JP5163988B2 - Electrolysis method of lead - Google Patents

Electrolysis method of lead Download PDF

Info

Publication number
JP5163988B2
JP5163988B2 JP2009070031A JP2009070031A JP5163988B2 JP 5163988 B2 JP5163988 B2 JP 5163988B2 JP 2009070031 A JP2009070031 A JP 2009070031A JP 2009070031 A JP2009070031 A JP 2009070031A JP 5163988 B2 JP5163988 B2 JP 5163988B2
Authority
JP
Japan
Prior art keywords
lead
anode
electrolysis
grade
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070031A
Other languages
Japanese (ja)
Other versions
JP2010222627A (en
Inventor
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009070031A priority Critical patent/JP5163988B2/en
Publication of JP2010222627A publication Critical patent/JP2010222627A/en
Application granted granted Critical
Publication of JP5163988B2 publication Critical patent/JP5163988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より発生する乾式煙灰中に含まれているPbを回収する方法に関する。 The present invention relates to a method for recovering Pb contained in non-ferrous smelting, a melting furnace for recycling raw materials such as bases and electronic components, and dry smoke ash generated from a dry furnace for melting industrial waste.

非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より非鉄製錬の乾式煙灰中に含まれているPbを回収するため、煙灰を硫酸浸出し、硫酸鉛にした後、電気炉で溶融還元を行う。溶融還元により分離されたメタルをソーダ処理し、その後、メタルをアノード鋳造した後、珪フッ素酸浴中にて電解精製することでPbを回収している。
特許文献1に関しては、高Bi品位のアノードに対して、スルファミン酸浴により高純度の電着鉛を回収している。
In order to recover Pb contained in non-ferrous smelting dry ash from non-ferrous smelting, melting furnaces for recycling raw materials such as foundations and electronic parts, and dry furnaces for melting industrial waste, fumes are leached with sulfuric acid, After changing to lead sulfate, smelting reduction is performed in an electric furnace. The metal separated by smelting is treated with soda, and then the metal is anode cast, and then Pb is recovered by electrolytic purification in a silicofluoric acid bath.
With respect to Patent Document 1, high purity electrodeposited lead is recovered by a sulfamic acid bath for a high Bi grade anode.

特許文献1において、最適な電流密度として、50A/m2以下としている。しかし、鉛の回収量を増加するためには、電槽の槽数を増加するなどイニシャルコストが増加することから、更に最適な電流密度を上げることが望まれる。
整理番号T21-0202 鉛の電解方法 特許出願人::日鉱金属株式会社
In Patent Document 1, the optimum current density is 50 A / m 2 or less. However, in order to increase the amount of lead recovered, the initial cost increases, for example, by increasing the number of battery tanks. Therefore, it is desirable to further increase the optimum current density.
Reference number T21-0202 Electrolysis method of lead Patent applicant :: Nikko Metal Co., Ltd.

従来の技術に対して、高Bi品位のアノードに対しても高純度の鉛を回収することができる鉛の電解方法を提供することを目的とする。 It is an object of the present invention to provide a lead electrolysis method capable of recovering high-purity lead even for a high-Bi grade anode with respect to the prior art.

本発明者等は、上記の課題を解決するため以下の発明を成した。
(1)Bi品位5から30 mass%の高不純物アノードを用いた、スルファミン酸浴での電解精製において、
1段階目の電流密度を50A/m2以下で電気分解を2時間以上行った後、
2段階目として100A/m2以下で電気分解を行うことで高純度の鉛を回収する鉛の電解方法。
The present inventors made the following invention in order to solve the above-mentioned problems.
(1) In electrolytic refining in a sulfamic acid bath using a high impurity anode of Bi grade 5 to 30 mass%,
After performing electrolysis for 2 hours or more at a current density of the first stage of 50A / m2
The lead electrolysis method recovers high purity lead by electrolysis at 100 A / m2 or less as the second step.

本発明によれば、高Bi品位の鉛アノードから効率よく、更に設備投資することなく、Bi品位が極めて低い高純度の鉛を回収することができることを特徴とする鉛の電解方法を見出した。 According to the present invention, a lead electrolysis method characterized in that high-purity lead with extremely low Bi quality can be recovered efficiently from a high Bi quality lead anode without further capital investment.

