로 유지할 수 있게 되어, 연속공정의 신뢰도가 향상된다.By the level control of the auxiliary tank 200 as described above it is possible to stably maintain the buffer role of the auxiliary tank 200, thereby improving the reliability of the continuous process.
다음으로 도 15를 참조하여 고액분리기(300)를 세척하는 경우의 운전을 설명한다.Next, the operation of washing the solid-liquid separator 300 will be described with reference to FIG. 15.
정상운전 중 제어부(600)의 세척개시의 판단(S200)에 의해 세척운전이 시작된다. 제어부(600)는 타이머(800)로부터 입력받은 시간정보에 근거해 일정 운전 시간마다 세척개시를 판단할 수 있다. The washing operation is started by the determination of the washing start of the controller 600 during the normal operation (S200). The controller 600 may determine the washing start at every predetermined driving time based on the time information received from the timer 800.
다른 실시예에서, 제어부(600)는 고액분리기(300)의 압력 등을 기초로 세척개시를 판단할 수 있으며(압력이 일정수준 이상되면 세척개시), 세척개시의 판단에 수용액의 금속 농도(금속 농도가 높으면 더 빨리 세척개시)를 고려할 수 있다. In another embodiment, the control unit 600 may determine the start of washing based on the pressure of the solid-liquid separator 300, etc. Higher concentrations may lead to faster washing start).
세척개시가 판단되면 먼저 전해기(100)에 수용액을 공급하는 제1펌프(501)과 보조탱크(200)의 출구에 마련된 제1밸브(601)를 오프한다(S210). 이어서, 고액분리기(300)에 수용액을 공급하는 제2펌프(502)와 고액분리기이 출구에 마련된 제2밸브(602)를 오프한다(S220). 이에 의해 전해기(100)와 고액분리기(300)에서는 수용액 흐름이 없어진다.When it is determined that the start of the washing, the first pump 501 for supplying the aqueous solution to the electrolyzer 100 and the first valve 601 provided at the outlet of the auxiliary tank 200 are turned off (S210). Subsequently, the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 and the second valve 602 provided at the outlet of the solid-liquid separator are turned off (S220). This eliminates the flow of the aqueous solution in the electrolyzer 100 and the solid-liquid separator 300.
다음으로 세척부를 가동한다. 구체적으로는, 세척수 공급부에 연결되어 있는 제3밸브(603), 고액분리기(300)에 연결된 제2펌프(502) 및 세척수 배출부에 연결되어 있는 제4밸브(604)를 온시킨다(S230). 이에 의해 세척수가 세척수 공급부로부터 고액분리기(300)로 공급되어 고액분리기(300)를 세척한 후 세척수 배출부로 배출되는 세척과정이 진행된다(S240).Next, start the cleaning unit. Specifically, the third valve 603 connected to the wash water supply unit, the second pump 502 connected to the solid-liquid separator 300, and the fourth valve 604 connected to the wash water discharge unit are turned on (S230). . Thereby, the washing water is supplied from the washing water supply unit to the solid-liquid separator 300 to wash the solid-liquid separator 300 and then discharged to the washing-water discharge unit (S240).
세척이 완료되면, 제3밸브(603)를 오프하여 세척수 공급을 중단하고 제2펌프(502)도 오프시키고, 제4밸브(604)도 오프시킨다(S250). 이에 의해 세척수공급부와 세척수배출부는 고액분리기(300)와 분리되어, 세척부의 가동이 중지된다.When the washing is completed, the third valve 603 is turned off to stop the supply of the washing water, the second pump 502 is turned off, and the fourth valve 604 is also turned off (S250). As a result, the washing water supply unit and the washing water discharge unit are separated from the solid-liquid separator 300, and the operation of the washing unit is stopped.
이상과 같은 세척 공정을 완료한 이후에는 정상상태 운전(S260)을 실시한다.After the above washing process is completed, the steady state operation (S260) is performed.
이상 설명한 금속회수시스템은 다양하게 변형 가능하다. 특히 운전안정성 및 운전연속성을 위해 전해기(100) 및/또는 고액분리기(300)를 병렬로 복수 개 마련할 수 있다.The metal recovery system described above can be variously modified. In particular, a plurality of electrolyzers 100 and / or solid-liquid separator 300 may be provided in parallel for operational stability and operational continuity.
전해기(100)를 병렬로 마련할 경우 어느 하나의 전해기(100)로부터 전착된 금속을 회수할 경우, 다른 전해기(100)를 이용하여 연속공정을 유지할 수 있다.When the electrolyzers 100 are provided in parallel, when the electrodeposited metal is recovered from any one of the electrolyzers 100, the continuous process may be maintained by using another electrolyzer 100.
고액분리기(300)를 병렬로 마련할 경우 어느 하나의 고액분리기(300)를 세척 또는 필터로부터 금속을 회수하는 경우에도 다른 고액분리기(300)를 사용하여 연속공정을 유지할 수 있다.When the solid-liquid separator 300 is provided in parallel, even when one of the solid-liquid separator 300 is washed or metal is recovered from the filter, another solid-liquid separator 300 may be used to maintain a continuous process.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the accompanying drawings, this is merely exemplary, and those skilled in the art may understand that various modifications and equivalent other embodiments are possible. There will be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.

