JP2010222625A - Electrolytic method (2) for lead - Google Patents

Electrolytic method (2) for lead Download PDF

Info

Publication number
JP2010222625A
JP2010222625A JP2009069945A JP2009069945A JP2010222625A JP 2010222625 A JP2010222625 A JP 2010222625A JP 2009069945 A JP2009069945 A JP 2009069945A JP 2009069945 A JP2009069945 A JP 2009069945A JP 2010222625 A JP2010222625 A JP 2010222625A
Authority
JP
Japan
Prior art keywords
lead
anode
grade
electrolytic method
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009069945A
Other languages
Japanese (ja)
Inventor
Hidenori Okamoto
秀則 岡本
Yasukatsu Sasaki
康勝 佐々木
Hidetoshi Sasaoka
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009069945A priority Critical patent/JP2010222625A/en
Publication of JP2010222625A publication Critical patent/JP2010222625A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic method for lead, which can collect a high purity of lead even when collecting lead that is contained in a dry dust produced in a nonferrous smelting process, in a melting furnace of a raw material for recycling such as a substrate and electronic parts and in a dry bottom furnace for melting industrial waste therein, by electrolyzing lead by using an anode of a high Bi grade. <P>SOLUTION: The electrolytic method for lead collects lead of high purity by employing the high-impurity Pb anode with 5-30 mass% of the Bi grade, using a sulfamate bath containing a smoothing agent as an electrolytic solution, and setting a current density at 50 A/m<SP>2</SP>or lower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より発生する乾式煙灰中に含まれているPbを回収する方法に関する。 The present invention relates to a method for recovering Pb contained in non-ferrous smelting, melting furnaces for recycled materials such as bases and electronic components, and dry smoke ash generated from a dry furnace for melting industrial waste.

非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より非鉄製錬の乾式煙灰中に含まれているPbを回収するため、煙灰を硫酸浸出し、硫酸鉛にした後、電気炉で溶融還元を行う。溶融還元により分離されたメタルをソーダ処理し、その後、メタルをアノード鋳造した後、特許文献1においては、スルファミン酸浴中にて電解精製することでPbを回収している。 In order to recover Pb contained in non-ferrous smelting dry ash from non-ferrous smelting, melting furnaces for recycling raw materials such as foundations and electronic parts, and dry furnaces for melting industrial waste, fumes are leached with sulfuric acid, After changing to lead sulfate, smelting reduction is performed in an electric furnace. In the patent document 1, Pb is recovered by electrolytic purification in a sulfamic acid bath after the metal separated by smelting reduction is soda-treated and then the metal is subjected to anode casting.

特許文献1において、原料中のBi品位が高い原料を処理した場合、電気鉛中のBi品位が高くなる。そのため、再度、Bi品位が高い電気鉛をアノードとして鋳造後、電解精製によりBiを除去する必要がある。
整理番号T21-0201 鉛の電解方法 特許出願人:日鉱金属株式会社
In patent document 1, when the raw material with high Bi quality in a raw material is processed, Bi quality in electric lead will become high. Therefore, it is necessary to remove Bi by electrolytic refining after casting electric lead having high Bi quality as an anode again.
Reference number T21-0201 Lead electrolysis method Patent applicant: Nikko Metal Co., Ltd.

従来の技術に対して、高Bi品位のアノードに対しても高純度の鉛を回収することができる鉛の電解方法を提供することを目的とする。 An object of the present invention is to provide a lead electrolysis method capable of recovering high-purity lead even for a high-Bi grade anode with respect to the prior art.

本発明者等は、上記の課題を解決するため以下の発明を成した。
(1)Bi品位5から30mass%の高不純物アノードを用いた、スルファミン酸浴での電解精製において、電流密度を50A/m2以下にすることにより高純度の鉛を回収する特徴とする鉛の電解方法。
The present inventors made the following invention in order to solve the above-mentioned problems.
(1) Lead electrolysis, characterized by the recovery of high-purity lead by reducing the current density to 50 A / m2 or less in electrolytic refining in a sulfamic acid bath using a high impurity anode of Bi grade 5 to 30 mass% Method.