以下に本発明をさらに詳細に説明する。
原料は、本発明の鉛含有物は、鉛 70〜90mass%、錫 0.04mass%、ビスマス5〜30mass%含有する。ビスマスが、アノード中に5から30mass%と高くなると電着した電気鉛中のビスマスの汚染が多くなるためである。
The present invention is described in further detail below.
The raw material contains 70 to 90 mass% lead, 0.04 mass% tin, and 5 to 30 mass% bismuth in the lead-containing material of the present invention. This is because when bismuth is increased to 5 to 30 mass% in the anode, the contamination of bismuth in the electrodeposited electrode lead increases.

例えば、上記鉛含有物を、アノード鋳造をし、そのアノードを用いて電解精製を行う。アノードのサイズとしては、カソードのサイズに比べ小さくすることで、エッジ効果を防ぐことができ、平滑で良好な電着鉛を回収することができる。 For example, the lead-containing material is subjected to anode casting, and electrolytic purification is performed using the anode. By making the anode size smaller than the cathode size, the edge effect can be prevented, and smooth and good electrodeposited lead can be recovered.

電解液として、スルファミン酸の濃度は、20〜100g/L、鉛濃度は、40〜80g/Lが最適である。更に平滑剤としては、ノイゲン BN-1390、または、ノイゲン BN-2560を1〜10mg/Lにすることで、平滑で良好な電着鉛を回収することができる。 As an electrolytic solution, the concentration of sulfamic acid is optimally 20 to 100 g / L, and the lead concentration is optimally 40 to 80 g / L. Furthermore, smooth and good electrodeposited lead can be recovered by setting Neugen BN-1390 or Neugen BN-2560 to 1 to 10 mg / L as the smoothing agent.

次に通電方法として、1段階目の通電として、電流密度50A/m2以下で2時間以上通電し、次に2段階目として、電流密度を100A/m2以下で通電した結果、図1に示した通り、初期段階で電流密度100A/m2で通電した電着鉛に比べ、Bi品位が、5ppm以下の低Bi品位の電着鉛を回収することができる。 Next, as the energization method, the first stage energization was conducted for 2 hours or more at a current density of 50 A / m 2 or less, and then the second stage was conducted at a current density of 100 A / m 2 or less. As described above, low-Bi-grade electrodeposited lead having a Bi grade of 5 ppm or less can be recovered as compared with electrodeposited lead energized at a current density of 100 A / m 2 in the initial stage.

(実施例1) 低Bi品位の電着鉛を回収する方法
電解液の組成として、鉛濃度:80g/L、スルファミン酸濃度:20g/Lに調整した溶液に平滑剤としてノイゲンBN-1390を10mg/Lになるように添加する。
高Bi品位の鉛アノードと鉛の種板または、ステンレス板をカソードとして、交互に電槽に装入する。カソードの大きさは、アノードに対して、20〜30mm程度大きくした方が、エッジ部への電流集中を緩和することができ、最適である。
(Example 1) Method of recovering low Bi grade electrodeposited lead As the composition of the electrolyte, 10 mg of Neugen BN-1390 as a smoothing agent was added to a solution adjusted to lead concentration: 80 g / L and sulfamic acid concentration: 20 g / L. Add to / L.
A high Bi grade lead anode and lead seed plate or stainless steel plate is used as a cathode, and the batteries are alternately inserted. It is optimal that the size of the cathode be about 20 to 30 mm larger than the anode because the current concentration on the edge portion can be relaxed.

電極装入後、電槽内に電解液を補充し、電解液の電槽内滞留時間が1時間程度になるように給液することで、電槽内の濃度分布を均等にする。
電解液の液温を、20〜30℃に調整後、1段階目の電流密度を50A/m2で通電し、2時間後に2段階目として、100A/m2で通電することで、Bi品位が、5massppmの低Bi品位の電着鉛を回収することができた。
After the electrode is charged, the electrolytic solution is replenished in the battery case, and the concentration distribution in the battery case is made uniform by supplying the electrolyte solution so that the residence time of the electrolytic solution in the battery case is about 1 hour.
After adjusting the electrolyte temperature to 20-30 ° C, the current density at the first stage was energized at 50A / m2, and after 2 hours the current was energized at 100A / m2 as the second stage. 5 massppm of low Bi grade electrodeposited lead could be recovered.