Claims (19)

  1. 시안화물 제거를 포함하는 금속회수방법에 있어서,In a metal recovery method comprising removing cyanide,
    금속이온과 시안화물을 포함하는 침출액을 마련하는 단계와;Providing a leaching solution containing a metal ion and a cyanide;
    상기 침출액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 침출액이 공급되면 상기 침출액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 마련하는 단계와;Providing an electrolyzer for receiving the leachate and reducing precipitation of metal ions of the leachate on the surface of the negative electrode when the leachate is supplied to a reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode;
    상기 시안화물을 분해할 수 있는 분해용액과 상기 침출액을 상기 전해기로 공급하는 단계를 포함하는 금속회수방법.Supplying a decomposition solution capable of decomposing the cyanide and the leaching solution to the electrolyzer.
  2. 제1항에 있어서,The method of claim 1,
    상기 분해용액은 차염을 포함하는 것을 특징으로 하는 금속회수방법.The decomposition solution is a metal recovery method characterized in that it comprises a tea salt.
  3. 제2항에 있어서,The method of claim 2,
    상기 시안화물은 KCN을 포함하며,The cyanide comprises KCN,
    상기 시안화물과 차염의 무게비는 1:1 내지 1:2인 것을 특징으로 하는 금속회수방법.The weight ratio of the cyanide and the tea salt is a metal recovery method, characterized in that 1: 1 to 1: 2.
  4. 제2항에 있어서,The method of claim 2,
    상기 금속은 금을 포함하는 것을 특징으로 하는 금속회수방법.The metal recovery method characterized in that it comprises gold.
  5. 제2항에 있어서,The method of claim 2,
    상기 침출액은 폐PCB의 침출을 통해 얻어진 것을 특징으로 하는 금속회수방법.The leaching solution is a metal recovery method, characterized in that obtained by leaching the waste PCB.
  6. 제2항에 있어서,The method of claim 2,
    상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하며,The negative electrode includes a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode,
    상기 보조 음전극의 내부면에서 금속을 환원 석출하는 단계와;Reducing and depositing a metal on an inner surface of the auxiliary negative electrode;
    상기 보조 음전극을 상기 전해기에서 제거하는 단계와;Removing the auxiliary negative electrode from the electrolyzer;
    상기 보조 음전극은 녹이며 상기 금속은 녹이지 않는 산용액을 이용하여 상기 보조 음전극을 녹여 상기 금속을 회수하는 단계를 더 포함하는 금속회수 방법.And recovering the metal by melting the auxiliary negative electrode using an acid solution in which the auxiliary negative electrode melts and the metal does not melt.
  7. 제6항에 있어서,The method of claim 6,
    상기 보조 음전극을 절단 또는 파쇄하는 단계를 더 포함하며,Cutting or crushing the auxiliary negative electrode;
    상기 절단 또는 파쇄 후에 상기 보조 음전극을 녹이는 것을 특징으로 하는 금속회수 방법.And the auxiliary negative electrode is melted after the cutting or crushing.
  8. 제6항에 있어서,The method of claim 6,
    상기 주음전극은 고리형상이며,The main electrode is ring-shaped,
    상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치하는 것을 특징으로 하는 금속회수 방법.The auxiliary negative electrode has a plate shape and is wound around the metal recovery method, characterized in that located in the main electrode.
  9. 제6항에 있어서,The method of claim 6,
    상기 보조 음전극은 얇은 판상인 것을 특징으로 하는 금속회수 방법.The auxiliary negative electrode is a metal recovery method characterized in that the thin plate-like.
  10. 제6항에 있어서,The method of claim 6,
    상기 보조음전극은 상기 주음전극과 밀착되어 있으며,The auxiliary negative electrode is in close contact with the main negative electrode,
    상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있는 것을 특징으로 하는 금속회수 방법.And the auxiliary negative electrode substantially covers an entire inner surface of the main negative electrode.
  11. 시안화물 제거를 포함하는 금속회수 시스템에 있어서,In a metal recovery system comprising cyanide removal,
    금속회수 반응기;Metal recovery reactor;
    상기 금속회수 반응기에 시안화물을 분해할 수 있는 분해용액을 공급하는 분해용액 공급부를 포함하고,It includes a decomposition solution supply for supplying a decomposition solution capable of decomposing cyanide to the metal recovery reactor,
    상기 금속회수 반응기는,The metal recovery reactor,
    외부로부터 금속이온과 시안화물이 포함된 침출액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하는 금속회수 시스템.When the aqueous solution is supplied to the reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode is supplied with a leaching solution containing a metal ion and cyanide from the outside, and includes an electrolyzer to reduce and precipitate the metal ion of the aqueous solution on the surface of the negative electrode Metal recovery system.
  12. 제11항에 있어서,The method of claim 11,
    상기 분해용액은 차염을 포함하는 것을 특징으로 하는 금속회수 시스템.The decomposition solution is a metal recovery system, characterized in that it comprises a flame.
  13. 제12항에 있어서,The method of claim 12,
    상기 시안화물은 KCN을 포함하는 것을 특징으로 하는 금속회수 시스템.The cyanide metal recovery system, characterized in that it comprises KCN.
  14. 제12항에 있어서,The method of claim 12,
    상기 금속이온은 금이온을 포함하는 것을 특징으로 하는 금속회수 시스템.The metal ion is a metal recovery system comprising a gold ion.
  15. 제12항에 있어서,The method of claim 12,
    상기 침출액은 폐PCB의 침출을 통해 얻어진 것을 특징으로 하는 금속회수 시스템.The leaching solution is a metal recovery system, characterized in that obtained through the leaching of the waste PCB.
  16. 제12항에 있어서,The method of claim 12,
    상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 것을 특징으로 하는 금속회수 시스템.And the negative electrode includes a main negative electrode and an auxiliary negative electrode disposed inside the main negative electrode and detachable from the main negative electrode.
  17. 제16항에 있어서,The method of claim 16,
    상기 주음전극은 고리형상이며,The main electrode is ring-shaped,
    상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치하는 것을 특징으로 하는 금속회수 시스템.And the auxiliary negative electrode is plate-shaped and wound and positioned in the main negative electrode.
  18. 제17항에 있어서,The method of claim 17,
    상기 보조 음전극은 얇은 판상인 것을 특징으로 하는 금속회수 시스템.The auxiliary negative electrode of the metal recovery system, characterized in that the thin plate-like.
  19. 제18항에 있어서,The method of claim 18,
    상기 보조음전극은 상기 주음전극과 밀착되어 있으며,The auxiliary negative electrode is in close contact with the main negative electrode,
    상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있는 것을 특징으로 하는 금속회수 시스템.And the auxiliary negative electrode covers substantially all of an inner surface of the main negative electrode.
PCT/KR2017/003726 2017-03-30 2017-04-05 Metal recovery method including cyanide removal and metal recovery system therefor WO2018182083A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0040653 2017-03-30
KR10-2017-0040654 2017-03-30
KR1020170040654A KR20180110834A (en) 2017-03-30 2017-03-30 Method for recovering metal comprising removing cyanide
KR1020170040653A KR20180110833A (en) 2017-03-30 2017-03-30 System for recovering metal comprising removing cyanide

Publications (1)

Publication Number Publication Date
WO2018182083A1 true WO2018182083A1 (en) 2018-10-04

Family

ID=63677853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003726 WO2018182083A1 (en) 2017-03-30 2017-04-05 Metal recovery method including cyanide removal and metal recovery system therefor

Country Status (1)

Country Link
WO (1) WO2018182083A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026827A (en) * 1999-07-13 2001-01-30 Dowa Mining Co Ltd Treatment of metal element-containing aqueous solution
JP2009024200A (en) * 2007-07-18 2009-02-05 Okuchi Denshi Kk Method for separation and recovery of noble metal
KR20100018900A (en) * 2008-08-07 2010-02-18 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
KR101307713B1 (en) * 2010-07-07 2013-09-11 다나까 홀딩스 가부시끼가이샤 Precious metal recovery device and recovery method
KR20160008748A (en) * 2014-07-15 2016-01-25 (주)다남이엔이 Method for Recovering Metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026827A (en) * 1999-07-13 2001-01-30 Dowa Mining Co Ltd Treatment of metal element-containing aqueous solution
JP2009024200A (en) * 2007-07-18 2009-02-05 Okuchi Denshi Kk Method for separation and recovery of noble metal
KR20100018900A (en) * 2008-08-07 2010-02-18 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
KR101307713B1 (en) * 2010-07-07 2013-09-11 다나까 홀딩스 가부시끼가이샤 Precious metal recovery device and recovery method
KR20160008748A (en) * 2014-07-15 2016-01-25 (주)다남이엔이 Method for Recovering Metal

Similar Documents

Publication Publication Date Title
WO2015099383A1 (en) Metal recovery reactor and metal recovery system
KR100741198B1 (en) Electroplating bath
WO2020194284A1 (en) Desalination system capable of producing hydrogen
WO2008053619A1 (en) Method for collection of valuable metal from ito scrap
CN102839391A (en) Preparation method of high-purity indium
WO2018182083A1 (en) Metal recovery method including cyanide removal and metal recovery system therefor
CA2016031A1 (en) Process for electroplating metals
KR101416429B1 (en) Reactor for Recovering Metal and System for Recovering Metal
JP3146706B2 (en) Gallium electrolysis method
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
KR101611951B1 (en) Method for Recovering Metal
KR100367709B1 (en) Recovery method of platinum group metals from waste water
JPH08500394A (en) Electrolytic oxidizer
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
WO2022119407A1 (en) Seawater electrolysis apparatus and seawater electrolysis fuel cell link system comprising same
KR102195794B1 (en) Electrolytic Apparatus for recovering metal
JP4524248B2 (en) Copper collection method
KR102237348B1 (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
JPH06192877A (en) Refining method for gallium metal
TWI412628B (en) Gold or silver electrolytic recovery unit
JP2010222625A (en) Electrolytic method (2) for lead
US4204937A (en) Novel electrolytic amalgam denuder apparatus
JP2003073889A (en) Electrolytic copper plating method for semiconductor wafer, apparatus therefor and semiconductor wafer plated by using these and having little adhering particle
JP2012092447A (en) Electrolytic extracting method of cobalt
WO2023090832A1 (en) Apparatus and method for treating wastewater containing non-degradable organic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902988

Country of ref document: EP

Kind code of ref document: A1