本発明によれば、
(1)高Bi品位の鉛アノードから効率よく、Bi品位が、5massppm以下の極めて低い高純度の鉛を回収することができることを特徴とする鉛の電解方法を見出した。
According to the present invention,
(1) A lead electrolysis method characterized by being able to efficiently recover highly pure lead having a Bi grade of 5 massppm or less from a high Bi grade lead anode has been found.

(2)電着面が、平滑な電着が容易に得られる。 (2) Smooth electrodeposition of the electrodeposition surface can be easily obtained.

以下に本発明をさらに詳細に説明する。
原料は、本発明の鉛含有物は、鉛 70〜99mass%、錫 0.04mass%、ビスマス5〜30mass%含有する。ビスマスが、アノード中に5から30mass%と高くなると電着した電気鉛中のビスマスの汚染が多くなるためである。
例えば、上記鉛含有物を、アノード鋳造をし、そのアノードを用いて電解精製を行う。アノードのサイズとしては、カソードのサイズに比べ小さくすることで、エッジ効果を防ぐことができ、平滑で良好な電着鉛を回収することができる。
The present invention is described in further detail below.
The raw material contains 70 to 99 mass% lead, 0.04 mass% tin, and 5 to 30 mass% bismuth in the lead-containing material of the present invention. This is because when bismuth is increased to 5 to 30 mass% in the anode, the contamination of bismuth in the electrodeposited electrode lead increases.
For example, the lead-containing material is subjected to anode casting, and electrolytic purification is performed using the anode. By making the anode size smaller than the cathode size, the edge effect can be prevented, and smooth and good electrodeposited lead can be recovered.

電解液として、スルファミン酸の濃度は、20〜100g/L、鉛濃度は、20〜100g/Lが最適である。
更に平滑剤としては、ノイゲン BN-1390及び又はノイゲン BN-2560を1〜10mg/Lにすることで、平滑で良好な電着鉛を回収することができる。
As the electrolytic solution, the sulfamic acid concentration is optimally 20 to 100 g / L, and the lead concentration is optimally 20 to 100 g / L.
Furthermore, smooth and good electrodeposited lead can be recovered by setting Neugen BN-1390 and / or Neugen BN-2560 to 1 to 10 mg / L as the smoothing agent.

次に電流密度とカソード中のBi品位の関係を確認した結果、図1に示す通り、電流密度50A/m2以下であればBi品位が、5massppm以下の低Bi品位であると共に平滑な電着鉛を回収することができる。 Next, as a result of confirming the relationship between the current density and the Bi quality in the cathode, as shown in FIG. 1, if the current density is 50 A / m 2 or less, the Bi quality is a low Bi quality of 5 massppm or less and smooth electrodeposition. Lead can be recovered.

(実施例1) 低Bi品位の電着鉛を回収する方法
電解液の組成として、鉛濃度:80g/L、スルファミン酸濃度:20g/Lに調整した溶液に平滑剤としてノイゲンBN-1390を10mg/Lを添加する。
高Bi品位の鉛アノードと鉛の種板または、ステンレス板をカソードとして、交互に電槽に装入する。
カソードの大きさは、アノードに対して、20〜30mm程度大きくした方が、エッジ部への電流集中を緩和することができ、最適である。
電極装入後、電槽内に電解液を補充し、電解液の電槽内滞留時間が1時間程度になるように給液することで、電槽内の濃度分布を均等にする。
電解液の液温を、20〜30℃に調整後、電流密度50A/m2で通電することで、Bi品位が、5mass ppm以下の低Bi品位の電着鉛を回収することができる。
(Example 1) Method for recovering low-Bi-grade electrodeposited lead As a composition of the electrolytic solution, 10 mg of Neugen BN-1390 as a smoothing agent was added to a solution adjusted to lead concentration: 80 g / L and sulfamic acid concentration: 20 g / L. Add / L.
The high-Bi grade lead anode and lead seed plate or stainless steel plate is used as the cathode, and the battery is inserted alternately.
It is optimal that the size of the cathode be about 20 to 30 mm larger than the anode because the current concentration on the edge portion can be reduced.
After the electrode is charged, the electrolytic solution is replenished in the battery case, and the concentration distribution in the battery case is made uniform by supplying the electrolyte solution so that the residence time of the electrolytic solution in the battery case is about 1 hour.
By adjusting the electrolyte temperature to 20 to 30 ° C. and then energizing it at a current density of 50 A / m 2, it is possible to recover low Bi quality electrodeposited lead with a Bi quality of 5 mass ppm or less.

本発明における一態様である電流密度と電着鉛中のBi品位(単位:massppm)の関係Relationship between current density and Bi quality (unit: massppm) in electrodeposited lead as one aspect of the present invention

Claims (1)

Bi品位5から30mass%の高不純物アノードを用いた、スルファミン酸浴での電解精製において、電流密度を50A/m2以下にすることにより高純度の鉛を回収することを特徴とする鉛の電解方法。

































Electrolysis of lead characterized in that high purity lead is recovered by reducing the current density to 50 A / m2 or less in electrolytic purification in a sulfamic acid bath using a high impurity anode of Bi grade 5 to 30 mass% .

































JP2009069945A 2009-03-23 2009-03-23 Electrolytic method (2) for lead Withdrawn JP2010222625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069945A JP2010222625A (en) 2009-03-23 2009-03-23 Electrolytic method (2) for lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069945A JP2010222625A (en) 2009-03-23 2009-03-23 Electrolytic method (2) for lead

Publications (1)

Publication Number Publication Date
JP2010222625A true JP2010222625A (en) 2010-10-07

Family

ID=43040134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069945A Withdrawn JP2010222625A (en) 2009-03-23 2009-03-23 Electrolytic method (2) for lead

Country Status (1)

Country Link
JP (1) JP2010222625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887138A (en) * 2016-06-16 2016-08-24 郴州市金贵银业股份有限公司 Method for treating lead bullion through electrorefining
CN110284155A (en) * 2019-07-29 2019-09-27 富民薪冶工贸有限公司 A kind of lead electrolytic method containing high bismuth
CN113046787A (en) * 2021-03-12 2021-06-29 赵坤 Electrolyte, system and method for wet lead recovery of waste lead storage battery lead plaster ternary system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887138A (en) * 2016-06-16 2016-08-24 郴州市金贵银业股份有限公司 Method for treating lead bullion through electrorefining
CN110284155A (en) * 2019-07-29 2019-09-27 富民薪冶工贸有限公司 A kind of lead electrolytic method containing high bismuth
CN113046787A (en) * 2021-03-12 2021-06-29 赵坤 Electrolyte, system and method for wet lead recovery of waste lead storage battery lead plaster ternary system

Similar Documents

Publication Publication Date Title
JP5398369B2 (en) Rare metal production method and system
JP4298712B2 (en) Method for electrolytic purification of copper
KR20200083578A (en) How to dispose of lithium ion waste battery
JP4505843B2 (en) Copper dry refining method
JP3962855B2 (en) Recovery method of heavy metals from fly ash
JP4470689B2 (en) Indium recovery method using tin smelting
JP5280904B2 (en) Electrolysis method of lead (5)
JP2013147686A (en) Method of producing bismuth anode for use in electrolytic refining
JP2010222625A (en) Electrolytic method (2) for lead
JP4979751B2 (en) Electrolysis method of lead (1)
JP5163988B2 (en) Electrolysis method of lead
CN104746105A (en) Device and method for separating antimony-containing alloy
JP2011208216A (en) Method of recovering indium and tin
JP4979752B2 (en) Electrolysis method of lead (6)
JP2009242845A (en) Electrolytic process of lead
JP2010222626A (en) Electrolytic process of lead
CN116615578A (en) Method and apparatus for producing secondary aluminum, production system, secondary aluminum, and aluminum workpiece
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
JP2013199671A (en) Method for electrolyzing high bismuth quality lead anode
JP3951041B2 (en) Electrochemical recovery of heavy metals from fly ash
WO2010022742A1 (en) Electroslag melting method for reprocessing of aluminium slag
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
JP3803858B2 (en) Electrochemical recovery of heavy metals from fly ash
JP2007077418A (en) Method for electrolyzing tellurium-containing crude lead
KR20110027556A (en) Method for electrolyzing lead

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101014

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605