本発明における一態様である通電方法と電着鉛中のBi品位の関係Relationship between energization method and Bi quality in electrodeposited lead, which is an embodiment of the present invention

Claims (1)

Bi品位5から30 mass%の高不純物アノードを用いた、スルファミン酸浴での電解精製において、
1段階目の電流密度を50A/m2以下で電気分解を2時間以上行った後、
2段階目として100A/m2以下で電気分解を行うことで高純度の鉛を回収することができることを特徴とする鉛の電解方法。































In electrolytic purification in sulfamic acid bath using high impurity anode of Bi grade 5 to 30 mass%,
After performing electrolysis for 2 hours or more at a current density of the first stage of 50A / m2
A lead electrolysis method characterized in that high purity lead can be recovered by electrolysis at 100 A / m2 or less as the second step.































JP2009070031A 2009-03-23 2009-03-23 Electrolysis method of lead Expired - Fee Related JP5163988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070031A JP5163988B2 (en) 2009-03-23 2009-03-23 Electrolysis method of lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070031A JP5163988B2 (en) 2009-03-23 2009-03-23 Electrolysis method of lead

Publications (2)

Publication Number Publication Date
JP2010222627A JP2010222627A (en) 2010-10-07
JP5163988B2 true JP5163988B2 (en) 2013-03-13

Family

ID=43040136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070031A Expired - Fee Related JP5163988B2 (en) 2009-03-23 2009-03-23 Electrolysis method of lead

Country Status (1)

Country Link
JP (1) JP5163988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106904B2 (en) 2014-12-03 2018-10-23 Jx Nippon Mining & Metals Corporation Method for electrolytically refining lead in sulfamate bath

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453743B2 (en) * 2014-12-03 2019-01-16 Jx金属株式会社 Method for electrolytic purification of lead using sulfamic acid bath
US20180145959A1 (en) * 2016-11-22 2018-05-24 Synergex Group Method for determining access privilege using username, IP address, App ID, App Key, and biometric signature sample.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127601B1 (en) * 1970-12-02 1976-08-13
JP2998623B2 (en) * 1995-12-14 2000-01-11 三菱マテリアル株式会社 Method for producing low alpha ray lead
JP4654895B2 (en) * 2005-12-05 2011-03-23 住友金属鉱山株式会社 Formation method of lead-free plating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106904B2 (en) 2014-12-03 2018-10-23 Jx Nippon Mining & Metals Corporation Method for electrolytically refining lead in sulfamate bath

Also Published As

Publication number Publication date
JP2010222627A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5398369B2 (en) Rare metal production method and system
TWI406954B (en) Method for recovering valuable metals from IZO waste
JP6798080B2 (en) How to dispose of waste lithium-ion batteries
CN111373062B (en) Method for treating waste lithium ion battery
JP5280904B2 (en) Electrolysis method of lead (5)
JP4505843B2 (en) Copper dry refining method
JP5163988B2 (en) Electrolysis method of lead
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP4979751B2 (en) Electrolysis method of lead (1)
JP2010222625A (en) Electrolytic method (2) for lead
JP4979752B2 (en) Electrolysis method of lead (6)
CN104746105A (en) Device and method for separating antimony-containing alloy
JP2009242845A (en) Electrolytic process of lead
JP2010222626A (en) Electrolytic process of lead
JP4041590B2 (en) Method for producing high-purity bismuth having a purity of 5N or more
US5441609A (en) Process for continuous electrochemical lead refining
JP2013227621A (en) Method of electrorefining bismuth
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
EP2331718A1 (en) Electroslag melting method for reprocessing of aluminium slag
KR20110027556A (en) Method for electrolyzing lead
CN109778230B (en) Method for electrolytic separation of lead and copper from high-lead copper matte
US10106904B2 (en) Method for electrolytically refining lead in sulfamate bath
JP2012072481A (en) Electrolysis method of lead
JP2013199671A (en) Method for electrolyzing high bismuth quality lead anode
JP5514747B2 (en) Electric lead manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees